分析05-插值法(上)
数值分析插值法
数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。
插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。
插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。
插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。
常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。
假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。
拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。
b.构造插值多项式L(x)。
c.计算L(x)在需要估计的插值点上的函数值f(x)。
2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。
差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。
最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。
牛顿插值法的步骤为:a.计算差商表的第一列。
b.计算差商表的其他列,直至最后一列。
c.根据差商表构造插值多项式N(x)。
数值分析实验报告--实验2--插值法
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值分析第五版第二章_插值法
于是
Ak
1
(x
j 0 j k
n
k
xj)
代入上式,得
(x x
l k ( x)
j 0 j k n
n
j
)
j 0 jk n
x xj xk x j
(x
j 0 j k
k
xj)
称
l k ( x) 为关于基点
x i 的n次插值基函数(i=0,1,…,n)
( x x0 )(x x2 ) ( x x0 )(x x1 ) ( x x1 )(x x2 ) P( x) y0 y1 y2 ( x0 x1 )(x0 x2 ) ( x1 x0 )(x1 x2 ) ( x2 x0 )(x2 x1 )
容易看出,P(x)满足条件
( x 0 , y0 ), ( x1 , y1 ), ( x 2 , y2 ) 的抛物线 y P( x) 近似代替曲线
y f ( x) ,如下图所示。因此也称之为抛物插值。
P(x)的参数 a0 , a1 , a 2
直接由插值条件决定, 即
y
a0 , a1 , a2满足下面
O
y=L2(x) y0 x0 y1 x1 y1 x2 y=f(x) x
( x x0 )(x x1 ) l 2 ( x) ( x2 x0 )(x2 x1 )
这样构造出来的 l0 ( x),l1 ( x),l2 ( x) 称为抛物插值的基函数 取已知数据 y0 , y1 , y 2 作为线性组合系数,将基函数
l0 ( x),l1 ( x),l2 ( x) 线性组合可得
a n x0 n a n 1 x0 n 1 a1 x0 a 0 f ( x0 ) n n 1 a n x1 a n 1 x1 a1 x1 a 0 f ( x1 ) a x n a x n 1 a x a f ( x ) n 1 n 1 n 0 n n n
数值分析第五章插值法
数值分析第五章插值法插值法是数值分析中常用的一种数值逼近方法,它的目的是通过已知数据点之间的插值多项式来逼近未知数据点的函数值。
插值法可以在信号处理、图像处理、计算机图形学等领域中广泛应用。
在插值法中,最常用的方法有拉格朗日插值法和牛顿插值法。
拉格朗日插值法是一种利用拉格朗日插值多项式来逼近函数的方法。
对于n个已知数据点(xi, yi),拉格朗日插值多项式L(x)可以表示为:L(x) = ∑(yi * li(x))其中,li(x)表示拉格朗日基函数,定义为:li(x) = ∏[(x - xj)/(xi - xj)] (j≠i)可以证明,在给定的n个数据点上,拉格朗日插值多项式L(x)满足:L(xi) = yi牛顿插值法是另一种常用的插值方法,它利用差商的概念来逼近函数。
对于n个已知数据点(xi, yi),差商可以定义为:f[xi] = yif[xi, xi+1] = (f[xi+1] - f[xi]) / (xi+1 - xi)f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ...,xi+k-1]) / (xi+k - xi)通过差商的递归定义,可以得到牛顿插值多项式N(x)的表达式,其中:N(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...与拉格朗日插值法类似,牛顿插值多项式N(x)也满足:N(xi) = yi这两种插值方法都有自己的优点和缺点。
拉格朗日插值法简单易懂,计算量小,但当数据点较多时,多项式的次数会很高,容易出现龙格现象。
而牛顿插值法可以通过求差商一次次递推得到插值多项式,计算效率较高,且具备局部逼近性,不易出现龙格现象。
除了拉格朗日插值法和牛顿插值法,还有其他插值方法,如分段线性插值、样条插值等。
分段线性插值是利用线性多项式逼近函数,将数据点之间的区间分为若干段,每段内使用一条线性多项式进行插值。
插值法的最简单计算公式
插值法的最简单计算公式全文共四篇示例,供读者参考第一篇示例:插值法是一种常用的数值计算方法,用于通过已知数据点推断出未知数据点的值。
在实际问题中,往往会遇到数据点不连续或者缺失的情况,这时就需要通过插值法来填补这些数据点,以便更准确地进行计算和分析。
插值法的最简单计算公式是线性插值法。
线性插值法假设数据点之间的变化是线性的,通过已知的两个数据点来推断出中间的未知数据点的值。
其计算公式为:设已知数据点为(x0, y0)和(x1, y1),需要插值的点为x,其在(x0, x1)之间,且x0 < x < x1,插值公式为:y = y0 + (y1 - y0) * (x - x0) / (x1 - x0)y为插值点x对应的值,y0和y1分别为已知数据点x0和x1对应的值。
通过这个线性插值公式,可以方便地计算出中间未知点的值。
举一个简单的例子来说明线性插值法的应用。
假设有一组数据点为(1, 2)和(3, 6),现在需要插值得到x=2时的值。
根据线性插值公式,我们可以计算出:y = 2 + (6 - 2) * (2 - 1) / (3 - 1) = 2 + 4 * 1 / 2 = 2 + 2 = 4当x=2时,线性插值法得到的值为4。
通过这个简单的例子,可以看出线性插值法的计算公式的简单易懂,适用于很多实际问题中的插值计算。
除了线性插值法,还有其他更复杂的插值方法,如多项式插值、样条插值等,它们能够更精确地拟合数据并减小误差。
在一些简单的情况下,线性插值法已经足够满足需求,并且计算起来更加直观和方便。
在实际应用中,插值法经常用于图像处理、信号处理、数据分析等领域。
通过插值法,可以将不连续的数据点连接起来,填补缺失的数据,使得数据更加完整和连续,方便后续的处理和分析。
插值法是一种简单而有效的数值计算方法,其中线性插值法是最简单的计算公式之一。
通过这个简单的公式,可以方便地推断出未知数据点的值,并在实际应用中发挥重要作用。
资料分析-插值法,凑整法和放缩法
公务员考试资料分析的插值法、凑整法和放缩法插值法在资料分析题的计算技巧中,有一种方法经常被广大考生所忽略,这就是“插值法”。
插值法是技巧性较强、能节省大量速算时间的一种速算技巧。
在考试中,如果能够发现可以使用插值法,将会使我们运算大为简便。
插值法主要有两种运用方式:一、“比较型”插值法在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。
比如:A与B 的比较,如果可以找到一个数C,并且容易得到A>C,而B<C,即可以判定A>B。
二、“计算型”插值法在计算一个数值e的时候,选项给出两个较近的数 A 与B 难以判断,但我们可以容易的找到A与B之间的一个数C,比如说A<C<B,并且我们可以判断e>C,则我们知道e=B(另外一种情况类比可得)。
【例题】2009年,某企业产值为34821.1万元,2010年增产8500.2万元,2010年该厂产值增长率为()。
A. 25.03%B. 24.41%C. 32.58%D. 16.86%凑整法什么叫“凑整法”?简单的理解是指在计算过程当中,将中间结果凑成一个“整数”(整百、整千特别是一些方便计算的数),从而简化计算的速算方式。
然而,在资料分析的计算当中,真正意义上的完全凑成“整数”基本上是不可能的,但由于资料分析不要求绝对的精度,所以凑成与“整数”相近的数是资料分析“凑整法”所真正包括的主要内容。
数学运算中的凑整法一般包括以下三种:(1)加/减法凑整法通过交换运算次序,把可以通过加/减法得到较整的数先进行运算。
(2)乘/除法凑整法通过交换运算次序,把可以通过乘/除法得到较整的数先进行运算。
(3)参照凑整法将一个数看成与之接近的另外一个较整的数来计算,然后进行修正的方法。
凑整法不仅仅是一种“运算方法”,更重要的是一种“运算思想”,需要应考者灵活应用并学会拓展。
数值计算方法第05章插值法
n( x0 ) a0 a1 x0 a2 x02 an x0n y0
n
(
x1
)
a0
a1 x1
a2 x12
an x1n
y1
n( xn ) a0 a1 xn a2 xn2 an xnn yn
17
1 x0 x02 x0n a0 f ( x0 )
一次
二次
三次 15
➢ 三个基本问题
插值多项式n(x)是否存在唯一? 若n(x)存在, 截断误差 f (x)-n(x)=? 如何求n(x)?
16
➢ 插值多项式n(x)的存在唯一性
n 次多项式n(x)有(n+1)个待定系数ai (i=0, 1, 2, …, n), 插值条件 n(xi)= f (xi)= yi (i=0, 1, 2, …, n)也是
表2.1.1 刹车距离实验数据
v 20 25 30 35 40 45 50
d 42 56 73.5 91.5 116 142.5 173
v 55 60 65 70 75 80
d 209.5 248 292.5 343 401 464
插值法是一种古老的数学方法。早在1000 多年前,我国历法上已经记载了应用一次插值 和二次插值的实例。
伟大的数学家:拉格朗日(Lagrange)、牛顿 Newton)、埃尔米特(Hermite)等人分别给出了 不同的解决方法。
生产实践中常常出现这样的问题:给出一批 离散样点,要求作出一条通过这些点的光滑 曲线,以便满足设计要求或进行加工。反映 在数学上,即已知函数在一些点上的值,寻 求它的分析表达式。因为由函数的表格形式 不能直接得出表中未列点处的函数值,也不 便于研究函数的性质。此外,有些函数虽有 表达式,但因式子复杂,不容易算其值和进 行理论分析,也需要构造一个简单函数来近 似它。
计算方法—插值法 (课堂PPT)
7
1 1
2 5
4 25
8 125
aa32
4
35
则,
解方程组得a0=10,a1=5,a2=-10,a3=2 即P3(x)=10+5x-10x2+2x3
当n=20,在109次/秒的计算机上计算需几万年!
.
2020/4/2
12
2.2 拉格朗日插值
2-2 线性插值与抛物插值
Chapter2 插值法
第二章 插 值 法
( Interpolation) 2.1 引言
2.2 拉格朗日插值
2.3 均差与牛顿插值公式
Chapter2 插值法
2.4 埃尔米特插值
2.5 分段低次插值
2.6 三次样条插值
.
2020/4/2
1
2.1 引言
Chapter2 插值法
表示两个变量x,y内在关系一般由函数式 y=f(x)表达。但在实际问题中的函数是多种多 样的,有下面两种情况:
几何意义:L2(x)为过三点(x0,y0), (x1,y1), (x2,y2)的抛物线。
方法:基函数法,构造基函数l0(x), l1(x), l2(x) (三个二次式)
使L2(x)= y0l0(x)+y1l1(x)+y2l2(x)满足插值条件。 6 4 4 4 4 4 4 7 4 4 4 4 4 48
.
2020/4/2
15
2.2 拉格朗日插值
Chapter2 插值法
问题的提法: 已知y=f(x)的函数表,x0, x1, x2为互异节
x x0 x1 x2 y y0 y1 y2
点,求一个次数不超过2的多项式 L2(x)=a0+a1x+a2x2 :L2(x0)=y0, L2(x1)=y1, L2(x2)=y2
插值法的原理与应用
插值法的原理与应用1. 插值法的概述插值法是一种数值分析方法,用于在给定数据点集合上估计未知数据点的值。
该方法基于已知数据点之间的关系,通过建立一个插值函数来逼近未知数据点的值。
插值法在科学计算、工程应用和数据处理等领域都有广泛的应用。
2. 插值法的原理插值法的基本原理是在已知数据点上构造一个逼近函数f(x),使得在该函数上的任意点x上的函数值等于对应的已知数据点。
常见的插值方法有多项式插值、样条插值和径向基函数插值等。
2.1 多项式插值多项式插值是一种简单而常用的插值方法,它假设插值函数f(x)是一个多项式函数。
通过选择合适的插值点和多项式次数,可以得到对给定数据集的良好逼近。
多项式插值的基本原理是通过求解一个关于插值点的线性方程组,确定插值多项式的系数。
然后,使用插值多项式对未知数据点进行逼近。
2.2 样条插值样条插值是一种光滑的插值方法,它通过使用分段多项式函数来逼近曲线或曲面。
样条插值的基本原理是将要插值的区间分成若干个小段,每个小段上都使用一个低次数的多项式函数逼近数据点。
为了使插值曲线光滑,相邻小段上的多项式函数需要满足一定的条件,如连续性和一阶或二阶导数连续性。
2.3 径向基函数插值径向基函数插值是一种基于径向基函数构造插值函数的方法,它的基本思想是通过使用径向基函数,将数据点映射到高维空间中进行插值。
径向基函数插值的基本原理是选择合适的径向基函数和插值点,将数据点映射到高维空间中,并使用线性组合的方式构造插值函数。
然后,使用插值函数对未知数据点进行逼近。
3. 插值法的应用插值法在科学计算、工程应用和数据处理等领域都有广泛的应用。
以下列举了一些常见的应用场景。
3.1 信号处理在信号处理中,经常需要通过对已知数据点进行插值来估计未知数据点的值。
例如,通过插值法可以从离散采样数据中恢复连续信号,并进行进一步的分析和处理。
3.2 机器学习在机器学习中,插值法可以用于对缺失数据进行估计。
通过对已知数据点进行插值,可以填补缺失的数据,以便进行后续的模型训练和预测。
《数值分析》第二讲插值法PPT课件
1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1
且
P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)
数值分析中的(插值法)
插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项
数值分析-插值法的讲解
称P(x)为f(x)的插值函数,x为插值节 点,[a,b]为插值区间,求插值函数P(x)的 方法为插值法。
若P(x)=a0+a1x+▪▪▪+anxn,称 P(x)为插值多项式。 若P(x)为分段多项式,就称 之为分段插值。
若P(x)为三角多项式,就 称之为三角插值。
枪管膛线----→
1.插值多项式的存在唯一性 P(x)=a0+a1x+▪▪▪+anxn, P(x) ∈Hn a0+a1x0+…+anx0n=y0 a0+a1x1+…+anx1n=y1
. . .
a0+a1xn+…+anxnn=yn
1 x x ... x Vn(x0,x1,…,xn)= 1 x x ... x ... 1 x x ... x
k 1 k 1 k 1 k 1
y
( x xk 1)( x xk 1)
k
( xk xk 1)( xk xk 1)
T H A N K Y O U !
( x xk 1)( x xk ) ( xk 1 xk 1)( xk 1 xk )
k k k 1
l
l
2
k
k 1
( x xk )( x xk 1) ( x x )( x x ) y ( )( ) L ( x) yk 1 x x x x ( xk 1 xk )( xk 1 xk 1)
k 1
x
x xk
k 1
k ห้องสมุดไป่ตู้1
k
xk
L1(x)=
x x y x x y x x x x
第2章 插值法(1)
现要构造一个二次函数
φ(x)=P2(x)=ax2+bx+c 近似地代替f(x),并满足插值原则(4―2)
《 数 值 分 析 》
(2―6) (2―7)
P2(xi)=yi, i=0,1,2,… 由(2―7)式得
2 ax0 bx0 c y0 2 ax1 bx1 c y1 ax 2 bx c y 2 2 2
(2―5)
第2章 插值法
2.2 二次插值
二次插值又称为抛物线插值,也是常用的代数多项 式 插 值 之 一 。 设 已 知 函 数 f(x) 的 三 个 互 异 插 值 基 点
《 数 值 分 析 》
x0,x1,x2的函数值分别为y0,y1,y2,见下表所示:
x y
xo y0
x1 y1
x2 y2
第2章 插值法
(2―15)
第2章 插值法
显然
0, j i li ( x j ) , i, j 0,1,2, 1, j i
,n
《 数 值 分 析 》
(2―14)式的Pn(x)是n+1个n次多项式li(x)(i=0,1,2,…,n)的 线性组合,因而Pn(x)的次数不高于n。我们称形如多项式 (2―14)的Pn(x)为拉格朗日插值多项式。Pn(x)还可以写成下 列较简单的形式:
f ( n ) ( x0 ) ( x x0 ) n n!
第2章 插值法
取前n+1项的部分和Pn(x)作为f(x)的近似式,也即
Pn ( x ) f ( x0 ) f ( x0 )( x x0 )
《 数 值 分 析 》
f ( n ) ( x0 ) ( x x0 ) n n!
数值分析-插值法
数值分析-插值法我们能得到⼀个函数f在区间[a,b]上某些点的值或者这些点上的⾼阶导数我们就能通过插值法去得到⼀个函数g,g与f是⾮常相近的⼀般来说g分为三类,⼀类是n次多项式 a n*x n +a n-1*x n-1 + .......+a0,⼀类是三⾓多项式,最后⼀类是分段n次多项式多项式插值这个可以说是最简单的插值了对于a n*x n +a n-1*x n-1 + .......+a0,我们有n+1个未知数,我只需要知道n+1个点的函数值就可以解出这n+1个未知数将解出的值带⼊即可优点:简单粗暴缺点:要解n+1个⽅程,时间复杂度较⾼,n不好确定,若n过⼤,容易过拟合,若n过⼩,容易⽋拟合拉格朗⽇插值先说⼀阶多项式我们有两点式f(x) = y k*(x k+1 - x) / (x k-x k+1) + y k+1*(x-x k) / (x k+1 - x k)此两点式可以看做∂ * y k + (1-∂) * y k+1那么⾃然的在x=x k的时候 ∂=0 在x=x k+1的时候∂=1这⾥的∂其实是与x相关的⼀阶多项式再说⼆阶多项式对于⼀个⼆次函数,我们有三个点(x k-1,y k-1) ,(x k,y k) ,(x k+1,y k+1)我们有l k-1,l k,l k+1f(x) = l k-1*y k-1 + l k*y k + l k+1*y k+1其中l是与x相关的⼆次多项式我们可以把l当作基函数这样的话就有x = x k-1 时l k-1 = 1, l k=0, l k+1 = 0x = x k时 l k-1 = 0, l k=1, l k+1 = 0x = x k+1时l k-1 = 0, l k=0, l k+1 = 1那么这个插值基函数是很好求的因为每个插值函数都有两个零点对于l k-1来说有零点x k,x k+1那么lk-1就可以表⽰为l k-1 = A*(x-x k)*(x-x k+1)因为x=xk-1时l k-1 = 1所以A = 1 / ((x k-1 - x k)* (x k-1 - x k+1) )那么同理l k和l k+1也能求出来了那我们得到⼆阶的拉格朗⽇插值多项式现在将⼆阶推⼴到n阶得到n接的拉格朗⽇插值多项式余项:R n(x) = f(x) - L n(x) R n(x)表⽰n次拉格朗⽇多项式的插值余项R n(x) = f n+1(e)/(n+1)! * w n+1(x) e属于[a,b]且依赖与x w n+1(x) = (x-x0)(x-x1).......(x-x n)优点:算法较为简单缺点:⽆法处理动态增加节点的情况⽜顿插值还是先从⼀阶到⼆阶进⾏说明我先得到了⼀阶差值多项式P1(x),P1(x) 满⾜过点(x1, f(x1)), (x2,f(x2))假设现在有第三个点(x3,f(x3))我们要通过这个点去得到⼆阶差值多项式P2(x) 使得P2(x)过这三个点可以设P2(x) = P1(x) + a2*(x-x0)*(x-x1)通过第三个点解出a2就⾏了推⼴到多阶那么可以得到P n(x) = a0 + a1(x-x0) + a2(x-x0)(x-x1) + a3(x-x0)(x-x1)(x-x2) + ......求这个插值多项式的值可以通过递推⼀步⼀步的求这样就实现了动态增删可以看到计算a k需要计算(k-1)2次,那么⽜顿插值法就是⼀个快速的计算⽅法均差⼀阶均差 f[x0, x k] = ( f(x k) - f(x0) ) / (x k - x0)⼆阶均差 f[x0, x1, x2] = (f[x0, x2] -f[x0, x1] ) / (x2 - x1)可以看到⼀阶均差就是简单的求斜率⼆阶均差就是对⼀阶均差求斜率那么k阶均差就是f[x0, x1,,,,,,x k] = (f[x0,,,,,x k-2, x k] -f[x0, ,,,,,,,x k-2,x k-1] ) / (x k - x k-1)f[x0, x1,,,,,,x k] = f n(ε) / n!均差的性质k阶均差可表⽰为f(x0),f(x1), f(x2),,,,,,,,, f(x k)的线性组合⽜顿插值中的a就是均差,可以从⼀阶开始推,然后使⽤数学归纳法证明那么⽜顿插值多项式就是:在计算f[x0,x1,,,,,,,,,,x n]时,⼀般使⽤均差表均差表的计算⽅式为a[i,j] = ( a[i-1][j] - a[i-1][j-1] ) / (末尾的x - 最开始的x)误差:误差为最后⼀阶的均差 * w(x)优点:可动态增删节点缺点:⽆法处理要求导数相同的情况埃尔⽶特插值法实验报告⼀个点,多个导数:⽜顿插值中的均差在xi->x0时其实分别是i阶导数,这样就是我们熟悉的泰勒多项式此时的插值函数就是泰勒多项式两个点,⼀个导数我们有三个条件,也就是说我们能求出三次插值多项式这时我们先写出过这两个点的⽜顿插值多项式在这个多项式的基础上我们再加上⼀个三次项搞定,可以观察到,这三个项数其实可以算是正交的,因为当x=x1或者x=x2时最后⼀项是0满⾜条件的两个点,两个导数这也是题⽬所要求的情况因为有两个导数,所以⽜顿插值法⽆法解决,这⾥只能使⽤基函数⽅法设插值函数为H(x), 点与导数分别为(x1,y1,m1),(x2,y2,m2)H(x)满⾜:H(x1) =y1, H(x2) = y2, H(x1)’ = m1,H(x2)=m2H(x) = a1*x1 + a2*x2 + b1*m1 + b2*m2其中 a1, a2, b1, b2均为三层插值多项式X=x1时 a1(x1) = 1,a2(x1) = 0, b1(x1) = 0,b2(x1) = 0,a1’(x1) = 1,a2’(x1) = 0X=x2时 a1(x2) = 0,a2(x2) = 1, b1(x2) = 0,b2(x2) = 0,a1’(x2) = 1,a2’(x2) = 0X=x1时 b1’(x1) = 1,b2’(x1) = 0X=x2时b1’(x1) = 0,b2’(x1) = 1然后⽤了⼀个很巧妙的⽅法设基函数,解出来值和就是这样⼦的R3(x) = 1/4! * (x-x k)2(x-x k+1)2*f4(ε)两个点,两个导数2直接使⽤泰勒多项式,并把将余项改为未知数,使⽤多余的⼀个条件去求余项的值例如:求次数⼩于等于3的多项式P(x),使满⾜条件P(x0)=f(x0),P'(x0)=f'(x0),P"(x0)=f"(x0),P(x1)=f(x1)。
数值分析常用的插值方法
数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。
下面将对这些插值方法进行详细介绍。
一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。
线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。
二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。
它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。
拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。
拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。
通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。
分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。
四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。
利用差商的概念来构造插值多项式。
Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。
数值分析第五版第二章_插值法
l0 ( x) c( x x1 )(x x2 )
类似地可以构造出满足条件: l1 ( x1 ) 1, l1 ( x0 ) 0 , l1 ( x2 ) 0 的插值多项式
( x x0 )(x x2 ) l1 ( x) ( x1 x0 )(x1 x2 )
及满足条件:l2 ( x2 ) 1, l2 ( x0 ) 0 , l2 ( x1 ) 0 的插值多项式
x
2 n
n xn
( xi x j )
i 1 j 0
n
i 1
称为Vandermonde(范德蒙)行列式,因xi≠xj (当i≠j),故V≠0。根据解线性方程组的克莱姆 (Gramer)法则,方程组的解 a0 , a1 ,, an
存在惟一,从而P(x)被惟一确定。
§2 拉格朗日(Lagrange)插值
y=f(x) p(x)=ax+b A(x.0,f(x.0)) B(x.1,f(x.1))
的直线近似地代替曲线 y=f(x)由解析几何知道, 这条直线用点斜式表示为
y1 y0 p ( x) y 0 ( x x0 ) x1 x0
x x0 x x1 p ( x) y0 y1 x0 x1 x1 x0
( x x0 )(x x1 ) l 2 ( x) ( x2 x0 )(x2 x1 )
这样构造出来的 l0 ( x),l1 ( x),l2 ( x) 称为抛物插值的基函数 取已知数据 y0 , y1 , y 2 作为线性组合系数,将基函数
l0 ( x),l1 ( x),l2 ( x) 线性组合可得
P( x) an x an1 x
n
n1
a1 x a0
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。
(完整版)数值分析插值法
第二章插值法2.在区间[-1,1]上分别取n=10,20用两组等距节点对龙哥函数f(x)=1/(1+25*x^2)做多项式插值及三次样条插值,对每个n值,分别画出插值函数及f(x)的图形。
(1)多项式插值①先建立一个多项式插值的M-file;输入如下的命令(如牛顿插值公式):function [C,D]=newpoly(X,Y)n=length(X);D=zeros(n,n)D(:,1)=Y'for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)))m=length(C);C(m)= C(m)+D(k,k);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.2:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.2:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:③当n=20时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.1:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.1:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:(2)三次样条插值①先建立一个多项式插值的M-file;输入如下的命令:function S=csfit(X,Y,dx0,dxn)N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);U=6*diff(D);B(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1));B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(-D(N));for k=2:N-1temp=A(k-1)/B(k-1);B(k)=B(k)-temp*C(k-1);U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1M(k+1)=(U(k)-C(k)*M(k+2))/B(k);endM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));S(k+1,2)=M(k+1)/2;S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6;S(k+1,4)=Y(k+1);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.2:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:②当n=20时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.1:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:第三章函数逼近与快速傅里叶变换2. 由实验给出数据表x 0.0 0.1 0.2 0.3 0.5 0.8 1.0y 1.0 0.41 0.50 0.61 0.91 2.02 2.46试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线,用图示数据曲线及相应的三种拟合曲线。
数值分析第5版插值法
第一节 引言
n 一、 插值问题 设 y= f(x) 是区间[a , b] 上的一个实函数, xi ( i=0,
1, ... ,n)是[a,b]上n+1个互异实数,已知 y=f(x) 在 xi 的
值 yi=f(xi) (i=0,1,...,n), 求次数不超过n的多项式Pn(x)
使其满足
从几何意义来看,上述 问题就是要求一条多项 式曲线 y=Pn(x), 使它通
过已知的n+1个点(xi,yi)
(i=0,1, … ,n),并用Pn(x) 近似表示f(x).
2
二、插值多项式的存在性和唯一性
定理1 设节点xi (i=0,1, … ,n)互异, 则满足插值条件 Pn(xi)=yi 的次数不超过n的多项式存在且唯一. 证 设所求的插值多项式为
f [ x0 , x1]
f ( x0 ) f ( x1 ) x0 x1
为 f (x)在x0、x1点的一阶差商.一阶差商的差商
f [ x0 , x1, x2 ]
f [ x0 , x1] f [ x1, x2 ] x0 x2
称为函数f (x)在x0、x1 、x2 点的二阶差商.
25
一般地,n-1阶差商的差商
还应注意,对于插值节点,只要求它们互异,与大小次序无 关。
14
例1 已知 y x , x0 用4,线x1性插9,值求 近
7
似值。
解 y0 2, y1 3, 基函数分别为:
l0 ( x)
x9 49
1(x 5
9), l1( x)
x4 94
1(x 5
4)
插值多项式为
1
1
L1 ( x)
y0l0 ( x) y1l1 ( x) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( n 1) ( ) Rn ( x ) n 1 ( x) (n 1)! f ( n 1) ( ) ( x x0 )(x x1 ) ( x x n ) (n 1)!
定理5.1 设x0, x1,…, xn是区间[a, b]上的互异节点,n(x)是过 这组节点的n次插值多项式。如果f (x)在[a, b]上n+1 次连续可导,则对[a,b]内任意点x,插值第五章 插值法 5-13
W
插值多项式的存在性和唯一性(续)
1 1 1 x0 x1 xn
2 x0 x12
Y
n
n x0 x1n
2 xn
n xn
i 1
1:插值多项式的唯一性表明,对同一组节点,它们的
插值多项式是唯一的,可能由不同的方法,会得到不 同形式的插值多项式,但它们之间一定可以相互转化, 一定会相同,当然误差也一样。 2:n +1组节点只能确定一个不超过n次的多项式,若>n 次,如设为n+1(x),则有n+2有待定参数a0,a1,…,an, an+1 需确定,而n +1个组节点,只构成n +1个插值条 件,即 构成n+1个方程,只能确定n+1个变量的方程组。 3:上述证明是构造性的(给出解决问题的方法)即 以 通过解线性方程组来确定插值多项式,但这种方法的计 算量偏大,计算步骤较多,容易使舍入误差增大。因此 实际计算中不采用这种方法,而用下面介绍的几种常用 的方法。
第五章 插值法
W Y
第五章
插值法
(上)
5-1
第五章目录
1.1 插值多项式的存在性和唯一性 1.2 插值多项式的误差估计 1.3 Lagrange插值多项式
§1 拉格朗日(Lagrange)插值
§2 牛顿(Newton)插值
2.1 2.2 2.3 2.4 差商 Newton插值方式 差分 差距节点的插项公式
第五章 插值法
W Y
§3 Hermite插值
3.1 Hermite插值 3.2 误差估计 3.3 Hermite插值的一般方式
§4 多项式插值的缺陷
4.1 多项式插值的缺陷 4.2 分段多项式插值
§5 样条函数
5.1 样条函数的概念 5.2 三次样条函数
5-2
函数常被用来描述客观事物变化的内在规律——数量 关系,如宇宙中天体的运行,地球上某地区平均气温的 变化等等,但在生产和科研实践中碰到的大量的函数中, 不仅仅是用解析表达式表示的函数,还经常用数表和图 形来表示函数,其中函数的数表形式在实际问题中应用 广泛,主要原因是有相当一部分函数是通过实验或观测 得到的一些数据,这些数据只是某些离散点 xi 上的值( 包括函数值f (xi),导数值f (xi)等,i = 0,1,2,…,n),虽然其函 数关系是客观存在的,但却不知道具体的解析表达式, 因此不便于分析研究这类数表函数的性质,也不能直接 得出其它未列出点的函数值,我们希望能对这样的函数 用比较简单的表达式近似地给出整体的描述。
f ( n1) ( ) Rn ( x) f ( x) n ( x) n1 ( x) ξ (a,b) (5 - 4) (n 1)!
观察插值多项式的余项公式,容易看出它与台劳(Taylor) 余项有相似之外。事实上,插值余项(5-4)的导出过程与 Taylor余项的导出也类似。这并不偶然,因为两者都是研 究用多项式近似一个函数的误差。只是Taylor多项式要求 在同一点上各阶导数值相等,而插值多项式则要求在个不 同点上函数值相等。
第五章 插值法 5-3
W
插值法概述
Y
如行星在太空中的定位问题:当行星在空间运行时, 可通过精密观测仪器在不同的时间ti(i = 1,2,…)观测到行 星所在位置S(ti),无论花费多少人力物力,所得到的只 是一批离散数据(ti,S(ti)),i=1,2,…),而行星是在作连续运 动,它在任一时间t(与ti不同)的位置S(t),我们只能再 去通过观测得到,插值逼近是利用这组离散数据(ti,S(ti)) 构造一个简单的便于计算的近似函数(解析表达式), 用它可求任何时间的函数值(称为插值),对这个近似 解析表达式也能求导,讨论其各种性质。 又如:据资料记载,某地区每隔10年进行一次人口普查, 自1930年到1990年的统计结果如下:
n ( xi ) f ( xi ) yi
1.1 插值多项式的存在性和唯一性
插值中,首先要解决的问题是:满足插值条件(5-2) 的插值多次式n(x)是否存在?如果存在,是否唯一?n次 多项式n(x)有n +1个待定系数,利用给出的n+1个不同的 节点x0, x1, …, xn,由插值条件(5-2)可得关于系数 a0,a1,…,an的n +1个方程 :
积分I是很困难的,构造近似函数使积分容易计算,并且 5-5 第五章 插值法 使之离散化能上机计算求出积分I,都要用到插值逼近。
W Y
插值法概述(续2)
a
解决上述问题的方法有两类:一类是对于一组离 散点(xi,f (xi)) (i = 0,1,2,…,n),选定一个便于计算的函 数形式(x),如多项式,分段线性函数,有理式,三 角函数等,要求(x)通过点(xi)=f (xi) (i = 0,12,…,n), 由此确定函数(x)作为f (x)的近似。这就是插值法。 另一类方法在选定近似函数的形式后,不要求近似 函数过已知样点,只要求在某种意义下它在这些点 上的总偏差最小。这类方法称为曲线(数据)拟合 法,将在下一章介绍。 本章主要讨论构造插值多项式的几种常用的方法及 其误差 用插值法求函数的近似表达式时,首先要选定 函数的形式。可供选择的函数很多,常用的是多项式 函数。因为多项式函数计算简便,只需用加、减、乘 5-6 第五章 插值法 等运算,便于上机计算,而且其导数与积分仍为多项式。
5-12
其系数行列式 :
det (A)
为范德蒙(Vandermon 行列式, det(A) ( xi x j ), de)
i 1 j 0
当x0 , x1 , , xn互不相同时 行列式值不为 方程组的解 , 0 存在且唯一, 这表明, 只要n 1个节点互不相同 满足插值 , 条件(5 2)的插值多项式唯一存在 。
其中 n1 (t )
第五章 插值法
W
1.2 插值多项式的误差估计
Y
Rn ( x) (t ) f (t ) n (t ) n1 (t ) n1 ( x)
(5 - 3)
(t x )
j j 0
n
显然 :
Rn ( x) ( x) f ( x) n ( x) n1 ( x) 0 n1 ( x) 5-15
又由插值条件(5-2),Rn(xi) = 0 (i=0,1,…,n),故函数(t) 在区间[a,b]内至少有n+2个零点x,x0,x1,…,xn。由罗尔 (Rolle)中值定理,函数 t 在(a, b)内至少有n +1个 零点。反复使用Rolle中值定理,可以得出: Rn ( x) ( n 1) ( n 1) ( n 1) ( (t ) f (t ) n (t ) nn1) (t ) 1 n1 ( x)
第五章 插值法 5-14
W
关于唯一性证明的几点说明
Y
插值多项式与被插函数之间的差: n ( x) f ( x) n ( x) R 称为截断误差,又称为插值余项。
假定f (x)在区间[a,b]上n +1次连续可导,对[a,b]上任意点x, 且x xi(i=0,1,…,n),构造辅助函数:
在(a, b)内至少有一个零点,设为,即:
因为n(t)为至多n次多项, n+1(t)为最高次项系数为1的 n +1次多项式,因而:
第五章 插值法
W
插值多项式的误差估计(续)
Y
( n 1)
( ) 0
( n 1) (t ) n
0,
( n 1) n 1 (t )
(n 1)!
5-16
于是有:
所以:
当x = xi (i=0,1,…,n),时,上式自然成立,因此,上式对 [a,b]上的任意点都成立。这就是插值多项式的误差估计。
第五章 插值法 5-17
W
插值多项式的误差估计(续)
Y
( n 1)
( ) f
( n 1)
Rn ( x) ( ) (n 1)! 0 n 1 ( x)
W
代数插值
Y
用多项式作为研究插值的工具,称为代数插值,其 基本问题是: 已知函数f (x)在区间[a,b]上n+1个不同点x0,x1,…,xn处的 函数值yi = f (xi) (i=0,1,…,n),求一个次数不超过n的多项式:
n ( x) ao a1x an x
使其满足在给定点处与f(x)相同,即满足插值条件:
n ( xi ) f ( xi ) yi
n(x)称为插值多项式,xi(i=0,1,2,…,n)称为插值节点, [a,b]称为插值区间。
第五章 插值法 5-7
W
代数插值(续1)
Y
n
(5 -1)
( 5 - 2)
(i 0,1,2,, n)
代数插值(续2) 从几何上看(如图5-1所示),n次多项式插值就是 过n+1个点yi = f (xi)(i=0,1,…,n),作一条多项式曲线 y = (x)近似曲线y = f (x) :
W
代数插值应用举例
Y
插值用于数码相机增加图像的分辩率:
如果要将一幅数码图像放大,也就是使 其具有更多的像素,而多出来的像素原本 是不存在的,需要根据周围像素的色值计算 出来,这个计算的过程即为插值。