ILA6107Q中文资料
LA-610 MK-II话放中文说明书
通知本手册提供一般信息、使用准备、安装和操作说明。
适用于通用音频LA-610 Mk II。
本手册所载资料如有更改,恕不另行通知。
环球音频公司对本手册不作任何形式的保证,包括但不限于对特定用途的适销性和适配性的保证。
环球音频公司不应成为中所包含的错误或直接、间接、特殊、附带或间接损害赔偿责任与这种材料的装饰、性能或使用相联系。
版权2008环球音响公司版权所有。
本手册和任何相关的软件、艺术品、产品设计和设计概念都是主题。
版权保护。
未经事先书面记录,本文件的任何部分不得以任何形式复制。
环球音频公司的许可。
商标la-610 mk ii,la-610,2-610,la-2A,2-la-2,1176 LN,6176,4110,8110,SOLO/610,SOLO/110,710DSCRemotePreamp,2192,UAD和UniversalAudio,Inc.徽标是环球音频公司这里提到的其他公司和产品名称是它们的商标。
各自的公司。
感谢您购买Mk II版本的LA-610频道地带.LA-610是一种真空管。
将我们的2-610麦克风前置放大器的改良通道与la-2A风格组合在一起的装置。
光学压缩机LA-610 Mk II是最初2005设计的第二代产品,新的用户要求的功能,如真正的压缩机旁路,更大的计量,增加产量。
信号,一种自动感应电源,以及洛杉矶非常流行的“黑色对黑色”的外观-610签名版前置放大器和压缩机与用户拥有的原始la-610完全相同。
开始了解和爱。
2-610的灵感来源于我设计的610控制台的麦克风前置部分。
父亲,M.T.“比尔”普特南,1960。
610是一个旋转控制控制台,也是第一个。
模块化设计的控制台。
虽然与现代游戏机相比技术简单,但610有一种温暖和性格,使它的需求持续了几十年。
我的一个突出的组成部分父亲的联合/西部工作室在洛杉矶,610被用于许多经典录音弗兰克·辛纳特拉和莎拉·沃恩,以及海滩男孩的宠物声和门的洛杉矶女人。
LT6107中文资料
TEMPERATURE RANGE –55°C to 150°C
TEMPERATURE RANGE –55°C to 150°C
ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the full specified
0
VSENSE = 500mV, RIN = 500Ω, ROUT = 10k, V+ = 36V ● –0.45 –0.14
0.1
VOUT(HIGH)
Output Swing High (Referred to V+)
VSENSE = 120mV
1.2
●
1.4
μV μV μV/°C
nA nA nA
VSENSE = 5mV V+ = 12V, 36V
●
1
40
●
130
IOS
Input Offset Current
V+ = 12V, 36V
1
IOUT PSRR
Maximum Output Current Power Supply Rejection Ratio
(Note 3) V+ = 2.7V to 36V, VSENSE = 5mV
SYMBOL
BW tr IS
PARAMETER
CONDITIONS
MIN
Байду номын сангаас
Minimum Output Voltage (Note 5)
VSENSE = 0mV, RIN = 100Ω, ROUT = 10k ●
VSENSE = 0mV, RIN = 500Ω, ROUT = 10k, V+ = 12V, 36V ●
电子行业的ipc标准
电子行业的ipc标准电子行业的IPC标准。
电子行业是一个快速发展的行业,涉及到的产品种类繁多,功能复杂。
在电子产品的设计、制造和测试过程中,需要遵循一系列的标准来确保产品的质量和可靠性。
IPC(Association Connecting Electronics Industries)是国际电子行业协会,制定了一系列的标准,以指导电子行业的生产和质量管理。
本文将介绍一些常见的电子行业IPC标准,以及它们在电子行业中的作用。
首先,IPC-A-610是一项关于电子组装的标准,它规定了电子组件的外观、尺寸、焊接质量等方面的要求。
这个标准对于电子产品的制造和质量检验非常重要,可以帮助生产厂家确保产品的可靠性和稳定性。
在电子产品的制造过程中,严格遵守IPC-A-610标准可以有效地减少因为焊接质量不达标而导致的产品故障,提高产品的质量和可靠性。
其次,IPC-6012是关于印刷电路板制造的标准,它规定了印刷电路板的材料、工艺、尺寸等方面的要求。
印刷电路板是电子产品的重要组成部分,其质量直接影响到整个产品的性能和可靠性。
遵循IPC-6012标准可以帮助制造商选择合适的材料和工艺,确保印刷电路板的质量和可靠性,从而提高整个产品的质量水平。
另外,IPC-7711/7721是关于电子组件维修和再制造的标准,它规定了电子组件维修和再制造的工艺流程和要求。
在电子产品的使用过程中,由于各种原因可能导致产品出现故障,需要进行维修和再制造。
遵循IPC-7711/7721标准可以帮助维修人员掌握正确的维修和再制造技术,确保产品在维修和再制造过程中不会出现新的问题,同时保证产品的性能和可靠性。
最后,IPC-620是关于电子线束和电缆组件制造的标准,它规定了电子线束和电缆组件的材料、工艺、尺寸等方面的要求。
电子线束和电缆组件是电子产品中不可或缺的部分,其质量直接关系到产品的可靠性和稳定性。
遵循IPC-620标准可以帮助制造商选择合适的材料和工艺,确保电子线束和电缆组件的质量和可靠性,从而提高整个产品的质量水平。
意大利lam technologies 电机驱动器技术参数
意大利lam technologies 电机驱动器技术参数
AM技术制造各种双极步进电机驱动器,脉冲序列控制,具有传统的步进和方向信号。
我们提供设计用于安装在 DIN 导轨上的驱动器(DS10 系列)、用于面板安装的开放式版本(OS10 系列)、用于墙壁固定的非常紧凑的版本(LS10 系列)以及最后用于 PCB 安装的模块(USD 系列)。
分馏步长达到每转25600步,最大输入频率超过300KHz。
功率范围非常宽,包括电源电压从 18V 直流到 240Vdc 和电流从 0.3Arms 到10Arms(对应于 14Apk 或 14Imax)的型号。
在同一系列中,各种型号共享相同的电气连接和机械紧固件,这使得自己的应用可以轻松快速地向上或向下迁移。
许多型号还配备了交流输入(交流电),由于集成了电源,可以直接连接到变压器。
高性能、紧凑的尺寸、现货供应和低成本多年来一直决定了我们微步进驱动器的成功,这些驱动器可通过 STEP 和 DIRECTION 信号进行控制,这些驱动器已成功用于受电弓 CNC、贴标、等离子和激光切割、笛卡尔机器人、太阳能追逐器等应用。
集特海光系列
■ 产品特点• 采用2U 19英寸标准机架式机箱• 双路国产申威3231处理器,高速DLI 总线互联, 双向峰值带宽为168.75GB/s 。
• 标准化BMC 模块:支持无缝更换升级模块; • 支持启动介质调整、SOL 、KVM 等功能; • 支持带外升级CPU 固件基于海光平台的单路服务器准系统,该系统 4U 高度,支持 1 颗海光 7100/7200系列 CPU ,最多支持 16 根内存。
本系统使用通用主板,主板名称 G2SERO-B ,可支持 24/36 个 SATA/SAS 硬盘,其中 24 盘位简称 4U24,36 盘位简称 4U36。
■ 应用场景网络安全金融服务运营商能源电力数据处理24盘位36盘位■ 机箱参数项目ASH401-S24REASH401-S36RECPU支持 DDR4 RDIMM/LRDIMM 服务器内存;内存频率支持2133/2400/2666MHz ;支持 8 个DDR4 通道,每个通道支持 2 个 DIMM ,总共支持 16 个DDR4 插槽;支持单条容量为 16GB ,32GB ,64GB ,128GB 整机最大支持2TB 内存容量。
注:为了使系统更稳定,建议使用兼容性列表内存前置支持 24/36 块 3.5 或2.5 英寸热插拔硬盘 后置支持 2 块 2.5 英寸热插拔硬盘 网络功能 支持2个RJ45千兆网口 管理接口 1 个 RJ45 IPMI 管理网口显示功能 Aspeed® AST2500 64MB,由自定义高密度连接器扩展 1 个标准 VGA 接口 M.2 支持 1 个 M.2 接口 外部端口 前置端口:2 个 USB3.0后置端口:1 个 VGA 、2 个 USB3.0、1 个管理网口、2 个 RJ45 数据网口、1个 COM 口 扩展插槽最多支持 10 个 PCIE 扩展插槽(6 个 PCIe 3.0 x8;4 个 PCIe 3.0 x16)电源支持AC 220V 550W 、800W 、1300W 、1600W 冗余电源(根据实际功率适配)支持高压直流240V ~336V 550W 、800W 、1300W 冗余电源 支持低压直流-48V 550W 、800W 、1300W 冗余电源系统风扇 系统支持4个8038温控风扇(选配8056温控风扇) 尺寸695mm*433.4mm*176.5mm (长*宽*高)■ 订购信息名称料号描述GDC-2000 806-001-250101 申威3231处理器*2/32核/2.4G/128GECCDDR4/512GSSD GDC-2000 806-001-250102 申威3231处理器*2/32核/2.4G/256GECCDDR4/512GSSD GDC-2000806-001-250103申威3231处理器*2/32核/2.4G/512GECCDDR4/512GSSD集 特 国 产 系 列集 特 国 产 系 列■ 产品特点• 单个SP3 Socket ,支持海光7100/7200系列处理器 • 总共支持 16 个 DDR4 插槽;整机最大支持 2TB • 单板上面有10组 PCIE 3.0扩展插槽• 1 个 M.2 Key M SSD 插槽,只支持2280 尺寸及PCIe3.0X4信号• 集成了2个千兆网口 ,采用 I350-AM2芯片GME-5001是一款单路 CPU 标准 E-ATX 服务器主板,支持海光 7100、7200 系列处理器。
XC6107A119资料
1/26XC6101_07_XC6111_17 ETR0207_009Preliminary◆CMOS Voltage Detector◆Manual Reset Input ◆Watchdog Functions ◆Built-in Delay Circuit ◆Detect Voltage Range: 1.6~5.0V, ± 2% ◆Reset Function is Selectable V DFL (Low When Detected) V DFH (High When Detected)■GENERAL DESCRIPTION The XC6101~XC6107, XC6111~XC6117 series aregroups of high-precision, low current consumption voltage detectors with manual reset input function and watchdog functions incorporating CMOS process technology. The series consist of a reference voltage source, delay circuit, comparator, and output driver.With the built-in delay circuit, the XC6101 ~ XC6107, XC6111 ~ XC6117 series’ ICs do not require any external components to output signals with release delay time. Moreover, with the manual reset function, reset can be asserted at any time. The ICs produce two types of output; V DFL (low when detected) and V DFH (high when detected).With the XC6101 ~ XC6105, XC6111 ~ XC6115 series’ ICs, the WD pin can be left open if the watchdog function is not used. Whenever the watchdog pin is opened, the internal counter clears before the watchdog timeout occurs. Since the manual reset pin is internally pulled up to the V IN pin voltage level, the ICs can be used with the manual reset pin left unconnected if the pin is unused.The detect voltages are internally fixed 1.6V ~ 5.0V in increments of 100mV, using laser trimming technology. Six watchdog timeout period settings are available in a range from 6.25msec to 1.6sec. Seven release delay time 1 are available in a range from 3.13msec to 1.6sec.■APPLICATIONS●Microprocessor reset circuits●Memory battery backup circuits ●System power-on reset circuits ●Power failure detection■TYPICAL APPLICATION CIRCUIT* Not necessary with CMOS output products.■FEATURESDetect Voltage Range: 1.6V ~ 5.0V, +2% (100mV increments)Hysteresis Range : V DF x 5%, TYP .(XC6101~XC6107)V DF x 0.1%, TYP .(XC6111~XC6117)Operating Voltage Range : 1.0V ~ 6.0V Detect Voltage Temperature Characteristics : +100ppm/O C (TYP .) Output Configuration : N-channel open drain,CMOSWatchdog Pin : Watchdog inputIf watchdog input maintains ‘H’ or ‘L’ within the watchdog timeout period, a reset signal is output to the RESET output pinManual Reset Pin : When driven ‘H’ to ‘L’levelsignal, the MRB pin voltage asserts forced reset on theoutput pin.Release Delay Time : 1.6sec, 400msec, 200msec,100msec, 50msec, 25msec, 3.13msec (TYP .) can be selectable.Watchdog Timeout Period : 1.6sec, 400msec, 200msec,100msec, 50msec,6.25msec (TYP .) can be selectable.■TYPICAL PERFORMANCE CHARACTERISTICS ●Supply Current vs. Input Voltage* ‘x’ represents both ‘0’ and ‘1’. (ex. XC61x1⇒XC6101 and XC6111)2/26XC6101~XC6107, XC6111~XC6117 SeriesPIN NUMBERXC6101, XC6102 XC6103 XC6104, XC6105XC6106, XC6107XC6111, XC6112 XC6113 XC6114, XC6115XC6116, XC6117SOT-25 USP-6C SOT-25 USP-6C SOT-25 USP-6C SOT-25USP-6CPIN NAMEFUNCTION1 4 - - 1 4 1 4 R ESETB Reset Output(V DFL : Low Level When Detected)2 5 2 5 2 5 2 5 V SSGround3 2 3 2 - -4 1 M RB ManualReset 4 1 4 1 4 1 - - WDWatchdog5 6 5 6 5 6 5 6 V IN Power Input - - 1 4 3 2 3 2 RESETReset Output (V DFH: High Level When Detected)■PIN CONFIGURATION SOT-25 (TOP VIEW)MRBV IN WD RESETBV SSMRBWD RESETV SSV IN RESETWD RESETBV SS V IN SOT-25 (TOP VIEW)RESETMRB RESETBV SS V IN SOT-25 (TOP VIEW) ■PIN ASSIGNMENT●SOT-25XC6101, XC6102 SeriesXC6111, XC6112 SeriesSOT-25 (TOP VIEW)XC6103 & XC6113 SeriesXC6104, XC6105 Series XC6114, XC6115 SeriesXC6106, XC6107 Series XC6116, XC6117 Series●USP-6CXC6101, XC6102 Series XC6111, XC6112 SeriesXC6103 & XC6113 SeriesXC6104, XC6105 Series XC6114, XC6115 SeriesXC6106, XC6107 Series XC6116, XC6117 SeriesUSP-6C (BOTTOM VIEW)USP-6C (BOTTOM VIEW)USP-6C (BOTTOM VIEW)USP-6C (BOTTOM VIEW)* The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the V SS pin.3/26XC6101 ~ XC6107, XC6111~ XC6117SeriesRESET OUTPUTSERIES WATCHDOGMANUAL RESET V DFL (RESETB)V DFH (RESET)XC6101 XC6111 Available Available CMOS - XC6102XC6112AvailableAvailableN-channel open drain-XC6103 XC6113 Available Available - CMOS XC6104 XC6114 Available Not AvailableCMOS CMOS XC6105 XC6115 Available Not Available N-channel open drain CMOS XC6106 XC6116 Not Available AvailableCMOSCMOS XC6107XC6117Not AvailableAvailableN-channel open drainCMOSDESIGNATORDESCRIPTIONSYMBOLDESCRIPTION0 : V DF x 5% (TYP .) with hysteresis ① Hysteresis Range1 : V DF x 0.1% (TYP .) without hysteresis② Functions and Type of Reset Output1 ~ 7: Watchdog and manual functions, and reset output type as per Selection Guide in the above chartA : 3.13msec (TYP .)B : 25msec (TYP .) C: 50msec (TYP .) D : 100msec (TYP .) E : 200msec (TYP .) F : 400msec (TYP .) ③ Release Delay Time * H : 1.6sec (TYP .)0 : No WD timeout period forXC6106, XC6107, XC6116, XC6117 Series 1: 6.25msec (TYP .) 2 : 50msec (TYP .) 3 : 100msec (TYP .) 4 : 200msec (TYP .) 5 : 400msec (TYP .) ④ Watchdog Timeout Period6: 1.6sec (TYP .) ⑤⑥ Detect Voltage 16 ~ 50: Detect voltageex.) 4.5V: ⑤⇒4, ⑥⇒5M : SOT-25 ⑦ Package E : USP-6C R : Embossed tape, standard feed ⑧ Device OrientationL: Embossed tape, reverse feed* Please set the release delay time shorter than or equal to the watchdog timeout period. ex.) XC6101D427MR or XC6101D327MR■PRODUCT CLASSIFICATION ●Selection Guide ●Ordering Information XC61①②③④⑤⑥⑦⑧4/26XC6101~XC6107, XC6111~XC6117 Series■PACKAGING INFORMATION●SOT-25●USP-6C5/26XC6101 ~ XC6107, XC6111~ XC6117Series④ Represents production lot number0 to 9 and A to Z and inverted 0 to 9 and A to Z repeated. (G, I, J, O, Q, W expected.) * ‘X’ represents both ‘0’ and ‘1’. (ex. XC61X1⇒XC6101 and XC6111)■MARKING RULE●SOT-25①②③④SOT-25 (TOP VIEW)6/26XC6101~XC6107, XC6111~XC6117 Series① Represents product series② Represents release delay time MARK RELEASE DELAY TIME PRODUCT SERIES A 3.13msec XC61XxAxxxxx B 25msec XC61XxBxxxxx C 50msec XC61XxCxxxxx D 100msec XC61XxDxxxxx E 200msec XC61XxExxxxx F 400msec XC61XxFxxxxx H 1.6sec XC61XxHxxxxx③ Represents watchdog timeout period MARK WATCHDOG TIMEOUT PERIOD PRODUCT SERIES 0 XC61X6, XC61X7 series XC61Xxx0xxxx 1 6.25msec XC61Xxx1xxxx 2 50msec XC61Xxx2xxxx 3 100msec XC61Xxx3xxxx 4 200msec XC61Xxx4xxxx 5 400msec XC61Xxx5xxxx 6 1.6sec XC61Xxx6xxxx④⑤ Represents detect voltage MARK④ ⑤DETECT VOLTAGE (V)PRODUCT SERIES3 3 3.3 XC61Xxxx33xx 5 0 5.0XC61Xxxx50xx⑥ Represents production lot number0 to 9 and A to Z repeated. (G, I, J, O, Q, W excepted.)* No character inversion used. ** ‘X’ represents both ‘0’ and ‘1’. (ex. XC61X1⇒XC6101 and XC6111)MARK PRODUCT SERIES MARK PRODUCT SERIES 3 XC6101xxxxxx 8 XC6111xxxxxx 4 XC6102xxxxxx 9 XC6112xxxxxx 5 XC6103xxxxxx A XC6113xxxxxx 6 XC6104xxxxxx B XC6114xxxxxx 7 XC6105xxxxxx C XC6115xxxxxx 3 XC6106xxxxxx 8 XC6116xxxxxx 4 XC6107xxxxxx 9 XC6117xxxxxx■MARKING RULE (Continued)●USP-6CUSP-6C (TOP VIEW)7/26XC6101 ~ XC6107, XC6111~ XC6117Series■BLOCK DIAGRAMS●XC6101, XC6111 Series●XC6102, XC6112 Series●XC6103, XC6113 Series8/26XC6101~XC6107, XC6111~XC6117 Series■BLOCK DIAGRAMS (Continued)●XC6107, XC6117 Series●XC6106, XC6116 Series●XC6105, XC6115 Series●XC6104, XC6114 Series9/26XC6101 ~ XC6107, XC6111~ XC6117SeriesPARAMETERSYMBOL RATINGSUNITSV INV SS -0.3 ~ 7.0 VM RBV SS -0.3 ~ V IN +0.3 VInput Voltage WD V SS -0.3 ~ 7.0V Output Current I OUT 20 mACMOS Output RESETB/RESET V SS -0.3 ~ V IN +0.3Output Voltage N-ch Open Drain Output RESETB V SS -0.3 ~ 7.0VSOT-25 250Power Dissipation USP-6C Pd 100mWOperational Temperature Range Topr -40 ~ +85 OCStorage Temperature Range Tstg -40 ~ +125 OC■ABSOLUTE MAXIMUM RATINGSTa = 25O C10/26XC6101~XC6107, XC6111~XC6117 SeriesNOTE:*1: XC6101~XC6107 (with hysteresis) *2: XC6111~XC6117 (without hysteresis)*3: ‘X’ represents both ‘0’ and ‘1’. (ex. XC61X1⇒XC6101 and XC6111) *4: V DF(T): Setting detect voltage*5: If only “V DF ” is indicated, it represents both V DFL (low when detected) and V DFH (high when detected).PARAMETERSYMBOLCONDITIONSMIN.TYP .MAX. UNITS CIRCUITDetect Voltage V DFL V DFHV DF(T)× 0.98V DF(T) V DF(T)× 1.02 V 1 Hysteresis Range XC6101~XC6107 (*1) V HYS V DF × 0.02V DF × 0.05 V DF× 0.08 V 1Hysteresis Range XC6111~XC6117 (*2) V HYS 0 V DF × 0.001 V DFx 0.01V 1V IN =V DF(T)×0.9V - 5 11 V IN =V DF(T)×1.1V- 10 16 XC61X1/XC61X2/XC61X3XC61X4/XC61X5 (*3)(The MRB & the WD Pin: No connection) V IN =6.0V - 1218 V IN =V DF(T)×0.9V - 4 10 V IN =V DF(T)×1.1V - 8 14 Supply Current I SS XC61X6/XC61X7 (*3)(The MRB Pin: No connection)V IN = 6.0V - 1016 µA 2Operating Voltage V IN 1.0 - 6.0 V 1VIN = 1.0V 0.15 0.5 -V IN =2.0V (V DFL(T)> 2.0V) 2.0 2.5 - V IN =3.0V (V DFL(T) >3.0V) 3.0 3.5 -N-ch.V DS = 0.5V V IN =4.0V (V DFL(T) >4.0V) 3.5 4.0 - 3 V DFL Output Current (RESETB) I RBOUTCMOS,P-chV DS = 0.5V V IN = 6.0V - - 1.1 -0.8 mA 4 N-chV DS = 0.5VV IN =6.0V 4.4 4.9 - 3V IN =1.0V - - 0.08 - 0.02 V IN =2.0V (V DFH(T)> 2.0V)- - 0.50 - 0.30 V IN =3.0V (V DFH(T)>3.0V)- - 0.75 - 0.55V DFHOutput Current (RESET) I ROUT P-ch. V DS = 0.5V V IN =4.0V (V DFH(T)>4.0V)- - 0.95 - 0.75 mA 4Temperature Characteristics △V DF / △Topr ・V DF -40OC < Topr < 85 O C - +100 - ppm / O C12 3.13 5 13 25 3825 50 75 60 100 140 120 200 280 240 400 560Release Delay Time(V DF <1.8V)T DR Time until V IN is increased from1.0V to2.0Vand attains to the release time level,and the Reset output pin inverts.960 1600 2240 ms 5 2 3.13 5 13 25 38 25 50 7560 100 140 120 200 280 240 400 560 Release Delay Time(V DF >1.9V)T DRTime until V IN is increased from1.0V to (V DF x1.1V) and attains to the releasetime level,and the Reset output pin inverts. 960 1600 2240ms 5 Detect Delay Time T DFTime until V IN is decreased from 6.0V to 1.0V and attains to the detect voltage level, and the Reset output pin detectswhile the WD pin left opened.- 3 30 µs 5V DFL /V DFH CMOS Output Leak CurrentI LEAK V IN =6.0V, RESETB=6.0V (V DFL ) V IN =6.0V, RESET=0V (V DFH )- 0.01 - µA 3V DFL N-ch Open DrainOutput Leak CurrentI LEAKV IN =6.0V, RESETB=6.0V-0.010.10µA 3■ELECTRICAL CHARACTERISTICS●XC6101~XC6107, XC6111~XC6117 SeriesTa = 25O CSeriesPARAMETERSYMBOL CONDITIONS MIN.TYP . MAX. UNITS CIRCUIT3.13 6.25 9.38 25 50 7560 100 140 120 200 280240 400 560 Watchdog Timeout Period (V DF <1.8V)T WDTime until V IN increases form1.0V to2.0V andthe Reset output pin is released to go into the detection state. (WD=V SS )960 1600 2240 ms 6 3.13 6.25 9.38 25 50 75 60 100 140 120 200 280240 400 560 Watchdog Timeout Period (V DF >1.9V)T WDTime until V IN increases form1.0V to (V DF x1.1V)and the Reset output pin is released to go into the detection state. (WD=V SS )960 1600 2240 ms 6 WatchdogMinimum Pulse Width T WDIN V IN =6.0V,Apply pulse from 6.0V to 0Vto the WD pin. 300 - - ns 7 Watchdog High Level VoltageV WDH V IN =V DF x 1.1V ~ 6.0V V IN x 0.7- 6 V 7 Watchdog Low Level Voltage V WDL V IN =V DF x 1.1V ~ 6.0V0 - V IN x 0.3 V 7 V IN =6.0V, V WD =6.0V (Avg. when peak )- 12 19Watchdog Input Current I WD V IN =6.0V, V WD =0V (Avg. when peak) - 19 -12 -µA 8 Watchdog Input ResistanceR WDV IN =6.0V, V WD =0V, R WD =V IN / |I WD |315500880k Ω8PARAMETERSYMBOL CONDITIONS MIN.TYP . MAX.UNITS CIRCUITMRBHigh Level VoltageV MRH V IN =V DF x1.1V ~ 6.0V 1.4 - V IN 9MRBLow Level VoltageV MRL V IN =V DF x1.1V ~ 6.0V-0.35 V9MRBPull-up Resistance R MR V IN =6.0V, MRB=0V, R MR =V IN / |I MRB | 1.6 2.4 3.0 M Ω 10 MRB Minimum Pulse Width (*3) XC6101~XC6105 XC6111~XC6115 T MRINV IN =6.0V,Apply pulse from 6.0V to 0V tothe MRB pin 2.8 - -MRB Minimum Pulse Width (*4) XC6106, XC6107 XC6116, XC6117T MRIN V IN =6.0V,Apply pulse from 6.0V to 0V tothe MRB pin1.2 - -µs11●XC6101 ~ XC6103, XC6106 ~ XC6107, XC6111 ~ XC6113, XC6116 ~ XC6117 Series NOTE:*1: V DF(T): Setting detect voltage *2: If only “V DF ” is indicated, it represents both V DFL (low when detected) and V DFH (high when detected). *3: Watchdog function is available. *4: Watchdog function is not available.Ta = 25O CTa = 25O C ■ELECTRICAL CHARACTERISTICS (Continued)●XC6101~XC6105, XC6111~XC6115 Series■OPERATIONAL EXPLANATIONThe XC6101~XC6107, XC6111~XC6117 series compare, using the error amplifier, the voltage of the internal voltage reference source with the voltage divided by R1, R2 and R3 connected to the V IN pin. The resulting output signal from the error amplifier activates the watchdog logic, manual reset logic, delay circuit and the output driver. When the V IN pin voltage gradually falls and finally reaches the detect voltage, the RESETB pin output goes from high to low in the case of the V DFL type ICs, and the RESET pin output goes from low to high in the case of the V DFH type ICs.<RESETB / RESET Pin Output Signal>* V DFL (RESETB) type - output signal: Low when detected.The RESETB pin output goes from high to low whenever the V IN pin voltage falls below the detect voltage, or whenever the MRB pin is driven from high to low. The RESETB pin remains low for the release delay time (T DR) after the V IN pin voltage reaches the release voltage. If neither rising nor falling signals are applied to the WD pin within the watchdog timeout period, the RESETB pin output remains low for the release delay time (T DR), and thereafter the RESET pin outputs high level signal. * V DFH (RESET) type – output signal: High when detected.The RESET pin output goes from low to high whenever the V IN pin voltage falls below the detect voltage, or whenever the MRB pin is driven from high to low. The RESET pin remains high for the release delay time (T DR) after the V IN pin voltage reaches the release voltage. If neither rising nor falling signals are applied to the WD pin within the watchdog timeout period, the V OUT pin output remains high for the release delay time (T DR), and thereafter the RESET pin outputs low level signal.<Hysteresis>When the internal comparator output is high, the NMOS transistor connected in parallel to R3 is turned ON, activating the hysteresis circuit. The difference between the release and detect voltages represents the hysteresis range, as shown by the following calculations:V DF (detect voltage) = (R1+R2+R3) x Vref(R2+R3)V DR (release voltage) = (R1+R2) x Vref(R2)V HYS (hysteresis range)=V DR-V DF (V)V DR > V DF* Detect voltage (V DF) includes conditions of both V DFL (low when detected) and V DFH (high when detected).* Please refer to the block diagrams for R1, R2, R3 and Vref.Hysteresis range is selectable from V DF x 0.05V (XC6101~XC6107) or V DF x 0.001V (XC6111~XC6117).<Watchdog (WD) Pin>The XC6101~XC6107, XC6111~XC6117 series use a watchdog timer to detect malfunction or “runaway” of the microprocessor. If neither rising nor falling signals are applied from the microprocessor within the watchdog timeout period, the RESETB/RESET pin output maintains the detection state for the release delay time (T DR), and thereafter the RESET/RESETB pin output returns to the release state (Please refer to the FUNCTION CHART). The timer in the watchdog is then restarted. Six watchdog timeout period settings are available in 1.6sec, 400msec, 200msec, 100msec, 50msec, 6.25msec.<MRB Pin>Using the MRB pin input, the RESET/RESETB pin signal can be forced to the detection state. When the MRB pin is driven from high to low, the RESETB pin output goes from high to low in the case of the V DFL type ICs, and the RESET pin output goes from low to high in the case of the V DFH type. Even after the MRB pin is driven back high, the RESET/RESETB pin output maintains the detection state for the release delay time (T DR). Since the MRB pin is internally pulled up to the V IN pin voltage level, leave the MRB pin open if unused (Please refer to the FUNCTION CHART). A diode, which is an input protection element, is connected between the MRB pin and V IN pin. Therefore, if the MRB pin is applied voltage that exceeds V IN, the current will flow to V IN through the diode. Please use this IC within the stated maximum ratings (V SS -0.3 ~ V IN+0.3) on the MRB pin.<Release Delay Time>Release delay time (T DR) is the time that elapses from when the V IN pin reaches the release voltage, or when the watchdog timeout period expires with no rising signal applied to the WD pin, until the RESET/RESETB pin output is released from the detection state. Seven release delay time (T DR) watchdog timeout period settings are available in 1.6sec, 400msec, 200msec, 100msec, 50msec, 25msec, 3.13msec.<Detect Delay Time>Detect Delay Time (T DF) is the time that elapses from when the V IN pin voltage falls to the detect voltage until the RESET/ RESETB pin output goes into the detection state.Series■TIMING CHARTS●CMOS Output●T DF (CMOS Output)VINVDFL LevelGNDVIN Level VDFL Level GNDVIN x 0.1V■NOTES ON USE1. Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device.2. When a resistor is connected between the V IN pin and the input, the V IN voltage drops while the IC is operating and a malfunction may occur as a result of the IC’s through current. For the CMOS output products, the V IN voltage drops while the IC is operating and malfunction may occur as a result of the IC’s output current. Please be careful with using the XC6111~XC6117 series (without hysteresis).3. In order to stabilize the IC’s operations, please ensure that the V IN pin’s input frequency’s rise and fall times are more than 1 µ sec/V.4. Noise at the power supply may cause a malfunction of the watchdog operation or the circuit. In such case, please strength the line between V IN and the GND pin and connect about 0.22µF of a capacitor between the V IN pin and the GND pin.5. Protecting against a malfunction while the watchdog time out period, an ignoring time (no reaction time) occurs to the rise and fall times. Referring to the figure below, the ignoring time (no reaction time) lasts for 900µsec at maximum.GNDGNDGNDVIN Pin Wave FormWD Pin Wave FormRESETB Pin Wave Form (VDFL)SeriesPIN NAMELOGIC CONDITIONSH V IN >V DF +V HYS V IN L V IN <V DF H MRB>1.40V MRBL MRB<0.35V H When keeping W D >V WDH more than T WD L When keeping W D <V WDL more than T WD L → H V WDL → V WDH , T WDIN >300nsec WDH → L V WDH →V WDH , T WDIN >300nsecV IN MRB WD RESETB (*2) H HH LRepeat detect and release (H →L →H)H OpenH L → HH H or Open H → L H HLL *1 LV IN MRB WD RESETB (*3) H HH LRepeat detect and release (L →H →L)H OpenH L → HH H or Open H → L L HLL *1 HV IN WD RESETB (*2) RESET (*3) H HH L Repeat detect and release (H →L →H)Repeat detect and release (L →H →L)H OpenH L → HH H → L H L HL*1 L HV IN MRB RESETB (*2)RESET (*3)H H or Open H LH LL L H■PIN LOGIC CONDITIONSNOTE:*1: If only “V DF ” is indicated, it represents both V DFL (low when detected) and V DFH (high when detected).*2: For the details of each parameter, please see the electrical characteristics. V DF : Detect VoltageV HYS : Hysteresis RangeV WDH : WD High Level Voltage V WDL: WD Low Level Voltage T WDIN : WD Pulse Width T WD : WD Timeout Period■FUNCTION CHART●XC6103/XC61113 Series●XC6104/XC61114, XC6105/XC6115 Series●XC6106/XC61116, XC6107/XC6117 Series●XC6101/XC61111, XC6102/6112 Series*1: Including all logic of WD (WD=H, L, L →H, H →L, OPEN). *2: When the RESETB is High, the circuit is in the release state. When the RESETB is Low, the circuit is in the detection state. *3: When the RESET is High, the circuit is in the release state. When the RESET is Low, the circuit is in the detection state.■TEST CIRCUITSCircuit 1Circuit 2Circuit 3Circuit 4Series ■TEST CIRCUITS (Continued)Circuit 5Circuit 6Circuit 7■TEST CIRCUITS (Continued)Circuit 8Circuit 9Circuit 10Circuit 11Series■TYPICAL PERFORMANCE CHARACTERISTICS(1.1) Supply Current vs. Input Voltage(1.2) Supply Current vs. Input Voltage■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)(2) Detect, Release Voltage vs. Ambient Temperature(1.2) Supply Current vs. Input Voltage (Continued)Series■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (3-1) Output Voltage vs. Input Voltage (V DFL ) (3.1) Detect, Release Voltage vs. Input Voltage (V DFL )(3.2) Detect, Release Voltage vs. Input Voltage (V DFH )■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)(4) N-ch Driver Output Current vs. V DSSeries(6) P-ch Driver Output Current vs. Input Voltage 1■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)(8) Release Delay Time vs. Ambient Temperature(7) P-ch Driver Output Current vs. Input Voltage 2■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (10) Release Delay Time vs. Input Voltage(11) Watchdog Timeout Period vs. Input VoltageSeries■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)(14) MRB Low Level Voltage vs. Ambient Temperature(15) MRB High Level Voltage vs. Ambient Temperature* ‘X’ represents both ‘0’ and ‘1’. (ex. XC61X1⇒XC6101 and XC6111)。
高压侧电流检测放大器LT6107
高压侧电流检测放大器LT61070 引言LT6107 是凌力尔特公司(Linear Technology Corporation)推出的一款简单小巧、多功能高压侧电流检测放大器,是一种简单易用的通用器件,具有高输入电压范围、高精度、宽工作温度范围、低失调电压、低电源电流等特性,是MP 级器件,能够应用到自动装置、工业设施及电源管理等产品中,可满足汽车、军事和工业以及其他严酷环境中的应用需求。
LT6107 的最大输入偏置电流仅为40nA,失调电压仅有250μV,其增益可由两只外部电阻调节设置,精度高于1%,输入电压范围为2.7V~44V,能适应-55℃~+150℃的工作环境,工作电流仅为65μA。
LT6107 具有很低的检测电压。
当VSENSE=0V 时,输出电压永远为正,流过输出器件的静态输入失调电压和较小的总量电流仅为0.7μA~1.2μA。
1 引脚功能图1 所示为LT6107 的外形图,其引脚功能如下:OUT:电流输出端,该电流与外部检测电阻上的电压成正比。
V-:通常接GND。
-IN:内部检测放大器使-IN 端上的电平与+IN 端的相同,在V+和-IN端之间接电阻RIN 可以设置输出电流IOUT,IOUT=VSENSE/RIN,其中的VSENSE 为RSENSE 上的检测电压。
+IN:通过一个电阻与系统负载端相连。
V+:IC 的正电压供电端,直接与检测电阻相连,供电电流通过此端驱动IC 工作,若仅监视系统负载电流,可将V+接到检测电阻的正端;若监视包含LT6107 在内的所有工作电流,需将V+接到检测电阻的负端。
2 基本原理LT6107 是通过检测外部检测电阻上的电压来实现对电流的监视。
内部电路首先将外部检测电阻上的电压转变成输出电流,再在一个高共模电压上给出一个小的检测信号,并由它作为一个基准地。
其低DC 失调可以监视很小的检测电。
TDA6107JF资料
TDA6107JF
PARAMETER thermal resistance from junction to ambient thermal resistance from junction to fin thermal resistance from heatsink to ambient note 1
4
(2)
handbook, halfpage
outputs 5 K/W thermal protection circuit
2
0 −40
6 K/W 0 40 80 120 160 Tamb (°C) fin
MGK279
(1) Infinite heatsink. (2) No heatsink.
Fig.3 Power derating curves.
handbook, halfpage
Vi(1) Vi(2) Vi(3) GND Iom VDD Voc(3) Voc(2) Voc(1)
1 2 3 4 5 TDA6107JF 6 7 8 9
MBL524
Fig.2 Pin configuration.
2002 Oct 18
3
元器件交易网
CONDITIONS
VALUE 56 11 18
UNIT K/W K/W K/W
handbook, halfpage
8
Ptot (W) 6
(1)
The internal thermal protection circuit gives a decrease of the slew rate at high temperatures: 10% decrease at 130 °C and 30% decrease at 145 °C (typical values on the spot of the thermal protection circuit).
IPC-A-610国际标准中英文对照
IPC-A-610国际标准中英文对照4.6.2 Heat sink-Contact散热片――接触片arget-Class 1,2,3目标——等级1,2,3·Component and heatsink arein full contact with themounting surface.组件和散热片与安装表面完全接触·Hardware meets specified attachment requirements.部件满足规定的接触要求。
Figure图4-641. Heat sink散热片Acceptable-Class 1,2,3可同意的——等级1,2,3·Component not flush.组件不平齐·Minimum 75% contact withmounting surface.至少有75%与安装表面接触·Hardware meets mounting torque requirements ifspecified.如果有规定,部件满足安装的转距要求Figure图4-651. Gap2. Heat sink间隙散热片Defect-Class 1,2,3缺点——等级1,2,3·Component is not in contactwith mounting surface.组件没有接触到安装表面·Hardware is loose and can be moved.部件放松能够移动。
Figure图4-661. Heat sink2. Gap散热片间隙5.1 Orientation方向5.1.1 Orientation-Horizontal方向——水平Target-Class 1,2,3目标——等级1,2,3•Components are centered between their lands.组件位于焊盘中央•Component markings are discernible.组件标识清晰可见•Nonpolarized components are oriented so thatmarkings all read the same way (left-to-rightor top-to-bottom).Figure图5-1 无极性组件的方向应使其标识都能按同样方式进行辨识(从左到右或从上到下)Acceptable-Class 1,2,3可同意的——等级1,2,3•Polarized and multilead components are orientedcorrectly.有极性和多引脚的组件应按正确方向安装。
IEC 61071
IEC 61071IntroductionIEC 61071 is a specification developed by the International Electrotechnical Commission (IEC) for capacitor banks used in power systems. This standard defines the performance requirements, test methods, and ratings for capacitor banks to ensure their safe and reliable operation.ScopeThe scope of IEC 61071 covers both single-phase and three-phase capacitor banks used in power systems. It applies to capacitor banks used in both indoor and outdoor installations.Performance RequirementsIEC 61071 specifies various performance requirements that capacitor banks must meet, including:1.Rated voltage: The capacitor bank should be able towithstand the rated voltage without any breakdown orinsulation failure.2.Capacitance: The capacitance of the capacitor bankshould be within the specified tolerances to ensure thedesired power factor correction.3.Losses: The losses in the capacitor bank, includingdielectric losses and equivalent series resistance (ESR),should be within the specified limits.4.Self-healing capability: The capacitors should have aself-healing capability to recover from localized dielectric breakdowns and avoid catastrophic failures.5.Overvoltage protection: The capacitor bank shouldbe equipped with suitable overvoltage protection devices to prevent excessive voltage stresses.6.Temperature rise: The temperature rise of thecapacitor bank, under normal operating conditions, should be within the specified limits to ensure its safe operation.Test MethodsIEC 61071 provides detailed test methods to assess the performance of capacitor banks. These tests include:1.Voltage withstand test: This test is performed todetermine the ability of the capacitor bank to withstand the rated voltage without any insulation failure. The testinvolves applying a specified test voltage to the capacitor bank for a certain duration and monitoring for anybreakdown or insulation deterioration.2.Capacitance measurement: This test is conducted toverify the capacitance value of the capacitor bank. Itinvolves measuring the capacitance using a suitablemeasuring instrument and comparing it with the specified tolerances.3.Loss measurement: This test is performed tomeasure the losses in the capacitor bank, includingdielectric losses and ESR. Various techniques, such as loss tangent measurement and impedance spectroscopy, may be used for this purpose.4.Self-healing test: This test is conducted to evaluatethe self-healing capability of the capacitors in the bank. It involves subjecting the capacitors to localized dielectricbreakdowns and verifying their ability to recover andmaintain their functionality.5.Overvoltage protection test: This test checks theeffectiveness of the overvoltage protection devices used in the capacitor bank. It involves applying overvoltageimpulses and monitoring the response of the protectiondevices.Ratings and MarkingsIEC 61071 defines the ratings and markings for capacitor banks. These include:1.Rated voltage: The maximum voltage that thecapacitor bank can withstand without any insulation failure.2.Rated capacitance: The nominal capacitance value ofthe bank for power factor correction.3.Maximum permissible currents: The maximumcurrent that the capacitor bank can handle in normaloperating conditions.4.Discharge time: The time required for the storedenergy in the capacitors to discharge to a safe level after de-energizing the bank.5.Markings: The capacitor bank should be clearlymarked with the relevant ratings and other information as specified in the standard.ConclusionIEC 61071 is an important standard that ensures the safe and reliable operation of capacitor banks used in power systems. It defines the performance requirements, test methods, and ratings for capacitor banks, enabling users to select and evaluate these devices with confidence. Adhering to this standard helps maintain the efficiency and integrity of power systems by ensuring optimal power factor correction and protection against excessive voltage stresses.。
HM6107芯片用户手册说明书
图 4-1. HM6107 SOP8 管脚定义
图 4-2. HM6107B SOP8 管脚定义
图 4-3. HM6107C ESOP8 管脚定义
4.2 SOP8 引脚描述
+0
多功能恒流手电筒专用芯片
引脚序号 引脚名称
I/O
1
VDD
O 电源
10. 封装尺寸
10.1 SOP8 封装尺寸
+0
多功能恒流手电筒专用芯片
I 模式选择 1
5
OPT2
I 模式选择 2
6
EN
I 使能端,低电平正常工作
7
REXT
I 外接电阻
8
GND
O地
注:OPTI 和 OPT2 需要接电源或者接地,EN 需要外接电源或者地。
描述
5. 结构框图
VDD 1 电源检测
+0
多功能恒流手电筒专用芯片
REF
OTP
OPT1 2 OPT2 3
EN 4 REXT 5
数字控制 模式选择
振荡器
状态控制
恒流 驱动
8 LED
7 gnd 6 gnd
6. 典型应用电路
图 5-1. HM6107结构框图
3.7V
R1 47
C1 4.7uF
1 VDD 2 OPT1 3 OPT2 4 LED
HM6107
gnd 8 gnd 7 gnd 6 gnd 5
3. 应用领域
大功率强光 LED 手电筒
4. 引脚
LED 台灯和矿灯
4.1 引脚定义
HM6107C HM6107B
HM6107
1 VDD 2 OPT1 3 OPT2 4 EN
安捷伦产品目录表
全球疯狂低价甩卖Aeroflex 6402 CDMA AIME Test Platform (1xEVDO)Agilent 81142A High-Speed Serial Pulse Data GeneratorHP/Agilent E4440A 3Hz - 26.5GHz Spectrum Analyzer PSAHP/Agilent E4445A PSA Spectrum Analyzer, 3 Hz-13.2 GHzHP/Agilent E4443A PSA Spectrum Analyzer, 3 Hz - 6.7 GHzHP/Agilent 83496B Optical / Electrical clock recoveryHP/Agilent DSO81004B 10GHz 4CH 40GSa/s Infiniium OscillSpirent STR4500 GPS/SBAS Simulation SystemHP/Agilent E5071B ENA Network analyzer 300KHz to 8.5GHzHP/Agilent DSO80804B Infiniium oscilloscope: 8 GHzAgilent N8974A Noise Figure Analyzer10MHz-6.7GHzHP/Agilent E5071C ENA Network AnalyzerHP/Agilent E4438C ESG Vector 矢量Signal 信号Generator发生器HP/Agilent E7402A EMC Spectrum AnalyzerHP/Agilent J1981A VQT Portable AnalyzerHP/Agilent 54855A 6GHz 4CH 20GSa/s Infiniium OscilloscoHP/Agilent J1987B VQT Network ServerR&S FSIQ7 Signal Analyzer, 20 Hz to 7 GHzHP/Agilent N8973A Noise噪声Figure 系数Analyzer分析仪10MHz-3GHz Aeroflex IFR 3413 Signal信号Generator发生器Tektronix CSA7404 4.0 GHz 4CH Digital数字Phosphor 荧光Scope 示波器Tektronix TDS7254B Digital Phosphor OscilloscopeAnritsu MS2723B Handheld 手持式Spectrum AnalyzerHP/Agilent J1981B VQT Portable便携式AnalyzerHP/Agilent E4428C ESG Analog Signal Generator TEKTRONIX TDS7704B Digital Sampling Oscilloscope, 7 GHz Anritsu Radio Communication Analyzer MT8815B TEKTRONIX TDS7704B Digital Sampling Oscilloscope 7 GHz 81130A-81132A-81132A Pulse Data GeneratorHP/Agilent N5182A MXG RF Vector Signal GeneratorHP/Agilent 8753E RF Network Analyzer, 30 kHz to 6 GHz Anritsu MT8815A RF Communication Test Set - HSDPAHP/Agilent 4396B RF Network/Spectrum/Impedance Analyzer HP/Agilent E4405B ESA-E Spectrum AnalyzerHP/Agilent 54853A Infiniium OscilloscopeHP/Agilent E4436BHP/Agilent 54846B 2.25GHz 4CH 8GSa/s Infiniium Oscillos Anritsu MS2721B Handheld Spectrum AnalyzerSpirent SR3452 CDMA Network EmulatorHP/Agilent MSO6104A Mixed Signal OscilloscopeHP/Agilent 83712B Synthesized CW generator, 20 GHzHP/Agilent MSO7054A Mixed Signal OscilloscopeKeytek EMC Pro Advanced EMC Test SystemR&S FSEA30 Spectrum Analyzer 20 Hz to 3.5GHzHP/Agilent 8902A Measuring ReceiverMarconi 6200B 10 MHz to 20 GHz Microwave Test SetHP/Agilent E4404B 9kHz - 6.7GHz Spectrum Analyzer Advantest R3273 100 Hz to 26.5 GHz Spectrum AnalyzerHP/Agilent 83712A Synthesized CW generator, 20 GHz NoiseKen ESS-2000 Electrostatic Discharge SimulatorHP/Agilent MSO6054A Mixed Signal OscilloscopeAnritsu MT9083A Access MasterHP/Agilent 54845B Infiniium OscilloscopeHP/Agilent E5091A ENA Series Multiport Test SetAgilent 81104A-81105A-81105A Pulse Generator 80MHzHP/Agilent 83711B Synthesized CW Generator, 20 GHz Tektronix TDS7054 Phosphor OscilloscopeHP/Agilent 8593E Portable Spectrum AnalyzerHP/Agilent 41501B Pulse Generator and Expander UnitHP/Agilent 35670A FFT Dynamic Signal Analyzer Tektronix TDS5054 DPO Oscilloscope, 4-Channel, 500 MHz HP/Agilent 54830D 2+16 Channel Infiniium OscilloscopeHP/Agilent 54831D 4+16 Channel Infiniium OscilloscopeHP/Agilent E4436B 250kHz - 3GHz Signal GeneratorHP/Agilent 89441A VSA with W-CDMA Capability, 2.65 GHz Spirent TAS 4500 FLEX RF Channel EmulatorSpirent TAS 5600 Universal Interference EmulatorSpirent GSS4100 GPS/BSAS Signal GeneratorAdvantest R3267 Spectrum Analyzer, 100 Hz to 8 GHz Agilent 54754A Differential TDR/TDT moduleHP/Agilent 8514B S-Parameter Test SetHP/Agilent 8515A S-Parameter Test SetHP/Agilent 8596E Portable Spectrum AnalyzerAnritsu MW9076C OTDR 4 Wavelength Chromatic Dispersion HP/Agilent 54832D 4+16-Channel, 1 GHz OscilloscopeHP/Agilent N4431B RF Electronic Calibration ModuleHP/Agilent N4693A Electronic Calibration ModuleHP/Agilent 8561E Portable Spectrum Analyzer, to 6.5 GHz HP/Agilent 8923B DECT Test SetSpirent TAS 5200 RF Converter81654A Dual Fabry-Perot Laser Source, 1310nm & 1550nm HP/Agilent 54832B 1GHz 4CH 4GSa/s Infiniium Oscilloscop Tescom TC-3000A Bluetooth TesterHP/Agilent 54825A Infiniium Oscilloscope: 4 ChannelsHP/Agilent E6000C Mini-OTDRHP/Agilent EMI System 8568B/85650A/85685A with 85867A HP/Agilent 85052C Precision Mechanical Calibration KitHP/Agilent E4433B - Digital RF Signal GeneratorHP/Agilent 8753C Network Analyzer, 30 kHz to 6 GHzHP/Agilent 1682A Logic AnalyzerJDSU ANT-5 SDH Access TesterSpirent TAS5048 CDMA PLTS Test Configuration Unit 89431A 2 MHz to 2.65 GHz DownconverterHP/Agilent 16200B External DC Bias AdapterHP/Agilent E4433A Digital RF Signal GeneratorHP/Agilent 81655A Laser Source Module (FP) 1310nm 13 Agilent 1680AD 136-Channel Color Logic AnalyzerHP/Agilent 6683A 5000 Watt System Power SupplyHP/Agilent 42942A Terminal Adapter, 40 Hz to 110 MHzR&S SML03 - Signal Generator 9KHz to 3.3GHzSpirent TAS4600A Precision C/N-C/I GeneratorAgilent E4425B 250kHz - 3GHz Signal GeneratorHP/Agilent DSO5052A Oscilloscope: 500 MHz, 2 channels HP/Agilent E5100B High-Speed Network AnalyzerIFR/Aeroflex 2947 Communications Service MonitorHP/Agilent N4691-60004 Electronic Calibration ModuleHP/Agilent 16903A Logic Analysis SystemHP/Agilent 86062C Lightwave SwitchHP/Agilent 8591C Cable TV Analyzer, 1 MHz to 1.8 GHz HP/Agilent 42941A Impedance Probe Kit, 40 Hz to 110 MHzACTERNA MTS5100E mini OTDR 1310 / 1550 nM Marconi / Aeroflex 2947HP/Agilent 5348A Microwave Counter Power MeterHP/Agilent 81578A Optical attenuator pwr-ctrl angled Agilent 8110A-81103A Pulse Pattern Generator, 150 MHz Anritsu MT8850A Bluetooth Test SetEnlargeTektronix TLA704 Logic Analyzer MainframeHP/Agilent N4430A 4-port RF ECal Module, up to 6 GHz Wavwtek 4400M Mobile Phone TesterHP/Agilent 54641A 2-Channel, 350 MHz Oscilloscope HP/Agilent 83434A 10 Gb/s Lightwave ReceiverHP/Agilent 85093C RF Electronic Calibration Module HP/Agilent 8664A High-Performance Signal Generator HP/Agilent 85033E-100/200/300/400 Calibration KitHP/Agilent 8510C Vector Network AnalyzerHP/Agilent 4140B V oltage Source 10V/100V 10mAHP/Agilent 42851A Precision Q AdapterHP/Agilent 85033D Calibration Kit, 3.5 mmAdvantest R3465 Spectrum Analyzer, 9KHz~8GHzHP/Agilent 85051B Verification Kit, 7 mmTESCOM TC-5901B Pneumatic RF Shield BoxIFR 2026Q CDMA Interferer MultiSource GeneratorHP/Agilent 8648C 9 kHz - 3.2 GHz Signal Generator YOKOGAW A DX230HP/Agilent N4002A SNS Noise source 10MHz-26.5GHz 15dB HP/Agilent 8991A Peak Power MeterHP/Agilent E4432A Digital RF Signal GeneratorHP/Agilent E4431B - Digital RF Signal GeneratorR&S SMIQ03B - Signal Generator 300KHz to 3.3GHz Yokogawa DX230 Paperless RecorderHP/Agilent 85134F Flexible Cable Set, 2.4 mm to 3.5 mmHP/Agilent E4432A Digital RF Signal GeneratorTektronix TDS540 Digitizing OscilloscopeHP/Agilent N1922A P-Series Wideband Power Sensor Agilent 16442A Text Fixture for 4155C or 4156CKeithley 238 HighCurrentSourceMeasureUnit/8006 Fixture Fluke PM 6685 Universal Frequency CounterTektronix AFG3022 Arbitrary/Function GeneratorHP/Agilent 8163A Lightwave Multimeter SystemAgilent 1673G 34 Channel Logic Analyze 250 MHZ/135 MHZ HP/Agilent 8643A Signal Generator 252 kHz-1 GHzHP/Agilent 85033E-400 Calibration KitHP/Agilent 4191A RF Impedance AnalyzerSpirent LAN-3310A SmartMetrics Ethernet ModuleHP/Agilent 16034B Test Fixture for Chip ComponentsHP/Agilent 1134A InfiniiMax 7 GHz ProbeHP/Agilent 85033C Calibration Kit, 3.5 MMHP/Agilent 85033E Calibration KitHP/Agilent 11759C RF Channel Simulator, up to 2700 MHz Fluke 164H Hand-Held Multifunction CounterSpirent SmartBits 200 Performance Analysis SystemHP/Agilent 8971C Noise Figure Test Set, up to 26.5 MHz HP/Agilent 1156A Active ProbeHP/Agilent E8403A C-Size VXI Mainframe, 13-Slot Agilent 42851A+42815-61100 Q Meter Adapter for 4285A Asiser FC-1800H2 Frequency ConverterHP/Agilent 54542C 4 Channel 2 GSa/s OscilloscopeHP/Agilent 53310A Modulation Domain AnalyzerHP/Agilent 4349B 4 Channel High Resistance Meter, DC HP/Agilent 85036B Standard Mechanical Calibration Kit HP/Agilent DSO1024A Oscilloscope, 200 MHz, 4 channel Tektronix TDS754A 500MHz 4CH 2GSa/s Oscilloscope Tektronix TDS744A 500MHz 4CH 2GSa/s OscilloscopeHP/Agilent 16196B Parallel Electrode SMD Test Fixture Spirent SmartBits 200S Analysis SystemAnritsu Radio Communication Analyzer MT8820AHP/Agilent E9327A 50 MHz to 18 GHz Power Sensor Spirent LAN-3200A Gigabit Ethernet ModuleHP/Agilent DSO6014L Oscilloscope: 100 MHz, 4 channels HP/Agilent 8347A RF Amplifier, 100 kHz to 3 GHzHP/Agilent 83437A Broadband Light SourceHP/Agilent 8161A Pulse GeneratorHP/Agilent 1168A 10 GHz Probe AmplifierHP/Agilent 11904S Adapter Set, 2.4 mm to 2.92 mmHP/Agilent 4274A LCR MeterHP/Agilent 6060B 300 Watt DC Electronic LoadHP/Agilent 85032B Calibration Kit, Type-N, 50 Ohms Rohde & Schwarz CMD80 Digital Radio Comm. Tester TESCOM TC-5920A Shield BoxSpirent LAN-3201B Gigabit Ethernet ModuleHP/Agilent 6032A System Autoranging DC Power Supply HP/Agilent 8970B Noise Figure MeterHP/Agilent 346C Noise Source, 10 MHz to 26.5 GHzHP/Agilent N1022A Probe AdapterHP/Agilent E9323A Peak and Average Power SensorKikusui PAN 16-50A 0-16V,0-50A, High Reliability DC Pow HP/Agilent 54542A 500MHz 4CH 2GSa/s OscilloscopeHP/Agilent 81662A DFB Laser Source ModuleHP/Agilent 16702A Logic Analysis SystemHP/Agilent 16717A Timing and State ModuleSunrise Telecom Sunset T3HP/Agilent 16192A Parallel Electrode SMD Test FixtureDD-5700 SMS (Short Message Service) Telephone Analyzer HP/Agilent 1131A 3.5 GHz InfiniiMax ProbeHP/Agilent 85024A High-Frequency Probe 300 kHz to 3 GHz HP/Agilent 85044A Transmission/Reflection Test SetHP/Agilent DSO3202A Oscilloscope, 200 MHzHP/Agilent 54622A 2-Channel, 100 MHz OscilloscopeHP/Agilent 85046A Network Analyzer S-Parameter 3GHz HP/Agilent 8494H Programmable Step AttenuatorHP/Agilent N1610B Service Advisor Portable Test Table TESCOM TC-5910B Shield BoxOphir GRF 5039 High Power RF AmplifierTTI TGA1244 4 Channel Arbitrary Waveform GeneratorHP/Agilent 85033A - SMA Calibration KitPanasonic VP-7722A Audio AnalyzerHP/Agilent 54624A 4-Channel, 100 MHz OscilloscopeSpirent LAN-3201A Gigabit Ethernet ModuleHP/Agilent 16048H 2m Port Extension Cable for 4294AHP/Agilent 41420A DC Source/Monitor Plug-in 200V/1A HP/Agilent E4887A HDMI TMDS Signal Generator Platform TESCOM TC-5910C Shield BoxHP/Agilent 16911A 68-Channel Logic Analysis ModuleHP/Agilent N6700A Low Profile MPS MainframeHP/Agilent 16442A test Fixture for 4155C/4156CHP/Agilent E2655B Probe deskew and verification kit Anritsu ML8720B W-CDMA Base Station Area TesterHP/Agilent 53310A Modulation Domain AnalyzerHP/Agilent 33120A Function Gen./ Arb. Waveform Gen.EnlargeHP/Agilent 84904K Programmable Step AttenuatorHP/Agilent 84906K Programmable Step AttenuatorHP/Agilent 346B Noise Source, 10 MHz to 18 GHzHP/Agilent E9325A 50 MHz - 18 GHz peak and averageHP/Agilent 66311B Mobile Communications DC SourceHP/Agilent 87405A Preamplifier, 10 MHz to 3 GHzHP/Agilent 6050A 1800 Watt dc Electronic Load Mainframe HP/Agilent 5351B Frequency Counter 500MHz-26.5GHz HP/Agilent 53131A Universal Frequency Counter, 10 digitHP/Agilent 8495H Programmable Step AttenuatorHP/Agilent 5350B Frequency Counter 500MHz-20GHz HP/Agilent 16191A Side Electrode SMD Test FixtureHP/Agilent 16700B Logic Analysis SystemHP/Agilent 16716A Timing and State ModuleHP/Agilent 1663A Logic Analyzer 34 Channels TESCOM TC-5915A Shield BoxHP/Agilent 34922T Terminal Block for 34922A Multiplexer HP/Agilent 3499B 2-Slot Switch/Control Mainframe Protek Z9216 - High Accuracy, Wide Range LCR Meter HP/Agilent 53181A RF Frequency Counter, 10 digitsHP/Agilent E9301A Power Sensor 10MHz-6GHzPXIT PX2000-337 10G Pulse Pattern GeneratorPXIT PX2000-338 PXI SynthesizerPXI Synthesizer PX2000-338PXI Pulse Pattern Generator PX2000-337Kikusui PAS40-27 Variable-Switching Power SupplyHP/Agilent E8285A CDMA/PCS Mobile Station Test Set Tektronix TDS220 Digitizing SccopeHP/Agilent E2649A USB 2.0 High Speed Fixture SetHP/Agilent E5970A Optical Power MeterHP/Agilent 6543A 200 Watt Power Supply, 35V, 6AHP/Agilent 6542A 200 Watt Power Supply, 20V, 10AHP/Agilent 16500B Logic Analyzer MainframeHP/Agilent 37717B Sonnet Test SetHP/Agilent 83480A Digital Communications AnalyzerHP/Agilent 16750A 68 Channel Logic Analyzer ModuleHP/Agilent N6761A Precision DC Power ModuleHP/Agilent 16085B Terminal AdapterHP/Agilent 8153A Lightwave Multimeter Mainframe JDSU OLP-15B Optical Power MeterHP/Agilent 34932A-34932T Dual 4x16 Mux for 34980A HP/Agilent 6625A Precision System Power SupplyHP/Agilent 34922A 70-Channel Armature Multiplexer Agilent / HP 11612A Bias Network, 45 MHz - 2HP/Agilent 41421B DC Source/Monitor Plug-In100V100mA HP/Agilent 6622A System Power Supply, 80W, 2 outputs HP/Agilent 6623A Precision System Power Supply TESCOM TC-5911A Bluetooth Shield BoxGigatronics 8541C RF Power MeterHP/Agilent 6642A 200 Watt System Power SupplyHP/Agilent 8447E Amplifier, 100 kHz to 1.3 GHzHP/Agilent 54600B 2 Channel 100 MHz OscilloscopeHP/Agilent 54601A 4 Channel 100 MHz OscilloscopeHP/Agilent 54601B 4 Channel 100 MHz OscilloscopeHP 8903E 20 Hz to 100 kHz Distortion AnalyzerHP/Agilent 1153A 200 MHz Differential ProbeAgilent 54645A 100 MHz, 4 Ch Digitizing Oscilloscope HP/Agilent 54601B 100MHz 4CH 20MSa/s Oscilloscope HP/Agilent 8494A Manual Step AttenuatorHP/Agilent 773D Coaxial Directional Coupler, 18 GHzHP/Agilent 6612C 40 Watt System Power Supply, 20V, 2A Kikusui PAS20-36 - DC Sources Power Supplies Gigatronics 8542B Dual-Channel Digital Power MeterHP/Agilent 41425A Analog/Feedback UnitHP/Agilent 16610A Emulation ModuleHP/Agilent 54620A 16 Channel Logic Analyzer Tektronix P6245 Active FET ProbeHP/Agilent 6038A System Autoranging DC Power Supply HP/Agilent 8447D Amplifier, 100 kHz to 1.3 GHzHP/Agilent 8496A Manual Step AttenuatorGigatronics 80601A 200 mW Modulation Power Sensor HP/Agilent 8498A High Power Attenuator, DC to 18 GHz HP/Agilent 8656B Synthesized Signal Generator Gigatronics 8542 Dual-Channel Digital Power MeterHP/Agilent 6632B 100 Watt System Power Supply, 20V, 5AHP/Agilent 8656A Signal Generator, 100 kHz - 990 MHz Agilent 54600B 100 MHz, 2 Ch Digitizing OscilloscopeHP/Agilent 438A Power MeterHP/Agilent 16534A Digitizing Oscilloscope ModuleHP/Agilent 8482A - Power Sensor 100kHz - 4.2GHzHP/Agilent 5086-7678 Dual Directional CouplerHP/Agilent 778DHP/Agilent 6611C 40 Watt System Power Supply, 8V, 5A Advantest R6452A Digital MultimeterHP/Agilent 85132D Semi-Rigid Cable SetHP/Agilent 8904A Multifunction Synthesizer, DC-600 KHz HP/Agilent 8496G Programmable Step AttenuatorHP/Agilent 54201D 300 MHz DIGITIZING OSCILLOSCOPE JDSU OLP-8 Optical Power MeterWeinschel 73-30-33 AttenuatorFluke 45 Digital MultimeterAdvantest R6451A Digital MultimeterAdvantest R6452E Digital MultimeterHP/Agilent 11720A Pulse ModulatorHP/Agilent 1152A 2.5G Active ProbeHP/Agilent 82357B USB/GPIB Interface High-Speed USB 2.0 HP/Agilent 16089C Kelvin IC Clip LeadHP/Agilent 3478A 5.5 Digit DMM with GPIBTESCOM TC-5952B Shield BoxNI PCMCIA-GPIBNarda 769-30 Attenuator 150 Watt DC - 6 GHzHP/Agilent 3324A Synthesized Function/Sweep Generator HP/Agilent 437B 100kHz-110GHz Power Meter Advantest R3964A 3 Port Adapter for R3765CHP/Agilent N2263A 32-Bit Digital Input/Output ModuleHP/Agilent 66332A Dynamic Measurement DC SourceHP/Agilent 6634A GPIB dc power supply, 0-100 Vdc, 0-1 A Aeroflex/Weinschel 49-30-34 High Power Coaxial Attenua Anritsu 2000-768 Precision Open/Short/Load 7/16 dimm(F) HP/Agilent 16048E Test LeadsHP/Agilent 8111A Pulse Generator85052-60006 Short Male 3.5mm85052-60008 Open Male 3.5mmHP/Agilent 5086-7408 Power Divider, DC to 26.5 GHzHP/Agilent 87106-60009 Mulit-port Switch DC to 26.5GHz Anritsu 2000-767 Precision Open/Short/Load 7/16 dimm(M) JDSU OLP-6 Optical Power MeterHP/Agilent 3456A Digital V oltMeter 6.5 DigitsAgilent / HP 35280A Summing Junction Module, DC to MHzHP/Agilent 16048C Test LeadsHP/Agilent 6632A DC Power Supply 20V/5A Precis GPIBAnritsu ICN50 InstaCal CalibrationKrytar 1850 0.5-18.5 GHz DIRECTIONAL COUPLERSHP/Agilent 87104-60001 Multiport Switch SP4T DC-26.5GHzHP/Agilent E3640A 30W Power Supply, 8V, 3A or 20V, 1.5A Tektronix P6204 FET ProbeTektronix TDS3BAT Rechargeable Battery PackTektronix TDS3GM RS/232 GP-IB InterfacesHP/Agilent 11766A DADE SwitchWeinschel 910-20-33 Variable AttenuatorHP/Agilent 11852B AdapterHP/Agilent 82350A PCI High-Performance GPIB InterfaceHP/Agilent 11742A Blocking Capacitor, 0.045 to 26.5 GHzHP/Agilent K422A Detector CrystalHP/Agilent 11716A Attenuator Interconnect Kit, Type-NHP/Agilent N2865A USB host module for 3000 Series ScpesFluke 8842A 5.5 Digit Digital MultimeterHP/Agilent E3614A 48W Power Supply, 8V, 6AHP/Agilent 16510B 80 CHANNEL LOGIC ANAL YZER MODULEHP/Agilent 16530A DIGITIZING OSCILLOSCOPE TIMEBASE CARD HP/Agilent 16531A Digitizing Oscilloscope Card, 100 MHzHP/Agilent 3438A Digital MultimeterHP/Agilent 3465A Digital MultimeterHP/Agilent 16555A 110 MHz State/500 MHz Timing moduleBird Model 43 THRULINE® Directional WattmeterHP/Agilent 54659B RS-232 & Parallel MeasurementHP/Agilent N2757A GPIB Interface Module for 5462XHP/Agilent 54657A GPIB Measurement Storage ModuleHP/Agilent 10073C Passive Probe, 10:1, 500 MHz, 1.5 mHP/Agilent E3616A 60W Power Supply, 35V, 1.7ATektronix P6139A Passive V oltage ProbeHP/Agilent 34905A Dual 4-Channel RF MultiplexerHP/Agilent 8493C Coaxial Fixed Attenuator, DC to 26.5 GInmet 18B10W-20F AttenuatorHP/Agilent 54652B RS-232 and Parallel Interface ModuleHP/Agilent 34907A Multi-function ModuleHP/Agilent 11665B Modulator for scalar analyzerFluke 36 Clamp MeterFluke 36 Clamp MeterHP E3610A 30W Power Supply, 8V, 3A or 15V, 2A Tektronix P6137 Passive V oltage ProbeTektronix P6138A Passive V oltage ProbeHP/Agilent 8493C Coaxial Fixed Attenuator, DC to 26.5 GHP/Agilent 34302A Clamp-on ac/dc Current ProbeHP/Agilent 54652A Parallel I/O module for 54600 SeriesHP/Agilent N2863A Passive Probe, 10:1, 300 MHz, 1.2 m Tektronix 013-0278-00 Video Display ClampHP/Agilent 54650A GPIB Interface ModuleHP/Agilent 8491A Coaxial Fixed Attenuator, 12.4 GHzMini-Circuits 15542 Power SplitterK&L Microwave Tubular Low Pass Filter 6L121-1250/T3300 K&L Microwave Tubular Low Pass Filter 6L121-2000/T6000 K&L Microwave Tubular Low Pass Filter 6L121-3300/T990。
IPC-A-610H中文版
IPC-A-610H中文版1. 简介IPC-A-610H是国际电子组装行业的一种通用标准,旨在为电子组装行业的制造商、工程师和质量控制人员提供一套统一的检验要求。
该标准由国际协会联合会(IPC)制定,是电子行业中最常用的标准之一。
该标准包含了关于电子组件和装配的全方位检验要求,涉及针对电子组件的物理特性、外观缺陷、工艺要求等方面的内容。
IPC-A-610H标准以图文结合的方式给出了详细的检验指导,以确保电子产品的质量和可靠性。
2. 标准组织结构IPC-A-610H标准按照以下结构组织:2.1 引言部分引言部分介绍了IPC-A-610H标准的目的、适用范围和参考文献,以及主要修订内容和相关定义。
2.2 规范部分规范部分是IPC-A-610H标准的核心部分,包含了各类电子组件和装配的检验要求。
其中,各类电子组件和装配按照其重要性和应用领域分为多个等级,每个等级都有对应的检验标准。
2.3 图例部分图例部分是IPC-A-610H标准的重要辅助部分,提供了各种外观缺陷的示意图和照片,以帮助使用者理解和识别各类缺陷。
2.4 补充说明部分补充说明部分包含了一些与标准有关的额外信息,如工程流程控制要求、修补和重工要求等。
2.5 附录部分附录部分包含了一些与标准相关的附加信息和参考资料,如术语表、符号和缩略语解释等。
3. 标准的应用IPC-A-610H标准主要应用于电子组装行业的各个环节,包括:3.1 设计阶段在电子产品设计阶段,可以参考IPC-A-610H标准中的工艺要求和缺陷分级标准,以保证设计的可制造性和可检验性。
3.2 生产制造在电子产品的生产制造过程中,可以根据IPC-A-610H标准对组装过程进行监控和检验,以提高产品的质量和可靠性。
3.3 质量控制IPC-A-610H标准提供了一套统一的质量控制方法和标准,可以作为质量控制人员的参考依据,用于检验和评估电子产品的质量。
3.4 售后服务在电子产品售后服务过程中,可以根据IPC-A-610H标准对维修和重工过程进行指导,以确保修复后的产品符合质量要求。
Polarion QA 产品说明书
Europe, Middle-East, Africa: Polarion Software GmbH Hedelfinger Straße 60 — 70327 Stuttgart, GERMANY Tel +49 711 489 9969 - 0Fax +49 711 489 9969 - 20**********************************Americas & Asia-Pacific: Polarion Software, Inc.1001 Marina Village Parkway, Suite 403, Alameda, CA 94501, USA Tel +1 877 572 4005Fax +1 510 814 9983**********************************Benefits Guide. ....................................................Table of Contents344558810101112Pains of a Test ManagerIn 2009 Ford had to recall 4.5 million cars cause of a defective cruise control. In 2005 Mercedes had to recall 1.3 million cars to test the electronic braking system of their Mercedes E-Class and CLS model. In 1996 the first Ariane 5 detonated shortly after takeoff because of an error in the control software which cost about 370 million US dollars. In 1994 an Intel-Pentium-Processor caused a rounding-error which cost Intel about 475 million US dollars.Some of these incidents might well have been avoided if they were tested correctly. Nowadays testing software and hardware is indispensable for companies. To try to avoid such problems companies hire more and more test managers who work with software tools to support their tests. These tools should support test managers and not constrain them, allowing them to organize their work in the best way for their organization.One of the most common tools for testers is Microsoft Excel, which has some pros and cons.Pros:• You can easily change test scripts• You can send them to partners who can execute the test scripts as well• It´s easy to copy/paste the tests which are done most oftenCons:• Excel´s reporting features are limited if you have to show which test cases are executed, failed or passed• Collaborating concurrently with someone on a document isn´t possible• Linking test cases to requirements isn´t possible in an easy way• No Version Management of your test casesTest managers and testers are increasingly hitting the limits of Microsoft Excel and are looking for a tool that covers or improves the pros, and mitigates the cons of the list above. Polarion’s Test Management solution is rapidly being recognized as an outstanding option.1Let us look now at some benefits of Polarion’s Test Management solution explained with uses cases that are common in testing and test management.1) For example, Polarion’s solution was named Best Quality Tool at the Software Quality Days conference in Vienna,Austria, January 2012.Top 8 Benefits of Polarion1. Design your testing process to your needsA company that has been working successfully with defined processes for years doesn´t want to change their processes because a new tool doesn’t support the way they work best. It should be easy to implement your processes in a new tool. In almost the same manner test cases can have different attributes and content as requirements, defect, etc. It is easy to implement your processes or look and feel in Polarion configuring your own Work Items.Work ItemsA Work Item is the Polarion term for an artifact of your development process. A Work Item can be anything you want to track in your project. Polarion comes with several predefined Work Item types for test cases, requirements, defects, activities and change re-quests. Custom Work Item types for work products, safety goals, etc. can be defined as required.Work Item Data Fields, Custom FieldsEach Work Item has a number of default data fields, which are used to describe and categorize the item, assign it to someone, incor-porate it into project planning and tracking, set its status, and so forth. Custom fields can be defined for any Work Item type, enabling tracking of and querying on any kind of information. For each Work Item Type the look and feel is completely customizable.When the pressure is on, it’s so easy for people to forget some process step, take short-cuts, or even bypass or circumvent something in order to (supposedly) save time or cost.But as we saw in the introduction, that could be a recipe for disaster down the road.And if your company must comply with strict government regulations and standards, notonly must process be followed, but you must be able to prove it for auditors. Here again,a process based on office documents quickly becomes cumbersome and error-prone.With Polarion’s integrated workflows, customizable to support any process, standard, orregulatory norm, steps simply cannot be missed or by passed at crunch time. Peopledon’t have to know the whole process, or who owns each step. They simply process as-signed tests, tasks, etc. and mark their status. Items automatically move on the to nextworkflow step, everyone who needs to know is notified, and an audit trail showing whochanged what, when, and why is automatically recorded in the underlying history.I f you don´t test every re-quirement, defects can occurafter the product is released.This can be very expensive asyou can see by the examplesat the beginning of this pa-per. You need to guaranteethat every requirement willbe covered by a test case. Soall test cases have to be con-nected to the requirementsthey verify.This connection is accom-plished by linking Work Itemsin Polarion.Work Item Life Cycle/WorkflowA Test Case can have its own life cycle or workflow definition. A “workflow” is a set of statuses and status transitions, transition con-ditions and dependencies that a Work Item passes through in its life cycle. Each of its elements, status, transitions, conditions and dependencies can be customized. This means that you can customize workflow to support any process.3. Ensure that all relevant requirements are covered by test cases and all test cases are consistent with their requirements2. Control your life cycle of test casesLink between Work Items, Link Attributes/RolesLinking test cases to requirements or other work items is the key to taking advantage of traceability and impact analysis features. Test cases can be linked inside one project, between different projects and even between different repositories. This allows you to relate test cases for different products and/or product variants and to get traceability and impact information that is not limited by project scope. Furthermore you want to know which test cases are available for your requirements.A link between Work I tems is defined and categorized by “link roles”. Link roles are distinguished by their names (relates to, imple¬ments, verifies, etc.). They can have different semantics if needed, and be customized to meet your specific needs. Using links, it’s easy to manage your complete testing flow from the concept phase down to your hardware and software testing and related activities, work products, risk items and/or requirements.Suspect LinksFrom time to time test cases or requirements have to be updated or changed. But what happens to the test cases which are a refine-ment of the updated test cases. The testers have to be notified about the changes. Maybe the refinements need an update, too.A “Suspect” link can be a solution.Work Items have a Suspect attribute that affects links and an option Auto-Suspect that, when enabled, automatically sets the suspect attribute to true for new links between Work Items. You can toggle the suspect attribute on and off using the Suspect check box avail-able for each linked Work Item in the Linked Work Items section of the Work Item viewer/editor.Suspect links are useful for Change Impact Analysis. For example, consider the following figure.Work Item changes at Level 1Linked Work Items with the Auto-Suspect option in effectNotification propagation when a Work Item changesNotification propagation when a Work Item changes at a different impact levelThis project is stable at the moment. Now suppose someone makes a change to the Work Item WI-4 as shown below.Work Item changes at Level 2When a Work Item is changed at this level, the links to Work Items that WI-4 impacts become suspect, and the owners of the impacted Work Items (WI-1, WI-2, WI-3) are notified by email.2 These owners can assess whether the changes to WI-4 impact their Work Item. Notice that the owner of WI-5 is not notified because changes to WI-4 don’t impact WI-5. If Work Item WI-5 were to be changed, then the change would impact WI-4 and the owner of that item would be notified (see figure below).Suspect LinkThe owner of WI-4 can then determine whether or not changes are needed to that Work Item. If s/he changes WI-4 as a result of the change to WI-5, then the owners of WI-1/2/3 are notified as shown previously.2)The change is also reflected immediately in the Activity Stream, which item owners can see when logged in to the portal.4. Customizable test specifications from ready-made templatesMost companies have constant structures how a document should look or what information is stored in it. You don´t want to create a new document from scratch every time. Rather, you want to reuse the existing templates.Maybe your company has a test plan or something like that which is used every time you create a new project or test run with an equal structure and the same test cases or work items. You don´t have to set up a new document each time.Reusing a DocumentYou can reuse an existing Document3 , or any revision of an existing Document and change it´s content however you need to.To determine the number of a revision of a Document to reuse, check the original Document’s history. You can reuse Documents in the same project, in the same space or a different space, or in a different project in any space in that project. You can either create a new, stand-alone copy of a reused Document, or a “derived” copy in which the text/image content can only be modified from the base Document, but which allows changes to some Work Item fields in the copy - “status”, for example.You can reuse multiple Documents in a single operation, optionally keeping relative Work Item links between a group of Documents that are reused at once. For example, if you have a specification Document containing requirements and a Document containing a set of test cases that cover the functional requirements, you can reuse both the requirements Document and the Document with test cases and have test cases from the reused test case Document linked to the functional requirements in the reused requirement Document.5. Get Reports for your testers and manager that show results of your testing progressYou need a list of all test cases that should be tested and their results? Which test cases where executed, passed or failed? Further-more it should be possible to use the test cases more than one time in different test runs. Maybe you want define Test Run Templates that can be reused?Do your test managers want to have reports on your QA activities? These reports should be generated automatically and without much effort?All this is possible by defining Test Runs and test reports in Polarion.3) Polarion’s LiveDoc ™ Documents provide the familiarity and ease of use of office documents, but contain trackable artifacts such as test cases that can be managed with project workflow.Creating Test RunsA Test Run is a special system object created from a Test Run template, initially provided by Polarion, and customizable by you. A Test Run represents an instance of the running of a set of tests. It defines the set of test cases executed, specifies some information about the test environment and build tested, and displays information about the results of the tests’ execution, and enables a tester to execute the tests specified in the Test Run.Test ReportsIf you’re a project lead, project manager, or IT executive, Polarion’s Live Dashboards provide an up to date information summary that enables you to see how things are going with any project. Dashboards present near or actual real-time aggregate information based on the actual progress of planned requirements, tasks, change requests, defect fixes, etc. Of course reviewing dashboards is no sub-stitute for close contact with your team, but Project dashboards and the features that compile the information displayed can reduce the amount of time you and your team have to spend in meetings reporting on progress, so you can focus on problems and solutions instead. Dashboards can also eliminate the need for developers to write up, and managers to review and compile information from periodic status reports.Polarion also provides managers with the ability to generate a variety of reports with output to both online and offline formats.6. Use your existing test casesYou probably already have a set of test cases which you would want to start managing in Polarion. Maybe a list of test cases that are stored in an Excel file? This is a common scenario and one Polarion makes quite easy to handle.Importing from ExcelMicrosoft Excel workbooks containing artifacts such as requirements, test cases, defects, etc. can be imported to Polarion to create tracked and managed Work Items of the respective type. During import you have the option to create Work Items in a Document, or as items in the project’s tracker. After import into a Document, you have the option to use “Word Round-trip” to collaborate with external stakeholders who use Microsoft Word. After import to the tracker, you have the option to use “Excel Round-trip” to collaborate with external stakeholders who use Excel.7. Work in your familiar environmentWhat if you need to execute tests offline because it isn’t possible to be online every time you or someone else executes them. Polarion also provides a solution for this scenario.Excel Round-tripWhen you export any set of Work Items using the xlsx: Microsoft Excel option, the output is written to a special “round-trip” format for Microsoft Excel. An external user may optionally edit Work Item content in Excel and/or create new Work Items for import into Polarion.A Polarion user with the necessary permissions can then import the edited Excel workbook back to Polarion, updating the Work Item content from the externally edited Excel worksheet, and/or creating new Work Items defined externally in the exported Excel workbook.If the Work Items were exported from a Document with the necessary export options, it is also possible for an external user to change the Document’s structure externally in Excel. The structural changes are reflected in the online Document when the Excel worksheet changes are re-imported to Polarion.Excel export may be run from any scope: repository, project group, or project. Re-importing of an Excel workbook which contains modified Work Items can also be done in any scope. However, re-importing of Excel workbooks which contain new Work Items is only allowed in the project scope.Exported Work Item fields which are writable in the portal may be optionally locked in the Export Work Items dialog during the export procedure so that users of the exported Excel file cannot easily change the field value. If an advanced Excel user does manage to change the value of a locked field in Excel, the change is ignored when the Excel file is imported back into Polarion. (Note that fields which are read-only in the portal display the “locked” lock icon in the dialog, and are not “unlocked” when clicked.)8. Integration with existing test automation toolsMaybe you have specialized automated testing tools and you want to import results of testing with these tools into Polarion, preferably with links to requirements and other test cases. You will find that Polarion handles this need quite easily.Automated testingSimply configure any tool capable of exporting test results to the open xUnit format to write its results file to a specific location on your network, and tell Polarion that location. Every time a new results file is written, Polarion automatically creates a new Test Run artifact, which logs that instance of testing. The Test Run definition (based on a user-definable template) knows which test cases were run, and of course you will have linked them to relevant requirements, so you have complete traceability.The outcome of the executed testing is immediately and clearly visible in Polarion, showing overall status (Passed/Failed), and if failed, showing which test cases succeeded, which failed, and which were blocked. Failed tests result in automatic creation of a Defect item, auto-linked to the failed test case for traceability, and auto-assigned to the appropriate developer(s), who get an email notification. 4With Polarion, you leverage your existing investment in test automation and gain improved visibility and transparency, timely informa-tion, plus complete, automatic history or your testing activity.4) Beyond a user-definable failure threshold, a single summary Defect is created and assigned rather than individual Defects for eachfailed test.Polarion Software®11Polarion Software ® Europe, Middle-East, Africa: Polarion Software GmbHHedelfinger Straße 60 — 70327 Stuttgart, GERMANYTel +49 711 489 9969 - 0Fax +49 711 489 9969 - 20**********************************Americas & Asia-Pacific: Polarion Software , Inc.1001 Marina Village Parkway, Suite 403, Alameda, CA 94501, USA Tel +1 877 572 4005Fax +1 510 814 9983**********************************• Polarion Application Lifecycle Solutions • Polarion Solutions for Automotive OEMs and Suppliers• Customer Testimonials• Polarion Events & Webinars• Contact Polarion SoftwarePolarion Software’s success is best described by the hundreds of Global 1000 companies and over 1 Million users who rely daily on Polarion’s Requirements Management, Quality Assurance, and Application Lifecycle Management solutions. Polarion is a thriving international company with offices across Europe and North America, and a wide ecosystem of partners world-wide. For more information, visit .About Polarion SoftwareHandy Links。
电流检测放大器LT6107
电流检测放大器LT6107
加利福尼亚州米尔皮塔斯(MILPITAS, CA) – 2008 年 6 月 3 日– 凌力尔特公司(Linear Technology Corporation) 推出军用级塑封(MP 级) 高压侧电流检测放大器LT6107,该器件规定在-55°C 至150°C 的温度范围内工作。
作为MP 级器件,LT6107 保证工作在规定的温度范围,并经过测试,以用来满足汽车、军事和工业以及其他严酷环境中应用的需求。
LT6107 以高达36V 的共模电压工作。
在整个温度范围内,失调电压保证低于400uV,LT6107 可以接受500mV 满标度差分输入,从而实现1250:1 的最小动态范围。
在整个工作温度范围内,输入偏置电流保证不高于
130nA,基本上消除了偏置电流作为误差源的可能性。
就处理故障情况而言,LT6107 可以承受高达44V 的共模电压,并可以在 3.5us 的时间内响应信号的突然变化。
LT6107 是简单易用的通用器件。
用两个外部电阻设置放大器增益,从而控制增益准确度和漂移、功耗、响应时间以及输入/输出阻抗。
LT6107 还与凌力尔特公司的LT6106、LTC6101 和LTC6101HV 引脚兼容,提供了一组可互换及具有特定性能优势的电流检测放大器。
凌力尔特公司设计经理Mike Kultgen 表示:“LT6107 为极具挑战性的环境提供了一种简单的高压侧电流检测解决方案。
”
LT6107 已全面投产,以1,000 片为单位批量购买,每片价格为 2.35 美。
Intel Arria 10 内核架构和通用 I O 手册说明书
Intel® Arria® 10内核架构和通用I/O手册本翻译版本仅供参考,如果本翻译版本与其英文版本存在差异,则以英文版本为准。
某些翻译版本尚未更新对应到最新的英文版本,请参考英文版本以获取最新信息。
在线版本发送反馈A10-HANDBOOKID: 683461版本: 2017.05.08内容内容1. Arria® 10器件中的逻辑阵列模块与自适应逻辑模块 (7)1.1. LAB (7)1.1.1. MLAB (8)1.1.2. 本地和直链(Direct Link)互联 (9)1.1.3. 共享算术链和进位链互联 (10)1.1.4. LAB控制信号 (11)1.1.5. ALM资源 (12)1.1.6. ALM输出 (13)1.2. ALM操作模式 (14)1.2.1. 正常模式 (14)1.2.2. 扩展LUT模式 (17)1.2.3. 算术模式 (18)1.2.4. 共享算术模式 (20)1.3. LAB功耗管理技术 (21)1.4. 文档修订历史 (21)2. Arria 10器件中的嵌入式存储器模块 (22)2.1. 嵌入式存储器类型 (22)2.1.1. Arria 10器件中的嵌入式存储器性能 (23)2.2. Arria 10器件的嵌入式存储器设计指南 (23)2.2.1. 考虑存储器模块选择 (23)2.2.2. 指南:实现外部冲突消解 (24)2.2.3. 指南:定制Read-During-Write行为 (24)2.2.4. 指南:考虑上电状态和存储器初始化 (27)2.2.5. 指南:控制时钟来降低功耗 (28)2.3. 嵌入式存储器特性 (28)2.4. 嵌入式存储器模式 (29)2.4.1. 单端口模式的嵌入式存储器配置 (30)2.4.2. 双端口模式的嵌入式存储器配置 (30)2.5. 嵌入式存储器时钟模式 (32)2.5.1. 每种存储器模式的时钟模式 (32)2.5.2. 时钟模式中的异步清零 (32)2.5.3. 同步读/写中的输出读数据 (33)2.5.4. 时钟模式的独立时钟使能 (33)2.6. 嵌入式存储器模块中的奇偶校验位 (33)2.7. 嵌入式存储器模块中的字节使能 (33)2.7.1. 存储器模块中的字节使能控制 (34)2.7.2. 数据字节输出 (34)2.7.3. RAM模块操作 (34)2.8. 存储器模块Packed模式支持 (35)2.9. 存储器模块地址时钟使能支持 (35)2.10. 存储器模块异步清零 (36)2.11. 存储器模块纠错码支持 (37)2.11.1. 纠错码真值表 (38)Intel® Arria® 10内核架构和通用I/O手册发送反馈22.12. 文档修订历史 (38)3. Arria 10器件中的精度可调DSP 模块 (40)3.1. Arria 10器件中支持的操作模式 (40)3.1.1. 特性 (41)3.2. 资源 (42)3.3. 设计考量 (43)3.3.1. 操作模式 (44)3.3.2. 用于定点运算的内部系数和预加器 (45)3.3.3. 用于定点运算的累加器 (45)3.3.4. Chainout 加法器 (45)3.4. 模块体系结构 (45)3.4.1. 输入寄存器组(Input Register Bank) (47)3.4.2. 流水线寄存器 (49)3.4.3. 定点运算的预加器 (49)3.4.4. 定点运算的内部系数 (50)3.4.5. 乘法器 (50)3.4.6. 加法器 (50)3.4.7. 用于定点运算的累加器和Chainout 加法器 (50)3.4.8. 用于定点运算的脉动寄存器 (51)3.4.9. 用于定点运算的双倍累加寄存器 (51)3.4.10. 输出寄存器组(Output Register Bank) (51)3.5. 操作模式说明 (52)3.5.1. 定点运算的操作模式 (53)3.5.2. 浮点运算的操作模式 (59)3.6. 文档修订历史 (66)4. Arria 10器件中的时钟网络和PLL (68)4.1. 时钟网络 (68)4.1.1. Arria 10器件中的时钟资源 (69)4.1.2. 层次化时钟网络 (71)4.1.3. 时钟网络类型 (72)4.1.4. 时钟网络源 (76)4.1.5. 时钟控制模块 (77)4.1.6. 时钟断电 (80)4.1.7. 时钟使能信号 (80)4.2. Arria 10 PLL (81)4.2.1. PLL 使用 (82)4.2.2. PLL 体系结构 (83)4.2.3. PLL 控制信号 (83)4.2.4. 时钟反馈模式 (84)4.2.5. 时钟倍频与分频 (85)4.2.6. 可编程相移 (85)4.2.7. 可编程占空比 (86)4.2.8. PLL 级联 (86)4.2.9. 参考时钟源 (86)4.2.10. 时钟切换 (87)4.2.11. PLL 重配置和动态相移 (91)内容发送反馈Intel ® Arria ® 10内核架构和通用I/O 手册3内容4.3. 文档修订历史 (91)5. Arria 10 器件的I/O和高速I/O (94)5.1. Arria 10 器件中的I/O和差分I/O缓冲 (95)5.2. Arria 10器件中的I/O标准和电平 (96)5.2.1. Arria 10 器件的FPGA I/O所支持的I/O标准 (96)5.2.2. Arria 10 器件的HPS I/O所支持的I/O标准 (97)5.2.3. Arria 10 器件中的I/O标准电平 (98)5.2.4. Arria 10器件中的MultiVolt I/O接口 (99)5.3. Arria 10 器件的Intel FPGA I/O IP内核 (99)5.4. Arria 10 器件的I/O资源 (99)5.4.1. Arria 10 器件的GPIO Bank、SERDES和DPA位置 (100)5.4.2. Arria 10 器件的GPIO缓冲和LVDS通道 (105)5.4.3. Arria 10 器件的I/0 Bank组 (108)5.4.4. Arria 10器件的I/O纵向移植 (114)5.5. Arria 10 器件的体系结构和I/O的一般功能 (115)5.5.1. Arria 10 器件中的I/O单元结构 (115)5.5.2. Arria 10 器件的I/O管脚特性 (117)5.5.3. Arria 10 器件的可编程IOE的特性 (118)5.5.4. Arria 10 器件的片上I/O匹配 (123)5.5.5. Arria 10 器件的外部I/O匹配 (132)5.6. Arria 10 器件的高速源同步SERDES和DPA (140)5.6.1. SERDES电路 (141)5.6.2. Arria 10 器件中支持的SERDES I/O标准 (142)5.6.3. Arria 10 器件的差分发送器 (144)5.6.4. Arria 10 器件中的差分接收器 (145)5.6.5. Arria 10 器件的PLL和时钟 (152)5.6.6. Arria 10 器件的时序和优化 (163)5.7. 在 Arria 10 器件中使用I/O和高速I/O (168)5.7.1. Arria 10 器件的I/O和高速I/O通用指南 (168)5.7.2. 混合电压参考和非电压参考I/O标准 (170)5.7.3. 指南:上电顺序期间不可驱动I/O管脚 (171)5.7.4. 指南:在HPS共享的I/O Bank中使用I/O管脚 (171)5.7.5. 指南:最大化DC电流限制 (172)5.7.6. 指南:Altera LVDS SERDES IP内核实例 (172)5.7.7. 指南:Soft-CDR模式的LVDS SERDES管脚对 (172)5.7.8. 指南:Arria 10 GPIO性能的最小化高抖动的影响 (173)5.7.9. 指南:外部存储器接口I/O Bank 2A的使用 (173)5.8. 文档修订历史 (174)6. Arria 10 器件的外部存储器接口 (178)6.1. Arria 10 外部存储器接口解决方案的关键特性 (178)6.2. Arria 10 器件支持的存储器标准 (178)6.3. Arria 10 器件的外部存储器接口宽度 (180)6.4. Arria 10 器件的外部存储器接口I/O管脚 (180)6.4.1. 指南:外部存储器接口I/O Bank 2A的使用 (181)6.5. Arria 10 器件封装支持的存储器接口 (182)6.5.1. 含有ECC的DDR3 x40在 Arria 10 中的封装支持 (183)Intel® Arria® 10内核架构和通用I/O手册发送反馈46.5.2. Single 和Dual-Rank 的DDR3 x72(含有ECC)在 Arria 10 中的封装支持 (185)6.5.3. 含有ECC 的DDR4 x40在 Arria 10 中的封装支持 (187)6.5.4. Single-Rank 含有ECC 的DDR4 x72在 Arria 10 中封装支持 (189)6.5.5. Dual-Rank 含有ECC 的DDR4 x72在 Arria 10 中的封装支持 (191)6.5.6. Arria 10的HPS 外部存储器接口连接 (192)6.6. Arria 10 器件支持的外部存储器接口IP (196)6.6.1. Ping Pong PHY IP (197)6.7. Arria 10 器件的外部存储器接口体系结构 (197)6.7.1. I/O Bank (198)6.7.2. I/O AUX (206)6.8. 文档修订历史 (208)7. Arria 10器件中的配置、 设计安全和远程系统更新 (210)7.1. 增强配置和通过协议配置(Configuration via Protocol) (210)7.2. 配置方案 (211)7.2.1. 主动串行配置 (211)7.2.2. 被动串行配置 (220)7.2.3. 快速被动并行配置 (224)7.2.4. JTAG 配置 (228)7.3. 配置详细信息 (231)7.3.1. MSEL 管脚设置 (231)7.3.2. CLKUSR (232)7.3.3. 配置序列 (233)7.3.4. 配置时序波形 (236)7.3.5. 估算配置时间 (239)7.3.6. 器件配置管脚 (240)7.3.7. 配置数据压缩 (242)7.4. 使用主动串行方案升级远程系统 (243)7.4.1. 配置映像 (244)7.4.2. 远程更新模式中的配置序列 (245)7.4.3. 远程系统更新电路 (247)7.4.4. 使能远程系统更新电路 (247)7.4.5. 远程系统更新寄存器 (247)7.4.6. 远程系统更新状态机 (249)7.4.7. 用户看门狗定时器(User Watchdog Timer ) (249)7.5. 设计安全 (250)7.5.1. 安全密钥类型 (251)7.5.2. 安全模式 (251)7.5.3. Arria 10 Qcrypt 安全工具 (253)7.5.4. 设计安全实现步骤 (253)7.6. 文档修订历史 (254)8. Arria 10器件的SEU 缓解 (256)8.1. SEU 缓解概述 (256)8.1.1. SEU 缓解应用 (256)8.1.2. 配置RAM (256)8.1.3. 嵌入式存储器 (257)8.2. Arria 10缓解技术 (257)内容发送反馈Intel ® Arria ® 10内核架构和通用I/O 手册5内容8.2.1. 存储器模块纠错码支持 (257)8.2.2. CRAM的错误检测和纠正 (258)8.3. 规范 (265)8.3.1. 错误检测频率 (265)8.3.2. 错误检测时间 (266)8.3.3. EMR更新间隔 (266)8.3.4. 纠错时间 (268)8.4. 文档修订历史 (268)9. Arria 10器件中的JTAG边界扫描测试 (270)9.1. BST操作控制 (270)9.1.1. IDCODE (270)9.1.2. 所支持的JTAG指令 (271)9.1.3. JTAG安全模式 (272)9.1.4. JTAG专用指令 (273)9.2. JTAG操作的I/O电压 (273)9.3. 执行BST (273)9.4. 使能和禁用IEEE Std. 1149.1 BST电路 (274)9.5. IEEE Std. 1149.1边界扫描测试指南 (275)9.6. IEEE Std. 1149.1边界扫描寄存器 (275)9.6.1. Arria 10器件I/O管脚的边界扫描单元 (276)9.6.2. IEEE Std. 1149.6边界扫描寄存器 (278)9.7. 文档修订历史 (279)10. Arria 10器件中的电源管理 (280)10.1. 功耗 (280)10.1.1. 动态功耗公式 (280)10.2. 功耗降低技术 (281)10.2.1. SmartVID (281)10.2.2. 可编程电源技术 (281)10.2.3. 低静态功耗器件等级 (282)10.2.4. SmartVID功能实现 (282)10.3. 电源感应线(Power Sense Line) (284)10.4. 电压传感器 (284)10.4.1. 外部模拟信号的输入信号范围 (286)10.4.2. 在Arria 10器件中使用电压传感器 (286)10.5. 温度感应二极管 (290)10.5.1. 内部温度感应二极管 (290)10.5.2. 外部温度感应二极管 (291)10.6. 上电复位电路 (292)10.6.1. POR电路监控和未监控电源 (294)10.7. 上电和断电序列 (294)10.8. 电源设计 (297)10.9. 文档修订历史 (298)Intel® Arria® 10内核架构和通用I/O手册发送反馈61. Arria ® 10器件中的逻辑阵列模块与自适应逻辑模块逻辑阵列模块(LAB )由称作自适应逻辑模块(ALM )的基本构造模块组成,通过配置这些模块,能够实现逻辑功能、算术功能以及寄存器功能。
qm67芯片组
qm67芯片组Intel® QM67 Express芯片组是一种适用于移动计算机的芯片组,主要用于笔记本电脑和其他便携式设备。
它提供了高性能的图形和处理能力,同时还具有低功耗和高效能的特点。
QM67芯片组采用了Intel的64位架构,支持多核心处理器和超线程技术。
它支持的处理器包括Intel® Core™ i7、i5和i3系列,以及Celeron®和Pentium®系列。
这些处理器提供了出色的计算能力,可以同时处理多个任务和应用程序。
Intei® QM67 Express芯片组还支持高性能的图形处理。
它集成了Intel® HD Graphics,提供了令人印象深刻的图形效果和多媒体体验。
它还支持Intel® Clear Video HD技术,可以提供高清视频播放和浏览体验。
此外,QM67芯片组还具有丰富的扩展性和连接选项。
它支持高速USB 3.0接口,可以实现更快的数据传输速度。
它还支持SATA 6Gbps接口,可以提供更高的存储性能。
此外,它还支持PCI Express 2.0接口,可以连接各种扩展设备。
Intel® QM67 Express芯片组还具有低功耗和高效能的特点。
它采用了Inteli AMT技术,可以帮助用户更方便地远程管理移动设备。
它还支持Intel® Rapid Storage技术,可以提供更快的存储性能和更高的数据保护。
总的来说,Intel® QM67 Express芯片组是一种适用于移动计算机的高性能芯片组。
它提供了出色的处理和图形能力,同时还具有低功耗和高效能的特点。
它支持多核心处理器和超线程技术,可以同时处理多个任务和应用程序。
它还具有丰富的扩展性和连接选项,可以满足各种需求。
无论是专业人士还是消费者,都可以从QM67芯片组中获得出色的移动计算体验。
Agilent 6400系列QQQ实验室准备通知书
环境要求
实验室温度为 15~25 C,温度变化<3 C,相对湿度<80%。
o o
2013 Agilent Technologies Inc.
2013 年 6 月
页码: 2 / 6
2. 气体要求
G6400系列QQQ仪器使用二种纯度要求的氮气。 作为雾化气及干燥气使用的氮气,其纯度最低应大于95%,强烈推荐使用160L以上容量的自增压 式液氮储罐提供氮气,氮气的输出压力应不小于0.8M Pa。(请注意:G6490安装需要两个液氮罐) 如果您使用的是氮气发生器,氮气发生器应自备油气净化装置。并请注意氮气发生器的供气要求: 发生器的最小输出压力不得小于100psi,供气量不小于下表中的数值 仪器型号 G6410A,B G6420A,G6430A 需要的氮气量 ≥ 18L/min
4. 特别说明
1. 当仪器运抵时,若发现包装已经破损或有违反运输要求的情况,请让运输部门签字 确认,并务必与相关的销售工程师联系解决。 2. 仪器到货前您应完善上述工作,填写实验室条件确认表并回传至 Agilent公司用户服务中心,在 仪器到货后尽快申请安装,仪器保修期将从安装完成之日开始计算。但如果安装日期超过仪器的发货 日期后45天,则保修期从发货后第46天开始计算(特殊原因须提前提出延期安装申请,以免损失您仪 器的保修期)。 3. 仪器到现场后,请勿自行开箱,必须由安捷伦工程师在安装时开箱验货。 4. 为更好地安排安装工作,请于仪器到货后提前一周向用户服务中心申请安装。 5. 安捷伦提醒您: 为了避免仪器安装过程中的任何不必要的时间延误,恳请您务必按照上述相关要求认真准备,并 仔细填写“实验室条件确认书”。在此期间如有任何疑问,请即刻与安捷伦售后服务中心 800 或安装工 程师直接联系,我们将耐心为您解答。 安捷伦公司将根据仪器售后服务的相关条款为您提供高效专业的免费安装服务。但是,如果由于 贵方上述实验室条件未完善所导致的时间延误甚至再次上门安装,安捷伦将保留收取相关差旅及服务 费用的权利。
海菱610说明书
海菱610说明书产品介绍海菱610是一款多功能家用电器,可以满足用户的多种需求。
它采用先进的技术和设计,具有高效、安全、可靠的特点。
本说明书将详细介绍海菱610的各项功能和使用方法。
主要特点1.多功能:海菱610具备多种功能,包括烹饪、蒸煮、炖煮、烘焙等,满足不同菜系和食材的需求。
2.智能控制:采用智能控制系统,用户可以轻松设置时间、温度等参数,并实时监控烹饪过程。
3.大容量:海菱610拥有大容量内胆,可以同时烹饪多道菜肴,满足全家人的需求。
4.安全可靠:内置多重安全保护装置,如过温保护、压力保护等,确保使用过程中的安全问题。
使用方法1.准备食材:根据所需烹饪的菜肴选择合适的食材,并进行清洗和切割处理。
2.设置功能:根据所需烹饪方式选择对应的功能按钮,如炖煮、蒸煮、烘焙等。
3.设置参数:根据菜肴需求设置时间、温度等参数,可以通过触摸屏或旋钮进行设置。
4.开始烹饪:将食材放入内胆中,并将内胆放入海菱610中,按下开始按钮即可开始烹饪。
5.监控过程:在烹饪过程中,用户可以通过显示屏实时监控温度、时间等参数,并根据需要调整。
6.完成提示:当菜肴烹饪完成时,海菱610会发出声音提示,并自动停止加热。
清洁与维护1.断电清洁:在清洁之前,请确保海菱610已断电并冷却。
使用湿布擦拭外壳和操作面板,不要将水直接喷洒到设备上。
2.内胆清洁:取出内胆后,用温和的清洁剂和海绵进行清洗。
不要使用刺激性的化学品。
3.排水排污:定期检查排水管道是否畅通,防止堵塞。
如果出现异味或杂质,请及时清理。
4.维护保养:定期检查电源线、插头等是否正常,如有损坏请及时更换。
同时注意设备通风口的清洁,避免灰尘堵塞。
注意事项1.使用前请仔细阅读本说明书,并按照要求正确操作。
2.请勿将海菱610放置在潮湿或水平不稳定的地方,以免影响正常使用。
3.在使用过程中,请确保设备周围通风良好,避免堵塞通风口。
4.烹饪过程中,请小心热源和高温部件,避免烫伤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1Triple video output amplifierGENERAL DESCRIPTIONThe ILA6107Q includes three video output amplifiers in one plastic DIL-bent-SIL 9-pin medium power (DBS9MPF) package (SOT111-1), using high-voltage DMOS technology, and is intended to drive the three cathodes of a colour CRT directly. To obtain maximum performance, the amplifier should be used with black-current control FEATURES• Typical bandwidth of 5.5 MHz for an output signal of 60 V (p-p) • High slew rate of 900 V/µs• No external components required • Very simple application• Single supply voltage of 200 V • Internal reference voltage of 2.5 V • Fixed gain of 50• Black-Current Stabilization (BCS) circuit • Thermal protection.BLOCK DIAGRAMILA6107Q2PINNINGSIMBOL PIN DESCRIPTION V i(1) 1 inverting input 1 V i(2) 2 inverting input 2 V i(3) 3 inverting input 3 GND 4 ground (fin) I om 5 black-current measurementoutputV DD 6 supply voltage V oc(3) 7 cathode output 3 V oc(2) 8 cathode output 2 V oc(1) 9 cathode output 1V 1I(1) V 2I(2) V 3I(2) GND 4I 5O M V 6DD V 7CC(3)V 8CC(2)V9CC(1)LIMITING VALUESIn accordance with the Absolute Maximum Rating System (IEC 134); voltage measured with respect to pin 4 (ground); currents as specified in Fig. 1; unless otherwise specified.SYMBOL PARAMETER MIN. MAX. UNIT V DD supply voltage 0 250 V i supply voltage at pins 1 to 3 0 12 V o(m) measurement output voltage 0 6V o(c) cathode output voltage 0 V DD T stg storage temperature -55 +150 °C T j junction temperature -20 +150 °C V es electrostatic handling Human Body Model (HBM) Machine Model (MM) - - 2000 300V VHANDLINGInputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS Devices ”). QUALITY SPECIFICATIONQuality specification “SNW-FQ-611 part D ” is applicable and can be found in the “Quality reference Handbook ”. The handbook can be ordered using the code (9397 750 00192.3THERMAL HARACTERISTICSSYMBOL PARAMETER CONDITIONS VALUEUNIT R th(j-a) thermal resistance from junction to ambient 56 K/W R th(j-fin) thermal resistance from junction to fin note 1 11 K/W R th(h-a) thermal resistance from heatsink to ambient 18 K/WNote1. An external heatsink is necessary.4CHARACTERISTICSOperating range: T j = -20 to +150 °C; V DD = 180 to 210 V. Test conditions: T amb = 25 °C; V DD = 200 V ;V o(c1) = V o(c2) = V o(c3) = ½ V DD ; C L = 10 pF (C L consists of parasitic and cathode capacitance); R th(h-a) = 18 K/W; unless otherwise specified.SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT I q quiescent supply current 5.9 6.9 7.9 mA V ref(int) internal reference voltage - 2.5 - V R j input resistance - 3.6 - k Ω G amplifier 47.5 51.0 55.0∆Ggain difference -2.5 0 +2.5 V o(c) nominal output voltage at pins 7, 8 and 9 (DC value)I i = 0 µA116 129 142 V ∆V o(c)(offset)differential nominal output offset voltage between pins 7 and 8, 8 and 9 and 9 and 7 (DC value)I i = 0 µA - 0 5 V ∆V o(c)(T)output voltage temperature drift at pins 7, 8 and 9- -10 - mV/K ∆V o(c)(T)(offset) differential output offsetvoltage temperature drift between pins 7 and 8, 8 and 9 and 7 and 9- 0 - mV/K I o(m)(offset) offset current of measurement output I o(c) = 0 µA1.5 V < V i <5.5 V3 V < V o(m) < 6 V-50 - +50 µA -100 µA < I o(c) < 100 µA 1.5 V < V i <5.5 V 3 V < V o(m) < 6 V 0.9 1.0 1.1 ∆I o(m) / ∆I o(c)linearity of current transfer at CRT discharge; I o(c) = 1 mA1.5 V < V i <5.5 V 3 V < V o(m) < 5.4 V- 1.0 - I o(c)(max) maximum peak output current (pins 7, 8 and 9) 50 V < V o(c) < V DD – 50 V- 20 - mAV o(c)(min) minimum output voltage (pins 7, 8 and 9)V i = 7.0 V - - 10 VV o(c)(max) maximum output voltage (pins 7, 8 and 9)V i = 1.0 V V DD – 15 - - VB S small signal bandwidth (pins 7, 8 and 9)V o(c) = 60 V (p-p) - 5.5 - MHzB L large signal bandwidth (pins 7, 8 and 9)V o(c) = 100 V (p-p) - 4.5 - MHzt Pco cathode output propagation time 50% input to 50% output (pins 7, 8 and 9) V o(c) = 100 V (p-p) square wave; f < 1 MHz; t r = t f = 40 ns(pins 1, 2 and 3);- 60 - ns∆t Pcodifference in cathode output propagation time 50% input to 50% output (pins 7and 8, 7 and 9 and 8 V o(c) = 100 V (p-p) square wave; f < 1 MHz; t r = t f = 40 ns (pins 1, 2 and 3); - 10 0 + 10 ns5SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNITand 9)t o(r) cathode output rise time 10% output to 90% output (pins 7, 8 and 9) V o(c) = 50 to 150 V square wave; f < 1 MHz; t f = 40 ns(pins 1, 2 and 3);67 91 113 nst o(f) cathode output fall time 90% output to 10% output (pins 7, 8 and 9) V o(c) = 50 to 150 V square wave; f < 1 MHz; t f = 40 ns(pins 1, 2 and 3);67 91 113 nst st Setting time 50% input to 99% < output < 101% (pins 7, 8 and 9) V o(c) = 100 V (p-p)square wave; f < 1 MHz; t r = t f = 40 ns(pins 1, 2 and 3);- - 350 ns SR slew rate between 50 V to (V DD – 50 V) (pins 7, 8 and 9)V i = 4 V (p-p) square wave;f < 1 MHz; t r = t f = 40 ns(pins 1, 2 and 3);- 900 - V/µsO v cathode output voltage overshoot (pins 7, 8 and 9) V i = 100 V (p-p) square wave;f < 1 MHz; t r = t f = 40 ns(pins 1, 2 and 3);- 2 -% PSRR Power supply rejection ratiof < 50 kHz; note 1 - 55 - dBαct(DC)DC crosstalk between channels- 50 - dB Notes1. The ratio of the change in supply voltage to the change in input voltage when there is no change in output voltage.。