高三一轮复习——4.圆周运动(教师版)

合集下载

高考物理一轮复习详细讲义(教师版):圆周运动

高考物理一轮复习详细讲义(教师版):圆周运动

vB;TTAB=
r r
1=
2
zz12;ωωAB=
r r
2=
1
z2 z1(
z1

z2 分别表示两齿轮的齿数 )
【 跟进题组 】 1.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画 的劳动智慧.若 A、 B、 C 三齿轮半径的大小关系如图所示,则
(如图 ),记录了我们祖先 ()
A .齿轮 A 的角速度比 C 的大
心力公式得:
mgtan θ= mω20l sin θ
解得:
ω20= l
g cos
θ
即 ω0=
g5 lcos θ= 2 2 rad/s.
(2) 同理 , 当细线与竖直方向成 60°角时, 由牛顿第二定律及向心力公式: mgtan α=
mω′2lsin α
解得
ω′2=
g lcos
α,
即 ω′=
g l cos α=2 5 rad/s.
竖直壁上, 而不会滑下. 若魔盘半径为 r,人与魔盘竖直壁间的动摩擦因数为 μ,在人“贴”
在“魔盘”竖直壁上,随“魔盘”一起运动过程中,则下列说法正确的是
()
A .人随“魔盘”转动过程中受重力、弹力、摩擦力和向心力作用 B.如果转速变大,人与器壁之间的摩擦力变大 C.如果转速变大,人与器壁之间的弹力不变
恰好贴在魔盘上时 ,有 mg≤ f,N= mr(2 πn)2,又 f= μN解得转速为 n≥21π
1 的转速一定大于 2π
μg r, 故 D 正确.
μg r,故 “魔盘 ”
1. 圆周运动各物理量间的关系
圆周运动的运动学分析 【 知识提炼 】
2. 常见的三种传动方式及特点
传动类型

高三物理第一轮复习课件:第四章第三讲圆周运动

高三物理第一轮复习课件:第四章第三讲圆周运动
小球
过最高点 的临界条

由 mg=mvr2得 v 临= gr
由小球恰能做圆周 运动得 v 临=0
(1)过最高点时,v≥ (1)当 v=0 时,FN=mg,FN 为支
gr,FN+mg=mvr2,持(2)力当,0<沿v半< 径gr背时离,圆-心FN+mg=
讨论
绳、圆轨道对球产生 弹力 FN
mvr2,FN 背离圆心,随 v 的增大
1.在竖直平面内做圆周运动的物体,按运动到轨道 最高点时的受力情况可分为两类:一是无支撑(如球与绳 连接、沿内轨道运动的过山车等),称为“绳(环)约束模 型”;二是有支撑(如球与杆连接、在弯管内的运动等), 称为“杆(管)约束模型”.
2.绳、杆模型涉及的临界问题.
项目
绳模型
杆模型
常见类型 均是没有支撑的 均是有支撑的小球
(2)由于秋千做变速圆周运动,合外力既有指向圆心 的分力,又有沿切向的分力,所以合力不指向悬挂点.
[易误辨析] 判断下列说法的正误(正确的打“√”,错误的打 “×”). (1) 做 匀 速 圆 周 运 动 物 体 的 合 外 力 是 保 持 不 变 的.( ) (2)做圆周运动物体的合外力不一定指向圆心.( ) (3)随圆盘一起匀速转动的物体受重力、支持力和向 心力的作用.( ) 答案:(1)× (2)√ (3)×
A.若盒子在最高点时,盒子与小球之间恰好无作用
力,则该盒子做匀速圆周运动的周期为 2π
R g
B.若盒子以周期 π Rg做匀速圆周运动,则当盒子 运动到图示球心与 O 点位于同一水平面位置时,小球对
盒子左侧面的力为 4mg C.若盒子以角速度 2 Rg做匀速圆周运动,则当盒
子运动到最高点时,小球对盒子下面的力为 3mg

第4章 第3讲 圆周运动—2021届高中物理一轮复习讲义(机构)

第4章 第3讲  圆周运动—2021届高中物理一轮复习讲义(机构)

第四章曲线运动第3讲圆周运动【教学目标】1、理解线速度、角速度和周期的概念;2、理解向心加速度和向心力以及和各物理量间的关系;3、会用牛顿第二定律求解圆周运动问题,并能灵活解决圆周运动中的有关临界问题4、知道离心现象及发生离心现象的条件。

【重、难点】1、会用牛顿第二定律求解圆周运动问题;2、临界问题【知识梳理】1(1)匀速圆周运动是匀变速曲线运动.()(2)物体做匀速圆周运动时,其角速度是不变的.()(3)物体做匀速圆周运动时,其合外力是不变的.()(4)匀速圆周运动的向心加速度与半径成反比.()(5)做匀速圆周运动的物体角速度与转速成正比.( )(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度.()(7)匀速圆周运动的向心力是产生向心加速度的原因.()(8)做圆周运动的物体所受到的合外力不一定等于向心力.()(9)做圆周运动的物体,一定受到向心力的作用,所以分析做圆周运动物体的受力时,除了分析其受到的其他力,还必须指出它受到向心力的作用.()(10)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出.()(11)做圆周运动的物体所受合外力突然消失,物体将沿圆周的半径方向飞出.()(12)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故.()(13)在绝对光滑的水平路面上汽车可以转弯.()(14)火车转弯速率小于规定的数值时,内轨受到的压力会增大.()(15)飞机在空中沿半径为R的水平圆周盘旋时,飞机机翼一定处于倾斜状态.()典例精析考点一描述圆周运动的物理量1.圆周运动各物理量间的关系及其理解2.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即23v A =v B 。

(2)摩擦传动:如图丙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即 v A =v B 。

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

g lcos
θ=
gh,所以小球 A、B 的角速度相等,
线速度大小不相等,故 A 正确,B 错误;
对题图乙中 C、D 分析,设绳与竖直方向的夹角为 θ,小球的质量为 m,绳上拉力为 FT,则有 mgtan θ=man,FTcos θ=mg,得 an=gtan θ,FT =cmosgθ,所以小球 C、D 所需的向心加速度大小相等,小球 C、D 受 到绳的拉力大小也相等,故 C、D 正确.
当转速较大,FN指向转轴时, 则FTcos θ+FN′=mω′2r 即FN′=mω′2r-FTcos θ 因ω′>ω,根据牛顿第三定律可知,小球对杆的压力 不一定变大,C错误; 根据F合=mω2r可知,因角速度变大,则小球所受合外力变大,D正确.
例5 (2022·全国甲卷·14)北京2022年冬奥会首钢滑雪大跳台局部示意图
例7 如图所示,质量相等的甲、乙两个小球,在光滑玻璃漏斗内壁做 水平面内的匀速圆周运动,甲在乙的上方.则 A.球甲的角速度一定大于球乙的角速度
√B.球甲的线速度一定大于球乙的线速度
C.球甲的运动周期一定小于球乙的运动周期 D.甲对内壁的压力一定大于乙对内壁的压力
对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,
√B.弹簧弹力的大小一定不变
C.小球对杆压力的大小一定变大
√D.小球所受合外力的大小一定变大
对小球受力分析,设弹簧弹力为FT,弹簧与水平方向 的夹角为θ, 则对小球竖直方向有 FTsin θ=mg,而 FT=kcMosPθ-l0 可知θ为定值,FT不变,则当转速增大后,小球的高度 不变,弹簧的弹力不变,A错误,B正确; 水平方向当转速较小,杆对小球的弹力FN背离转轴时,则FTcos θ- FN=mω2r 即FN=FTcos θ-mω2r

2012版高三物理一轮复习课件:4.3圆周运动(大纲版)

2012版高三物理一轮复习课件:4.3圆周运动(大纲版)

共 67 页
40
(1)如图所示,用绳子拴住或紧贴圆弧内侧轨道的小球,在竖直 平面内做圆周运动过最高点的情况.
共 67 页
41
①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好
等于零,小球的重力提供其做圆周运动的向心力. 即
2 v临界
mg m
r
.
上式中的v临界是小球通过最高点的最小速度,通常叫临界速度 v临界
共 67 页
27
3.离心运动的应用和防止 ①应用:利用离心运动制成的离心机械,如:离心干燥器、洗衣
机的脱水筒等.
②防止:汽车、火车转弯处,为防止离心运动造成的危害,一是 限定汽车和火车的转弯速度不能太大;二是把路面筑成外 高内低的斜坡增大向心力.
共 67 页
28
第二关:技法关 解读高考 解题技法
度变化的变加速曲线运动(或称非匀变速曲线运动).
②大小:a=ω2R或
a
2 v线
R
.
③方向:沿半径指向圆心.
共 67 页
7
说明:a.向心加速度总指向圆心,方向始终与速度方向垂直,故 向心加速度只改变速度的方向,不改变速度的大小,向心加 速度的大小表示速度方向改变的快慢. b.向心加速度的方向时刻变化,故匀速圆周运动是一种加速度 变化的变加速曲线运动.
s r v rω.即v=rω. t t
上式表明:①当半径相同时,线速度大的角速度大,角速度大的 线速度也大,且成正比.
共 67 页
13
②当角速度相同时,半径大的线速度大,且成正比(如图).
共 67 页
14
③当线速度相同时,半径大的角速度小,半径小的角速度大,且 成反比(如图).
共 67 页

高考物理一轮复习专项训练及答案解析—圆周运动

高考物理一轮复习专项训练及答案解析—圆周运动

高考物理一轮复习专项训练及答案解析—圆周运动1.空中飞椅深受年轻人的喜爱,飞椅的位置不同,感受也不同,关于飞椅的运动,下列说法正确的是()A.乘坐飞椅的所有爱好者一起做圆周运动,最外侧的飞椅角速度最大B.缆绳一样长,悬挂点在最外侧的飞椅与悬挂在内侧的飞椅向心加速度大小相等C.飞椅中的人随飞椅一起做圆周运动,受重力、飞椅的支持力与向心力D.不管飞椅在什么位置,缆绳长短如何,做圆周运动的飞椅角速度都相同2.(2021·全国甲卷·15)“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50 r/s,此时纽扣上距离中心1 cm处的点向心加速度大小约为()A.10 m/s2B.100 m/s2C.1 000 m/s2D.10 000 m/s23.无级变速箱是自动挡车型变速箱的一种,比普通的自动变速箱换挡更平顺,没有冲击感.如图为其原理图,通过改变滚轮位置实现在变速范围内任意连续变换速度.A、B为滚轮轴上两点,变速过程中主动轮转速不变,各轮间不打滑,则()A.从动轮和主动轮转动方向始终相反B.滚轮在B处时,从动轮角速度小于主动轮角速度C.滚轮从A到B,从动轮线速度先增大后减小D.滚轮从A到B,从动轮转速先增大后减小4.(2023·广东惠州市调研)如图所示,一根细线下端拴一个金属小球Q,细线穿过小孔(小孔光滑)另一端连接在金属块P上,P始终静止在水平桌面上,若不计空气阻力,小球在某一水平面内做匀速圆周运动(圆锥摆).实际上,小球在运动过程中不可避免地受到空气阻力作用.因阻力作用,小球Q的运动轨迹发生缓慢的变化(可视为一系列半径不同的圆周运动).下列判断正确的是()A.小球Q的位置越来越高B.细线的拉力减小C.小球Q运动的角速度增大D.金属块P受到桌面的静摩擦力增大5.如图所示,一个半径为5 m的圆盘正绕其圆心匀速转动,当圆盘边缘上的一点A处在如图所示位置的时候,在其圆心正上方20 m的高度有一个小球(视为质点)正在向边缘的A点以一定的速度水平抛出,取g=10 m/s2,不计空气阻力,要使得小球正好落在A点,则()A.小球平抛的初速度一定是2.5 m/sB.小球平抛的初速度可能是2.5 m/sC.圆盘转动的角速度一定是π rad/sD.圆盘转动的加速度大小可能是π2 m/s26.(2023·内蒙古包头市模拟)如图所示,两等长轻绳一端打结,记为O点,并系在小球上.两轻绳的另一端分别系在同一水平杆上的A、B两点,两轻绳与固定的水平杆夹角均为53°.给小球垂直纸面的速度,使小球在垂直纸面的竖直面内做往复运动.某次小球运动到最低点时,轻绳OB从O点断开,小球恰好做匀速圆周运动.已知sin 53°=0.8,cos 53°=0.6,则轻绳OB断开前后瞬间,轻绳OA的张力之比为()A.1∶1 B.25∶32C.25∶24 D.3∶47.(2023·浙江省镇海中学模拟)如图为自行车气嘴灯及其结构图,弹簧一端固定在A端,另一端拴接重物,当车轮高速旋转时,LED灯就会发光.下列说法正确的是()A.安装时A端比B端更远离圆心B.高速旋转时,重物由于受到离心力的作用拉伸弹簧从而使触点接触C.增大重物质量可使LED灯在较低转速下也能发光D.匀速行驶时,若LED灯转到最低点时能发光,则在最高点时也一定能发光8.(2023·浙江山水联盟联考)如图所示,内壁光滑的空心圆柱体竖直固定在水平地面上,圆柱体的内径为R.沿着水平切向给贴在内壁左侧O点的小滑块一个初速度v0,小滑块将沿着柱体的内壁旋转向下运动,最终落在柱体的底面上.已知小滑块可看成质点,质量为m,重力加速度为g,O点距柱体的底面距离为h.下列判断正确的是()A.v0越大,小滑块在圆柱体中运动时间越短B.小滑块运动中的加速度越来越大C.小滑块运动中对圆柱体内表面的压力越来越大D.小滑块落至底面时的速度大小为v02+2gh9.(2023·河北张家口市模拟)如图所示,O为半球形容器的球心,半球形容器绕通过O的竖直轴以角速度ω匀速转动,放在容器内的两个质量相等的小物块a和b相对容器静止,b与容器壁间恰好没有摩擦力的作用.已知a和O、b和O的连线与竖直方向的夹角分别为60°和30°,则下列说法正确的是()A.小物块a和b做圆周运动所需的向心力大小之比为3∶1B.小物块a和b对容器壁的压力大小之比为3∶1C.小物块a与容器壁之间无摩擦力D.容器壁对小物块a的摩擦力方向沿器壁切线向下10.(多选)(2023·山西吕梁市模拟)2022年2月12日,在速度滑冰男子500米决赛上,高亭宇以34秒32的成绩刷新奥运纪录.国家速度滑冰队在训练弯道技术时采用人体高速弹射装置,在实际应用中装置在前方通过绳子拉着运动员,使运动员做匀加速直线运动,到达设定速度时,运动员松开绳子,进行高速入弯训练,已知弯道半径为25 m,人体弹射装置可以使运动员在4.5 s内由静止达到入弯速度18 m/s,入弯时冰刀与冰面的接触情况如图所示,运动员质量为50 kg,重力加速度取g=10 m/s2,忽略弯道内外高度差及绳子与冰面的夹角、冰刀与冰面间的摩擦,下列说法正确的是()A .运动员匀加速运动的距离为81 mB .匀加速过程中,绳子的平均弹力大小为200 NC .运动员入弯时的向心力大小为648 ND .入弯时冰刀与水平冰面的夹角大于45°11.(2022·山东卷·8)无人配送小车某次性能测试路径如图所示,半径为3 m 的半圆弧BC 与长8 m 的直线路径AB 相切于B 点,与半径为4 m 的半圆弧CD 相切于C 点.小车以最大速度从A 点驶入路径,到适当位置调整速率运动到B 点,然后保持速率不变依次经过BC 和CD .为保证安全,小车速率最大为4 m/s ,在ABC 段的加速度最大为2 m/s 2,CD 段的加速度最大为1 m/s 2.小车视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .t =⎝⎛⎭⎫2+7π4 s ,l =8 m B .t =⎝⎛⎭⎫94+7π2 s ,l =5 mC .t =⎝⎛⎭⎫2+5126+76π6 s ,l =5.5 m D .t =⎣⎢⎡⎦⎥⎤2+512 6+(6+4)π2 s ,l =5.5 m 12.(2022·辽宁卷·13)2022年北京冬奥会短道速滑混合团体2 000米接力决赛中,我国短道速滑队夺得中国队在本届冬奥会的首金.(1)如果把运动员起跑后进入弯道前的过程看作初速度为零的匀加速直线运动,若运动员加速到速度v=9 m/s时,滑过的距离x=15 m,求加速度的大小;(2)如果把运动员在弯道滑行的过程看作轨道为半圆的匀速圆周运动,如图所示,若甲、乙两名运动员同时进入弯道,滑行半径分别为R甲=8 m、R乙=9 m,滑行速率分别为v甲=10 m/s、v乙=11 m/s,求甲、乙过弯道时的向心加速度大小之比,并通过计算判断哪位运动员先出弯道.答案及解析1.D 2.C 3.B 4.B 5.A6.B [轻绳OB 断开前,小球以A 、B 中点为圆心的圆弧做往复运动,设小球经过最低点的速度大小为v ,绳长为L ,小球质量为m ,轻绳的张力为F 1,由向心力公式有2F 1sin 53°-mg=m v 2L sin 53°,轻绳OB 断开后,小球在水平面内做匀速圆周运动,其圆心在A 点的正下方,设轻绳的张力为F 2,有F 2cos 53°=m v 2L cos 53°,F 2sin 53°=mg ,联立解得F 1F 2=2532,故B 正确.] 7.C [要使重物做离心运动,M 、N 接触,则A 端应靠近圆心,因此安装时B 端比A 端更远离圆心,A 错误;转速越大,所需向心力越大,弹簧拉伸越长,M 、N 能接触,灯会发光,不能说重物受到离心力的作用,B 错误;灯在最低点时有F 弹-mg =mrω2,解得ω=F 弹mr -g r ,又ω=2πn ,因此增大重物质量可使LED 灯在较低转速下也能发光,C 正确;匀速行驶时,灯在最低点时有F 1-mg =m v 2r ,灯在最高点时有F 2+mg =m v 2r,在最低点时弹簧对重物的弹力大于在最高点时对重物的弹力,因此匀速行驶时,若LED 灯转到最低点时能发光,则在最高点时不一定能发光,D 错误.]8.D [小滑块在竖直方向做自由落体运动,加速度恒定不变,根据h =12gt 2,可得t =2h g,可知小滑块在圆柱体中的运动时间与v 0无关,小滑块在水平方向的加速度大小也不变,则小滑块的加速度大小不变,故A 、B 错误;小滑块沿着圆柱体表面切向的速度大小不变,所需向心力不变,则小滑块运动中对圆柱体内表面的压力不变,故C 错误;小滑块落至底面时竖直方向的速度v y =2gh ,小滑块落至底面时的速度大小v =v 02+v y 2=v 02+2gh ,故D 正确.]9.A [a 、b 角速度相等,向心力大小可表示为F =mω2R sin α,所以a 、b 所需向心力大小之比为sin 60°∶sin 30°=3∶1,A 正确;对b 分析可得mg tan 30°=mω2R sin 30°,结合对b 分析结果,对a 分析有mω2R sin 60°<mg tan 60°,即支持力在指向转轴方向的分力大于所需要的向心力,因此摩擦力有背离转轴方向的分力,即容器壁对a 的摩擦力沿切线方向向上,C 、D错误;对b 有F N b cos 30°=mg ,对a 有F N a cos 60°+F f sin 60°=mg ,所以F N a F N b ≠cos 30°cos 60°=31,B 错误.]10.BC [运动员匀加速运动的距离为x =v 2t =182×4.5 m =40.5 m ,A 错误;在匀加速过程中,加速度a =v t =184.5m/s 2=4 m/s 2,由牛顿第二定律,绳子的平均弹力大小为F =ma =50×4 N =200 N ,B 正确;运动员入弯时所需的向心力大小为F n =m v 2r =50×18225N =648 N ,C 正确;设入弯时冰刀与水平冰面的夹角为θ,则tan θ=mg F n =gr v 2=250324<1,得θ<45°,D 错误.] 11.B [在BC 段的最大加速度为a 1=2 m/s 2,则根据a 1=v 1m 2r 1,可得在BC 段的最大速度为v 1m = 6 m/s ,在CD 段的最大加速度为a 2=1 m/s 2,则根据a 2=v 2m 2r 2,可得在BC 段的最大速度为v 2m =2 m/s<v 1m ,可知在BCD 段运动时的速度为v =2 m/s ,在BCD 段运动的时间为t 3=πr 1+πr 2v =7π2s ,若小车从A 到D 所需时间最短,则AB 段小车应先以v m 匀速,再以a 1减速至v ,AB 段从最大速度v m 减速到v 的时间t 1=v m -v a 1=4-22 s =1 s ,位移x 2=v m 2-v 22a 1=3 m ,在AB 段匀速的最长距离为l =8 m -3 m =5 m ,则匀速运动的时间t 2=l v m =54s ,则从A 到D 最短时间为t =t 1+t 2+t 3=(94+7π2) s ,故选B.] 12.(1)2.7 m/s 2 (2)225242甲 解析 (1)根据速度位移公式有v 2=2ax ,代入数据可得a =2.7 m/s 2(2)根据向心加速度的表达式a =v 2R可得甲、乙的向心加速度之比为a 甲a 乙=v 甲2v 乙2·R 乙R 甲=225242,甲、乙两物体做匀速圆周运动,则运动的时间为t =πR v ,代入数据可得甲、乙运动的时间为t 甲=4π5 s ,t 乙=9π11s .因t 甲<t 乙,所以甲先出弯道.。

2024届高考一轮复习物理教案(新教材粤教版):圆周运动的临界问题

2024届高考一轮复习物理教案(新教材粤教版):圆周运动的临界问题

专题强化六圆周运动的临界问题目标要求 1.掌握水平面内、竖直面内和斜面上的圆周运动的动力学问题的分析方法.2.会分析水平面内、竖直面内和斜面上圆周运动的临界问题.题型一水平面内圆周运动的临界问题物体做圆周运动时,若物体的速度、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态.1.常见的临界情况(1)水平转盘上的物体恰好不发生相对滑动的临界条件是物体与盘间恰好达到最大静摩擦力.(2)物体间恰好分离的临界条件是物体间的弹力恰好为零.(3)绳的拉力出现临界条件的情形有:绳恰好拉直意味着绳上无弹力;绳上拉力恰好为最大承受力等.2.分析方法分析圆周运动临界问题的方法是让角速度或线速度从小逐渐增大,分析各量的变化,找出临界状态.确定了物体运动的临界状态和临界条件后,选择研究对象进行受力分析,利用牛顿第二定律列方程求解.例1(2018·浙江11月选考·9)如图所示,一质量为2.0×103kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104 N,当汽车经过半径为80 m的弯道时,下列判断正确的是()A.汽车转弯时所受的力有重力、弹力、摩擦力和向心力B.汽车转弯的速度为20 m/s时所需的向心力为1.4×104 NC.汽车转弯的速度为20 m/s时汽车会发生侧滑D.汽车能安全转弯的向心加速度不超过7.0 m/s2答案 D解析汽车转弯时所受的力有重力、弹力、摩擦力,向心力是由摩擦力提供的,A错误;汽,得所需的向心力为1.0×104 N,没有超过最大静摩车转弯的速度为20 m/s时,根据F=m v2R=擦力,所以汽车不会发生侧滑,B、C错误;汽车安全转弯时的最大向心加速度为a m=fm7.0 m/s 2,D 正确.例2 (多选)(2023·广东省广州五中月考)如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l .木块与圆盘间的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增大时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a 有f a =mωa 2l ,当f a =kmg 时,kmg =mωa 2l ,ωa =kgl;对木块b 有f b =mωb 2·2l ,当f b =kmg 时,kmg =mωb 2·2l ,ωb =kg2l,则ω=kg2l是b 开始滑动的临界角速度,所以b 先达到最大静摩擦力,即b 比a 先开始滑动,选项A 、C 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,则f b =mω2·2l ,f a <f b ,选项B 错误;ω=2kg3l<ωa =kg l ,a 没有滑动,则f a ′=mω2l =23kmg ,选项D 错误. 例3 细绳一端系住一个质量为m 的小球(可视为质点),另一端固定在光滑水平桌面上方h 高度处,绳长l 大于h ,使小球在桌面上做如图所示的匀速圆周运动,重力加速度为g .若要小球不离开桌面,其转速不得超过( )A.12π g l B .2πgh C.12πh gD.12πg h答案 D解析对小球受力分析,小球受三个力的作用,重力mg、水平桌面支持力F N、绳子拉力F.小球所受合力提供向心力,设绳子与竖直方向夹角为θ,由几何关系可知R=h tan θ,受力分析可知F cos θ+F N=mg,F sin θ=m v2R=mω2R=4mπ2n2R=4mπ2n2h tan θ;当球即将离开水平桌面时,F N=0,转速n有最大值,此时n m=12πgh,故选D.例4(2023·广东深圳市调研)如图所示,用两根长l1、l2的细线拴一小球a,细线另一端分别系在一竖直杆上O1、O2处,当竖直杆以某一范围角速度(ω1≤ω≤ω2)转动时,小球a保持在图示虚线的轨迹上做圆周运动,此时两根细线均被拉直,圆周半径为r,已知l1∶l2∶r=20∶15∶12,则ω1∶ω2为()A.3∶4 B.3∶5C.4∶5 D.1∶2答案 A解析设绳l1与竖直杆的夹角为θ1,绳l2与竖直杆的夹角为θ2,将绳子拉力沿竖直方向和水平方向分解,竖直方向的分力大小等于重力,水平方向分力提供向心力,则有F向1=mg tan θ1=mω12r,F向2=mg tan θ2=mω22r,由几何关系可得r=l1sin θ1=l2sin θ2,又l1∶l2∶r=20∶15∶12,联立解得ω1∶ω2=3∶4,B、C、D错误,A正确.题型二竖直面内圆周运动的临界问题1.两类模型对比轻绳模型(最高点无支撑) 轻杆模型(最高点有支撑)实例球与绳连接、水流星、沿内轨道运动的“过山车”等球与杆连接、球在光滑管道中运动等图示受力示意图F 弹向下或等于零F 弹向下、等于零或向上力学方程mg +F 弹=m v 2Rmg ±F 弹=m v 2R临界特征F 弹=0mg =m v min 2R即v min =gRv =0 即F 向=0 F 弹=mg讨论分析(1)最高点,若v ≥gR ,F 弹+mg =m v 2R,绳或轨道对球产生弹力F 弹(2)若v <gR ,则不能到达最高点,即到达最高点前小球已经脱离了圆轨道(1)当v =0时,F 弹=mg ,F 弹背离圆心 (2)当0<v <gR 时,mg -F 弹=m v 2R ,F 弹背离圆心并随v 的增大而减小 (3)当v =gR 时,F 弹=0(4)当v >gR 时,mg +F 弹=m v 2R ,F 弹指向圆心并随v 的增大而增大2.解题技巧(1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律方程; (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系;(3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛顿第三定律求出压力.例5 (2023·陕西延安市黄陵中学)如图所示,一质量为m =0.5 kg 的小球(可视为质点),用长为0.4 m 的轻绳拴着在竖直平面内做圆周运动,g =10 m/s 2,下列说法不正确的是( )A .小球要做完整的圆周运动,在最高点的速度至少为2 m/sB .当小球在最高点的速度为4 m/s 时,轻绳拉力为15 NC .若轻绳能承受的最大张力为45 N ,小球的最大速度不能超过4 2 m/sD .若轻绳能承受的最大张力为45 N ,小球的最大速度不能超过4 m/s 答案 D解析 设小球通过最高点时的最小速度为v 0,则根据牛顿第二定律有mg =m v 02R ,解得v 0=2 m/s ,故A 正确;当小球在最高点的速度为v 1=4 m/s 时,设轻绳拉力大小为F T ,根据牛顿第二定律有F T +mg =m v 12R ,解得F T =15 N ,故B 正确;小球在轨迹最低点处速度最大,此时轻绳的拉力最大,根据牛顿第二定律有F Tm -mg =m v m 2R ,解得v m =4 2 m/s ,故C 正确,D 错误.例6 (2023·山东枣庄市八中月考)如图,轻杆长2l ,中点装在水平轴O 上,两端分别固定着小球A 和B (均可视为质点),A 球质量为m ,B 球质量为2m ,重力加速度为g ,两者一起在竖直平面内绕O 轴做圆周运动.(1)若A 球在最高点时,杆的A 端恰好不受力,求此时B 球的速度大小;(2)若B 球到最高点时的速度等于第(1)问中的速度,求此时O 轴的受力大小和方向; (3)在杆的转速逐渐变化的过程中,能否出现O 轴不受力的情况?若不能,请说明理由;若能,求出此时A 、B 球的速度大小. 答案 (1)gl (2)2mg 方向竖直向下(3)能;当A 、B 球的速度大小为3gl 时,O 轴不受力解析 (1)A 在最高点时,对A 根据牛顿第二定律得mg =m v A 2l ,解得v A =gl ,因为A 、B 两球的角速度相等,半径相等,则v B =v A =gl ;(2)B 在最高点时,对B 根据牛顿第二定律得2mg +F T OB ′=2m v B 2l代入(1)中的v B ,可得F T OB ′=0 对A 有F T OA ′-mg =m v A 2l可得F T OA ′=2mg根据牛顿第三定律,O 轴所受的力大小为2mg ,方向竖直向下;(3)要使O 轴不受力,根据B 的质量大于A 的质量,设A 、B 的速度为v ,可判断B 球应在最高点对B有F T OB″+2mg=2m v2l对A有F T OA″-mg=m v2lO轴不受力时有F T OA″=F T OB″联立可得v=3gl所以当A、B球的速度大小为3gl时,O轴不受力.题型三斜面上圆周运动的临界问题物体在斜面上做圆周运动时,设斜面的倾角为θ,重力垂直斜面的分力与物体受到的支持力大小相等,解决此类问题时,可以按以下操作,把问题简化.物体在转动过程中,转动越快,最容易滑动的位置是最低点,恰好滑动时:μmg cos θ-mg sin θ=mω2R.例7(多选)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5 m处有一小物体(可视为质点)与圆盘始终保持相对静止,设最大静摩擦力等于滑动摩擦力,盘面与水平面的夹角为30°,g取10 m/s2,则以下说法中正确的是()A.小物体随圆盘以不同的角速度ω做匀速圆周运动时,ω越大时,小物体在最高点处受到的摩擦力一定越大B.小物体受到的摩擦力可能背离圆心C.若小物体与盘面间的动摩擦因数为32,则ω的最大值是1.0 rad/sD.若小物体与盘面间的动摩擦因数为32,则ω的最大值是 3 rad/s答案BC解析当物体在最高点时,也可能受到重力、支持力与摩擦力三个力的作用,摩擦力的方向可能沿斜面向上(即背离圆心),也可能沿斜面向下(即指向圆心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受到的摩擦力越小,故A 错误,B 正确;当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向圆心的摩擦力,由沿斜面的合力提供向心力,支持力 F N =mg cos 30°,摩擦力f =μF N =μmg cos 30°,又μmg cos 30°-mg sin 30°=mω2R ,解得ω=1.0 rad/s ,故C 正确,D 错误.课时精练1.一汽车通过拱形桥顶时速度为10 m/s ,车对桥顶的压力为车重的34,如果要使汽车在该桥顶对桥面恰好没有压力,车速为( ) A .15 m/s B .20 m/s C .25 m/s D .30 m/s答案 B解析 当F N ′=F N =34G 时,有G -F N ′=m v 2r ,所以14G =m v 2r ;当F N =0时,G =m v ′2r ,所以v ′=2v =20 m/s ,选项B 正确.2.(多选)(2023·广东广州市模拟)一质量为1.0×103 kg 的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为车重的0.6倍,g =10 m/s 2,当汽车经过弯道时,下列判断正确的是( )A .汽车转弯时所受的力有重力、弹力、摩擦力B .汽车转弯时所受到的径向静摩擦力均为6×103 NC .设计汽车转弯不发生侧滑的最大速率为20 m/s ,则弯道半径应不少于50 mD .汽车能安全转弯的向心加速度不超过6.0 m/s 2 答案 AD解析 汽车转弯时受到重力、地面的支持力以及地面的摩擦力,其中摩擦力充当向心力,A 正确;汽车转弯时所需的向心力可以小于6×103 N ,不一定取最大值,B 错误;当最大静摩擦力充当向心力时,速度为临界速度,大于这个速度则发生侧滑,根据牛顿第二定律可得f m =m v 2r ,解得r =2003 m>50 m ,C 错误;汽车能安全转弯的最大向心加速度a =0.6g ,得a =6.0 m/s 2,即汽车能安全转弯的向心加速度不超过6.0 m/s 2,D 正确.3.(2023·广东中山市模拟)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l .当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A .a 绳张力可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω超过某一特定值时,b 绳将出现弹力D .若b 绳突然被剪断,则a 绳的弹力一定发生变化 答案 C解析 小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,A 错误;根据竖直方向上受力平衡得F a sin θ=mg ,解得F a =mg sin θ,可知a 绳的拉力始终不变,B 错误;当b 绳拉力为零时,有mgtan θ=mlω2,解得ω=gl tan θ,可知当角速度大于gl tan θ时,b 绳出现弹力,C 正确;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,D 错误. 4.(多选)(2023·湖北省华大新高考联盟名校联考)如图所示,在竖直平面内有一半径为R 的光滑固定细管(忽略管的内径),半径OB 水平、OA 竖直,一个直径略小于管内径的小球(可视为质点)由B 点以某一初速度v 0进入细管,之后从管内的A 点以大小为v A 的水平速度飞出.忽略空气阻力,重力加速度为g ,下列说法正确的是( )A .为使小球能从A 点飞出,小球在B 点的初速度必须满足v 0>3gRB .为使小球能从A 点飞出,小球在B 点的初速度必须满足v 0>2gRC .为使小球从A 点水平飞出后再返回B 点,小球在B 点的初速度应为v 0=5gR2D .小球从A 点飞出的水平初速度必须满足v A >gR ,因而不可能使小球从A 点水平飞出后再返回B 点 答案 BC解析 小球能从A 点飞出,则在A 点的最小速度大于零,则由机械能守恒定律有12m v 02>mgR ,则小球在B 点的初速度必须满足v 0>2gR ,选项A 错误,B 正确;为使小球从A 点水平飞出后再返回B 点,则R =v A t ,R =12gt 2,联立解得v A =gR 2,12m v 02=mgR +12m v A 2,小球在B 点的初速度应为v 0=5gR2,选项C 正确;要使小球从A 点飞出,则小球在A 点的速度大于零即可,由选项C 的分析可知,只要小球在A 点的速度为gR2,小球就能从A 点水平飞出后再返回B 点,选项D 错误.5.如图所示,质量为1.6 kg 、半径为0.5 m 的光滑细圆管用轻杆固定在竖直平面内,小球A 和B (均可视为质点)的直径略小于细圆管的内径(内径远小于细圆管半径).它们的质量分别为m A =1 kg 、m B =2 kg.某时刻,小球A 、B 分别位于圆管最低点和最高点,且A 的速度大小为v A =3 m/s ,此时杆对圆管的弹力为零.则B 球的速度大小v B 为(取g =10 m/s 2)( )A .2 m/sB .4 m/sC .6 m/sD .8 m/s答案 B解析 对A 球,合外力提供向心力,设管对A 的支持力为F A ,由牛顿第二定律有F A -m A g =m A v A 2R ,代入数据解得F A =28 N ,由牛顿第三定律可得,A 球对管的力竖直向下为28 N ,设B 球对管的力为F B ′,由管的受力平衡可得F B ′+28 N +m 管g =0,解得F B ′=-44 N ,负号表示和重力方向相反,由牛顿第三定律可得,管对B 球的力F B 为44 N ,方向竖直向下,对B球由牛顿第二定律有F B+m B g=m B v B2R,解得v B=4 m/s,故选B.6.(2023·湖南岳阳市第十四中学检测)如图所示,叠放在水平转台上的物体A、B及物体C能随转台一起以角速度ω匀速转动,A、B、C的质量分别为3m、2m、m,A与B、B和C与转台间的动摩擦因数都为μ,A和B、C离转台中心的距离分别为r和1.5r.最大静摩擦力等于滑动摩擦力,物体A、B、C均可视为质点,重力加速度为g,下列说法正确的是()A.B对A的摩擦力一定为3μmgB.B对A的摩擦力一定为3mω2rC.转台的角速度需要满足ω≤μg rD.若转台的角速度逐渐增大,最先滑动的是A物体答案 B解析由于物体A、B及物体C能随转台一起匀速转动,则三个物体受到的均为静摩擦力,由静摩擦力提供向心力,则B对A的摩擦力一定为f A=3mω2r,又有0<f A≤f max=3μmg,由于角速度大小不确定,B对A的摩擦力不一定达到最大静摩擦力3μmg,A错误,B正确;若物体A达到最大静摩擦力,则3μmg=3mω12r,解得ω1=μgr,若转台对物体B达到最大静摩擦力,对A、B整体有5μmg=5mω22r,解得ω2=μgr,若物体C达到最大静摩擦力,则μmg=mω32×1.5r,解得ω3=2μg3r,可知ω1=ω2>ω3,由于物体A、B及物体C均随转台一起匀速转动,则转台的角速度需要满足ω≤ω3=2μg3r,该分析表明,当角速度逐渐增大时,物体C所受摩擦力先达到最大静摩擦力,即若转台的角速度逐渐增大,最先滑动的是C物体,C、D错误.7.(2023·四川绵阳市诊断)如图所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B(均可视为质点),光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力.忽略空气阻力,重力加速度为g,则球B在最高点时()A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即仅重力提供向心力,则有mg =m v B 22L ,解得v B =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v A =122gL ,故B 错误;B 球在最高点时,对杆无弹力,此时A 球受到的重力和拉力的合力提供向心力,有F -mg =m v A 2L ,解得F =1.5mg ,即杆受到的弹力大小为1.5mg ,可知水平转轴对杆的作用力为1.5mg ,C 正确,D 错误.8.(2023·重庆市西南大学附属中学月考)如图所示,在倾角为α=30°的光滑斜面上有一长L =0.8 m 的轻杆,杆一端固定在O 点,可绕O 点自由转动,另一端系一质量为m =0.05 kg 的小球(可视为质点),小球在斜面上做圆周运动,g 取10 m/s 2.要使小球能到达最高点A ,则小球在最低点B 的最小速度是( )A .4 m/sB .210 m/sC .2 5 m/sD .2 2 m/s答案 A解析 小球恰好到达A 点时的速度大小为v A =0,此时对应B 点的速度最小,设为v B ,对小球从A 到B 的运动过程,由动能定理有12m v B 2-12m v A 2=2mgL sin α,代入数据解得v B =4 m/s ,故选A.9.(多选)(2023·广东惠州市模拟)如图所示为一种圆锥筒状转筒,左右各系着一长一短的绳子,绳上挂着相同的小球,转筒静止时绳子平行圆锥面,若转筒中心轴开始缓慢加速转动,不计空气阻力,则下列说法正确的是()A.角速度慢慢增大,一定是线长的那个球先离开圆锥筒B.角速度达到一定值的时候两个球一定同时离开圆锥筒C.两个球都离开圆锥筒后,它们一定高度相同D.两个球都离开圆锥筒时两绳中的拉力大小相同答案AC解析设绳子与竖直方向的夹角为θ,小球刚好离开圆锥筒时,圆锥筒的支持力为0,则有mg tan θ=mω2l sin θ,解得ω=gl cos θ,则绳子越长其角速度的临界值越小,越容易离开圆锥筒,所以A正确,B错误;两个球都离开圆锥筒后,小球都只受重力与绳子的拉力,两小球都随圆锥筒一起转动,有相同的角速度,则小球的高度为h=l cos θ,代入数据解得h=gω2,所以C正确;小球离开圆锥筒时绳子的拉力为F T=mgcos θ,由于绳子长度不同,则两绳与竖直方向的夹角也不同,所以绳中拉力大小也不相同,所以D错误.10.(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的水平细绳连接,木块与转盘间的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是(重力加速度为g)()A.当ω>2Kg3L时,A、B会相对于转盘滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D .ω在0<ω<2Kg3L范围内增大时,A 所受摩擦力一直变大 答案 ABD解析 当A 、B 所受摩擦力均达到最大值时,A 、B 相对转盘即将滑动,则有Kmg +Kmg =mω2L +mω2·2L ,解得ω=2Kg3L,A 项正确;当B 所受静摩擦力达到最大值后,绳子开始有弹力,即有Kmg =m ·2L ·ω2,解得ω=Kg2L,可知当ω>Kg2L时,绳子有弹力,B 项正确;当ω> Kg2L时,B 已达到最大静摩擦力,则ω在Kg 2L<ω<2Kg3L范围内增大时,B 受到的摩擦力不变,C 项错误;ω在0<ω<2Kg3L范围内,A 相对转盘是静止的,A 所受摩擦力为静摩擦力,所以由f -F T =mLω2可知,当ω增大时,静摩擦力也增大,D 项正确.11.(2023·内蒙古包头市模拟)如图所示,两等长轻绳一端打结,记为O 点,并系在小球上.两轻绳的另一端分别系在同一水平杆上的A 、B 两点,两轻绳与固定的水平杆夹角均为53°.给小球垂直纸面的速度,使小球在垂直纸面的竖直面内做往复运动.某次小球运动到最低点时,轻绳OB 从O 点断开,小球恰好做匀速圆周运动.已知sin 53°=0.8,cos 53°=0.6,则轻绳OB 断开前后瞬间,轻绳OA 的张力之比为( )A .1∶1B .25∶32C .25∶24D .3∶4答案 B解析 轻绳OB 断开前,小球以A 、B 中点为圆心的圆弧做往复运动,设小球经过最低点的速度大小为v ,绳长为L ,小球质量为m ,轻绳的张力为F 1,由向心力公式有2F 1sin 53°-mg =m v 2L sin 53°,轻绳OB 断开后,小球在水平面内做匀速圆周运动,其圆心在A 点的正下方,设轻绳的张力为F 2,有F 2cos 53°=m v 2L cos 53°,F 2sin 53°=mg ,联立解得F 1F 2=2532,故B 正确.12.(多选)(2023·湖北省重点中学检测)如图甲所示的陀螺可在圆轨道的外侧旋转而不脱落,好像轨道对它施加了魔法一样,被称为“魔力陀螺”,该玩具深受孩子们的喜爱.其物理原理可等效为如图乙所示的模型:半径为R 的磁性圆轨道竖直固定,质量为m 的小铁球(视为质点)在轨道外侧转动,A 、B 两点分别为轨道上的最高点、最低点.铁球受轨道的磁性引力始终指向圆心且大小不变,重力加速度为g ,不计摩擦和空气阻力.下列说法正确的是( )A .铁球可能做匀速圆周运动B .铁球绕轨道转动时机械能守恒C .铁球在A 点的速度一定大于或等于gRD .要使铁球不脱轨,轨道对铁球的磁性引力至少为5mg 答案 BD解析 铁球绕轨道转动受到重力、轨道的磁性引力和轨道的弹力作用,而轨道的磁性引力和弹力总是与速度方向垂直,故只有重力对铁球做功,铁球做变速圆周运动,铁球绕轨道转动时机械能守恒,选项B 正确,A 错误;铁球在A 点时,有mg +F 吸-F N A =m v A 2R ,当F N A =mg +F 吸时,v A =0,选项C 错误;铁球从A 到B 的过程,由动能定理有2mgR =12m v B 2-12m v A 2,当v A =0时,铁球在B 点的速度最小,解得v B min =2gR ,球在B 点处,轨道对铁球的磁性引力最大,F 吸-mg -F N B =m v B 2R ,当v B =v B min =2gR 且F N B =0时,解得F 吸min =5mg ,故要使铁球不脱轨,轨道对铁球的磁性引力至少为5mg ,选项D 正确.。

高三物理复习讲义4动量定理(教师版)

高三物理复习讲义4动量定理(教师版)

主动轮通过皮带、链条、齿轮等带动从动轮的过程中,皮带(链条)上各点以及两轮边缘上各点的线速相同.;竖直圆周运动)最高点无支撑的情况下,恰好通过最高点的速度是)最高点有支撑的情况下,恰好通过最高点的速度是生活中的圆周运动)火车过弯时,车身应向)通过凸型桥的最高点时,速度的临界速度是)通过凹型桥的最低点时,离心运动)物体做离心运动的条件有:①合外力突然消失(此时物体沿②当沿半径方向的合外力离圆心.)圆周运动的本质:离心运动实质是10.功的基础)对物体做功的条件:有力;且在力的方向上发生了位移)功的大小:)功的单位:焦耳恒定功率启动(教师可见内容)线运动.(教师可见内容)恒定加速度启动(教师可见内容)定定增大,但是功率已经达到最大值达到最大值(教师可见内容)系统机械能不守恒,摩擦做功产生热量,直到二者共速,其中:)摩擦阻力对子弹做功:;;)摩擦力做功产生的热量:.1下列关于动量和动能的说法中,正确的是(2将甲、乙两个质量相等的物体在距水平地面同一高度处,分别以3若物体在运动过程中所受到的合外力不为零,则在运动过程中(B.①③C.②④D.②③如图,4)中初动量,末动量,则动量变化量为;质量为5点到地面过程中重力的平均功率等于反弹后从地面到点过程中重力的平均功率某人在体育馆里向下用力拍打皮球,球向下运动经过6由于实际运动过程,并不是理想状态,球撞地的过程有机械能损失,下落和上升在同一位置两点速度大小方向都不相同,动量不相同,故A 错误;.若碰撞无能量损失,那么对称的两点动能相等,而实际用损失,点动能大于点动.下落过程的平均速度大于上升的平均速度,因此下落时间较短,重力的平均功率等于重7一个笔帽竖立于放在水平桌面的纸上,将纸条从笔帽下抽出时,如果缓慢拉动纸条笔帽必倒;若8如图所示,某人身系弹性绳自高空9一物体放在水平地面上,如图甲所示,已知物体所受水平拉力的变化情况如图乙所示,时间内拉力的冲量.时间内物体的位移.时间内,物体克服摩擦力所做的功.10质量,(4)用动量定理解题的注意事项:①准确选择研究对象:动量定理的研究对象是单个物体或可视为单个物体的系统.当研究对象为系统时,在分析受力时,只需分析系统所受的外力,不需考虑系统的内力;②在应用动量定理前必须建立一维坐标系,确定正方向.已知方向的动量、冲量均需加符号(与正方向一致时为正,反之为负),未知方向的动量、冲量通常先假设为正,解出后再判断其方向;③不同时间的冲量可以求和:(a)若各力的作用时间相同,且各外力为恒力,可以先求合力,再乘以时间求冲量,;合合1112篮球运动员通常要伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以(13如图所示,一只质量为14高空坠物极易对行人造成伤害.若一个15一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程16如图,弹簧上端固定下端悬挂质量为17一质量为18质量为19一质量20某同学研究重物与地面撞击的过程,利用传感器记录重物与地面的接触时间.他让质量为21如图所示,质量均为两物块所受重力做功的平均功率相同两斜面对地面压力均小于,小滑块下滑加速度,下滑时间度时,可得两滑块运动时间相同.,,则重力做功的平均功率:22一质量为23超强台风山竹于24水车作为一种农业生产工具,在我国已有千年使用历史,主要用来提水为农田灌溉,是人类智慧水车稳定运行状态下,每转动一周,它对所提的水做的功.(不考虑水进出水斗速度的变,假设某叶片转至最低点时,完全浸入水中,水,求此过程中水流对该叶片的平内流过水的质量为,由动量.25在采煤的各种方法中,有一种方法是用高压水流将煤层击碎而将煤采下.今有一采煤高压水枪,26雨滴在空中下落时,由于空气阻力的影响,最终会以恒定的速度匀速下降,我们把这个速度叫做27某游乐园入口旁有一喷泉,喷出的水柱将一质量为。

高考物理一轮复习 4.3圆周运动

高考物理一轮复习 4.3圆周运动
解析:由题意知RB=2RA=2RC,而vA=vB,ωARA=ωBRB, ωA∶ωB=RB∶RA=2∶1,又有ωB=ωC,由v=ω·R,知vB=2vC, 故A、B、C三点线速度之比为2∶2∶1,
角速度之比为 2∶1∶1,因 T=2ωπ,故周期之比为 1∶2∶ 2,由 an=ω2R,可知向心加速度之比为(22×1)∶(12×2)∶ (12×1)=4∶2∶1,故选项 C 正确.
(2)合力的作用.
①合力沿速度方向的分量Fτ产生切向加速度,Fτ=maτ,它 只改变速度的 大小 .
②合力沿半径方向的分量Fn产生向心加速度,Fn=man,它 只改变速度的 方向 .
特别提醒 做匀速圆周运动的物体,向心力就是物体所受的合外力,方 向总是指向圆心;做变速圆周运动的物体,向心力只是物体所受 合外力在沿半径方向上的一个分力.
[基础自测] 2.质点做匀速圆周运动,则( ) A.在任何相等的时间里,质点的位移都相同 B.在任何相等的时间里,质点通过的路程都相等 C.在任何相等的时间里,连接质点和圆心的半径转过的角 度都相等 D.在任何相等的时间里,质点运动的平均速度都相同
解析:质点做匀速圆周运动时,在相等时间内,质点通过的 弧长相等,即质点在相等时间内通过的路程相等,半径转过的圆 心角相等,故选项B、C正确,选项A、D错误.
公式、单位

心 加
①描述速度方向变化快慢的物理 量(an)
①an=vr2= rω2
速 ②方向指向圆心
②单位:m/s2

①作用效果是产生向心加速度,
向 只改变线速度的 方向 心 线速度的 大小 力 ②方向指向 圆心
,不改变 ①Fn= mω2r =mvr2 ②单位:N
定义、意义
公式、单位
相 ①v= rω =2Tπr=2πrf

高中三年级一轮复习试题-4.圆周运动[教师版]

高中三年级一轮复习试题-4.圆周运动[教师版]

高三一轮复习——圆周运动一.公式a) r v ∙=ωb) ωπ2T =c) r T4r r v a 2222πω=== d) r T4m r m r v m F 2222πω===合 二.思路a) 与力无关——运动i. 皮带、共轴1. 皮带——线速度相等2. 共轴——角速度相等ii. 相遇追及、周期性b) 与力有关——受力分析i. 找对象——做圆周运动的物体ii. 画受力图——G->F 弹->f->F 外->aiii.正交分解1. 建系:让尽可能多的力(包括a )落在坐标轴上,通常以a 为x 轴,垂直a 为y 轴2. 分解:把不在坐标轴上的力分解到坐标轴上(通常与第三步一起完成)3. 方程:Fx=ma ,Fy=0三.题型a) 与力无关i. 皮带、共轴1. 例1 图示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.下列说法不正确的是( C )A .a 、d 两点加速度之比为 1:1B .a 、c 两点角速度之比为 2:1C .b 、c 两点线速度之比为 2:1D .b 、c 两点角速度之比为 1:12. 练1-1 如图所示,A 、B 轮通过皮带传动,A 、C 轮通过摩擦传动,半径R A =2R B =3R C ,各接触面均不打滑,则A 、B 、C 三个轮的边缘点的线速度和角速度之比分别为( B )A .v A :vB :vC =1:2:3,ωA :ωB :ωC =3:2:1B .v A :v B :vC =1:1:1,ωA :ωB :ωC =2:3:6C .v A :v B :v C =1:1:1,ωA :ωB :ωC =1:2:3D .v A :v B :v C =3:2:1,ωA :ωB :ωC =1:1:13. 练1-2 如图所示,自行车的小齿轮A 、大齿轮B 、后轮C 是相互关联的三个转动部分,且半径R B =4R A 、R C =8R A ,如图所示.当自行车正常骑行时A 、B 、C 三轮边缘的向心加速度的大小之比a A :a B :a C等于( C )A .1:1:8B .4:1:4C .4:1:32D .1:2:4ii. 相遇追及、周期性1. 例1 行星冲日 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。

高考物理一轮复习第四章 圆周运动 课件

高考物理一轮复习第四章 圆周运动 课件

1.定义 做匀速圆周运动的物体,在合外
【例 2】如图 4 所示,一个竖
直放置的圆锥筒可绕其中
心轴 OO′转动,筒内壁粗
糙,筒口半径和筒高分别为
R 和 H,筒内壁 A 点的高度
为筒高的一半,内壁上有一 解 析 (1) 物 块 静 止
质量为 m 的小物块,求: 时,对物块进行受力分
(1)当筒不转动时,物块静止 析如图所示
在筒壁 A 点受到的摩擦力和
, 方 向 始圆终心指
向 ,是变加速运动.
3.条件:合外力大小 不变 、方向始终
与速度
方向垂直且指向圆心.
思考:匀速圆周运动是不是匀变速曲线运动?
提示:不是,因为在匀变速曲线运动中, 加速度 是恒量,不但其大小不变,而且方向也不变.
• 匀速圆周运动和非匀速圆周运动的比较
匀速圆周运动
非匀速圆周运动
运 动 性 质
度 度,没有切向加速度
合加速度的方向不断改变

心 F合=F向=

【训练 1】如图是一个玩具陀
螺,a、b 和 c 是陀螺表面上的
三个点.当陀螺绕垂直于地面的
轴线以角速度 ω 稳定旋转时, 思路点拨
Hale Waihona Puke 下列表述正确的是 ( ) D
A.a、b 和 c 三点的线速度大 a、b 和 c 三点的角速度相同,a 半径
支持力的大小;
(2)当物块在 A 点随筒匀速转
故有 Ff=
mgH , R2+H2
动,且其所受到的摩擦力为 零时,筒转动的角速度.
FN=
mgR R2+H2
【例 2】如图 4 所示,一个竖 直放置的圆锥筒可绕其中心
轴 OO′转动,筒内壁粗糙, 筒口半径和筒高分别为 R 和 H,筒内壁 A 点的高度为筒

高考物理一轮复习第四章第4节圆周运动学案含解析

高考物理一轮复习第四章第4节圆周运动学案含解析

第4节 圆周运动一、圆周运动及其描述 1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。

(2)速度特点:速度的大小不变,方向始终与半径垂直。

[注1] 2.描述圆周运动的物理量二、匀速圆周运动的向心力1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。

2.大小:F =ma =m v 2r =mr ω2=mr 4π2T2=mr 4π2n 2=m ωv 。

3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。

4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。

三、离心现象1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。

2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势。

3.受力特点(1)当F =m ω2r 时,物体做匀速圆周运动,如图所示; (2)当F =0时,物体沿切线方向飞出;(3)当F <m ω2r 时,物体逐渐远离圆心,F 为实际提供的向心力。

[注5]【注解释疑】[注1] 匀速圆周运动是变速运动,“匀速”指的是速率不变。

[注2] 线速度与角速度的对比理解线速度侧重于描述物体沿圆弧运动的快慢,角速度侧重于描述物体绕圆心转动的快慢。

[注3] 转速n 和频率f 含义相同,只是单位不同。

[注4] 向心加速度的方向也在时刻改变。

[注5] 物体做匀速圆周运动还是偏离圆形轨道完全是由实际提供的向心力和所需的向心力间的大小关系决定的。

[深化理解]1.对公式v =ωr 的理解 (1)当r 一定时,v 与ω成正比。

(2)当ω一定时,v 与r 成正比。

(3)当v 一定时,ω与r 成反比。

2.对a =v 2r=ω2r 的理解(1)当v 一定时,a 与r 成反比。

(2)当ω一定时,a 与r 成正比。

高考物理一轮复习 第四章 曲线运动 第三节 圆周运动课后达标 新人教版-新人教版高三全册物理试题

高考物理一轮复习 第四章 曲线运动 第三节 圆周运动课后达标 新人教版-新人教版高三全册物理试题

第三节 圆周运动(建议用时:60分钟)一、单项选择题1.(2018·江西师大附中模拟)如图是自行车传动机构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,如此自行车前进的速度为( )A.πnr 1r 3r 2B .πnr 2r 3r 1C.2πnr 2r 3r 1D .2πnr 1r 3r 2解析:选D.自行车前进的速度等于后轮的线速度,大小齿轮是同一条传送带相连,故线速度相等,故根据公式可得:ω1r 1=ω2r 2,解得ω2=ω1r 1r 2,小齿轮和后轮是同轴转动,所以两者的角速度相等,故线速度v =r 3ω2=2πnr 1r 3r 2,故D 正确.2.(2017·高考全国卷Ⅱ)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力( )A .一直不做功B .一直做正功C .始终指向大圆环圆心D .始终背离大圆环圆心解析:选A.由于大圆环是光滑的,因此小环下滑的过程中,大圆环对小环的作用力方向始终与速度方向垂直,因此作用力不做功,A 项正确,B 项错误;小环刚下滑时,大圆环对小环的作用力背离大圆环的圆心,滑到大圆环圆心以下的位置时,大圆环对小环的作用力指向大圆环的圆心,C 、D 项错误.3.(2015·高考福建卷)如图,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.假设小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小一样且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,如此( )A.t1<t2B.t1=t2C.t1>t2D.无法比拟t1、t2的大小解析:选A.在滑道AB段上取任意一点E,比拟从A点到E点的速度v1和从C点到E点的速度v2,易知,v1>v2.因E点处于“凸〞形轨道上,速度越大,轨道对小滑块的支持力越小,因动摩擦因数恒定,如此摩擦力越小,可知由A滑到C比由C滑到A在AB段上的摩擦力小,因摩擦造成的动能损失也小.同理,在滑道BC段的“凹〞形轨道上,小滑块速度越小,其所受支持力越小,摩擦力也越小,因摩擦造成的动能损失也越小,从C处开始滑动时,小滑块损失的动能更大.故综上所述,从A滑到C比从C滑到A在轨道上因摩擦造成的动能损失要小,整个过程中从A滑到C平均速度要更大一些,故t1<t2.选项A正确.4.如下列图,一根细线下端拴一个金属小球A,细线的上端固定在金属块B上,B放在带小孔的水平桌面上,小球A在某一水平面内做匀速圆周运动.现使小球A改到一个更低一些的水平面上做匀速圆周运动(图上未画出),金属块B在桌面上始终保持静止,如此后一种情况与原来相比拟,下面的判断中正确的答案是( )A.金属块B受到桌面的静摩擦力变大B.金属块B受到桌面的支持力减小C.细线的张力变大D.小球A运动的角速度减小解析:选D.设A、B质量分别为m、M,A做匀速圆周运动的向心加速度为a,细线与竖直方向的夹角为θ,对B研究,B受到的静摩擦力f=T sin θ,对A,有:T sin θ=ma,T cos θ=mg,解得a=g tan θ,θ变小,a减小,如此静摩擦力大小变小,故A错误;以整体为研究对象知,B受到桌面的支持力大小不变,应等于(M+m)g,故B错误;细线的拉力T =mgcos θ,θ变小,T 变小,故C 错误;设细线长为l ,如此a =g tan θ=ω2l sin θ,ω=g l cos θ,θ变小,ω变小,故D 正确.5.(高考全国卷Ⅱ)如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g ,当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析:选C.设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F ′N =F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F ′N =Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,应当选项C 正确,选项A 、B 、D 错误.6.如下列图,放置在水平转盘上的物体A 、B 、C 能随转盘一起以角速度ω匀速转动,A 、B 、C 的质量分别为m 、2m 、3m ,它们与水平转盘间的动摩擦因数均为μ,离转盘中心的距离分别为0.5r 、r 、1.5r ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,如此当物体与转盘间不发生相对运动时,转盘的角速度应满足的条件是( )A .ω≤μgrB .ω≤2μg3rC .ω≤2μgrD .μgr≤ω≤ 2μgr解析:选B.当物体与转盘间不发生相对运动,并随转盘一起转动时,转盘对物体的静摩擦力提供向心力,当转速较大时,物体转动所需要的向心力大于最大静摩擦力,物体就相对转盘滑动,即临界方程是μmg =mω2l ,所以质量为m 、离转盘中心的距离为l 的物体随转盘一起转动的条件是ω≤μgl,即ωA ≤2μgr,ωB ≤μgr ,ωC ≤2μg3r,所以要使三个物体都能随转盘转动,其角速度应满足ω≤2μg3r,选项B 正确. 二、多项选择题7.公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势.如此在该弯道处( )A .路面外侧高内侧低B .车速只要低于v 0,车辆便会向内侧滑动C .车速虽然高于v 0,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v 0的值变小解析:选AC.当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力提供向心力,所以路面外侧高内侧低,选项A 正确;当车速低于v 0时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,但并不一定会向内侧滑动,静摩擦力向外侧,选项B 错误;当车速高于v 0时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C 正确;由mg tanθ=m v 20r可知,v 0的值只与斜面倾角和圆弧轨道的半径有关,与路面的粗糙程度无关,选项D错误.8.(2018·浙江杭州五校联考)质量为m 的物体沿着半径为r 的半球形金属球壳滑到最低点时的速度大小为v ,如下列图,假设物体与球壳之间的动摩擦因数为μ,如此物体在最低点时的( )A .向心加速度为v 2rB .向心力为m ⎝ ⎛⎭⎪⎫g +v 2r C .对球壳的压力为mv 2rD .受到的摩擦力为μm ⎝ ⎛⎭⎪⎫g +v 2r 解析:选AD.物体滑到半径为r 的半球形金属球壳最低点时,速度大小为v ,向心加速度为a 向=v 2r ,故A 正确.根据牛顿第二定律可知,物体在最低点时的向心力F n =m v 2r ,故B错误.根据牛顿第二定律得N -mg =m v 2r ,得到金属球壳对物体的支持力N =m ⎝ ⎛⎭⎪⎫g +v 2r ,由牛顿第三定律可知,物体对金属球壳的压力大小N ′=m ⎝ ⎛⎭⎪⎫g +v 2r ,故C 错误.物体在最低点时,受到的摩擦力为f =μN ′=μm ⎝ ⎛⎭⎪⎫g +v 2r ,故D 正确. 9.如下列图,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好与倾角为45°的斜面垂直相碰.半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.如此( )A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 m B .小球在斜面上的相碰点C 与B 点的水平距离是1.9 m C .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N解析:选AC.根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,如此B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR,v B=v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.10.如下列图,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,如此要使小球不脱离圆轨道运动,v 0应当满足(g =10 m/s 2)( )A .v 0≥0B .v 0≥4 m/sC .v 0≥25m/sD .v 0≤22m/s解析:选CD.解决此题的关键是全面理解“小球不脱离圆轨道运动〞所包含的两种情况:(1)小球通过最高点并完成圆周运动;(2)小球没有通过最高点,但小球没有脱离圆轨道.对于第(1)种情况,当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤mv 2r ,又根据机械能守恒定律有mv 22+2mgr =mv 22,可求得v 0≥2 5 m/s ,应当选项C 正确;对于第(2)种情况,当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处,速度恰好减为零,根据机械能守恒定律有mgr =mv 22,可求得v 0≤2 2 m/s ,应当选项D 正确.三、非选择题11.(2018·江西丰城中学段考)如下列图,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO ′重合,转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO ′之间的夹角θ为45°.重力加速度大小为g ,小物块与陶罐之间的最大静摩擦力大小为F f =24mg .(1)假设小物块受到的摩擦力恰好为零,求此时的角速度ω0;(2)假设小物块一直相对陶罐静止,求陶罐旋转的角速度的范围.解析:(1)当摩擦力为零,支持力和重力的合力提供向心力,有:mg tan 45°=mR sin 45°·ω20解得:ω0=2g R.(2)当ω>ω0时,重力和支持力的合力不够提供向心力,当角速度最大时,摩擦力方向沿罐壁切线向下达最大值,设此最大角速度为ω1,受力如图:由牛顿第二定律得,F f cos 45°+F N cos 45°=mR sin 45°ω21F f sin 45°+mg=F N sin 45°联立解得:ω1=32g 2R当ω<ω0时,重力和支持力的合力大于所需向心力,摩擦力方向沿罐壁切线向上,当角速度最小时,摩擦力向上达到最大值,设此最小角速度为ω2由牛顿第二定律得,F N cos 45°-F f cos 45°=mR sin 45°ω22F f sin 45°+F N sin 45°=mg联立解得:ω2=2g 2R所以2g2R≤ω≤32g2R.答案:(1)2gR(2)2g2R≤ω≤32g2R12.如下列图,A 、B 两物体用轻绳连接,并穿在水平杆上,可沿杆滑动.水平杆固定在可绕竖直轴PQ 转动的框架上,A 、B 的质量分别为m 1和m 2,水平杆对物体A 、B 的最大静摩擦力均与各物体的重力成正比,比例系数为μ,物体A 离转轴PQ 的距离为R 1,物体B 离转轴PQ 的距离为R 2,且有R 1<R 2和m 1<m 2.当框架转动的角速度缓慢增大到ω1时,连接两物体的轻绳开始有拉力;角速度增大到ω2时,其中一个物体受到杆的摩擦力为零.如此:(1)角速度ω1多大?此时两物体受到的摩擦力各多大? (2)角速度ω2多大?此时轻绳拉力多大?解析:(1)对物体受力分析,开始角速度较小时靠静摩擦力就能提供做圆周运动所需向心力,因此有F f =mω2R ,当静摩擦力达到最大后轻绳才提供拉力.设当物体受到的静摩擦力达到最大值μmg 时,框架的角速度为ω0,如此有μmg =mω20R①由此得ω0=μgR. ①式说明物体离转轴越远,受到静摩擦力越先达到最大值,所以,当角速度为ω1=μg R 2时,轻绳开始有拉力,此时两物体受到摩擦力分别为F f A =m 1ω21R 1=μm 1gR 1R 2, F f B =μm 2g .(2)当角速度ω>ω1时,设轻绳拉力为F T ,对于A 物体有F T +F f A =m 1ω2R 1 ② 对于B 物体有F T +μm 2g =m 2ω2R 2③联立②③式得A 物体受到的静摩擦力为F f A =μm 2g -(m 2R 2-m 1R 1)ω2④由于R 1<R 2和m 1<m 2,如此A 物体受到静摩擦力随角速度增大而减小,当减为零时,框架的角速度为ω2=μm 2gm 2R 2-m 1R 1⑤将⑤式代入③式得轻绳拉力为F T =μm 1m 2gR 1m 2R 2-m 1R 1.答案:(1)ω1=μgR2F f A=μm1gR1R2F f B=μm2g(2)ω2=μm2gm2R2-m1R1F T=μm1m2gR1m2R2-m1R1。

2024年新人教版高考物理一轮复习课件 第4章 实验6 探究向心力大小与半径、角速度、质量的关系

2024年新人教版高考物理一轮复习课件  第4章 实验6 探究向心力大小与半径、角速度、质量的关系

2024年新人教版高考物理一轮复习课件 DISIZHANG 第四章抛体运动与圆周运动探究向心力大小与半径、角速度、质量的关系目标要求1.会用控制变量法探究向心力大小与半径、角速度、质量的关系.2.会用作图法处理数据,掌握化曲为直的思想.实验六内容索引实验技能储备考点一 教材原型实验考点二 探索创新实验课时精练一实验技能储备1.实验思路本实验探究向心力与多个物理量之间的关系,因而实验方法采用了____ ,如图所示,匀速转动手柄,可以使塔轮、长槽和短槽匀速转动,槽内的小球也就随之做匀速圆周运动,此时小球向外挤压挡板,挡板对小球有一个向内(指向圆周运动的圆心)的弹力作为小球做匀速圆周运动的向心力,可以通过 上露出的红白相间等分标记,粗略计算出两球所需向心力的比值.控制变量法标尺在实验过程中可以通过两个小球同时做圆周运动对照,分别分析下列情形:(1)在 一定的情况下,探究向心力大小与角速度的关系.(2)在 一定的情况下,探究向心力大小与半径的关系.(3)在 一定的情况下,探究向心力大小与质量的关系.质量、半径质量、角速度半径、角速度2.实验器材向心力演示器、小球.3.实验过程(1)分别将两个质量相等的小球放在实验仪器的两个小槽中,且小球到转轴(即圆心)距离相同,即圆周运动半径相同.将皮带放置在适当位置使两转盘转动,记录不同角速度下的向心力大小(格数).(2)分别将两个质量 的小球放在实验仪器的长槽和短槽两个小槽中,将皮带放置在适当位置使两转盘转动角速度 ,小球到转轴(即圆心)距离不同,即圆周运动半径不等,记录不同半径的向心力大小(格数).相等相等(3)分别将两个质量不相等的小球放在实验仪器的两个小槽中,且小球到转轴(即圆心)距离相同,即圆周运动半径相等,将皮带放置在适当位置使两转盘转动角速度相等,记录不同质量下的向心力大小(格数).4.数据处理F n-ω2分别作出 、F n-r、F n-m的图像,分析向心力大小与角速度、半径、质量之间的关系,并得出结论.5.注意事项摇动手柄时应缓慢加速,注意观察其中一个标尺的格数.达到预定格数时,即保持转速恒定,观察并记录其余读数.考点一教材原型实验例1 (2023·湖南邵阳市第二中学模拟)用如图所示的实验装置来探究小球做圆周运动所需向心力的大小F与质量m、角速度ω和半径r之间的关系,转动手柄使长槽和短槽分别随塔轮匀速转动,槽内的球就做匀速圆周运动.横臂的挡板对球的压力提供了向心力,球对挡板的反作用力通过横臂的杠杆作用使弹簧测力套筒下降,从而露出标尺,标尺上的红白相间的等分格显示出两个小球所受向心力的比值.实验用球分为钢球和铝球,请回答相关问题:(1)在某次实验中,某同学把两个质量相等的钢球放在A、C位置,A、C到塔轮中心距离相等,将皮带处于左、右塔轮的半径不等的层上.转动手柄,观察左右标尺的刻度,此时可研究向心力的大B小与____的关系.A.质量mB.角速度ωC.半径r把两个质量相等的钢球放在A、C位置时,则控制质量相等、半径相等,研究的目的是向心力的大小与角速度的关系,故选B.(2)在(1)的实验中,某同学匀速转动手柄时,左边标尺露出4个格,右边标尺露出1个格,则皮带连接的左、右塔轮半径之比为______;其他条件不变,若增大手柄转动的速度,则左、右两标尺的示数将______,两标尺示数的比值______(均选填“变大”“变小”或“不变”).1∶2变大不变由题意可知左、右两球做圆周运动所需的向心力之比为F左∶F右=4∶1,则由F=mrω2,可得 =2,由v=Rω可知,皮带连接的左、右塔轮半径之比为R左∶R右=ω右∶ω左=1∶2, 其他条件不变,若增大手柄转动的速度,则角速度均增大,由F=mrω2,可知左、右两标尺的示数将变大,但半径之比不变,例2 用如图所示的向心力演示器探究向心力大小的表达式.匀速转动手柄,可以使变速塔轮以及长槽和短槽随之匀速转动,槽内的小球也随着做匀速圆周运动.使小球做匀速圆周运动的向心力由横臂的挡板对小球的压力提供,球对挡板的反作用力通过横臂的杠杆作用使弹簧测力套筒下降,从而露出标尺.(1)为了探究向心力大小与物体质量的关系,可以采用____________(选填“等效替代法”“控制变量法”或“理想模型法”).控制变量法根据F =mω2r ,为了探究向心力大小与物体质量的关系,应控制半径r 相等,角速度ω大小相等,即采用控制变量法.(2)根据标尺上露出的等分标记,可以粗略计算出两个球做圆周运动所需的向心力大小之比;为研究向心力大小跟转速的关系,应比较表中的第1组和第________组数据.组数小球的质量m /g 转动半径r /cm 转速n /(r·s -1)114.015.001228.015.001314.015.002414.030.0013组数小球的质量m /g 转动半径r /cm 转速n /(r·s -1)114.015.001228.015.001314.015.002414.030.001为研究向心力大小跟转速的关系,必须要保证质量和转动半径均相等,则应比较表中的第1组和第3组数据._____________________.(写出一条即可)答案 见解析本实验中产生误差的原因有:质量的测量引起的误差;弹簧测力套筒的读数引起的误差等.考点二探索创新实验考向1 实验方案的创新例3 如图所示是“DIS向心力实验器”,当质量为m的砝码随旋转臂一起在水平面内做半径为r的圆周运动时,所需的向心力可通过牵引杆由力传感器测得,旋转臂另一端的挡光杆(挡光杆的挡光宽度为Δs,旋转半径为R)每经过光电门一次,通过力传感器和光电门就同时获得一组向心力大小F和角速度ω的数据.(1)某次旋转过程中挡光杆经过光电门时的遮光时间为Δt,则角速度ω=_____.例4 (2023·河北省石家庄二中实验学校月考)某同学用如图(a)所示装置探究钢质小球自由摆动至最低点时的速度大小与此时细线拉力的关系.其中力传感器显示的是小球自由摆动过程中各个时刻细线拉力F T的大小,光电门测量的是钢球通过光电门的挡光时间Δt.(1)调整细线长度,使细线悬垂时,钢球中心恰好位于光电门中心.(2)要测量小球通过光电门的速度,还需测出_____________(写出需要测量的物理量及其表示符号),小球通过光电门的速度表达式为v =_____.(用题中所给字母和测出的物理量符号表示)小球的直径d(3)由于光电门位于细线悬点的正下方,此时细线的拉力就是力传感器显示的各个时刻的拉力F T 中的________(选填“最大值”“最小值”或“平均值”).最大值(4)改变小球通过光电门的速度,重复实验,测出多组速度v和对应拉力F T的数据,作出F T-v2图像如图(b)所示.已知当地重力加速度g=9.7 m/s2,0.051则由图像可知,小球的质量为_____ kg,光电门到悬点的距离为_____ m.考向2 实验目的的创新例5 如图甲所示,某同学为了比较不同物体与转盘间动摩擦因数的大小设计了该装置.已知固定于转轴上的角速度传感器和力传感器与电脑连接,通过一不可伸长的细绳连接物块,细绳刚好拉直,物块随转盘缓慢加速.在电脑上记录如图乙所示图像.换用形状和大小相同但材料不同的物块重复实验,得到物块a、b、c分别对应的三条直线,发现a与c的纵截距相同,b与c的横截距相同,且符合一定的数量关系.回答下列问题:(1)物块没有看作质点对实验是否有影响?______(选填“是”或“否”)否物块的形状和大小相同,做圆周运动的半径相同,所以物块没有看作质点对实验没有影响.2∶2∶1 (2)物块a、b、c的密度之比为_________.当物块随转盘缓慢加速过程中,物块所需的向心力先由静摩擦力提供,当达到最大静摩擦力后由绳子的拉力和最大静摩擦力提供,即F向=F+μmg=mrω2,所以有F=mrω2-μmg,题图乙中图线的斜率为mr,与纵轴的截距为-μmg,根据题图乙知a 的斜率k a=m a r=1 kg·m,b的斜率k b=m b r=1 kg·m,c的斜率k c=m c r = kg·m,所以a、b、c的质量之比为2∶2∶1,因为体积相同,所以物块a、b、c 的密度之比为2∶2∶1.1∶2∶2(3)物块a、b、c与转盘之间的动摩擦因数之比为_________.由题图乙知a的纵轴截距-μa m a g=-1 N,b的纵轴截距-μb m b g=-2 N,c的纵轴截距-μc m c g=-1 N,结合质量之比得到物块a、b、c与转盘之间的动摩擦因数之比为1∶2∶2.四课时精练1.如图所示为向心力演示装置,匀速转动手柄1,可以使变速塔轮2和3以及长槽4和短槽5随之匀速转动,槽内的小球也随着做匀速圆周运动.使小球做匀速圆周运动的向心力由横臂6的挡板(即挡板A、B、C)对小球的压力提供.球对挡板的反作用力通过横臂的杠杆作用使弹簧测力套筒7下降,从而露出标尺8.根据标尺8上露出的红白相间等分标记,可以粗略计算出两个球做圆周运动所需的向心力的比值.利用此装置可以探究做匀速圆周运动的物体需要的向心力的大小与哪些因素有关.已知小球在挡板A、B、C处做圆周运动的轨迹半径之比为1∶2∶1.(1)要探究向心力与轨道半径的关系时,把皮带套在左、右两个塔轮的半径相同的位置,把两个质量______(选填“相同”或“不同”)的小球放置在挡板____和挡板_____________位置(选填“A ”“B ”或“C ”).相同探究向心力与轨道半径的关系时,根据F n=mω2r ,采用控制变量法,应使两个相同质量的小球放在不同半径挡板处,以相同角速度运动,因此将质量相同的小球分别放在B 和C 处.答案 C B (或者B C )(2)把两个质量不同的小球分别放在挡板A和C位置,皮带套在左、右两个塔轮的半径之比为1∶2,则放在挡板A处的小球与C处的小球角速度大2∶1小之比为________.皮带套在左、右两个塔轮的半径之比为1∶2,两个塔轮边缘处的线速度大小相等,根据v=ωr可知,角速度与半径成反比,所以放在挡板A处的小球与C处的小球角速度大小之比为2∶1.(3)把两个质量相同的小球分别放在挡板B和C位置,皮带套在左、右两边塔轮的半径之比为3∶1,则转动时左、右标尺上露出的红白相间的等2∶9分格数之比为________.把两个质量相同的小球分别放在挡板B和C位置,则两小球的转动半径关系为r1∶r2=2∶1,皮带套在左、右两边塔轮的半径之比为3∶1,两个塔轮边缘处的线速度大小相等,根据v=ωr可知,角速度与半径成反比,所以放在挡板B处的小球与C处的小球角速度大小之比为1∶3,即ω1∶ω2=1∶3,根据F n=mω2r可知,两小球做圆周运动所需的向心力之比为F1∶F2=2∶9,则转动时左、右标尺上露出的红白相间的等分格数之比为2∶9.2.(2023·山东泰安市模拟)为探究向心力大小与半径、角速度、质量的关系,小明按图甲装置进行实验,物块放在平台卡槽内,平台绕轴转动,物块做匀速圆周运动,平台转速可以控制,光电计时器可以记录转动快慢.(1)为了探究向心力与角速度的关系,需要控制____________保持不变,小明由计时器测转动的周期T ,计算ω2的表达式是_________.质量和半径(2)小明按上述实验将测算得的结果用作图法来处理数据,如图乙所示,纵轴F为力传感器读数,横轴为ω2,图线不过坐标原点的原因是______ ______________,用电子天平测得物块质量为1.50 kg,直尺测得半径为50.00 cm,图线斜率为______ kg·m(结果保留两位有效数字).摩擦力的影响0.75存在实际表达式为F+F f=mω2r,图线不过坐标原点的原因是存在摩擦力的影响.斜率为k=mr=0.75 kg·m.3.(2023·山东烟台市模拟)某同学为了测量当地的重力加速度,设计了一套如图甲所示的实验装置.拉力传感器竖直固定,一根不可伸长的细线上端固定在传感器的固定挂钩上,下端系一小钢球,钢球底部固定有遮光片,在拉力传感器的正下方安装有光电门,钢球通过最低点时遮光片恰能通过光电门.小明同学进行了下列实验步骤:12.35 (1)用游标卡尺测量遮光片的宽度d,如图乙所示,则d=_______ mm;遮光片的宽度为d=12 mm+7×0.05 mm=12.35 mm.(2)用游标卡尺测量小钢球的直径为D,用刻度尺测量小钢球到悬点的摆线长为l;(3)拉起小钢球,使细线与竖直方向成不同角度,小钢球由静止释放后均在竖直平面内运动,记录遮光片每次通过光电门的遮光时间Δt和对应的拉力传感器示数F;。

新课标2023版高考物理一轮总复习第四章曲线运动万有引力与航天第3讲圆周运动课件

新课标2023版高考物理一轮总复习第四章曲线运动万有引力与航天第3讲圆周运动课件

电机,它是由两个大小相等直径约为30 cm的感应玻璃盘起电
的,其中一个玻璃盘通过从动轮与手摇主动轮连接,如图乙所
示,现玻璃盘以100 r/min的转速旋转,已知主动轮的半径约为8 cm,从动轮的半
径约为2 cm,P和Q是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确
的是
()
A.P、Q 的线速度相同 B.玻璃盘的转动方向与摇把转动方向相反 C.P 点的线速度大小约为 1.6 m/s D.摇把的转速约为 400 r/min
第3讲 圆周运动
一、匀速圆周运动及其描述 1.匀速圆周运动 (1)速度特点:速度的大小不变,方向始终与半径__垂__直__。 (2)性质:加速度大小不变,方向总是指向__圆__心__的变加速曲线运动。
2.描述匀速圆周运动的物理量
物理量
定义、意义
公式、单位
描述做圆周运动的物体沿圆弧
线速度 运动_快__慢___的物理量(v) 描述物体绕圆心_转__动__快___慢__的
解析:线速度的方向沿曲线的切线方向,由题图可知,P、Q 两点的线速度的方 向一定不同,故 A 错误;若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动 转动,从动轮逆时针转动,故 B 正确;玻璃盘的直径是 30 cm,转速是 100 r/min, 所以线速度 v=ωr=2nπr=2×16000×π×02.3 m/s=0.5π m/s≈1.6 m/s,故 C 正确;
研清微点1 圆周运动的向心力来源分析
1. (多选)如图所示,长为L的细绳一端固定,另一端系一质量为m
的小球。给小球一个合适的初速度,小球便可在水平面内做匀
速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的
夹角为θ。下列说法中正确的是

高考物理大一轮复习 第四章 曲线运动教师用书-人教版高三全册物理教案

高考物理大一轮复习 第四章 曲线运动教师用书-人教版高三全册物理教案

第四章 曲线运动考 纲 要 求考 情 分 析运动的合成与分解Ⅱ 平抛运动的规律及其研究方法,圆周运动的角速度、线速度和向心加速度等是本章的命题热点,题型有选择题,也有计算题。

突出物理与现代科技、生产、生活的结合,与牛顿运动定律、机械能守恒等内容综合命题的可能性也较大。

抛体运动Ⅱ 匀速圆周运动、角速度、线速度、向心加速度Ⅰ 匀速圆周运动的向心力 Ⅱ 离心现象 Ⅰ第20课时 运动的合成与分解(双基落实课)[命题者说] 合成和分解是研究曲线运动的基本方法,因此高考常对本课时进行单独命题,题型一般为选择题。

复习本课时时,要注意理解规律,并掌握两种模型:小船过河、关联速度问题。

一、物体做曲线运动的条件与轨迹分析(1)速度的方向:质点在某一点的速度方向沿曲线在这一点的切线方向。

(2)运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动。

(3)曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上。

2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹〞侧。

3.速率变化情况判断(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小;(3)当合外力方向与速度方向垂直时,物体的速率不变。

[小题练通]1.判断正误(1)速度发生变化的运动,一定是曲线运动。

(×)(2)做曲线运动的物体加速度一定是变化的。

(×)(3)做曲线运动的物体加速度可以为零。

(×)(4)曲线运动是变速运动。

(√)2.一个物体在F1、F2、F3、…、F n共同作用下做匀速直线运动,假设突然撤去外力F2,而其他力不变,那么该物体( )A.可能做曲线运动B.不可能继续做直线运动C.一定沿F2的方向做直线运动D.一定沿F2的反方向做匀减速直线运动解析:选A 根据题意,物体开始做匀速直线运动,物体所受的合力一定为零,突然撤去F2后,物体所受其余力的合力与F2大小相等、方向相反,而物体速度的方向未知,故有很多种情况:假设速度和F2在同一直线上,物体做匀变速直线运动,假设速度和F2不在同一直线上,物体做曲线运动,A正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三一轮复习——圆周运动一.公式a) r v •=ωb) ωπ2T =c) r T4r r v a 2222πω=== d) r T4m r m r v m F 2222πω===合 二.思路a) 与力无关——运动i. 皮带、共轴1. 皮带——线速度相等2. 共轴——角速度相等ii. 相遇追及、周期性b) 与力有关——受力分析i.找对象——做圆周运动的物体 ii. 画受力图——G->F 弹->f->F 外->aiii. 正交分解1. 建系:让尽可能多的力(包括a )落在坐标轴上,通常以a 为x 轴,垂直a 为y 轴2. 分解:把不在坐标轴上的力分解到坐标轴上(通常与第三步一起完成)3. 方程:Fx=ma ,Fy=0三.题型a)与力无关i.皮带、共轴1.例1 图示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.下列说法不正确的是( C )A.a、d两点加速度之比为 1:1B.a、c两点角速度之比为 2:1C.b、c两点线速度之比为 2:1D.b、c两点角速度之比为 1:12.练1-1 如图所示,A、B轮通过皮带传动,A、C轮通过摩擦传动,半径R A=2R B=3R C,各接触面均不打滑,则A、B、C三个轮的边缘点的线速度和角速度之比分别为( B )A.v A:v B:v C=1:2:3,ωA:ωB:ωC=3:2:1B.v A:v B:v C=1:1:1,ωA:ωB:ωC=2:3:6C.v A:v B:v C=1:1:1,ωA:ωB:ωC=1:2:3D.v A:v B:v C=3:2:1,ωA:ωB:ωC=1:1:13.练1-2 如图所示,自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A,如图所示.当自行车正常骑行时A、B、C三轮边缘的向心加速度的大小之比a A:a B:a C等于( C )A.1:1:8B.4:1:4C.4:1:32D.1:2:4ii.相遇追及、周期性1.例1 行星冲日太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。

当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称之为“行星冲日”。

据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日。

已知地球及各地外行星绕太阳运动的轨道半径如地球火星木星土星天王星海王星轨道半径 1 1.5 5.2 9.5 19 30下表所示,则下列判断正确的是(BD )A .各地外行星每年都会出现冲日现象B .2015年内一定会出现木星冲日C .天王星相邻两次冲日的时间间隔为土星的一半D .地外行星中,海王星相邻两次冲日的时间间隔最短b) 与力有关——受力分析i. 普通1. 例1 如图所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( D )A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C .悬挂A 、B 的缆绳与竖直方向的夹角相等D .悬挂A 的缆绳所受的拉力小于悬挂B 的缆绳所受的拉力2. 练1-1 如图所示,在竖直平面内,滑道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上.若小滑块第一次由A 滑到C ,所用的时间为t 1,第二次由C 滑到A ,所用的时间为t 2,小滑块两次的末速度大小相同,初速度大小分别为v 1、v 2,且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定.则( B )A .v 1<v 2B .v 1>v 2C .t 1=t 2D .t 1<t 23. 练1-2 如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为T ,小球在最高点的速度大小为v ,其T ﹣﹣v 2图象如图乙所示,则( BD )A .轻质绳长为b amB .当地的重力加速度为m aC .当v 2=c 时,轻质绳的拉力大小为a b a c D .只要v 2≥b ,小球在最低点和最高点时绳的拉力差均为6aii. 临界1. 例1 如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r ,一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r ,赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max ,选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( ACD )A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等课堂小测1. 一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,a 、b 两点的位置如图所示,则偏心轮转动过程中a 、b 两质点 ( C )A .线速度大小相等B .向心力大小相等C .角速度大小相等D .向心加速度大小相等2. 小球质量为m ,用长为L 的轻质细线悬挂在O 点,在O 点的正下方0.5L 处有一钉子P ,把细线沿水平方向拉直,如图所示,无初速度地释放小球,当细线碰到钉子的瞬间,设线没有断裂,则下列说法正确的是( D )A .小球的角速度突然变小B .小球的瞬时速度突然增大C .小球的向心加速度不变D .小球对悬线的拉力突然增大3. 两根长度不同的细线下面分别悬挂两个小球,细线上端固定在同一点,若两个小球以相同的角速度,绕共同的竖直轴在水平面内做匀速圆周运动,则两个摆球在运动过程中,相对位置关系示意图正确的是( B )A .B .C .D .4. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为23,(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m/s 2,则ω的最大值是( C )A .5rad/sB.3rad/s C.1.0rad/s D.0.5rad/s。

课后练习一1. 如图所示,一种向自行车车灯供电的小发电机的上端有一半径R 0=1.0cm 的摩擦小轮,小轮与自行车车轮的边缘接触,当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力,自行车车轮的半径R 1=35cm ,小齿轮的半径R 2=4.0cm ,大齿轮的半径R 3=10.0cm .则大齿轮和摩擦小轮的角速度之比为(摩擦小轮与自行车车轮之间无相对滑动)( B )A .1:175B .2:175C .4:175D .1:1402. 无级变速是在变速范围内任意连续地改变转速,性能优于传统的档位变速器.如图是截锥式无级变速模型示意图,两个锥轮中间有一个滚轮,主动轮、滚轮、从动轮之间靠着彼此之间的摩擦力带动.当位于主动轮与从动轮之间的滚轮从左向右移动时从动轮转速降低,滚轮从右向左移动时从动轮转速增加.当滚轮位于主动轮直径D 1,从动轮直径D 2的位置上时,主动轮转速n 1,从动轮转速n 2之间的关系是( D )A .1212n n D D =B .122212D n n D =C .1122D n n D = D .1212D n n D = 3. 为了测定子弹的飞行速度,在一根水平放置的轴杆上固定着两个薄圆盘A 、B ,A 、B 平行且相距2m ,轴杆的转速为60r/s ,子弹穿过两盘留下两个弹孔a 、b ,测得两弹孔所在的半径间的夹角为30°,如图所示,则该子弹的速度可能是( D )A .300m/sB .720m/sC .1080m/sD .1440m/s4. 如图所示,两根长度不同的细线分别系有两个完全相同的小球,细线的上端都系于O 点.设法让两个小球在同一水平面上做匀速圆周运动.已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是( C )A .细线L 1和细线L 2所受的拉力大小之比为3:3B .小球m 1和m 2的角速度大小之比为3:1C .小球m 1和m 2的向心力大小之比为3:1D .小球m 1和m 2的线速度大小之比为1:35. 质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图所示,则杆的上端受到的作用力大小为( A )A .24222g m R m ω+B .24222-g m R m ωC .R m 2ωD .不能确定 6. 如图所示,两个可视为质点的、相同的木块a 和B 放在转盘上且木块a 、B 与转盘中心在同一条直线上,两木块用长为上的细绳连接,木块与转盘的最大静摩擦力均为各自重力的k 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动.开始时,绳恰好伸直但无弹力,现让该装置从静止转动,角速度缓慢增大,以下说法不正确的是( D )A .当ω>Lkg 32时,A .B 会相对于转盘滑动 B .当ω>Lkg 2时,绳子一定有弹力 C .ω在0<ω<L kg 32范围内增大时,A 所受摩擦力一直变大 D .ω在L kg 2<ω<Lkg 32范围内增大时,B 所受摩擦力变大 7. 如图所示,半径分别为R 、2R 的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m 的小物块甲放置在大圆盘上距离转轴R 处,质量为2m 的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度ω转动时,两物块均相对圆盘静止,下列说法正确的是( B )A .二者线速度大小相等B .甲受到的摩擦力大小为4m 2R ωC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心.课后练习二1. 明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图),记录了我们祖先的劳动智慧.若A 、B 、C 三齿轮半径的大小关系如图,则( D )A .齿轮A 的角速度比C 的大B .齿轮A 与B 角速度大小相等C .齿轮B 与C 边缘的线速度大小相等D .齿轮A 边缘的线速度比C 边缘的大2. 某种变速自行车,有六个飞轮和三个链轮,如图所示,链轮和飞轮的齿数如表所示,前后轮直径为660mm ,人骑该车行进速度为4m/s 时,脚踩踏板做匀速圆周运动的角速度最小值约为( B )A .1.9rad/sB .3.8rad/sC .6.5rad/sD .7.1rad/s3. 半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点,在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示,若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度h= 222g v R ,圆盘转动的角速度大小ω= R v 2n (n=1、2、3…); 4. 如图甲所示,一轻杆一端固定在O 点,另一端固定一小球,在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F N ,小球在最高点的速度大小为v ,F N ﹣v 2图象如图乙所示.下列说法错误的是( AC )A .当地的重力加速度大小为b R B .小球的质量为b R a C .当v 2=c 时,杆对小球弹力方向向上 D .若v 2=2b ,则杆对小球弹力大小为a5. “飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图所示,表演者沿表演台的侧壁做匀速圆周运动.若表演时杂技演员和摩托车的总质量不变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H ,侧壁倾斜角度α不变,则下列说法中正确的是( B )名称链轮 飞轮 齿数N/个 48 38 28 15 16 18 21 24 28A .摩托车做圆周运动的H 越高,向心力越大B .摩托车做圆周运动的H 越高,线速度越大C .摩托车做圆周运动的H 越高,向心力做功越多D .摩托车对侧壁的压力随高度H 变大而减小6. 如图所示,在竖直放置的离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个支承轮上靠摩擦带动,支承轮与管状模型间不打滑.铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时支承轮转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,支承轮的半径为r ,重力加速度为g ,则支承轮转动的最小角速度ω为( B )A .R gB .r gRC .R g2 D .2rgR 7. (多选)如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l .木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g ,若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度.下列说法正确的是( AB )A .b 一定比a 先开始滑动B .ω=lkg 2是b 开始滑动的临界角速度 C .a 、b 所受的摩擦力始终相等D .当ω=lkg 32时,a 所受摩擦力的大小为kmg 。

相关文档
最新文档