边坡稳定性分析资料讲解

合集下载

边坡稳定性分析方法及其应用综述

边坡稳定性分析方法及其应用综述

边坡稳定性分析方法及其应用综述引言:一、边坡稳定性分析方法1.隐式方法:隐式方法是边坡稳定性分析中常用的一种方法,它基于潜在平衡的假设,将边坡分析问题转化为求解非线性方程的问题。

其中最常用的方法为切线法、牛顿法和递归算法。

2.极限平衡方法:极限平衡方法是边坡稳定性分析中最常用的方法之一,它将边坡划分为滑动体和支撑体两个部分,通过平衡力的分析来确定边坡的稳定状态。

常用的方法有切片平衡法、切块平衡法和变形平衡法等。

3.数值模拟方法:数值模拟方法是近年来发展起来的一种边坡稳定性分析方法,它通过数值模拟地质体的力学行为来评估边坡的稳定性。

常见的方法有有限元法、有限差分法和边界元法等。

4.统计方法:统计方法是一种通过统计数据分析边坡稳定性的方法,它通过收集边坡历史数据来建立统计模型,然后预测未来边坡的稳定性。

常用的方法有回归分析、灰色系统理论和神经网络等。

二、边坡稳定性分析方法的应用1.土石坡的稳定性分析:土石坡是边坡稳定性分析的重要对象之一,它常见于土木工程和交通运输工程中。

通过对土石坡的稳定性进行分析,可以确定合适的边坡坡度和护坡措施,从而确保工程的安全和稳定。

2.岩质边坡的稳定性分析:岩质边坡是指由岩石构成的边坡,常见于水利工程和隧道工程中。

岩质边坡的稳定性分析需要考虑岩石的强度和岩体的结构特征,通过对岩质边坡的稳定性分析,可以确定合理的爆破参数和支护方式,从而确保工程的安全施工。

3.深部边坡的稳定性分析:深部边坡是指边坡的深度较大的边坡,常见于矿山工程和城市基础设施工程中。

深部边坡的稳定性分析需要考虑地应力、岩体的变形特性和地下水的影响等因素,通过对深部边坡的稳定性分析,可以确定合理的开采方式和支护措施,从而确保工程的安全运营。

4.风化边坡的稳定性分析:风化边坡是指由风化松散物质构成的边坡,常见于山区公路和铁路等工程中。

风化边坡的稳定性分析需要考虑土壤的强度和湿度等因素,通过对风化边坡的稳定性分析,可以确定合适的排水和防护措施,从而确保工程的安全与可靠。

公路边坡稳定分析

公路边坡稳定分析

公路边坡稳定分析公路边坡是指公路两旁的斜坡地形,其稳定性对于道路的安全运营至关重要。

本文将对公路边坡的稳定性进行分析,并提出相应的对策和建议。

一、边坡稳定性分析1. 边坡材料特性公路边坡的材料多为土质,因此需要对土体的物理力学性质进行分析。

这包括土体的密实度、抗剪强度、渗透性等参数,以评估其稳定性。

2. 边坡坡度和坡高边坡的坡度和坡高是决定边坡稳定性的重要因素。

较陡的坡度和高的坡高会增加边坡的失稳风险。

因此,需要对边坡的设计要求、实际情况等进行综合分析。

3. 边坡地质条件边坡的地质条件直接影响边坡的稳定性。

需要考虑的地质因素包括地质构造、岩性、断裂等,以确定边坡的稳定性评估标准和分析方法。

二、边坡稳定性分析方法1. 极限平衡分析法极限平衡分析法是最常用的边坡稳定性分析方法之一。

它通过分析边坡在不同荷载和地质条件下的平衡状态,确定边坡的稳定性,并根据计算结果提出相应的加固措施和建议。

2. 数值模拟分析法数值模拟分析法利用计算机软件对边坡进行模拟,模拟边坡在不同荷载和地质条件下的受力和变形情况。

通过分析模拟结果,得出边坡的稳定性评估,并提出相应的治理方案。

三、边坡稳定性治理措施1. 边坡加固设计根据边坡分析结果,设计相应的边坡加固措施。

这包括使用加固材料、增加边坡的支护结构等,以提高边坡的稳定性和抗滑性能。

2. 排水措施排水是边坡稳定的重要因素之一。

通过设计合理的排水系统,降低土壤的含水量,减少边坡受水力影响,提高边坡的稳定性。

3. 灌浆加固对于因地质条件不良导致的边坡问题,可以采取灌浆加固的方法。

通过注入稀浆材料,填充土壤中的空隙,提高边坡的稠度和强度,增加边坡的稳定性。

四、边坡稳定性监测与维护1. 定期监测对公路边坡进行定期监测,包括测量边坡的位移、裂缝变化等情况,及时发现边坡稳定性问题,并采取相应的维护措施。

2. 维护保养定期对边坡进行维护保养,及时清理排水系统、维修加固结构等,确保边坡的长期稳定性。

边坡稳定性分析

边坡稳定性分析
由此可见,边坡失稳,将会影响工程的顺利进行和施工安全,对相邻建筑物构成威胁, 甚至危及人民的生命安全。因此,在工程建设中,必须根据场地的工程地质和水文地质条件 进行调查与评价,排除潜在的威胁以及直接有危害的整体不稳定山坡地带,并对周围环境以 及施工影响等因素进行分析,判断其是否存在失稳的可能性,采取相应的预防措施。
T f = N tan ϕ = W cosθ tan ϕ
式中 N 是单元体自重在坡面法线方向的
分力,ϕ 是土的内摩擦角。无粘性土土
T
θ
θN
W
坡的稳定安全因数定义为最大抗剪力与 剪切力之比,即
图 8.2.1 均质无粘性土坡稳定性分析
Ks
= Tf T
= W cosθ tanϕ = tanϕ W sinθ tanθ
均质无粘性土坡如图 8.2.1 所示,土坡的坡角θ,土的内摩擦角ϕ 。现从坡面上任取
一侧面竖直、底面与坡面平行的土体单元,假定不考虑该单元土两侧应力对稳定性的影响。
设单元体的自重 W,则它下滑的剪切力就只有 W 在顺坡方向的分力
T=Wsinα
阻止土体下滑的力是此单元体与下面土体
之间的抗剪力,其所能发挥的最大值为
(3)人工填筑的土堤、土坝、路基等,形成地面以上新的土坡。由于这些工程的长度很 大,边坡稍微改陡一点,往往可以节省工程量。
由此可见,土坡稳定在工程上具有很重要的意义,影响土坡稳定的因素很多,包括土坡 的边界条件、土质条件和外界条件。具体因素如下:
(1)边坡坡角θ,坡角θ越小就越安全但不经济;坡角θ太大,则经济而不安全。 (2)坡高 H,试验研究表明,其它条件相同的土坡,坡高 H 越小,土坡越稳定。 (3)土的性质,土的性质越好,土坡越稳定。例如,土的重度γ和抗剪强度指标 c、φ 值大的土坡,比γ、c、φ小的土坡更安全。 (4)地下水的渗透力,当土坡中存在与滑动方向一致的渗透力时,对土坡不利。如水库 土坝下游土坡就可能发生这种情况。 (5)震动作用如强烈地震、工程爆破和车辆震动等,会使土的强度降低,对土坡稳定性 产生不利影响。 (6)施工不合理,对坡角的不合理开挖或超挖,将使坡体的被动抗力减小。这在平整场 地过程中经常遇到。不适当的工程措施引起古滑坡的复活等,均需预先对坡体的稳定性作出 估计。 (7)人类活动和生态环境的影响。

第二章 边坡稳定性分析

第二章 边坡稳定性分析

2.1.2 边坡分类
按材料力学性质分: (1)土质边坡

黄土边坡:多孔,孔隙比大,以粉粒为主,含水少,柱状和垂直节理发育,
可形成直立边坡,遇水容易剥落。 砂性边坡:结构较疏松,粘聚力低,透水性大,在振动作用下易于液化产生

液化边坡。

粘性土边坡:以细颗粒粘土为主要介质,边坡的稳定性受生成环境、粘土矿 物成分、物理力学特性影响较大。一般都具有干时坚硬开裂,遇水膨胀分解 呈软塑性状的特点。
2.3 边坡稳定性分析
边坡稳定性评价的任务:
(1)对与工程建设有关的天然边坡或人工边坡的稳定性做出定性和定量评价; (2)为设计合理的人工边坡和边坡变形破坏的防治措施提供依据。
边坡稳定性评价方法可概括为: 地质分析法(历史成因分析法、赤平极射投影法) 力学计算法(包括极限平衡法、数值法) 工程地质类比法 可靠度分析法(基于概率论的结构设计方法)
情况三: 结构面投影位于边坡投影同侧外侧时,边坡不稳。
顺倾向坡,结构面倾角小于坡面角。
(1)一组结构面边坡稳定性分析 b.当岩层的走向与边坡的走向斜交时
若边坡稳定性发生破坏,从岩体结构的观 点来看,须同时具备两个条件: 第一,滑动面ADK; 第二,垂直于结构面的切割面DEK。
DEK是推断的,不稳定体ADEK。削坡,
c.交线与一组结构面的倾向线重合。 则重合线就是滑动方向, J2为切割面。
二、力学分析法
(一)极限平衡法
极限平衡法是在已知滑移面上对边坡进行静力平衡计算,从而求出
边坡稳定系数,因此,必须知道滑移面的位置与形状。当滑面为一简单平 面时,可采用解析法计算,获得解析解。当滑面为圆弧、对数螺线、折线
或任意曲线时,无法获得解析解,通常要采用条分法求解。由于条间力假

第3章边坡稳定性分析

第3章边坡稳定性分析

§3.1 边坡稳定性分析概述
学风严谨 崇尚实践
边坡工程
§3.1 边坡稳定性分析概述
学风严谨 崇尚实践
当结构面的倾向与坡面倾向相反时,边坡为稳定结构。
当结构面的倾向与坡面倾向基本一致但其倾角大于坡角时,边坡为基 本稳定结构。
当结构面的倾向与坡面倾向之间夹角小于30°且倾角小于坡角时,边 坡为不稳定结构。
注:使用本表时应考虑地区性水文、气象等条件,结合具体情况予以修正。本表 不适用于岩层层面或主要节理面有顺坡向滑动可能的边坡。
边坡工程
§3.1 边坡稳定性分析概述
(3) 图解法
图解法可以分为两类:
① 用一定的曲线和图形来表征边坡有 关参数之间的定量关系,由此求出边 坡稳定性系数,或已知稳定系数及其
它参数(f 、c、r、结构面倾角、坡
力学分析。通过反复计算和分析比较,对可能的滑动面给出
稳定性系数。
目前,刚体极限平衡方法已经从二维发展到三维。
边坡工程
§3.1 边坡稳定性分析概述
学风严谨 崇尚实践
刚体极限平衡分析方法很多,在处理上,各种条分法在以下 几个方面引入简化条件:
(a) 对滑裂面的形状作出假定,如假定滑裂面形状为折线、 圆弧、对数螺旋线等;(b) 放松静力平衡要求,求解过程中仅满 足部分力和力矩的平衡要求;(c) 对多余未知数的数值和分布形 状做假定。
§3.1 边坡稳定性分析概述
学风严谨 崇尚实践
对于新设计的大型边坡,根据设计对边坡的要求及 边坡的荷载情况,分别预选2~3个坡角并按坡高段进行 稳定性验算,作出包括开挖、支护费用在内的技术经济 比较,然后从中选出最优的坡角、坡形。
目前,针对不同类型的边坡,已经提出一种或多种 分析方法。在具体应用中,根据具体边坡工程地质条件, 选取一种或几种方法进行综合分析。

边坡岩体稳定性分析

边坡岩体稳定性分析

边坡面附近:主应力迹线发生偏转。最大主应力 与坡面近于平行,最小主应力与坡面近于正交, 向坡体内逐渐恢复初始应力状态。
坡面上径向应力为零,为双向应力状态,向坡内 逐渐转为三向应力状态。
• (3)坡面附近:应力集中带。坡脚附近,最大剪 应力增高,易剪切破坏;坡肩附近,拉应力带 。边坡愈陡,范围愈大,∴,坡肩附近最易拉 裂破坏。
• 滑动面:起滑动(即失稳岩体沿其滑动)作用的面 ,包括潜在破坏面。
• 切割面:起切割岩体作用的面,由于失稳岩体不 沿该面滑动,因而不起抗滑作用,如平面滑动的 侧向切割面。
• 临空面:临空自由面,为滑动岩体提供活动空间 ,临空面常由地面或开挖面组成。
一、几何边界条件分析
• 分析内容: 查清岩体中的各类结构面及其组合关系,确
边坡稳定性系数为
3、有水压力作用与地震作用
水平地震作用
FEK=1G
边坡的稳定性系数
思考题
1、岩质边坡有那几种破坏类型,各有 何特征?
2、按经验不利于岩质边坡稳定的条件 有那些?
3、岩质边坡稳定性分析方法有那些? 极限平衡法的原理是什么?
计算题
1、在图中,坡高 上的粘结力 体容重 。
滑面AC
,内摩擦角
• (3)岩体性质及结构特征 岩体变形模量影响不大,泊松比对边坡应力影响较
大。∵泊松比的变化,可使水平自重应力发生改变 。 • (4)结构面 使坡体中应力发生不连续分布,在结构面周边或端 点形成应力集中带或阻滞应力的传递,坚硬岩体边 坡中明显。
§8.2 边坡岩体的变形与破坏
• 岩体边坡的变形与破坏是边坡发展演化过程中 两个不同的阶段,变形属量变阶段,而破坏则 是质变阶段,形成一个累进性变形破坏过程。

第三章 边坡稳定性分析

第三章 边坡稳定性分析

(2)36º 法 方法:坡顶E处作与坡顶水平线成36º 的直线EF
二、
浸水路堤稳定性分析
1、河滩路堤受力: 普通路堤外力、自重、浮力(受水浸 泡产生浮力)、渗透动水压力(路堤两侧 水位高低不同时,水从高的一侧渗透到低 的一侧产生动水压力) 最不利情况:水位降落时动水压力指 向河滩两侧边坡,尤其当水位缓慢上涨而 集聚下降时,对路堤最不利。
※1、圆弧法基本步骤:
①通过坡脚任意选定可能滑动面AB,半径 为R,纵向单位长度,滑动土体分条(5~8) ②计算每个土条重Gi(土重、荷载重)垂 直滑动面法向分力 ③计算每一段滑动面抵抗力NitgΦ(内摩擦 力)和粘聚力cLi(Li为I小段弧长)
④以圆心o为转动圆心,半径R为力臂。 计算滑动面上各点对o点的滑动力矩和抗 滑力矩。
当量土柱高度的计算公式为:
荷载分布宽度: ⑴可分布在行车道宽度范围内 ⑵考虑实际行车有可能偏移或车辆停放在 路肩上,也可认为H1厚当量土层分布于整 个路基宽度上。
第二节 路基稳定性分析与设计验算
一、边坡稳定性分析方法: ※力学分析法: 1、数解法—假定几个滑动面力学平衡原理计 算,找出极限滑动面。 2、图解或表解法—在计算机或图解的基础上, 制定图或表,用查图或查表来进行,简单不精确。 ㈠力学分析法: 直线法—适用于砂土和砂性土(两者合称砂 性土)破裂面近似为平面。 圆弧法—适用于粘性土,破裂近似为圆柱形
※路堤各层填料性质不同时,所采用验算数据可按加权平 均法求得。
(二)边坡稳定分析的边坡取值
边坡稳定分析时,对于折线形边坡或阶梯 形边坡,在验算通过坡脚破裂面的稳定性 时,一般可取坡度平均值或坡脚点与坡顶 点的连线坡度。
(三)汽车荷载当量换算
路基承受自重作用、车辆荷载(按车 辆最不利情况排列,将车辆的设计荷 载换算成相当于土层厚度h0 ) h0称为车辆荷载的当量高度或换算高 度。

边坡的稳定性分析

边坡的稳定性分析
贵州大学
振动作用
累积效应。边坡中由地震引起的附加力,通常以 边坡变形体的重量W与水平地 震加速度Kc之积表示, 即为KcW。在边坡稳定性计算中,一般将地震附加力 考虑为水平 指向坡外的力。边坡岩土体位移量的大 小不仅与震动强度有关,也与经历的震动次数有 关 ,频繁的小震对斜坡的累进性破坏起着十分重要的作 用,其累积效果使影响范围内的岩 体结构松动,结 构面强度降低。
图2-9某露天矿山爆破效应分区 (a)直接破碎区;(b)岩体崩坍区;(c)松动区;(d)地表变形裂缝区
效应分区
贵州大学
边坡形状与断面形态
边坡形状及表面形态指边坡的外形、坡高、坡度 、断面形态以及边坡临空程度等。目前的稳定性分 析方法通常把边坡看成二维,且假定边坡从坡顶到 坡底是一个平面;而实际 上边坡在平面图上总是弯 曲的,在断面图上往往也是弯曲的。边坡形态对边 坡稳定有一定程度的影响,主要表现在以下方面。 A.边坡外形 B.边坡坡度和坡高 C.边坡断面形态
贵州大学
二、水化学作用对岩土体的影响
在岩土体遇水的情况下,受水化学作用后产生 的易溶矿物随水流失,而难溶或结晶矿物则残留原 地,结果致使岩土体的孔隙增大,岩土体因此变得 松散脆弱。当岩土失水又浸水时,某些矿物与进入 岩土颗粒孔隙中的水作用后出现体积膨胀的现象, 这种体积膨胀是不均匀的,从而使得岩土体内部产 生了不均匀的应力,最终导致了矿物颗粒的碎裂解 体,表现出土体软化和崩解。于是岩土的内摩擦角 和粘聚力随之而减小。而边坡地下水位的升降正是 诱发岩土浸水—失水—再浸水这一反复循环的直接 因素,因此,对边坡变形的发展有着较大的影响。
四、水的物理作用
水对边坡岩土体的作用是多方面的,包 括材料性质、软化、冲刷等,这些作用都 将影响边坡的稳定性。一般而言,水的物 理作用往往具有突发性,从而对边坡的稳 定性构成较大的威胁。

边坡稳定性分析

边坡稳定性分析

边坡稳定性分析边坡稳定性是指边坡在外力的作用下,保持形态完整性和不发生滑动、坍塌的能力。

边坡稳定性分析是工程领域的重要课题,因为边坡工程的不稳定可能导致严重的灾害事故,对周围环境和人类生命财产造成巨大威胁。

本文将讨论边坡稳定性分析的重要性以及常用的分析方法。

首先,边坡稳定性分析对于工程项目的安全性和可持续性发挥着重要作用。

无论是公路、铁路、港口、水库还是建筑物等工程项目,边坡都承受着巨大的自重和外力。

如果边坡不稳定,就会造成坡体滑动、坍塌,从而对工程项目产生灾难性的影响。

因此,通过边坡稳定性分析,可以及早发现边坡的潜在问题,采取防治措施,确保工程项目的安全运行。

其次,边坡稳定性分析涉及多个因素的综合考虑,需要运用多种方法进行分析。

在边坡稳定性分析中,主要考虑的因素包括:坡体的地质、地形条件、坡度和坡高等;坡体的土壤力学性质、水分条件、地下水位等;同时还要考虑到边坡上已有的荷载以及外界对边坡的影响等。

为了得到准确的边坡稳定性分析结果,可以运用多种方法进行分析,如数值模拟、荷载试验、物理模型试验等,综合考虑各种因素的影响。

在进行边坡稳定性分析时,可以通过以下步骤进行:第一步,搜集地质资料和工程设计参数。

包括地质勘探资料、地形图、地质图、土壤力学试验结果、地下水位资料等,这些资料对稳定性分析具有重要的参考价值。

第二步,确定边坡模型和荷载条件。

根据实际工程情况,确定边坡的几何形状、土壤结构、边坡顶部和底部的支撑条件,并确定边坡所承受的各种荷载条件。

第三步,进行边坡稳定性分析。

根据搜集到的地质资料和工程设计参数,可以使用各种分析方法进行稳定性分析。

常用的方法包括等效剪切强度法、平衡法、有限元法等。

第四步,评价边坡的稳定性。

根据分析的结果,评价边坡的稳定性,并给出相应的结论和建议。

如果边坡稳定性不够,需要采取相应的措施,如加固边坡、排水、减轻坡体荷载等。

综上所述,边坡稳定性分析在工程领域具有极为重要的意义。

第三章--边坡稳定性分析

第三章--边坡稳定性分析
35
验算方法
⑴ 将土体按地面变
T1
坡点垂直分块后自 α1 W 1 N1
上而下分别计算各 E1
τ1
土块的剩余下滑力.
α1 α2
E2
T2
W2 N2
τ2
E1 α1
⑵自第二块开始, 均需计入上一条块剩余下滑力对本条块的作用 把其当作作用于本块的外力,方向平行于上一块土体滑动面。
⑶Ei计算的结果若出现负值,计算Ei+1时,公式中Ei以零值代入。
cL
N
A ω θ Ntgφ W
H
K f G cos cL G sin
10
二、解析法
D B
θ
K f G cos cL G sin
H
1:m T
cL
N
A ω θ Ntgφ W
因G HL sin( )则
K
f
2
ctg
sin
2c
H
sin(
sin ) sin
令 0
2c
H
K ( f 0 )ctg
②土的极限平衡状态只在破裂面上达到,破裂面的位置要 通过计算才能确定。
力学分析法主要包括:圆弧滑动面法、平面滑动面法、 传递系数法等。
8
§ 3.2 直线滑动面的边坡稳定性计算
K min K
一、试算法
T
KR T
θ ω
N W
K W cos tan cL W sin
纯净砂类土 c = 0,则
15
◆ 计算稳定系数
①切向力
o
Ti x Qi sin i
R
'
i
i'
10 1:m2
E
98

边坡稳定性分析

边坡稳定性分析

边坡稳定性分析1. 引言边坡是在土工工程中常见的一种地形特征,边坡的稳定性是工程建设中必不可少的一个考虑因素。

在土地资源有限的情况下,为了尽可能地把土地利用起来,往往需要进行大规模的平整和填土工程,而边坡的构建就是这些工程中常见的一种。

为确保边坡能够正常使用和安全运营,需要对边坡稳定性进行分析,发现潜在的稳定性问题,并采取有效措施加以解决,以减少边坡因滑坡等稳定性问题带来的危害。

2. 边坡稳定性的主要影响因素边坡稳定性的主要影响因素有以下几个方面:2.1 地质环境因素地质环境因素包括岩土体的层位、结构、断层等特点,以及岩质的物理和力学性质,这些因素会直接影响边坡岩土块体的稳定性。

2.2 气候因素气候因素主要是指气温、降雨等,因为气候因素对土壤的含水量影响较大,土壤含水量直接关系到土体的抗剪强度、摩擦角等力学性质,因此气候因素也会直接影响边坡的稳定性。

2.3 工程因素工程因素主要指在边坡的设计、施工中,采用了哪些工程措施或技术,如施工质量、施工机械的选择等。

3. 边坡稳定性分析方法根据上述因素,边坡稳定性分析可以采用切割平衡法、极限平衡法、有限元法、数值拟合法等方法进行。

其中,切割平衡法和极限平衡法是常用的方法。

3.1 切割平衡法切割平衡法又称切割解析法,是采用力学平衡原理进行切割处理的方法,先将边坡划分为一系列相邻的平衡块,然后逐块进行力学平衡分析,最终确定边坡的稳定性。

3.2 极限平衡法极限平衡法又称极限平衡分析法,是一种抗剪强度理论应用到边坡稳定问题中的方法。

该方法的基本思想是,将岩土体看作由一系列平衡体构成,通过计算边坡中每个平衡体的稳定性系数,然后比较得出最不稳定的平衡体,以此推断边坡岩土体的总稳定性。

4. 结论边坡的稳定性分析是土工工程中的重要内容,它关系到边坡的使用和安全运营。

本文介绍了边坡稳定性分析的主要影响因素和常用的分析方法,希望能够有所帮助。

在实际工程中,需要根据具体情况综合运用多种方法进行分析,以确保工程的安全性和可靠性。

边坡安全稳定性分析

边坡安全稳定性分析

边坡安全稳定性分析边坡是指山体或灰土山体边缘的倾斜地形,通常处于河流、海岸线、公路、铁路等陡峭的地形上。

在自然界或人工工程中,边坡易受到地震、滑坡、风化等自然灾害和人为开挖等因素的影响,在长期的行程中也会发生变化。

因此,对边坡的安全稳定性进行分析非常重要。

边坡的稳定性分析方法边坡的稳定性分析是指通过计算边坡的抗力和权重,确定边坡的自然稳定性和力学稳定性的分析方法。

边坡稳定性分析方法主要有以下几种:1. 极限平衡法极限平衡法是结合坡面原始状态和当前破坏状态的假设,采用力学平衡原理和边坡稳定条件,确定边坡在承受荷载下的最不安全条件。

它利用静力法的平衡条件来研究边坡稳定性,主要包括相对平衡法、无积力平衡法和极限末次法等几种。

这种方法适用于边坡网络简单、土质单一的边坡分析。

2. 数值分析法数值分析法是利用数学模型进行边坡稳定性分析,包括有限元法、有限差分法等,通过数值模拟得出土体的位移、应变状态、稳定性系数等,并计算塌陷和滑坡面等关键点的位置以及作用力的大小,进而分析边坡的稳定性。

这种方法适用于复杂数学模型的边坡分析。

3. 土工测试法土工测试法是直接对地层进行试验和观测,通过实测得到土壤的性质参数,包括强度参数、变形参数等,从而分析土体的性质、本构关系和稳定性。

土工测试法主要包括室内力学试验、现场力学试验、标准贯入试验和静负荷试验等种类,适用于模型试验和现场试验,可以充分测定有关实际的参数。

影响边坡稳定性的因素边坡的稳定性受到许多因素的影响,其中最重要的影响因素是坡面的倾斜度、地质情况、土层结构、气象因素和人为开挖等。

1. 坡面的倾斜度坡面的倾斜度决定了地表受力的大小和趋势,对于较陡峭的边坡,土质容易悬挂和滑动,从而导致边坡的破坏。

2. 地质情况地质情况包括岩性、构造、土壤成分、地质构造等因素,不同的地质条件具有不同的物理机制,直接影响着地层的稳定性。

3. 土层结构土层结构包括土层厚度、土体的类型和填充物的类型等因素,不同的土层结构对边坡稳定性的影响也有所不同。

第三章 边坡稳定性分析资料

第三章 边坡稳定性分析资料

第二章 边坡稳定性分析
第二节 路基稳定性分析与设计验算
一、高路堤、深路堑稳定性分析 (一)、直线法 1、例题 某路堑挖深6.0m,土工试验并考虑不
利季节影响,φ=25°,c=14.7kpa, γ=17.64KN/m3,试设计路堑边坡值。
第二章 边坡稳定性分析
第二节 路基稳定性分析与设计验算
第二节 路基稳定性分析与设计验算
一、高路堤、深路堑稳定性分析 (一)、直线法 1、砂类土路堑边坡 稳定性系数 K=R/T=(f+a)cotω+acot(θ-ω) Kmin对应的最危险滑动面倾角ω0及Kmin ω0 =cotθ+(a/(f+a))1/2cscθ Kmin=(2a+f)cotθ+2 +(a(f+a))1/2cscθ
第二章 边坡稳定性分析
第一节 概述 一、边坡稳定原理及方法
第二章 边坡稳定性分析
第一节 概述
一、边坡稳定原理及方法
方法:
力学验算法(极限平衡、数值法)
工程地质法(历史成因分析、赤平极射投影 法)
力学验算法假定:
1、不考虑土体本身内应力;
2、平衡状态只在滑动面上达到;
3、极限滑动面通过试算确定。
一、高路堤、深路堑稳定性分析 (一)、直线法 2、例题 某路堑挖深6.0m,土工试验并考虑不
利季节影响,φ=25°,c=14.7kpa, γ=17.64KN/m3,试设计路堑边坡值。
第二章 边坡稳定性分析
第二节 路基稳定性分析与设计验算
一、高路堤、深路堑稳定性分析 (二)、圆弧法 1、稳定性系数K
第二章 边坡稳定性分析
第一节 概述
一、边坡稳定性分析的计算参数

土木工程知识点-边坡工程稳定性及处理方法

土木工程知识点-边坡工程稳定性及处理方法

土木工程知识点-边坡工程稳定性及处理方法我国是一个多地质灾害的国家,在众多的地质灾害中,边坡失稳灾害以其分布广危害大,而对国民经济和人民生命财产造成巨大的损失。

因此,研究边坡变形破坏的过程,分析其失稳的主要影响因素,对正确评价边坡的稳定性、采取相应有效的边坡加固治理措施具有重要的现实意义。

1 、边坡工程稳定性分析1.1 边坡稳定性的影响因素边坡在形成的过程中,其内部原有的应力状态发生了变化,引起了应力集中和应力重分布等。

为适应这种应力状态的变化,边坡出现了不同形式和不同规模的变形与破坏,这是推动边坡演变的内在原因;各种自然条件和人类的工程活动等也使边坡的内部结构出现了相应的变化,这些条件是推动边坡演变的外部因素。

1.1.1 地质构造地质构造因素主要是指边坡地段的褶皱形态、岩层产状、断层和节理裂隙的发育程度以及新构造运动的特点等。

通常在区域构造复杂、褶皱强烈、断层众多、岩体裂隙发育、新构造运动比较活跃的地区,往往岩体破碎、沟谷深切,较大规模的崩塌、滑坡极易发生。

1.1.2 气候因素极端的气候条件和全球气候变化构成滑坡发生的主要触发和诱发条件,中国南方天气系统主要受印度洋暖湿气流的控制,夏季多局部强降雨过程;而我国的西北地区,主要受季风气候影响。

1.1.3 地下水处于水下的透水边坡将承受水的浮托力的作用,使坡体的有效重力减轻;水流冲刷岩坡,可使坡脚出现临空面,上部岩体失去支撑,导致边坡失稳。

1.1.4 边坡形态边坡形态通常指边坡的高度、坡度、平面形状及周边的临空条件等。

一般来说,坡高越大,坡度越陡,对稳定性越不利。

1.1.5 人类活动据统计,50%以上的滑坡事件与人类活动有着直接或间接的关系。

随着社会经济的发展,自20世纪中期以来,人类活动的力量日益剧增,并表现出逐渐取代自然营力。

在土木、水利、交通、矿山等大型土工活动中,由于开挖斜坡、填土、弃土和堆积矿渣等,使边坡中的土体内部应力发生变化,或由于开挖使土体的抗剪强度降低,或因填土增加荷重而增大滑动力等,有些地方出现了缺乏论证的修路、开矿和不合理的切坡、用水及乱砍滥伐植被的现象、对自然环境的改变或破坏等,都成为滑坡事件频频发生的主要因素。

3第三章 边坡稳定性分析

3第三章 边坡稳定性分析

2. 计算分析方法: 计算分析方法:
(1)工程比拟法;(2)极限平衡理论;(3)数值分析方法; (1)工程比拟法;(2)极限平衡理论;(3)数值分析方法; 工程比拟法;(2)极限平衡理论 数值分析方法 (4)图解法 (5)复合分析法 图解法; (4)图解法;(5)复合分析法
3.稳定性分析与计算的范围 3.稳定性分析与计算的范围
(2)极限平衡理论 (2)极限平衡理论
以土的抗剪强度理论为基础, 以土的抗剪强度理论为基础,按力的极限平衡原理建立相应 计算式。 计算式。 具体步骤: 具体步骤: (1)假定岩土体破坏是由于滑体内滑动面上发生滑动而造成 (1)假定岩土体破坏是由于滑体内滑动面上发生滑动而造成 滑动面上土体服从破坏条件; 的,滑动面上土体服从破坏条件; 假设滑动面已知,其形状可以是平面、圆弧面、 (2) 假设滑动面已知,其形状可以是平面、圆弧面、对数 螺旋面或其它不规则曲面; 螺旋面或其它不规则曲面; (3)通过考虑由滑动面形成隔离体的静力平衡 通过考虑由滑动面形成隔离体的静力平衡, (3)通过考虑由滑动面形成隔离体的静力平衡,通常将有滑 动趋势范围内的边坡岩体按某种规则划分为一个个小块体, 动趋势范围内的边坡岩体按某种规则划分为一个个小块体, 通过块体的平衡条件建立整个边坡平衡方程,以此为基础, 通过块体的平衡条件建立整个边坡平衡方程,以此为基础, 确定沿这一滑面发生滑动时的破坏荷载。 确定沿这一滑面发生滑动时的破坏荷载。 (4)令滑体发生破坏所能加的最小的荷载就是要求的极限破 (4)令滑体发生破坏所能加的最小的荷载就是要求的极限破 坏荷载,与之对应的滑动面就是最危险的滑动面。 坏荷载,与之对应的滑动面就是最危险的滑动面。
1. 滑坡有两种类型: 滑坡有两种类型:
(1)是天然边坡由于水流冲刷、 (1)是天然边坡由于水流冲刷、地壳运动或人类活动破坏 是天然边坡由于水流冲刷 了它原来的地质条件而产生的滑坡; 了它原来的地质条件而产生的滑坡; (2)人工开挖或填筑的人工边坡 由于设计的边坡 人工开挖或填筑的人工边坡, 设计的边坡不当或 (2)人工开挖或填筑的人工边坡,由于设计的边坡不当或 工作条件的变化改变了岩土体内部的应力状态, 工作条件的变化改变了岩土体内部的应力状态,使某几 个面上的剪应力达到岩土体的抗剪强度, 个面上的剪应力达到岩土体的抗剪强度,坡体的稳定平 衡状态遭到破坏而发生的滑坡。 衡状态遭到破坏而发生的滑坡。

边坡稳定性分析

边坡稳定性分析

边坡稳定性分析学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。

重点:1。

边坡变形破坏类型;2影响边坡稳定性的因素;3边坡稳定性分析与评价。

9.1边坡变形和破坏类型9.1.1概述随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。

近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。

在水电、交通、采矿等许多领域,边坡工程是整个工程不可分割的一部分。

为了保证工程运行安全和节约资金,学者们对边坡的演变规律、边坡稳定性和滑坡预测进行了广泛的研究。

然而,随着人类工程活动的扩大和经济建设的快速发展,高陡边坡稳定性和大规模灾害性滑坡预测问题普遍出现在边坡工程中。

在我国,目前露天开采的人工边坡已达300-500m,这是水电工程中遇到的问题的天然边坡高度已达500―1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

因此,广大工程地质和岩石力学工作者长期以来对此问题进行了不懈的探索和研究,并取得了很大的进展;从最初的工程地质类比法、历史原因分析法等定性研究,到极限平衡法、数值分析法等定量分析方法,再到系统分析法、可靠性法、灰色系统法等不确定性方法,再辅以物理模拟法,工程地质力学理论和岩石(土)结构控制论的诞生,无疑为边坡工程和滑坡预测研究奠定了坚实的基础,为人类工程建设做出了巨大贡献。

第三章 边坡稳定性分析

第三章 边坡稳定性分析

(1)基本原理 (1)基本原理 采用圆弧条分法分析边坡稳定时, 采用圆弧条分法分析边坡稳定时,一般 假定土为均质和各向同性;滑动面通过坡脚; 假定土为均质和各向同性;滑动面通过坡脚; 不考虑土体的内应力分布及各土条之间相互 作用力的影响,土条间无侧向力作用, 作用力的影响,土条间无侧向力作用,或虽 有侧向力,但与滑动面圆弧的切线方向平行。 有侧向力,但与滑动面圆弧的切线方向平行。
1-2 路基稳定性分析与设计验算
一般
路 基 路 面 工 程 授 课 讲 义
第三章 边坡稳定性分析
1-1 概述
路基边坡稳定分析与验算的方法很多,归纳起来有力学 路基边坡稳定分析与验算的方法很多, 验算法和工程地质法两大类。 学验算法又叫极限平衡法, 验算法和工程地质法两大类。力学验算法又叫极限平衡法, 是假定边坡沿某一形状滑动面破坏, 是假定边坡沿某一形状滑动面破坏,按力平衡原理建立计算 式进行判断。按边坡滑动面形状不同,可分为直线、曲线、 式进行判断。按边坡滑动面形状不同,可分为直线、曲线、 折线三种。 折线三种。 力学验算法采用以下假定作近似计算: 力学验算法采用以下假定作近似计算: 路 基 路 面 工 程 授 课 讲 义 (1)不考虑滑动土体本身内应力的分布; 不考虑滑动土体本身内应力的分布; 认为平衡状态只在滑动面上达到, ( 2 ) 认为平衡状态只在滑动面上达到 , 滑动土体成整体 下滑; 下滑; (3)极限滑动面位置要通过试算来确定。 极限滑动面位置要通过试算来确定。
第三章 边坡稳定性分析
1-2 路基稳定性分析与设计验算
一般
路 基 路 面 工 程 授 课 讲 义
第三章 边坡稳定性分析
1-2 路基稳定性分析与设计验算
一般
路 基 路 面 工 程 授 课 讲 义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

边坡稳定性分析第9章边坡稳定性分析学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。

重点:1边坡的变形与破坏类型;2影响边坡稳定性的因素;3边坡稳定性分析与评价。

9.1 边坡的变形与破坏类型9.1.1概述随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。

近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。

在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。

然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。

在我国,目前的露天采矿的人工边坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。

在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。

又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的问题。

如果岩坡由于力过大和强度过低,则它可以处于不稳定的状态,一部分岩体向下或向外坍滑,这一种现象叫做滑坡。

滑坡造成危害很大,为此在施工前,必须做好稳定分析工作。

岩坡不同于一般土质边坡,其特点是岩体结构复杂、断层、节理、裂隙互相切割,块体极不规则,因此岩坡稳定有其独特的性质。

它同岩体的结构、块体密度和强度、边坡坡度、高度、岩坡表面和顶部所受荷载,边坡的渗水性能,地下水位的高低等有关。

岩体内的结构面,尤其是软弱结构面的的存在,常常是岩坡不稳定的主要因素。

大部分岩坡在丧失稳定性时的滑动面可能有三种。

一种是沿着岩体软弱岩层滑动;另一种是沿着岩体中的结构面滑动;此外,当这两种软弱面不存在时,也可能在岩体中滑动,但主要的是前面两种情况较多。

在进行岩坡分析时,应当特别注意结构面和软弱层的影响。

软弱岩层主要是粘土页岩、凝灰岩、泥灰岩、云母片岩、滑石片岩以及含有岩盐或石膏成分的岩层。

这类岩层遇水浸泡后易软化,强度大大地降低,形成软弱层。

在坚硬的岩层中(如石英岩、砂岩等等)应当查明有无这类软弱夹层存在。

结构面包括沉积作用的层面、假整合面、不整合面;火成岩侵入结构面以及冷缩结构面;变质作用的片理,构造作用的断裂结构面等等。

岩质边坡稳定分析时,应当研究岩体中应力场和各种结构面的组合关系。

岩坡的滑动就是在应力作用下岩体破坏了平衡而沿着某种面(很可能是结构面)产生的。

岩体的应力是由岩体重量、渗透压力、地质构造应力以及外界因素,如地震惯性力、风力、温度应力等所形成的边坡剪应力,这种剪应力超过结构面的抗剪强度就促使岩体沿着结构面滑动。

有时沿某一结构面滑动,有时沿着多种结构面所组合的滑动面滑动。

通常以后者为多数。

结构面中如夹有粘土或其它泥质充填物,则就成为软弱结构面。

地质构造作用形成的断裂和节理在地壳表层是最多的,这种结构面往往都夹有粘土或泥质充填物,遇水浸泡后,结构面中的软弱充填物就容易软化,强度大大地降低,促使岩坡沿着它发生滑动。

因此,岩坡分析中,对结构面,特别是软弱结构面的类型、性质、组合形式、分布特征以有及由各种软弱面切割后的块体形等进行仔细分析是十分重要的。

9.1.2 岩坡的破坏类型岩坡的破坏类型从形态上来看可分为岩崩和岩滑两种。

岩崩一般发生在边坡过陡的岩坡中,这时大块的岩体与岩坡分离而向前倾倒,如图9-1(a)所示,或者坡顶岩体因某种原因脱落而在坡脚下堆积,见图9-1(b)、(c),它经常产生于坡顶裂隙发育的地方。

其起因或由于风化等原因减弱了节理面的凝聚力,或由于雨水进入裂隙产生水压力所致;或者也可能由于气温变化、冻融松动岩石的结果;其它如植物根造成膨胀压力、地震、雷击等都可造成岩崩现象。

岩滑是指一部分岩体沿着岩体较深处某种面的滑动。

岩滑可分为平面滑动、楔形滑动以及旋转滑动。

平面滑动是一部分岩体在重力作用下沿着某一软面(层面、断层、裂隙)的滑动,见图9-2(a),滑动面的倾角必大于该平面的内摩擦角。

平面滑动不仅滑体克服了底部的阻力,而且也克服了两侧的阻力。

在软岩中(例如页岩),如底部倾角远陡于内摩擦角,贝惴石本身的破坏即可解除侧边约束,从而产生平面滑动。

而在硬岩中,如果不连续面横切坡顶,边坡上岩石两侧分离,则也能发生平面滑动。

楔形滑动是岩体沿两组(或两组以上)的软弱面滑动的现象,见图9-2(b)。

在挖方工程中,如果两个不连续面的交线出露,则楔形岩体失去下部支撑作用而滑动。

法国马尔帕塞坝的崩溃(1959年)就是岩基楔形滑动的结果。

旋转滑动的滑动面通常呈弧形状,见图9-2(c),这种滑动一般产生于非成层的均质岩体中。

岩坡的滑动过程一般可分为三个阶段。

初期是蠕动变形阶段,这一阶段中坡面和坡顶出现拉张裂缝并逐渐加长和加宽,滑坡前缘有时出现挤出现象,地下水位发生变化,有时会发出响声。

第二阶段是滑动破坏阶段,此时滑坡后缘迅速下陷,岩体以极大的速度向下滑动,此一阶段往往造成极大的危害。

最后是逐渐稳定阶段,这一阶段中,疏松的滑体逐渐压密,滑体上的草木逐渐生长,地下水渗出由浑变清等。

在进行岩坡稳定性分析时,首先应当查明岩坡可能的滑动类型,然后对不同类型采用相应的分析方法。

严格而言,岩坡滑动大多属空间滑动类型,然后对只有一个平面构成的滑裂面或者滑裂面由多个平面组成而这些面的走向又大致平行者,且沿着走向长度大于坡高时,则也可按平面滑动进行分析,其结果偏于安全方面,在平面分析中,常常把滑动面进行稳定验算。

本章从第四节起将分别阐述各种分析方法。

经验证明,许多滑坡的发生都与岩体内的渗水作用有关,这是由于岩体内渗水后岩石强度恶化和应力增加的缘故。

因此,做好岩坡的排水工作是防止滑坡的手段之一。

意大利瓦依昂(Vajont)水库岩坡滑动而造成的事故是闻名于全世界的。

水库的岸坡由分层的石灰岩组成,水库蓄水后在I960年10月就发现上坡附近有主要裂隙,同时直接在沿河的陡坡上曾经发生过一次较小的滑坡,从该时起,这整个区域都处于运动中,这运动的速度为每天若干个十分之一毫米到十毫米以上。

在1963年10月9日夜晚,岸坡发生骤然的崩坍,在一分多钟时间内大约有2.5亿立方米的岩石崩入水库,顿时造成高达150米到250米的水浪,洪水漫过270米高的拱坝,致使下游的郎加朗市镇遭到了毁灭性的破坏,2400多人死亡。

图9-3瓦依昂滑坡断面图1-滑前地面;2-滑后地面;3-滑面;4-断层;5-洼地在图9-3上示有瓦依昂山坡崩坍的二个断面图。

由此看来,岩坡崩坍所造成的事故是危害极大的,必须严加防止。

因此设计之前应当加强工程地质的勘测工作,以及在设计时做好岩坡稳定分析工作。

图9-4康德斯特格隧洞1-山崩;2-压力隧洞;3-渗水;4-泉水;5-透水岩石;6-不透水岩石图9-4表示康德斯特格(Kandersteg隧洞由于渗水作用岩坡山崩而失事的例子。

隧洞原来设计为无压隧洞,但后来却成为有压隧洞。

中等程度的水压力使衬砌造成裂缝。

隧洞中的水从裂缝中渗出,流过透水层最后聚集在不透水岩层的顶部(图9-4)。

在山坡底部流出一股泉水,渗水使岩石性质恶化,山坡变为不稳定而造成山体崩滑,使附近居民的生命财产受到很大的损失。

这次失事,主要是衬砌部分受力过高而地质条件又不好而引起的。

岩石中的渗水是这次事故中的外因,岩石强度不够是内因,外因通过内因而起作用,渗水使岩石强度降低,造成了这次事故。

这是一个典型的例子,可以说明许多类似失事的原因。

9.2 影响边坡稳定性的因素影响边坡稳定性的因素主要有内在因素和外部因素两方面,内在因素包括组成边坡的地貌特征、岩土体的性质、地质构造、岩土体结构、岩体初始应力等。

外部因素包括水的作用、地震、岩体风化程度、工程荷载条件及人为因素。

内在因素对边坡的稳定性起控制作用,外部因素起诱发破坏作用。

1)岩土性质和类型岩性对边坡的稳定及其边坡的坡高和坡角起重要的控制作用。

坚硬完整的块状或厚层状岩石如花岗岩、石灰岩、砾岩等可以形成数百米的陡坡,如长江三峡峡谷。

而在淤泥或淤泥质软土地段,由于淤泥的塑性流动,几乎难以开挖渠道,边坡随挖随塌,难以成形。

黄土边坡在干旱时,可以直立陡峻,但一经水浸土的强度大减,变形急剧,滑动速度快,规模和动能巨大,破坏力强且有崩塌性。

松散地层边坡的坡度较缓。

不同的岩层组成的边坡,其变形破坏也有所不同,在黄土地区,边坡的变形破坏形式以滑坡为主;在花岗岩、厚层石灰岩、沙岩地区则以崩塌为主;在片岩、板岩、千枚岩地区则往往产生表层挠曲和倾倒等蠕动变形。

在碎屑岩及松散土层地区,则产生碎屑流或泥石流等。

2)地质构造和岩体结构的影响在区域构造比较复杂,褶皱比较强烈,新构造运动比较活动的地区,边坡稳定性差。

断层带岩石破碎,风化严重,又是地下水最丰富和活动的地区极易发生滑坡。

岩层或结构的产状对边坡稳定也有很大影响,水平岩层的边坡稳定性较好,但存在陡倾的节理裂隙,则易形成崩塌和剥落。

同向缓倾的岩质边坡(结构面倾向和边坡坡面倾向一致,倾角小于坡角)的稳定性比反向倾斜的差,这种情况最易产生顺层滑坡。

结构面或岩层倾角愈陡,稳定性愈差。

如岩层倾角小于10°T5°的边坡,除沿软弱夹层可能产生塑性流动外,一般是稳定的;大于25°的边坡,通常是不稳定的;倾角在15°-25°的边坡,则根据层面的抗剪强度等因素而定。

相关文档
最新文档