重庆交通大学2013年考研运筹学试题及答案
《运筹学》试题及答案(三)
《运筹学》试题及答案(A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3)B.(3, 4, 0, 0)C.(2, 0, 1, 0)D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
大学考试试卷《运筹学》及参考答案3套.doc
2012年9月份考试运筹学第一次作业一、单项选择题(本大题共100分,共40小题,每小题2. 5分)1.•个无()、但允许多重边的图称为多重图。
A.边B.孤C.环D.路2.运筹学是一门()。
A.决策科学B.数学科学C.应用科学D.逻辑科学3.基可行解对应的基,称为()。
A.最优基B.可行基C.最优可行基D.极值基4.运筹学用()来描述问题。
A.拓补语言B.计算机语言C.机器语言D 数学语言5.隐枚墓最是省去若干目标函数不占优势的()的一种检验过程。
A.基本可行解B.最优解C.基本解D.可行解6.对偶问题与原问题研究出自()目的。
A.不同B.相似C.相反D.同一7.资源价格大于影子价格时,应该()该资源。
A.头入B.卖出C.保持现状D 借贷出8.敏房性分析假定()不变,分析参数的波动对最优解有什么影响。
A.可行基B.基本基C.非可行基D.最优基9.从系统工程或管理信息预测决辅助系统的角度来看,管理科学与()就其功能而言是等同或近似的。
A 纬汁学B:计算机辅助科学C,运筹学D.人工智能科学10.闭回路的特点不包括()。
A.每个顶点都是直角B.每行或每列有且仅有两个顶点C.每个顶点的连线都是水平的或是垂直的D.起点终点可以不同11.运输问题分布m*n矩阵表的横向约束为()。
A.供给约束B.需求约束C.以上两者都有可能C.超额约束12.动态规划综合了()和“最优化原理”。
A.一次决策方法B.二次决策方法C.系统决策方法D.分级决策方法13.线性规划问题不包括()。
A.资源优化配置B.复杂系统结构性调整C,混沌系统分析D,宏、微观经济系统优化14.运输问题分布m*n矩阵表的纵向约束为()。
A.供给约束B.需求约束C.以上两者都有可D.超额约束15.路的第一个点和最后一个点相同,称为()oA.通路B,环路C.回路D,连通路16.对偶问题与原问题研究的是()对象。
A.2种B.不同的C.1种D.相似的17.运输问题的求解方法不包括()。
(完整版)运筹学》习题答案运筹学答案
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学试题及答案解析
运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中对偶问题的最优解: Y =(4,0,9,0,0,0) (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分) MaxZ=3X 1+4X 2X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8X 1,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y3≥3y1+4y2+2y3≥4y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
2012--2013运筹学期末考试试题及答案
楚大2012---2013上学期经济信息管理及计算机应用系《运筹学》期末考试试题及答案班级: 学号一、单项选择题:1、在下面的数学模型中,属于线性规划模型的为( A )。
⎪⎩⎪⎨⎧≥-≥-+=0Y ,X 1Y X 2.t .s Y X 3S min .B ⎪⎩⎪⎨⎧≥≤+=0Y ,X 3XY .t .s Y X 4S max .A ⎪⎩⎪⎨⎧≥≤-+=0Y ,X 2Y X .t .s Y X S max .C 22⎪⎩⎪⎨⎧≥≥+=0Y ,X 3Y X .t .s XY 2S min .D 2、线性规划问题若有最优解,则一定可以在可行域的 ( A )上达到。
A .顶点B .内点C .外点D .几何点3、在线性规划模型中,没有非负约束的变量称为 ( C )A .多余变量B .松弛变量 C.自由变量 D .人工变量4、若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为( C )。
A.两个B.零个C.无穷多个D.有限多个5、线性规划具有唯一最优解是指( B )A .最优表中存在常数项为零B .最优表中非基变量检验数全部非零C .最优表中存在非基变量的检验数为零D .可行解集合有界6、设线性规划的约束条件为⎪⎩⎪⎨⎧≥=++=++0,,422341421321x x x x x x x x 则基本可行解为( C )。
A .(0, 0, 4, 3)B . (3, 4, 0, 0)C .(2, 0, 1, 0)D . (3, 0, 4, 0)7、若运输问题已求得最优解,此时所求出的检验数一定是全部( D )A 、小于或等于零B .大于零C .小于零D .大于或等于零8、对于m 个发点、n 个收点的运输问题,叙述错误的是( D )A .该问题的系数矩阵有m ×n 列B .该问题的系数矩阵有m+n 行C .该问题的系数矩阵的秩必为m+n-1D .该问题的最优解必唯一9、关于动态规划问题的下列命题中错误的是( A )A 、动态规划分阶段顺序不同,则结果不同B 、状态对决策有影响C 、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D 、动态规划的求解过程都可以用列表形式实现10、若P 为网络G 的一条流量增广链,则P 中所有正向弧都为G 的( D )A.对边B.饱和边C.邻边D.不饱和边一、判断题。
2013研究生入学运筹学考试A
河南财经政法大学2013年硕士研究生入学考试业务课试题专业名称:管理科学与工程考试科目:运筹学(共150分)一、填空题(本题共6小题10个空,每空5分,共30分)1.下表是采用单纯形方法得到的某线性规划模型的最后一张单纯形表,当a和b分别满足()、()条件时,该线性规划问题得到的是无穷多2. 目标规划建模过程中,如果要求超过规定的目标值,此时可以构造目标函数为:()。
3.线性规划采用图解法可以得到四种解的形式,如果得到()解,说明模型中缺少必要约束条件。
4. 当线性规划问题的可行解集非空时,它的可行解域是有界或无界的()。
若线性规划问题存在最优解,它一定在可行域的某个()得到。
5.树具有许多显而易见的性质,如:树中任意两顶点间必有一条且仅有一条();在树的任意两个不相邻的顶点间添上一条边,就得到一个()。
6.在线性规划的基本解中,非基变量的值一定为()。
因此,在基本解或基本可行解中,非零分量所对应的系数列向量一定()。
二、判断题(本题共5个小题,每小题2分,共10分)1.若某种资源的影子价格为k,在其他条件不变的情况下,当该资源增加5个单位时,相应的目标函数值增加5k。
()2.求网络最大流的问题可归结为求解一个线性规划模型。
()3.指派问题效率矩阵的每个元素都乘上同一常数k,将不影响最优指派方案。
()4.线性规划问题的标准形式的对偶问题也是标准形式。
()5.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现以下四种情况:有唯一最优解、有无穷多最优解、无界解、无可行解。
()三、分析计算题(本题共5小题,1题30分,其余各20分,共110分)1.根据下列线性规划问题的模型,回答问题。
第3页 共5页⎪⎩⎪⎨⎧=≥≤++≤++-++-=)3,2,1(090104122031355max 321321321j x x x x x x x x x x z j1)采用单纯形方法求解该模型; 2)写出最优基的逆矩阵1-B ;3)对目标函数中x 3 的系数作灵敏度分析;4)第一个约束条件右端常数项变为30时,原最优解、最优基、最优值有何变化;5)增加约束条件50532321≤++x x x ,最优解有何变化。
《运筹学》试题及答案(六)
非基变量检验数全部<0,则说明本问题 B 。
A.有惟一最优解
B.有多重最优解
C.无界
D.无解
5.线性规划问题 maxZ=CX,AX=b,X≥0 中,选定基 B,变量 Xk 的系数列向量为
Pk,则在关于基 B 的典式中,Xk 的系数列向量为_ D
A.BPK
B.BTPK
C.PKB
D.B-1PK
6.下列说法错误的是 B
解 E.有有限多个最优解
5.判断下列数学模型,哪些为线性规划模型(模型中 a.b.c 为常数;θ为可取
某一常数值的参变量,x,Y 为变量) ACDE
6.下列模型中,属于线性规划问题的标准形式的是 ACD
7.下列说法错误的有_ABD_。
A.基本解是大于零的解
B.极点与基解一一对应
Hale Waihona Puke C.线性规划问题的最优解是唯一的 D.满足约束条件的解就是线性规划的可
A.图解法与单纯形法从几何理解上是一致的
B.在单纯形迭代
中,进基变量可以任选
C.在单纯形迭代中,出基变量必须按最小比值法则选取 D.人工变量离开
基底后,不会再进基
7.单纯形法当中,入基变量的确定应选择检验数 C
A 绝对值最大
B 绝对值最小
C 正值最大
D
负值最小
8.在单纯形表的终表中,若若非基变量的检验数有 0,那么最优解 A
A 不存在
B 唯一
C 无穷多
D无
穷大
9.若在单纯形法迭代中,有两个 Q 值相等,当分别取这两个不同的变量为入基变
量时,获得的结果将是 C
A 先优后劣
B 先劣后优
C 相同
D 会随目标
函数而改变
运筹学试卷及参考答案
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
2013《运筹学》考试题及其答案
T()
15
{10}
oo
11
00
00
6
P( )+Wi
j
10+0
10
+4
10+0
10+0
10+0
T()
15
14
{11}
00
00
7
P( )+Wi
j
11+0
11+0
11+0
11+9
T()
15
{14}
00
20
8
P( )+Wi
j
14+o
14+
1
14+o
T()
{15}
{15}
11
9
P( )+wi
j
15+
4
T()
0
1
0
3/5
1/5
0
6/5
0
X3
0
0
1
1
1
1
0
rj(-z)
0
0
0
1/5
—M+7/5
——M
18
/5
表中所有检验数rj0,根据最优解定理,问题存在唯一的最优解X(3,§,0,0,0,0)t,目标函
5 5
数的最优值maxz43 618。
555
二、试用表上作业法求解下列运输问题的最优解。
'产
B1
B2
B3
B4
初始值
T(
)
{0}
00
00
oo
oo
OO
oo
运筹学试卷与参考答案完整版
《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写错误者写“X”。
)1. 图解法提供了求解线性规划问题的通用方法。
()2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j> 0,贝V问题达到最优。
()3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。
()4. 满足线性规划问题所有约束条件的解称为基本可行解。
()5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。
()6. 对偶问题的目标函数总是与原问题目标函数相等。
()7. 原问题与对偶问题是一一对应的。
()8. 运输问题的可行解中基变量的个数一定遵循m + n —1的规则。
()9. 指派问题的解中基变量的个数为m +n。
()10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
()11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
()12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。
()13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
()14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。
()15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
()三、填空题1. 图的组成要素------------------- ; ---------------- 。
2. 求最小树的方法有------------------ 、-------------- 。
3. 线性规划解的情形有--------------- 、------------- 、-------------- - ----------- 。
4. 求解指派问题的方法是------------------ 。
5. 按决策环境分类,将决策问题分为----------------- 、、。
运筹学复习试题和参考答案解析
《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4. 满足线性规划问题所有约束条件的解称为可行解。
( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( T )6. 对偶问题的对偶是原问题。
( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9. 指派问题的解中基变量的个数为m+n。
( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9. D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
运筹学试题及答案4套汇总
《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611 -2 002 -111/21/214 07三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序 a b c d e f g h —— a a b,c b,c,d b,c,d e 紧前工序试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2-11 02311311111610-3-1-2(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地甲乙丙丁产量产地A 4 12 4 11 16B 2 10 3 9 10C 8 5 11 6 22 需求量8 14 12 14 48《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地B1B2B3B4供应量产地A1 3 2 7 6 50A2 7 5 2 3 60A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
运筹学考试试题
运筹学考试试题一、选择题(每题2分,共20分)1、运筹学的创立时间是在()A. 1900年B. 1910年C. 1920年D. 1930年答案:D. 1930年2、下列哪一位学者不属于运筹学的创始人?()A.贝尔曼B.丹捷格C.哈恩D.朱世博答案:D.朱世博3、最优解是()A.使目标函数值最大的解B.使目标函数值最小的解C.使约束条件成立的解D.使目标函数和约束条件同时成立的解答案:A.使目标函数值最大的解4、下列哪一项不是线性规划的应用领域?()A.生产计划B.金融规划C.交通运输D.社会科学研究答案:D.社会科学研究5、对于一个线性规划问题,如果存在可行解,则一定存在()A.最优解B.基可行解C.唯一解D.非可行解答案:B.基可行解二、填空题(每题3分,共30分)6.运筹学的主要研究内容包括_________、_________、_________、_________等五大领域。
答案:数学规划、图论、线性规划、排队论、对策论等五大领域。
7.在运筹学中,我们将_________称为系统的“输入”,将_________称为系统的“输出”。
答案:系统的各种资源、系统的各种活动等称为系统的“输入”,将系统的各种目标、系统的各种效果等称为系统的“输出”。
8.在运筹学中,_________是指对系统进行科学、合理、有效地筹划和安排,以便使系统能够更好地实现其目标。
答案:运筹帷幄运筹学典型考试试题及答案以下是一些运筹学的典型考试试题以及它们的答案:试题一:线性规划问题假设有一个工厂,它有两个生产部门,每个部门都可以生产两种产品。
每种产品的生产量取决于部门的员工数量、设备的可用性以及原材料的供应量。
现在,我们需要确定每个部门应生产多少每种产品以最大化总收入。
答案:这是一个线性规划问题。
我们可以通过构建一个线性规划模型来解决这个问题。
设x1和x2为每个部门生产的两种产品的数量,y 为每个部门的员工数量,z为每个部门的设备可用性,w为每个部门的原材料供应量。
2013运筹学答案
《运筹学》参考答案一、(1)首先化标准型:1231234125123452 6.. 4,,,,0MaxZ x x x x x x x s t x x x x x x x x =-++++=⎧⎪-++=⎨⎪≥⎩此时所有的检验数都不大于零,可以得到最优解x 1*=6,x 2*=0,x 3*=0,最优值z *=12。
(2)由(1)中的最优表知1 1 01 1B -⎛⎫=⎪⎝⎭, 16 1 06642 1 14210B λλλλλλ-+++⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭,要使原最优基不变,必有60,100λλ+≥-≥且,即610λ-≤≤。
(3)要使(1)的原最优解不变,必须11130,10,20c c c --∆≤--∆≤--∆≤且,即11c ∆≥- (4)由(1)中的最优表知,对偶问题的最优解为**122,0y y ==。
二、(1) 该问题的对偶问题为(2)设Z =-W ,x 1=x 1’-x 1’’ ,x 2=-x 2’, 则原问题的标准型为三、(1)112311234112351123112345max 2'2''2'42'2''3'5 23'3'''7 3..'''4'6 5','',',,,0W x x x x x x x x x x x x x x s t x x x x x x x x x x =-++---+-=⎧⎪--++=⎪⎨--+=⎪⎪≥⎩123123123123123max 235232342..57640,0,W y y y y y y y y y s t y y y y y y =++++=⎧⎪++≥⎪⎨++≤⎪⎪≥≤⎩无约束V s V 1V 2 V 3V 4 V t (8,6)(7,4)(5,5) (5,5)(10,5) (6,2)(5,2)(3,3)(6,1)(0,+∞)(Vs,2)(V 1,2)(V 4,2)(V 3,2)(2)根据(1),C 12=1,对应的检验数为0,此时有无穷多最优运输方案,另外一个最优解是X=(1,3,0,0,0,0,2,4,4,0,2,0),(1)中的最优解记为X ’,则也是最优解。
完整word版运筹学试题及答案
运筹学试题及答案一、填空题(本大题共8小题,每空2分,共20分)1.线性规划问题中,如果在约束条件中出现等式约束,我们通常用增加__人工变量_的方法来产生初始可行基。
2.线性规划模型有三种参数,其名称分别为价值系数、_技术系数 __和__限定系数_。
3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是__无非负约束(或无约束、或自由)_变量。
4.求最小生成树问题,常用的方法有:避圈法和 _破圈法__。
二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
多选无分。
.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有9 D 】【非零的人工变量,表明该线性规划问题B.有无穷多最优解A.有唯一的最优解 D.无可行解C.为无界解】.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【 D 10 .检验数都大于零b列元素不小于零 BA..检验数都不大于零.检验数都不小于零 DC B 】12.如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足【13.在运输方案中出现退化现象,是指数字格的数目【 C 】A.等于 m+n B.等于m+n-1C.小于m+n-1 D.大于m+n-1三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。
多选、少选均无分。
19.线性规划问题的标准型最本质的特点是【 CD 】A.目标要求是极小化 B.变量可以取任意值C.变量和右端常数要求非负 D.约束条件一定是等式形式22.关于运输问题,下列说法正确的是【 BCD 】A.在其数学模型中,有m+n—1个约束方程B.用最小费用法求得的初始解比用西北角法得到的初始解在一般情况下更靠近最优解C.对任何一个运输问题,一定存在最优解D.对于产销不平衡的运输问题。
1-专业能力综合测试题库及答案《运筹学》
1-专业能力综合测试题库及答案《运筹学》交通运输专业专业综合能力测试理论测试部分《运筹学》试题题库《运筹学》测试试题一、判断题1.线性规划问题的最优解一定在可行域的顶点达到。
(某)答案:()2.线性规划的可行解集是凸集。
答案:(√)3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。
答案:(√)4.线性规划问题的每一个基本解对应可行域的一个顶点。
答案:(某)5.如果一个线性规划问题有可行解,那么它必有最优解。
答案:(某)6.用单纯形法求解标准形式的线性规划问题时,与正检验数对应的变量都可以作为进基变量。
答案:(√)7.单纯形法计算中,选取最大正检验数k对应的变量某k作为进基变量,可使目标函数值得到最快的减少。
答案:(某)8.一旦一个人工变量在跌代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
答案:(√)9.任何线性规划都存在且有唯一的对偶规划。
答案:(√)10.对偶规划的对偶规划一定是原规划。
答案:(√)11.若线性规划的原规划及对偶规划都有最优解,则最优解一定相等。
答案:(某)12.对于性规划的原规划及对偶规划,若其中一个有最优解,另一个也一定有最优解。
答案:(√)交通运输专业专业综合能力测试理论测试部分《运筹学》试题题库13.对于cj、bi、aij来说,每一个都有一个有限的变化范围,当其改变超出了这个范围之后,线性规划的最优解就会发生变化。
答案:(√)14.若某种资源的影子价格为u,则在其它资源数量不变的情况下,该资源增加k个单位,则相应的目标函数值增加ku。
答案:(某)15.因为运输问题是一种特殊的线性规划问题,所以运输问题也可以用单纯形方法求解?答案:(√)16.因为运输问题是一种特殊的线性规划问题,因而其解也可能出现下列4种情况:有唯一最优解;有无穷多个最优解;有无界解;无可行解。
答案:(√)就可以作为一个基本可行解。
答案:(某)18.运输问题表上作业法实质上就是求解运输问题的单纯形法。
研究生运筹学考试题及其考试答案
一、 解: 121284x x x +=⎧⎨=⎩ ⇒ 1242x x =⎧⎨=⎩ *243214Z =⋅+⋅= 1212233x x x x +=⎧⎨+=⎩ ⇒ 123212x x ⎧=⎪⎪⎨⎪=⎪⎩ *33192224Z =+⋅=二、(10分)证明:若ˆX 、ˆY 分别是原问题和对偶问题的可行解。
那么ˆˆ0s s YX Y X ==,当且仅当ˆX、ˆY 为最优解。
证明:min ,0,0S S S S max z CX Yb AX X b YA Y C X X Y Y ω==+=-=≥≥设原问题和对偶问题的标准关系是原问题对偶问题将原问题目标函数中的系数向量C 用C=Y A-YS 代替后,得到 z =(YA − YS )X =YAX − YSX将对偶问题的目标函数中系数列向量b ,用b =AX +XS 代替后,得到 w =Y (AX +XS )=YAX +YXSˆˆˆˆˆˆˆˆ;,4,4ˆˆ2152160,0S SSSY X 0,YX 0Yb YAX CX X Y CX YAX YbYXY X ======--==若则由性质(),可知是最优解。
又若分别是原问题和对偶问题的最优解,根据性质(),则有由(),()式可知,必有三、1)(5分)写出下列线性规划问题的对偶问题123123123123123Min z x x 2x 2x 3x 5x 23x x 7x 3s.t x 4x 6x 5x ,x ,x 0=++++≥⎧⎪++≤⎪⎨++≤⎪⎪≥⎩解:123123123123123Max w 2y 3y 5y 2y 3y y 13y y 4y 1s.t 5y 7y 6y 2y 0,y ,y 0=++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥≤⎩ 2)(5分)试写出下述非线性规划的Kuhn-Tucker 条件并求解2()(4)15Minf x x x =-≤≤解:先将该非线性规划问题写成以下形式212min ()(4)()10()50f x x g x x g x x ⎧=-⎪=-≥⎨⎪=-≥⎩写出其目标函数和约束函数的梯度:12()2(4),()1, ()1f x xg x g x ∇=-∇=∇=-对第一个和第二个约束条件分别引入广义拉格朗日乘子,设K-T 点为X*,则可以得到该问题的K-T 条件。
运筹学精彩试题及问题详解
一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X 1≤1 和 X 1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分)MaxZ=3X 1+4X 2 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤81,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C 2从4变成5时,σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。