人教版九年级数学上册:24.4+弧长和扇形面积(含答案)

合集下载

人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)

人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)

24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。

任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。

5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。

人教版九年级数学上册24.4弧长和扇形面积教案

人教版九年级数学上册24.4弧长和扇形面积教案
3.重点难点解析:在讲授过程中,我会特别强调弧长和扇形面积的计算公式这两个重点。对于难点部分,如弧度的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧长和扇形面积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用硬纸板制作一个扇形,测量并计算其面积。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了弧长和扇形面积的基本概念、计算公式以及它们在实际中的应用。通过实践活动和小组讨论,我们加深了对弧长和扇形面积的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上两点间的弧与半径的对应圆心角的比值;扇形面积是由圆心、圆上两点和这两点间的弧所围成的图形。它们在工程、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算一个半圆的弧长和面积,通过这个案例,我们可以了解弧长和扇形面积在实际中的应用,以及它们如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《弧长和扇形面积》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否遇到过需要计算圆的一部分长度或面积的情况?”比如,设计一个扇形花园,我们该如何计算它的面积?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索弧长和扇形面积的奥秘。

2020年人教版九年级数学上册24.4《弧长和扇形面积》随堂练习(含答案)

2020年人教版九年级数学上册24.4《弧长和扇形面积》随堂练习(含答案)

2020年人教版九年级数学上册 24.4《弧长和扇形面积》随堂练习第1课时 弧长和扇形面积基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为( ) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为( )A .6B .9C .18D .36 3.一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为( )A .60°B .120°C .150°D .180° 4.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .π cmB .2π cmC .3π cmD .5π cm5.如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于( )A.2π3B.π3C.23π3D.3π3知识点2 扇形的面积公式及应用6.半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π7.一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是( ) A .1 cm B .3 cm C .6 cm D .9 cm8.已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于 cm .9.一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为 度.10.如图,△ABC 是⊙O 内接正三角形,⊙O 的半径为3,则图中阴影部分面积是 .11.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.易错点 忽视题中条件12.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为 cm 2.中档题13.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为( )A.π3B.π2 C .Π D .2π14.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2C .(6π-923)米2D .(6π-93)米15.如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分面积是 cm 2.16.图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为 cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动. (1)请在图1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).18.如图,已知PA为⊙O的切线,A为切点,B为⊙O上一点,∠AOB=120°,过点B作BC ⊥PA于点C,BC交⊙O于点D,连接AB,AD.(1)求证:OD平分∠AOB;(2)若OA=2 cm,求阴影部分的面积.综合题19.“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是( )A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱全面积是 cm 2(结果保留π). 知识点2 圆锥的侧面积与全面积3.已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于( )A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥底面半径是( ) A.12 B .1 C. 2 D.325.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( ) A .1.5 B .2 C .2.5 D .36.如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是( )A .12πB .15πC .24πD .30π7.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( ) A .120° B .180° C .240° D .300° 8.若一个圆锥的底面圆半径为3 cm ,其侧面展开图圆心角为120°,则圆锥母线长是 cm. 9.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是 cm.(结果保留π)10.如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥侧面积为 .11.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形,求这个圆锥的侧面积及高.易错点考虑不全面导致漏解12.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为.中档题13.如图,Rt△ABC中,∠B=90°,AB=2,BC=1,把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )A.l1∶l2=1∶2,S1∶S2=1∶2B.l1∶l2=1∶4,S1∶S2=1∶2C.l1∶l2=1∶2,S1∶S2=1∶4D.l1∶l2=1∶4,S1∶S2=1∶414.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( )A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm215.如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A.10 cm B.15 cmC.10 3 cm D.20 2 cm16.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为 cm2.17.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC围成一个圆锥的侧面,则这个圆锥底面圆的半径是.18.如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为 (结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O,要从中剪出一个圆心角是120°的扇形ABC,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC铁皮围成一个圆锥,该圆锥底面圆的半径是多少?综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BCAC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)= ,T(120°)= ,T(A)的取值范围是 ;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)参考答案基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为(D) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为(C)A .6B .9C .18D .36 3.(自贡中考)一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为(B)A .60°B .120°C .150°D .180° 4.(兰州中考)如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C) A .π cm B .2π cm C .3π cm D .5π cm5.(南宁中考)如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于(A) A.2π3 B.π3 C.23π3 D.3π3知识点2 扇形的面积公式及应用6.(宜宾中考)半径为6,圆心角为120°的扇形的面积是(D) A .3π B .6π C .9π D .12π7.(维吾尔中考)一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是(B) A .1 cm B .3 cm C .6 cm D .9 cm8.(怀化中考)已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于10π3__cm . 9.(广西中考)一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为40度.10.(常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是3π. 11.(无锡中考)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.解:(1)∵AB 是⊙O 的直径, ∴∠C=90°,∠BDA=90°. ∵BC=6 cm ,AC=8 cm , ∴AB=62+82=10(cm). ∵∠ABD=45°.∴△ABD 是等腰直角三角形. ∴BD=AD=22AB=5 2 cm. (2)连接DO ,∵△ABD 是等腰直角三角形,OB=OA , ∴∠BOD=90°. ∵AB=10 cm , ∴OB=OD=5 cm.∴S 阴影=S 扇形OBD -S △BOD =90π×52360-12×52=(25π4-252)cm 2.易错点 忽视题中条件12.(教材P116习题T8变式)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为350πcm 2. 02 中档题13.(山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为(C)A.π3B.π2C .ΠD .2π14.(山西中考)如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2 C .(6π-923)米2 D .(6π-93)米15.(盘锦中考)如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C 为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分的面积是(23+2-32π) cm 2.16.(山西中考)图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为π cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动.(1)请在图1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).解:(1)如图.(2)光点P 经过的路径总长为4×90π×3180=6π.18.(山西中考适应性考试)如图,已知PA 为⊙O 的切线,A 为切点,B 为⊙O 上一点,∠AOB=120°,过点B 作BC ⊥PA 于点C ,BC 交⊙O 于点D ,连接AB ,AD.(1)求证:OD 平分∠AOB ;(2)若OA=2 cm ,求阴影部分的面积.解:(1)证明:∵PA 为⊙O 的切线,∴OA ⊥PA.∵BC ⊥PA ,∴∠OAP=∠BCA=90°.∴OA ∥BC.∴∠AOB +OBC=180°.∵∠AOB=120°,∴∠OBC=60°.∵OB=OD ,∴△OBD 是等边三角形.∴∠BOD=60°.∴∠AOD=∠BOD=60°.∴OD 平分∠AOB.(2)∵OA ∥BC ,∴点O 和点A 到BD 的距离相等.∴S △ABD =S △OBD .∴S 阴影=S 扇形OBD .∴S 阴影=60π×4360=23π(cm 2).03 综合题19.(山西中考命题专家原创)“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积01 基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是(B)A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.(来宾中考)一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱的全面积是78πcm 2(结果保留π).知识点2 圆锥的侧面积与全面积3.(无锡中考)已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于(C)A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.(德阳中考)已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥的底面半径是(B)A.12B .1 C. 2 D.325.(嘉兴中考)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为(D)A .1.5B .2C .2.5D .36.(宁夏中考)如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(B)A .12πB .15πC .24πD .30π7.(齐齐哈尔中考)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是(A) A .120° B .180°C .240°D .300°8.(孝感中考)若一个圆锥的底面圆半径为3 cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是9cm.9.(广东中考)如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是10πcm.(结果保留π)10.(聊城中考)如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥的侧面积为2π.11.已知圆锥的侧面展开图是一个半径为12 cm ,弧长为12π cm 的扇形,求这个圆锥的侧面积及高.解:侧面积为:12×12×12π=72π(cm 2). 设底面半径为r ,则有2πr=12π,∴r=6 cm.由于高、母线、底面半径恰好构成直角三角形,根据勾股定理可得,高为122-62=63(cm).易错点 考虑不全面导致漏解12.(黄冈中考)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为π或4π.02 中档题13.(杭州中考)如图,Rt △ABC 中,∠B=90°,AB=2,BC=1,把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的底面圆的周长分别记作l 1,l 2,侧面积分别记作S 1,S 2,则(A)A .l 1∶l 2=1∶2,S 1∶S 2=1∶2B .l 1∶l 2=1∶4,S 1∶S 2=1∶2C .l 1∶l 2=1∶2,S 1∶S 2=1∶4D .l 1∶l 2=1∶4,S 1∶S 2=1∶414.(绵阳中考)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm ,圆柱体部分的高BC=6 cm ,圆锥体部分的高CD=3 cm ,则这个陀螺的表面积是(C)A .68π cm 2B .74π cm 2C .84π cm 2D .100π cm 215.(十堰中考)如图,从一张腰长为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(D)A .10 cmB .15 cmC .10 3 cmD .20 2 cm16.(恩施中考)一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15πcm 2.17.(苏州中考)如图,AB 是⊙O 的直径,AC 是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC 围成一个圆锥的侧面,则这个圆锥底面圆的半径是12.18.如图,Rt △ABC 中,∠ACB=90°,AC=BC=22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为82π(结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O ,要从中剪出一个圆心角是120°的扇形ABC ,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥底面圆的半径是多少?解:(1)连接OA ,OB.由∠BAC=120°,可知AB=12米,点O 在扇形ABC 的BC ︵上. ∴扇形ABC 的面积为120360π×(12)2=π12(平方米). ∴被剪掉阴影部分的面积为π×(12)2-π12=π6(平方米). (2)由2πr=120180π×12,得r=16. 即圆锥底面圆的半径是16米. 03 综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BC AC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)=2,T(120°)=3,T(A)的取值范围是0<T(A)<2;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)解:∵圆锥的底面直径PQ=14,∴圆锥的底面周长为14π,即侧面展开图扇形的弧长为14π.设扇形的圆心角为n°,则n×π×18180=14π,解得n=140.∵T(70°)≈0.87,∴蚂蚁爬行的最短路径长为0.87×18≈15.7.。

人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案

人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案

人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。

遵义市人教版九年级数学上名师测控练习24.4.1弧长和扇形面积(含答案)

遵义市人教版九年级数学上名师测控练习24.4.1弧长和扇形面积(含答案)

达标训练 基础·巩固·达标1.在半径为1的⊙O 中,1°的圆心角所对的弧长是__________. 提示:半径为1的⊙O 的周长为2π,所以1°的圆心角所对的弧长是︒∏180.答案:︒∏1802.⊙O 中,半径 r =30 cm ,的长度是8π cm ,则所对的圆心角是_________.提示:利用公式l=180rn ∏解方程. 答案:483.在半径为6 cm 的圆中,圆心角为40°的扇形面积是__________cm 2.提示:由扇形面积公式直接可得.答案:4π4.扇形的面积是5π cm 2,圆心角是72°,则扇形的半径为___________cm. 提示:因为S 扇形=360n πR 2,所以R=∏∏⨯=∏725360360n s =5(cm).答案:55.一段铁路弯道成圆弧形,圆弧的半径是2 km ,一列火车以每小时28 km 的速度经过10s________度.(π取3.14,结果精确到0.1度)提示:由弧长公式得28×1802360010⨯∏n =,解得n=∏7≈2.2.答案:2.26.在半径为1的⊙O 中,弦AB=1,则A.6∏B.4∏ C.3∏ D.2∏提示:易知△OAB 是等边三角形,故圆心角是60°.答案:C7.已知100°的圆心角所对的弧长l =5π,则该圆的半径rA.7B.8C.9D.10提示:利用l=180rn ∏解方程即可. 答案:C8.如果扇形的圆心角为150°,扇形面积为240π cm 2A.5π cmB.10π cmC.20π cmD.40πcm提示:由360150πr 2=240π,解得r=24.又由S=21lr ,得240π=21l ×24,得l=20πcm.答案:C9.如图24-4-6,正三角形ABC 内接于⊙O ,边长为4 cm ,求图中阴影部分的面积.图24-4-6.提示:图中阴影部分为弓形,因此应求出扇形AOC 的面积和△AOC 的面积,所以关键是求圆心角及⊙O 的半径.本题考查组合图形的求法,扇形面积公式等. 解:连接BO ,并延长交AC 于E ,则BE ⊥AC ,AE =21AC =2 cm ,连接OA 、OC . ∵△ABC 为正三角形,∴∠AOC =3360︒=120°,∠AOE =60°. 在Rt △AEO 中,OA =33423260sin ==︒AE (cm ),OE =21OA =332(cm ), ∴S 扇形AOC =33433242121,91633436012036022=⨯⨯=⋅=∏=⎪⎪⎭⎫ ⎝⎛⋅∏=∏∆OE AC S R n AOC . ∴S 阴影=S 扇形AOC -S △AOC =⎪⎪⎭⎫ ⎝⎛-∏334916cm 2.10.如图24-4-7,等腰直角三角形ABC 的斜边AB =4,O 是AB 的中点,以O 为圆心的半圆分别与两直角边相切于点D 、E ,求图中阴影部分的面积.图24-4-7提示:阴影部分面积可以看成是一个小直角三角形与一个扇形面积的差的2倍;或者是大直角三角形与半圆面积的差.解法一:由题意知,AC =AB ·cos45°=22,连接OE ,则OE ⊥BC . ∵∠C =90°,∴OE ∥AC .又∵OA =OB ,∴OE =BE =EC =21AC =2. ∴S 阴=2(S △OBE -S 扇形OEF )=2-2∏. 解法二:由对称性知,S 阴=41(S 正方形-S ⊙O ),∴S 阴=41[(22)2-π(2)2]=2-2∏.综合·应用·创新11.(经典回放)如图24-4-8,在两个同心圆中,两圆半径分别为2、1,∠AOB=120°,A.4πB.2πC.43πD.π图24-4-8 图24-4-9提示:S 阴影=360240π(R 2-r 2)=32π×(4-1)=2π.答案:B12.如图24-4-9,是赛跑跑道的一部分,它是由两条直线和中间半圆形弯道组成的.若内外两条跑道的终点在一直线上,则外跑道起点往前移,才能使两跑道有相同的长度,如果跑道宽1.22米,则外跑道的起点应前移_________米.(π取3.14,结果精确到0.01米) 提示:本题是一个实际应用题,应将其转变为几何图形.事实上,外跑道中间的弯道比内跑道的弯道长的长度,即为外跑道的起点应前移的长度.理解题意,求出两弯道的长度差即可.πR 外-πR 内=π(R 外-R 内)=1.22π≈3.83(米),所以外跑道的起点应前移3.83米. 回顾·热身·展望13.(经典回放)半径为3 cm ,圆心角为120A.6π cm 2B.5π cm 2C.4π cm 2D.3π cm 2提示:直接利用扇形面积公式计算.答案:D14. 如果圆锥底面圆的半径是8,母线的长是20,那么这个圆锥侧面展开图扇形的圆心角的度数是___________. 提示:利用扇形面积公式.答案:144°15.( 甘肃平凉模拟) 如图24-4-10,三个圆是同心圆,图中阴影部分的面积为__________.图24-4-10提示:三个阴影部分可拼成一个圆心角为90°,半径为1的扇形,求这个扇形的面积即可.答案:416.(辽宁大连模拟) 图24-4-11,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是_________.图24-4-11提示:因为在两个同心圆中,三条直径把大圆分成相等的六部分,则把阴影部分拼在一起构成一个大半圆(如图),而大圆的半径为2,所以阴影部分的面积为:21π×22=2π.答案:2π17.(福建泉州省级课改试验区模拟 )下面让我们来探究生活中有关粉刷墙壁时,刷具扫过面积的问题(π≈3.14)(如图24-4-12).(1)甲工人用的刷具是一根细长的棍子(如图①),长度AB 为20 cm (宽度忽略不计),他用刷具绕A 点旋转90(2)乙工人用的刷具形状是圆形(如图②),直径CD 为20 cm ,点O 、C 、D 在同一直线上,OC =30 cm ,他把刷具绕O 点旋转90°,则刷具扫过的面积是多少?图24-4-12提示:甲工人刷的面积是一个半径为20 cm ,圆心角为90°的扇形的面积;乙工人刷的面积是两个半径分别为50 cm 和30 cm ,圆心角为90°的扇形面积的差.解:(1)甲工人用刷具扫过的面积是:36020902⨯∏=314(cm 2).(2)乙工人用刷具扫过的面积是:()3603090-36030209022⨯∏+∏=1 256(cm 2).。

人教版九年级数学上册第24章 圆 弧长和扇形面积

人教版九年级数学上册第24章 圆  弧长和扇形面积
24.4 弧长和扇形面积
第1课时 弧长和扇形面积
1.通过自主探究得出弧长的计算公式,体验从特殊到一般的学习
方法,发展学生的推理能力.
2.通过小组讨论推导出扇形面积公式,会推导弧长和扇形面积之
间的关系,学会利用类比的思想方法解决问题.
3.通过练习恰当熟练地运用公式计算弧长、扇形的面积,增强学
生的数学运用能力.
3
4.试着总结圆心角为 ᵒ的扇形面积公式.
扇形 =


=






教师讲评
知识点1.弧长(重点)

n°的圆心角所对的弧长为l= .

知识点2.扇形面积(重点)
1.扇形:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.如
图,黄色部分是一个扇形,记作扇形OAB.
2.扇形面积:
旧知回顾
还记得小学学过的圆的周长和面积公式吗?
(C=πd=2πr,S=πr²)
“欲穷千里目,更上一层楼”是唐朝诗人王之涣在《登鹳雀楼》一诗中的诗句
,那么同学们想过没有,如果真的要看千里之遥,要“站”多高呢?
如图,地球上B、C两点间的距离指的是球面上两点间的距离,也就是什么的
长?(弧BC的长)
假设弧BC的长为500km,如果地球的半径是6400km,你能算出视线AC的
(2)由(1)易得 =

,

=

, ∠

= °.
∴阴影部分的面积=扇形OAB的面积 −△ 的面积
=
×





− × ×

×



= −

.

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。

24.4 弧长和扇形面积 (第2课时)九年级上册数学人教版

24.4 弧长和扇形面积 (第2课时)九年级上册数学人教版

圆锥的侧面积计算公式的推导
1
(l为弧长,R
lR 为扇形的半径)
∵ S侧
2
又∵
1
S侧 2r l.
2

l

展开图
l
o
r
(r表示圆锥底面的半径, l 表示圆锥的母线长 )
圆锥的全面积计算公式

素养考点 1
圆锥有关概念的计算
例1 一个圆锥的侧面展开图是一个圆心角为120°、弧长为
20 的扇形,试求该圆锥底面的半径及它的母线的长.
2
2
是 15πcm ,全面积是 24πcm .
能力提升题
如图,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求
圆锥全面积.
解:∵AB=AC,∠BAC=60°,
∴△ABC是等边三角形.
∴AB=BC=AC=8cm.
∴S侧=πrl=π×4×8=32π(cm2),
S底=πr2=π×4×4=16π(cm2),
∴=360°×

l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
∵∠BAC=90°,AB=AC,
∴AB=AC= 10
∴S扇形=


B
O
2.

90 10 2
360

人教版九年级上册数学 第24章《圆》讲义 第17讲 正多边形和圆、弧长和扇形面积(有答案)

人教版九年级上册数学 第24章《圆》讲义 第17讲  正多边形和圆、弧长和扇形面积(有答案)

第17讲 正多边形和圆、弧长和扇形面积1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB=;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =1、扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径l :扇形弧长 S :扇形面积lO2、圆柱侧面展开图:2S S S =+侧表底=222rh r ππ+C 1D 13、圆锥侧面展开图S S S =+侧表底=2Rr r ππ+考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( ) A .10cm B .5cm C .cmD .cm例2A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a ,这个圆的周长为 .例5、如图,已知边长为2cm 的正六边形ABCDEF ,点A 1,B 1,C 1,D 1,E 1,F 1分别为所在各边的中点,求图中阴影部分的总面积S .1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.1、若一个扇形的面积是相应圆的A.150°B.120°C.90°D.60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为()A.π+1 B.2π C.4 D.63、如图,O为圆心,半径OA=OB=r,∠AOB=90°,点M在OB上,OM=2MB,用r 的式子表示阴影部分的面积是.4、如图,直角△ABC的直角顶点为C,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC扫过的面积是.(结果中可保留π)5、如图,四边形ABCD是长方形,AB=a,BC=b(a>b),以A为圆心AD长为半径的圆与CD交于D,与AB交于E,若∠CAB=30°,请你用a、b表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm,母线长为5cm,则圆锥的侧面积是()A.16πcm2 B.20πcm2 C.28πcm2 D.36πcm2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m,母线长是3.2m,铺满毡房顶部至少需要防雨布(精确到1m2)()A.58 m2 B.29 m2 C.26 m2 D.28 m2例3、扇形的圆心角为150°,半径为4cm,用它做一个圆锥,那么这个圆锥的表面积为 cm2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得4、如图,有一边长为4的等边三角形纸片,要从中剪出三个面积相等的扇形,那么剪下的其中一个扇形ADE(阴影部分)的面积为;若用剪下的一个扇形围成一个圆锥,该圆锥的底面圆的半径r是.5(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.1、如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=cm,则这个八边形的面积等于()A.7cm2 B.8cm2 C.9cm2 D.14cm22、起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°3、如果一个圆锥的轴截面是等边三角形,它的边长为4cm,那么圆锥的全面积是()A.8πcm2 B.10πcm2 C.12πcm2 D.9πcm24、如图,OAB是以6cm为半径的扇形,AC切弧AB于点A交OB的延长线于点C,如果弧AB的长等于3cm,AC=4cm,则图中阴影部分的面积为()A.15cm2 B.6cm2 C.4cm2 D.3cm25、如图,⊙O1,⊙O2,⊙O3,⊙O4,⊙O的半径均为2cm,⊙O与⊙O1,⊙O3相外切,⊙O与⊙O2,⊙O4相外切,并且圆心分别位于两条互相垂直的直线L1,L2上,连接O1,O2,O3,O4得四边形O1O2O3O4,则图中阴影部分的面积为()平方厘米.A.32 B.32-8π C.16-4π D.8π6、如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在⊙O及半径OM、OP上,并且∠POM=45°,则AB的长为.7、将一块三角板和半圆形量角器按图中方式叠放,点A、O在三角板上所对应的刻度分别是8cm、2cm,重叠阴影部分的量角器弧所对的扇形圆心角∠AOB=120°,若用该扇形AOB 围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为 cm.8、如图,已知正n边形边长为a,边心距为r,求正n边形的半径R、周长P和面积S.9、如图,在正方形ABCD中有一点P,连接AP、BP,旋转△APB到△CEB的位置.(1)若正方形的边长是8,PB=4.求阴影部分面积;(2)若PB=4,PA=7,∠APB=135°,求PC的长.10、如图,有一直径为1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC (1)找到圆形铁皮的圆心O(要求尺规作图,保留作图痕迹);(2)求剪掉部分即阴影部分的面积(结果保留π);(3)用所留的扇形铁皮围成一个圆锥,该圆锥的底面半径是多少?11、如图,在平面直角坐标系中,点A在x轴上,△ABO是直角三角形,∠ABO=90°,点B的坐标为(-1,2),将△ABO绕原点O顺时针旋转90°得到△A1B1O.(1)在旋转过程中,点B所经过的路径长是多少?(2)分别求出点A1,B1的坐标;(3)连接BB1交A1O于点M,求M的坐标.1、阅读下列材料,然后解答问题.经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON 分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.2、如图中有四个面积相同的圆,每个圆的面积都记为S,∠ABC的两边分别经过圆心O1、O2、O3和O4,四个圆盖的面积为5(S-1),∠ABC内部被圆盖住的面积为8,阴影部分的面积为S1、S2、S3满足关系式:.求S的值.3、铁匠王老五要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)请你帮助他算一算可以吗?(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.1、如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°2、如图中,正方形的边长都相等,其中阴影部分面积相等的有()A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(3)(4)3、如图,一块含有30°角的直角三角板ABC,在水平桌面上绕点C接顺时针方向旋转到A′B′C′的位置.若BC=15cm,那么顶点A从开始到结束所经过的路径长为()A.10πcm B.30πcm C.15πcm D.20πcm4、圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是()A.180°B.200°C.225°D.216°5、如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π)()A.B.C.D.6、将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A.4cm B.4cm C.4cm D.2cm7、一元钱的硬币的直径约为24mm,则它完全覆盖住的正三角形的边长最大不能超过 mm(保留根号).8、如图,小明从半径为5cm的圆形纸片中剪下40%圆周的一个扇形,然后利用剩下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为 cm.9、如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图210、如图,以AD 为直径的半圆O 经过点E ,B ,点E 、B 是半圆弧的三等分点,弧BE长为 32,则图中阴影部分的面积为 .11、如图,正方形ABCD 的外接圆为⊙O ,点P 在劣弧CD 上(不与点C 重合). (1)求∠BPC 的度数;(2)若⊙O 的半径为4,求正方形ABCD 的边长.12、“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m ,匀速转动一周需要12min ,小雯所坐最底部的车厢(离地面0.5m ).(1)经过2min 后小雯到达点Q ,如图所示,此时他离地面的高度是多少?(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m 的空中?13、如图,一个圆锥的高为3求:(1)圆锥的母线长与底面半径之比;(2)锥角的大小(锥角为过圆锥高的平面上两母线的夹角);(3)圆锥的侧面积.14、如图,已知△ABC,AC=BC=4,O是AB的中点,⊙O分别与AC、BC相切于点M、N,与AB交于E、F,连ME并延长交BD的延长线于D,∠1=∠2.(1)求证:∠C=90°;(2)设图中阴影部分的面积分别为S1、S2,求参考答案第17讲正多边形和圆、弧长和扇形面积考点1、正多边形和圆的求解例1、D例2、B例3、例4、例5、1、B2、B3、4、5、解答(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4-t,在△ABP和△DEQ中,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°-30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.故答案为2s,0s或4s.考点2、弧长的计算例1、C例2、C例3、例4、例5、1、D2、D3、4、5、考点3、扇形面积的计算例1、A例2、A例3、例4、例5、1、C2、C3、4、5、考点4、圆锥侧面积计算例1、B例2、B例3、例4、例5、1、B2、B3、4、5、1、A2、C3、C4、D5、B6、7、8、9、10、11、1、2、3、而制作这样的圆锥实际需要正方形纸片的对角线长为1、A2、C3、D4、D5、A6、B7、8、9、10、11、12、13、14、。

人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)

人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)


1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面

24.4 弧长和扇形面积 同步练习2024-2025学年九年级上册数学人教版

24.4 弧长和扇形面积 同步练习2024-2025学年九年级上册数学人教版

24.4 弧长和扇形面积同步练习2024-2025学年九年级上册数学人教版第一课时知识点一 弧长的有关计算1. 在半径为1的⊙O 中, 120°的圆心角所对的弧长是 ( ) A.3π B. 3π- C. π D.2π 2. 在半径为2 的⊙O 中,AB 的长为2π,则AB 所对的圆心角 为 ( ) A. 90° B. 45° C. 22.5° D. 180°3.“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”. 若等边△ABC 的边长为3,则该“莱洛三角形”的周长等于 ( ) A. π B. 3π C. 2π D.2π−√34. 如图, 四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°, 则 AĈ的长是( ) A. 2π B. π C. π/2 D. π/3 5. 如图, 在扇形AOB 中, ∠AOB=90°, 点 C 为OA 的中点, CD⊥OA 交 AB ̂于D, 若 BD ̂的长为 13π, 则⊙O 的半径为 .知识点二 扇形面积的有关计算6. 如图, 在⊙O 中, OA=2,∠C=45°, 则图中阴影部分的面积是 .7. 如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC 外接圆的一部分,小正方形的边长为1,图中阴影部分的面积为 ( )A.52π−74 B.52π−72 C.54π−74 D.54π−72 8.(1) 在扇形AOB 中, ∠AOB =75∘,AB̂的长为2.5π, 则⊙O 的半径为 ;9. 如图, AB 是半圆O的直径, 以O为圆心, OC 长为半径的半圆交AB于C, D 两点, 弦AF 切小半圆于点E.已知OA=2, OC=1, 则图中阴影部分的面积是̂所在圆相切于点A, B. 若该10.如图是某款“不倒翁”及其轴截面图, PA, PB 分别与AMB̂的长是 cm.圆半径是18 cm,∠P=50°, 则AMB11. 如图, AB 为⊙O 的直径,点C 为⊙O上一点, CD⊥AD, AD 交⊙O 于E, AC 平分∠BAD.(1) 求证: CD 是⊙O 的切线;(2) 连CE, CE∥AB,AB=4,求图中阴影部分面积.12.如图, 在Rt△ABC 中,∠C=90°, AC=BC, 点O在AB 上, 以O为圆心, OA 为半径的半圆分别交AC, BC, AB 于点 D, E, F, 且点 E 是弧 DF 的中点.(1) 求证: BC 是⊙O 的切线;(2) 若CE=√2,求图中阴影部分的面积(结果保留π).̂的中点, D、E为圆上动点, 且 D、E关于AB 对13. 如图, AB 为⊙O 的直径, 点 C 为AB̂沿AD 翻折交AE 于点F, 使点C 恰好落在直径AB 上点C'处, 若⊙O 的周长为1称,将AD̂的长.0,求AF第二课时知识点一圆锥的展开图与扇形的关系1. 圆锥的母线长为13 cm,底面半径为5cm,则此圆锥的高线为 ( )A. 6 cmB. 8cmC. 10 cmD. 12 cm2. 在半径为50cm的圆形铁皮上剪出一块扇形铁皮,用剩余部分做一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪出的扇形的圆心角度数为 ( )A. 228°B. 144°C. 72°D. 36°3. 现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 ( )A. 4 cmB. 3cmC. 2cmD. 1 cm4. 已知一个圆锥的侧面展开图是一个半径为9,圆心角为120°的扇形,则该圆锥的底面半径等于( ).A. 9B. 27C. 3D. 10知识点二圆锥的侧面积与全面积5. 已知圆锥的底面半径是3,高为4,则这个圆锥的侧面展开图的面积是 ( )A. 12πB. 15πC. 30πD. 24π6. 已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径的比是 .7. 在长方形ABCD 中, AB=16, 如图所示裁出一个扇形ABE, 将扇形围成一个圆锥 (AB 和AE 重合),则此圆锥的底面圆的半径为 ( )A. 4B. 6C. 4√2D. 88. 如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°, AB的长为12πcm, 求该圆锥的侧面积.9. 如图,一个圆锥的高为3√3 cm,侧面展开图是半圆.(1) 求∠BAC 的度数;(2) 求圆锥的侧面积(结果保留π).10. 若一个圆锥的侧面积是底面积的3 倍,则这个圆锥的侧面展开图的圆心角为 ( )A. 60°B. 90°C. 120°D. 180°11. 如图, 用一个半径为30 cm, 面积为300πcm²的扇形铁皮,制作一个无底的圆锥 (不计损耗),则圆锥的底面半径r 为 ( )A. 5cmB. 10 cmC. 20cmD. 5πcm12. 如图,圆锥的底面半径为3cm,母线长为9cm,C 为母线PB 的中点,在圆锥的侧面上, 从A 到C 的最短距离是 cm.13. 如图,已知圆锥的母线AB 长为40cm, 底面半径OB 长为 10 cm, 若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是 cm.14. 如图,有一个直径为1m的圆形铁皮,圆心为O,要从中间剪去一个圆心角为120°的扇形ABC, 且BC经过点O.(1) 求被剪掉阴影部分的面积;(2) 若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥的底面半径是多少?15. 如图1,在正方形铁皮上剪下一个扇形和一个半径为1 cm的圆形,使之恰好围成如图2所示的一个圆锥,求圆锥的高.。

(含答案)九年级数学人教版上册课时练第24章《24.4 弧长和扇形面积》

(含答案)九年级数学人教版上册课时练第24章《24.4 弧长和扇形面积》

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第24章圆24.4弧长和扇形面积一、选择题1.如图,在Rt ABC 中,90ACB Ð=°,AB =2BC =,以点A 为圆心,AC 的长为半径画弧,交AB 于点D ,交AC 于点C ,以点B 为圆心,AC 的长为半径画弧,交AB 于点E ,交BC 于点F ,则图中阴影部分的面积为()A .8p -B .4p -C .24p-D .14p-2.如图,AB 是O 的直径,4,AB C =为半圆AB 的中点,P 为弧AC 上一动点,连接PC 并延长,作BQ PC ^于点Q ,若点P 从点A 运动到点C ,则点Q 运动的路径长为()A .2B .p C D .43.如图,ABC 是等腰直角三角形,90ACB Ð=°,2AC BC ==,把ABC 绕点A 按顺时针方向旋转45°后得到AB C ¢¢△,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是()A .13p B .12πC .p D .2p4.如图,O 内切于边长为2的正方形ABCD ,则图中阴影部分的面积是()A .12π4-B .1π4C .4π-D .11π4-5.如图,正方形ABCD 的边长为8,以点A 为圆心,AD 为半径,画圆弧DE 得到扇形DAE (阴影部分,点E 在对角线AC 上).若扇形DAE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A .B .2CD .16.如图,把直径为60cm 的圆形车轮(O )在水平地面上沿直线l 无滑动地滚动一周,设初始位置的最低点为P ,则下列说法错误的是()A .当点P 离地面最高时,圆心O 运动的路径的长为30cmp B .当点P 再次回到最低点时,圆心O 运动的路径的长为60cmp C .当点P 第一次到达距离地面15cm 的高度时,圆心O 运动的路径的长为7.5cmp D .当点P 第二次到达距离地面30cm 的高度时,圆心O 运动的路径的长为45cmp 7.如图是一圆锥的左视图,根据图中所示数据,可得圆锥侧面展开图的圆心角的度数为()A .60°B .90°C .120°D .135°8.如图所示,矩形纸片ABCD 中,6cm AD =,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()A .24πcmB .25πcmC .26πcmD .28πcm 9.如图,圆锥侧面展开得到扇形,此扇形半径6CA =,圆心角120ACB Ð=°,则此圆锥高OC 的长度是()A .2B .C .D .10.如图,一张扇形纸片OAB ,∠AOB =120°,OA =6,将这张扇形纸片折叠,使点A 与点O 重合,折痕为CD ,则图中未重叠部分(即阴影部分)的面积为()A .B .12p -C .D .6p -二、填空题11.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为6m ,则圆心O 所经过的路线长是____________m .(结果用π表示)12.如图,AC 的半圆O 的一条弦,将弧AC 沿弦AC 为折线折叠后过圆心O ,,则⊙O 的半径为___.13.如图,从一块半径是1m的圆形铁皮上剪出一个圆心角为90°的扇形围成一个圆锥,则这个圆锥的底面半径是______m.14.在如图所示的网格中,每个小正方形的边长均为1,每个小正方形的顶点叫、、都是格点,若图中扇形AOB是一个圆锥的侧面展开图,则该做格点,点O A B圆锥底面圆的半径为_______.15.如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画AC,点P为菱形内一点,连接P A,PB,PC.当BPC为等腰直角三角形时,图中阴影部分的面积为________.三、解答题16.已知,如图,在△ABC中,AB=AC,以腰AB为直径作半圆O,分别交BC,AC于点D、E.(1)求证:BD=DC;(2)若∠BAC=40°,AB=AC=8,求弧求的长.17.如图,点C ,D 是半圆O 上的三等分点,直径8AB =,连接AD ,AC ,作DE AB ^,垂足为E ,DE 交AC 于点F .(1)求证:AF DF =.(2)求阴影部分的面积(结果保留p 和根号)18.如图,直线AB 经过⊙O 上的点C ,直线BO 与⊙O 交于点F 和点D ,OA 与⊙O 交于点E ,与DC 交于点G ,OA =OB ,CA =CB .(1)求证:AB 是⊙O 的切线;(2)若FC ∥OA ,CD =6,求图中阴影部分面积.19.如图,在正方形网格中,ABC 的4个顶点都在格点上,点A 、B 、C 的坐标分别为()2,4-、()2,0-、()4,1-,将ABC 绕着点A 逆时针旋转90°得到11ABC △.(1)画出11AB C △;(2)求点C 走过的路线长.20.如图,在直角坐标系中,点A ,B ,C 的坐标分别为(3,3),(4,0),(0,2),将ABC 绕着点C 顺时针旋转90°得11A B C ,其中点A 的对应点为点1A .(1)请画出旋转后的11A B C ,并写出1A 的坐标;(2)求出在旋转过程中点A 所走过的路径长.(结果保留p )21.如图,在△ABC 中,AB =AC .以BC 为直径画圆O 分别交AB ,AC 于点D ,E .(1)求证:BD =CE ;(2)当△ABC 中,∠B =70°且BC =12时,求DE 的长.22.如图,AB 为⊙O 的直径,且AB =4,点C 是弧AB 上的一动点(不与A ,B 重合),过点B 作⊙O 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC .(1)求证:EC 是⊙O 的切线;(2)当∠D =30°时,求图中阴影部分面积.23.如图1所示,在ABC 中,12AB AC ==,120CAB Ð=°,P 是BC 边上一点(不与B 、C 点重合),将线段AP 绕点A 逆时针旋转120°得到扇形P AQ .@(1)求证:APB AQC(2)当BC与扇形P AQ相切时,求BQ的长;∥,求阴影部分的图形的周长.(结果不求近似值)(3)如图2,若AP CQ参考答案1.D 2.A 3.B 4.D 5.D 6.C 7.C 8.B 9.C 10.A11.(3π+50)50+3π)12.213.414.5415.23p 16.(1)连接BE ,AD ,∵AB 为直径,∴90ADB Ð=°,∴AD BC ^,又∵AB =AC ,∴AD 是BC 边上的中线,∴BD =DC ;(2)连接OE ,∵∠BAC =40°,OA OE =,∴40OEA Ð=°,∴80BOE Ð=°,又∵AB =AC =8,∴4OB =,∴804161801809n r BC p p p ´´===.17.(1)证明:连接OD ,OC ,∵C 、D 是半圆O 上的三等分点,∴AD CD BC ==,度数都是60°,∴∠AOD =∠DOC =∠COB =60°,∴∠DAC =30°,∠CAB =30°,∵DE ⊥AB ,∴∠AEF =90°,∴∠ADE =180°-90°-30°-30°=30°,∴∠DAC =∠ADE =30°,∴AF =DF ;(2)解:由(1)知,∠AOD =60°,∵OA =OD ,AB =8,∴△AOD 是等边三角形,OA =4,∵DE ⊥AO ,OA =4,∠ADE =30°,∴AE =2,=∴S 阴影=S 扇形AOD -S △AOD =260418436023p p ×´-´´=-.18.(1)证明:连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB ,∵OC 是⊙O 的半径,∴AB 是⊙O 的切线;(2)解:∵DF 是圆O 的直径,∴∠DCF =90°,∵FC ∥OA ,∴∠DGO =∠DCF =90°,∴DC ⊥OE ,∴DG =12CD =12×6=3,∵OD =OC ,∴∠DOG =∠COG ,∵OA =OB ,AC =CB ,∴∠AOC =∠BOC ,∴∠DOE =∠AOC =∠BOC =13×180°=60°,∠ODG =30°,∴OD=2OG ,在Rt △ODG 中,DG =,OG ,OD =,∴S 阴影=S 扇形ODE ﹣S △DOG =260360p ×﹣12×3=2π.19.解:(1)如图所示,11AB C △即为所求;(2)由题意得:190CAC Ð= ,AC ,∴1CC 的长A-;20.解:(1)如图,△A1B1C为所作,1(1,1)(2)CA=所以在旋转过程中点A.21.解:(1)证明:如图1,连接CD和BE,∵BC是⊙O的直径,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,∴∠BCD=∠CBE,∴BD CE=,∴BD=CE.(2)解:如图2,连接OD、OE,∵AB=AC,∠B=70°,∴∠ABC=∠ACB=70°,∴∠DOC=140°,∵OE=OC,∴∠OEC=∠OCE=70°,∴∠COE=40°,∴∠DOE=100°,∵BC=12,∴⊙O的半径为6,∴DE的长=1006180p´=103π.22.(1)证明:连接OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∴OC ⊥CE ,∴EC 是⊙O 的切线;(2)∵OA =OB ,BE =DE ,∴AD ∥OE ,∴∠D =∠OEB ,∵∠D =30°,∴∠OEB =30°,∠EOB =60°,∴∠BOC =120°,∵AB =4,∴OB =2,∴BE.∴四边形OBEC 的面积为2S △OBE =2×12=,∴阴影部分面积为S 四边形OBEC ﹣S 扇形BOC =﹣21202360p ×´=﹣43p.23.解:(1)∵120CAB Ð=°,120PAQ Ð=°,∴CAB PAQ Ð=Ð,∵PAB CAB CAP Ð=Ð-Ð,CAQ PAQ CAP Ð=Ð-Ð,∴PAB CAQ Ð=Ð,在APB D 和AQC D 中,AB AC PAB QACAP AQ =ìïÐ=Ðíï=î∴APB AQC ≌ΔΔ(SAS );(2)如图所示,当BC 与扇形P AQ 相切时,P 为切点,则^AP BC 于P 点,∵120CAB Ð=°,AB AC =,∴30B ACB Ð=Ð=°,∵12AB =,∴6AP =,∵APB AQC ≌,∴60PAB CAQ Ð=Ð=°,AP AQ =,∴180QAB CAB CAQ Ð=Ð+Ð=°,∴12618BQ AB AQ =+=+=;(3)∵APB AQC ≌,∴30B ACQ Ð=Ð=°,CQ BP =,∵AP CQ ∥,∴60APB QCB ACQ ACB Ð=Ð=Ð+Ð=°,∴90PAB Ð=°,∴2BP AP =,∵12AB =,∴222AP AB BP +=,∴AP =,BP =,∴120ππ1803PQ =´=,∵30ACB PAC Ð=Ð=°,∴PC AP ==,∴阴部部分图形的周长为π3CQ PC PQ ++=+.。

【精品试卷】人教版数学九年级上册《24.4 弧长和扇形面积》练习

【精品试卷】人教版数学九年级上册《24.4 弧长和扇形面积》练习
的圆弧与AE交于,则弧AH的弧长为( )
13
A.
6
13
π
B.
4
π
5
C.
3
π
5
D.
2
π

3.把一个弧长AC为10π cm的扇形AOC围成一个圆锥,测得母线OA = 13cm,则圆锥的
高ℎ为( )
A. 12cm
B. 10cm
C. 6cm
D. 5cm
4.如图,正方形ABCD的边长为8,以点为圆心,AD为半径,画圆弧DE得到扇形
∴ 由勾股定理得:ℎ = 12.
故选:.
根据扇形的弧长求得圆锥的底面半径,然后利用勾股定理求得高即可.
考查了圆锥的计算,解答该题的关键是了解圆锥的底面周长等于扇形的弧长,难度不
大.
4.【答案】D;
【解析】解:设圆锥的底面圆的半径为,
根据题意可知:
AD = AE = 8,∠DAE = 45°,
答案和解析
1.【答案】B;
【解析】解:设弧所在圆的半径为 cm,
135πr
由题意得, 180
= 2π × 3 × 5

解得, = 40.
故选:.
设出弧所在圆的半径,由于弧长等于半径为3cm的圆的周长的5倍,所以根据原题所给
出的等量关系,列出方程,解方程即可.
解决本题的关键是熟记圆周长的计算公式和弧长的计算公式,根据题意列出方程.
故选:.
从2:00到4:00,这根分针的尖走了2圈,根据圆的周长 = 2πr,计算即可.
此题主要考查弧长的计算,解答该题的关键是理解题意,灵活运用所学知识解决问
题.
10.【答案】B;
阴影 = 2扇形 ‒ 正方形 = 2 ×

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》是学生在学习了角的度量、圆的性质、圆的周长等知识的基础上,进一步探究圆的弧长和扇形面积的计算。

这一节内容不仅是前面学习内容的延续,也为后面学习圆锥、圆柱等几何体提供了基础。

教材通过生活中的实例,引导学生探究弧长和扇形面积的计算公式,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。

但是,对于弧长和扇形面积的计算,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过实际操作、探究活动等,理解和掌握弧长和扇形面积的计算方法。

三. 教学目标1.理解弧长和扇形面积的概念。

2.掌握弧长和扇形面积的计算公式。

3.能够运用弧长和扇形面积的知识解决实际问题。

四. 教学重难点1.重点:弧长和扇形面积的计算公式。

2.难点:弧长和扇形面积公式的推导过程。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际问题,探究弧长和扇形面积的计算方法。

2.利用几何画板等软件,直观展示弧长和扇形的计算过程,帮助学生理解。

3.采用小组合作学习的方式,让学生在合作中交流、讨论,提高学生的合作能力。

六. 教学准备1.准备相关的教学课件、几何画板软件。

2.准备一些实际的例子,用于引导学生探究。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如自行车轮子的周长,引出弧长的概念。

提问:如何计算这个弧长?引导学生思考,为下面的学习做好铺垫。

2.呈现(10分钟)利用几何画板软件,展示一个圆的扇形,让学生直观地感受弧长和扇形面积的计算过程。

通过软件的动态演示,引导学生探究弧长和扇形面积的计算公式。

3.操练(10分钟)让学生分组合作,利用准备好的实际例子,计算弧长和扇形面积。

人教版九年级上册数学同步练习《弧长和扇形面积》(习题+答案)

人教版九年级上册数学同步练习《弧长和扇形面积》(习题+答案)

24.4 弧长和扇形面积内容提要1.在半径为r 的圆中,n ︒的圆心角所对的弧长为l ,扇形面积为S ,则有(1)2360180n n rl r ππ=⋅=; (2)2213603602n n r S r lr ππ=⋅==.2.圆锥的侧面展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.3.圆锥的全面积是侧面扇形面积与底面圆的面积之和. 24.4.1 弧长和扇形面积基础训练1.在半径为9cm 的圆中,60︒的圆心角所对的弧长为cm. 2.若一个扇形的弧长为43π,半径为6,则此扇形的面积为.3.已知扇形的圆心角为150︒,它所对的弧长为20πcm ,则扇形的半径为cm ,扇形的面积是2cm .4.已知扇形的弧长是2πcm ,半径为12cm ,则这个扇形的圆心角( ) A .60︒B .45︒C .30︒D .20︒5.如图,一块边长为10cm 的正方形木板ABCD 在水平桌面上绕点D 按顺时针方向旋转到'''A B C D 的位置时,顶点B 从开始到结束所经过的路径长为( )A .20cmB .202cmC .10πcmD .52πcm6.如图所示,扇形AOB 的圆心角为120︒,半径为2,则图中阴影部分的面积为( ) A .433πB .4233π-C .433π D .43π7.如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,求树叶图案的周长与面积.8.如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,BC=cm.∠=︒,弦6OC,30ADB(1)求BC的长度;(2)求图中阴影部分的面积.24.4.2圆锥的侧面积和全面积基础训练1.已知圆锥的底面直径为4,母线长为6,则它的侧面积为,全面积是.2.已知圆锥的母线长是10cm,侧面展开图的面积是2π,则这个圆锥的底面半径是60cmcm.3.小明要用圆心角为120︒,半径是27cm的扇形纸片卷成一个圆锥形纸帽,做成后这个纸帽的底面直径为cm(不计接缝部分,材料不剩余).4.若一个圆锥的底面积为4πcm ,高为42cm ,则该圆锥的侧面展开图的圆心角的度数是( ) A .40︒B .80︒C .120︒D .150︒5.如果一个圆锥的主观图是正三角形,则其侧面展开图的圆心角为( ) A .120︒B .156︒C .180︒D .208︒6.在ABC ∆中,90C ∠=︒,12AC =,5BC =,现在以AC 为轴旋转一周得到一个圆锥,则该圆锥的表面积为( ) A .130πB .90πC .25πD .65π7.如果圆锥的底面圆的半径是8,母线的长是15,求这个圆锥侧面展开图的扇形的圆心角的度数.8.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90︒的扇形OAB ,且点O ,A ,B 在圆周上,把它围成一个圆锥,求圆锥的底面圆的半径.能力提高1.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,由凸轮的周长等于.2.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积( ) A .21712m π B .2176m π C .2254m π D .27712m π3.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm.母线()OE OF 长为10cm ,在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短距离为cm.4.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60︒的扇形ABC .那么剪下的扇形ABC (阴影部分)的面积为;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r =.5.如图,四边形ABCD 是菱形,60A ∠=︒,2AB =,扇形BEF 的半径为2,圆心角为60︒,则图中阴影部分的面积是( ) A .233π B .233πC .3πD .3π6.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是( ) A .2l r =B .3l r =C .l r =D .32l r =7.如图,矩形ABCD 中,4AB =,3BC =,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A第一次翻滚到点1A的位置时,(1)画出点A经过的路线;(2)求出点A经过的路线长为多少?8.如图,P,C是以AB为直径的半圆O上的两点,10AB=,CP的长为52π,连接PB交AC于点M,线段MC与弦BC的长度相等吗?为什么?9.如图,在Rt ABC∆中,90C∠=︒,4AC=,2BC=,分别以AC,BC为直径画半圆,求图中阴影部分的面积(结果保留π).10.如图,已知O 的半径为4,CD 是O 的直径,AC 为O 的弦,B 为CD 的延长线上的一点,30ABC ∠=︒,且AB AC =. (1)求证:AB 为O 的切线; (2)求弦AC 的长; (3)求图中阴影部分的面积.内容提要1.如图,正三角形ABC 的边长为1cm ,将线段AC 绕点A 顺时针旋转120︒至1AP ,形成扇形1D ;将线段1BP 绕点B 顺时针旋转120︒至2BP ,形成扇形2D ;将线段2CP 绕点C 顺时针旋转120︒至3CP ,形成扇形3D ;将线段3AP 绕点A 顺时针旋转120︒至4AP ,形成扇形1D ……设n l 为扇形n D 的弧长()1,2,3,n =,回答下列问题: (1)按照要求填表:n1 2 3 4 n l(2n n D (设地球赤道半径为6400km )?2.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面,他们首先设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切.)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若要行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.数学应用应用1当四边形ABCD的四个内角满足时,则过A,B,C,D四点能作一个圆.应用2如图,点M,N,C在O上,点A在O外,点B在O内,则A∠∠,B∠,MCN 三个角的大小关系是.应用3已知四边形ABCD,过顶点A,B,C三点作O.①若180∠+∠=︒,则点D在O.B D②若180∠+∠>︒,则点D在O.B D③若180B D∠+∠<︒,则点D在O.整理归纳1.在学习本章内容时,注意结合课本知识和生活周围的一些实例,以加深相关概念的认识,如:圆、圆周角、三角形的内心和外心、圆锥侧面展开图等.2.圆的轴对称性和旋转对称性是理解圆中各类性质与定理的基础,要学会用对称性来分析和解决问题.3.在解决与本章内容有关的问题时,转化思想有着广泛的应用.如:可以将判定点和圆、直线和圆的位置关系等转化为实数大小的比较问题;利用圆心角、弦、弧的关系将角、线段、弧线之间的等量关系进行转化;将不规则图形的计算转化成规则图形的计算等.4.学习中注意前后知识之间的联系,及与其他章节知识的联系,形成综合运用知识的能力.如:利用圆周角和圆心角的关系,寻找(或构造)直角三角形,利用直角三角形的相关知识解决问题;根据圆锥的侧面展开图是扇形的特点,利用扇形的相关计算公式解决问题.5.注意分类讨论,避免答案不全.如:探索圆周角和圆心角的关系时分三种情况;两圆相切时,有内切和外切两种情形等.数学实践圆在凸多边形上无滑动滚动时圆心运动轨迹的研究广州一中实验学校初三实验2班梁家瑜指导老师罗小颖在一次测验中,有下面一道题:半径为R的圆在边长为a的正三角形的边上无滑动滚动一周,求圆心所经过的路程长为多少?当时,我忽略了圆在三角形的角上运动时圆心运动轨迹的特点,所以没有做对,该题答案是圆心运动所经过的路程的长等于等边三角形的周长与圆的周长的和.于是我猜想,圆在一般的三角形中无滑动滚动有没有特殊规律呢?为此我对圆在三角形上无滑动滚动时圆心的运动轨迹作了探讨.1.圆在三角形的边上无滑动滚动时,圆心轨迹如图1.圆心所经过的路程的长为IH ID DE EF FG GH +++++,其中四边形IACH ,DEBA ,FBCG 为矩形,所以IH CA =,DE AB =,GF BC =,3609090180IAD CAB CAB ∠=︒-︒-︒-∠=︒-∠, 3609090180HCG ACB ACB ∠=︒-︒-︒-∠=︒-∠,3609090180FBE ABC ABC ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360BAC ID R π︒-∠=⋅︒,1802360ABC EF R π︒-∠=⋅︒,1802360ACBHG R π︒-∠=⋅︒.所以()2180180180360RID EF HG BAC ACB ABC π++=⋅︒-∠+︒-∠+︒-∠︒. 因为180BAC ABC ACB ∠+∠+∠=︒, 所以()21801801801802360RID EF HG R ππ++=⋅︒+︒+︒-︒=︒. 由此可以发现,三段弧的长度之和恰好等于圆的周长.所以圆在三角形ABC 边上无滑动滚动时,圆心的运动轨迹的长度为AB AC BC C +++圆.因为AB BC CA C ++=三角形,设圆心轨迹长度为S ,则有S C C =+圆 三角形. 因此圆在一般三角形上的无滑动滚动时,圆心所经过的路程的长也符合圆在等边三角形边上无滑动滚动的规律,既然如此,那么圆在一般四边形中无滑动滚动又有什么规律呢?2.圆在四边形的边上无滑动滚动时,圆心轨迹如图2.圆心所经过的路程的长为EF FG GH HI IJ JK KL LE +++++++.3609090180KDJ CDA CDA ∠=︒-︒-︒-∠=︒-∠, 3609090180LAE DAB DAB ∠=︒-︒-︒-∠=︒-∠, 3609090180FBG ABC ABC ∠=︒-︒-︒-∠=︒-∠, 3609090180ICH BCD BCD ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360ABC FG R π︒-∠=⋅︒,1802360BCDHI R π︒-∠=⋅︒,1802360CDA JK R π︒-∠=⋅︒,1802360DABLE R π︒-∠=⋅︒,所以FG HI JK LE +++()2180180180180360RABC BCD CDA DAB π=⋅︒-∠+︒-∠+︒-∠+︒-∠︒. 而360ABC BCD CDA DAB ∠+∠+∠+∠=︒, 所以()27203602360RFG HI JK LE R ππ+++=⋅︒-︒=︒. 由此可发现,四段弧的长度之和恰好也等于圆的周长,而AB BC CD DA +++为四边形ABCD 的周长.设圆心运动的距离为S ,则有S C C =+圆 四边形. 3.圆在凸多边形上无滑动滚动的研究既然三角形、四边形圆心运动路程分别为S C C =+圆三角形,S C C =+圆四边形,那么n 边形有什么规律呢?观察前面,不难发现,圆心作直线运动时圆心所走的线段与多边形的边长是平行且相等的,是矩形的对边,由此我们可以得到圆心轨迹中的直的线段之和等于多边形的周长,而圆心所走的总长为线段总长的弧长总长之和.设现有一个n 边形,且这个n 边形的内角为1∠,2∠,…,n ∠.那么n 段弧分别为18012360R π︒-∠⋅︒,18022360R π︒-∠⋅︒,…,1802360n R π︒-∠⋅︒. 设圆弧总长为L ,相加得()218018018012360R L n π=⋅︒+︒++︒-∠-∠--∠︒因为n 边形内角和为()()18023n n ︒⋅-≥, 所以代入得()21801802360R L n n π=⋅︒⋅-︒⋅-⎡⎤⎣⎦︒ ()21802360R n n π=⋅︒⋅-+⎡⎤⎣⎦︒ ()218022360R R ππ=⋅︒⋅=︒. 因此弧长之和为2R π,即圆的周长.设圆心运动距离为S ,则有S =弧长之和+多边形周长,即S C C =+圆多边形.因此,当圆在凸多边形边上无滑动滚动时,圆心运动所经过的路程的长度等于圆的周长与凸多边形的周长之和.学业评价24.4 参考答案:24.4.1 弧长和扇形面积基础训练1.3π 2.4π 3.24 240π 4.C 5.D 6.A 7.周长:a π,面积:2212a a π- 8.(1)43cm π (2)2(433)cm π- 24.4.2 圆锥的侧面积和全面积基础训练1.12π 16π 2.6 3.18 4.C 5.C 6.B 7.192︒ 8.2 能力提高1.π 2.D 3.241 4.2π 3 5.B 6.A 7.(1)如图 (2)6π8.MC BC =(提示:90C ∠=︒,45PBC ∠=︒) 9.542π- 10.(1)图 (2)43 (3)8433π+拓展探究 1.(1)123l π=,243l π=,363l π=,483l π=. (2)6400640000000km cm =,由226400000003n ππ=⨯,91.9210n =⨯. 2.(1)因为扇形的弧长902168360ππ︒=⨯⨯=︒,圆锥底面周长2r π=,所以圆的半径为4cm .由于所给正方形纸片的对角线长为2cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为1642(202)cm ++=+,2042162+>(2)方案二可行.设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(12)162r R ++=①,224R r ππ=②.由②得4R r =,代入①得(5r +=,所以r ==,所以R = 数学应用应用1 180A C ∠+∠=︒或180B D ∠+∠=︒ 应用2 A MCN B ∠<∠<∠ 应用3 ①上②内 ③外。

人教版 九年级数学上册 24.4 弧长和扇形面积 课后训练(含答案)

人教版 九年级数学上册 24.4 弧长和扇形面积 课后训练(含答案)

人教版 九年级数学 24.4 弧长和扇形面积 课后训练一、选择题 1. 120°的圆心角所对的弧长是6π,则此弧所在圆的半径是( ) A . 3 B . 4 C . 9 D . 182. 如图,▱ABCD 中,∠B=70°,BC=6.以AD 为直径的☉O 交CD 于点E ,则的长为 ( )A .πB .πC .πD .π3. 如图AB 为半圆O 的直径,AB =4,C ,D 为AB ︵上两点,且AC ︵=15BD ︵.若∠CED =52∠COD ,则BD ︵的长为( )图A.59πB.78πC.89πD.109π4. (2019•遵义)圆锥的底面半径是5 cm ,侧面展开图的圆心角是180°,圆锥的高是A .53cmB .10 cmC .6 cmD .5 cm5. (2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为A .3π2B .2πC .3πD .6π6. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB ︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD ︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶97. (2019•南充)如图,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为A .6πB .33C .3D .2π8. 如图在扇形OAB 中,∠AOB =150°,AC =AO =6,D 为AC 的中点,当弦AC沿AB ︵运动时,点D 所经过的路径长为( )图A .3πB.3πC.32 3πD .4π二、填空题9. 如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30厘米,则BC ︵的长为________厘米(结果保留π).10. 如图,现有一张圆心角为108°,半径为40 cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面圆半径为10 cm的圆锥形纸帽(接缝处忽略不计),则剪去的扇形纸片的圆心角θ为________.11. 已知一个圆心角为270°,半径为3 m的扇形工件未搬动前如图示,A,B两点触地放置,搬动时,先将扇形以点B为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A,B两点再次触地时停止,则圆心O所经过的路线长为________m.(结果用含π的式子表示)12. 一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为________.13. (2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120 ,点A与点B 的距离为23,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为__________.14. 如图所示,在Rt△ABC中,∠ACB=90°,AC=BC=2 2.若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________.(结果保留π)15. 如图,已知A ,B ,C 为⊙O 上的三个点,且AC =BC =2,∠ACB =120°,点P 从点A 出发,沿AMB ︵向点B 运动,连接CP 与弦AB 相交于点D ,当△ACD 为直角三角形时,AMP ︵的长为________.三、解答题16. 如图,AB 为⊙O 的直径,C ,D 是半圆O 的三等分点,过点C 作AD 延长线的垂线CE ,垂足为E .(1)求证:CE 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.17. (2019•襄阳)如图,点E 是ABC △的内心,AE 的延长线和ABC △的外接圆圆O相交于点D ,过D 作直线DG BC ∥. (1)求证:DG 是圆O 的切线;(2)若6DE =,BC =,求优弧BAC 的长.18. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA∠=∠.(1)求证:AC是⊙O的切线;(2)若23CE AE==,求阴影部分的面积.人教版九年级数学24.4 弧长和扇形面积课后训练-答案一、选择题1. 【答案】C【解析】由扇形的弧长公式l=nπr180可得:6π=120π·r180,解得r=9.2. 【答案】B[解析]如图,连接OE.∵四边形ABCD是平行四边形,∴AD=BC=6,∠D=∠B=70°,∴OD=3.∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=40°.∴的长==π.3. 【答案】D4. 【答案】A【解析】设圆锥的母线长为R,根据题意得2π·5180π180R=,解得R=10.即圆锥的母线长为10 cm,∴圆锥的高为:22105-=53cm.故选A.5. 【答案】C【解析】该扇形的弧长=90π63π180⨯=.故选C.6. 【答案】D7. 【答案】A【解析】如图,连接OB,∵四边形OABC是平行四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB=S△ABC,∴图中阴影部分的面积=S扇形AOB=60π366π360⋅⨯=,故选A.8. 【答案】C[解析] 如图∵D为AC的中点,AC=AO=6,∴OD ⊥AC ,∴AD =12AC =12AO , ∴∠AOD =30°,OD =3 3. 作BF =AC ,E 为BF 的中点.同理可得∠BOE =30°, ∴∠DOE =150°-60°=90°,∴点D 所经过的路径长为n πR 180=90π×3 3180=3 32π.二、填空题9. 【答案】20π【解析】由弧长公式得,l BC ︵的长=120π×30180=20π.10. 【答案】18°11. 【答案】6π[解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).12. 【答案】12π13. 【答案】43【解析】如图,连接AB ,过O 作OM AB ⊥于M ,∵120AOB ∠=︒,OA OB =,∴30BAO ∠=︒,3AM =2OA =, ∵240π22π180r ⨯=,∴43r =,故答案为:43.14. 【答案】82π [解析] 过点C 作CD ⊥AB 于点D .在Rt △ABC 中,∠ACB =90°,AC =BC =2 2, ∴AB =2AC =4,∴CD =2. 以CD 为半径的圆的周长是4π.故Rt △ABC 绕直线AB 旋转一周所得几何体的表面积是2×12×4π×2 2=8 2π.15. 【答案】43π或2π [解析] 易得⊙O 的半径为2,∠A =30°.要使△ACD 为直角三角形,分两种情况:①当点P 位于AMB ︵的中点时,∠ADC =90°,△ACD 为直角三角形,此时∠ACP =60°,可得∠AOP =120°,所以AMP ︵的长为120π×2180=43π;②当∠ACP =90°时,△ACD 为直角三角形,此时∠AOP =180°,所以AMP ︵的长为180π×2180=2π.综上可得,AMP ︵的长为43π或2π.三、解答题16. 【答案】解:(1)证明:连接OC . ∵C ,D 为半圆O 的三等分点, ∴AD ︵=CD ︵=BC ︵, ∴∠DAC =∠BAC . ∵OA =OC , ∴∠BAC =∠ACO , ∴∠DAC =∠ACO , ∴OC ∥AD . ∵CE ⊥AD ,∴CE ⊥OC ,∴CE 为⊙O 的切线. (2)连接OD . ∵AD ︵=CD ︵=BC ︵,∴∠AOD =∠COD =∠BOC =13×180°=60°. 又∵OC =OD ,∴△COD 为等边三角形, ∴∠CDO =60°=∠AOD , ∴CD ∥AB , ∴S △ACD =S △COD ,∴图中阴影部分的面积=S 扇形COD =60×π×22360=2π3.17. 【答案】(1)连接OD 交BC 于H ,如图,∵点E 是ABC △的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠, ∴BD CD =,∴OD BC ,BH CH =,∵DG BC ∥, ∴OD DG ⊥, ∴DG 是圆O 的切线. (2)连接BD 、OB ,如图, ∵点E 是ABC △的内心, ∴ABE CBE ∠=∠, ∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠, ∴6DB DE ==, ∵1332BH BC ==在Rt BDH △中,333sin 62BH BDH BD ∠===, ∴60BDH ∠=︒, 而OB OD =,∴OBD △为等边三角形,∴60BOD ∠=︒,6OB BD ==, ∴120BOC ∠=︒, ∴优弧BAC 的长=(360120)π68π180-⋅⋅=.18. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒, ∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠,∵12EDA AOE ∠=∠,∴EDA AOF ∠=∠, ∵EAC EDA ∠=∠, ∴EAC AOF ∠=∠, ∴90EAO EAC ∠+∠=︒, ∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒, ∴OA AC ⊥, ∴AC 是⊙O 的切线.11 / 11 (2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形, 在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π-。

人教版九年级上册数学弧长与扇形面积-求弓形的面积

人教版九年级上册数学弧长与扇形面积-求弓形的面积

人教版九年级上册数学24.4弧长与扇形面积-求弓形的面积一、单选题1.如图,在O中,,2,90OA OB CD DE CDE︒⊥==∠=,则图中阴影部分的面积为()A.142π-B.4πC.122π-D.12π-2.如图,一个半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是A.83πB.83π-23C.43π-3D.23-23π3.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A.6πB.33πC.23πD.2π4.如图,网格中的小正方形边长都是1,则以O为圆心,OA为半径的弧AG和弦AB所围成的弓形面积等于()A 2π﹣4 B.2π﹣4 C.4π﹣4 D.π﹣45.如图,正方形ABCD的边长为2,以BC为直径的半圆与对角线AC相交于点E,则图中阴影部分的面积为()A .5124π+B .3124π-C .5122π-D .5124π- 6.如图,扇形的圆心角为60°,半径为3,则图中弓形的面积为( )A .4334π-B .34π- C .2334π- D .332π-二、填空题7.如图,⊙O 的半径为2,点A ,B 在⊙O 上,∠AOB =90°,则阴影部分的面积为________.8.如图,已知扇形AOB 的半径为2,圆心角为90︒,连接AB ,则图中阴影部分的面积是________.9.圆内接正方形的一边截成的小弓形面积是2π-4,则正方形的边长等于__________.10.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,⊙O 半径为3 cm ,弦CD 的长为3 cm ,则阴影部分的面积是____________ cm 2 .11.用等分圆周的方法,在半径为1的圆中画出如图所示图形,则图中阴影部分的面积为______.三、解答题12.如图,有一个马戏帐篷,它的底面是圆形,其半径为20m ,从A 到B 有一笔直的栅栏,其长为30m .观众在阴影区域里看马戏,如果每平方米可以坐3名观众,并且阴影区域坐满了人,那么大约有多少名观众在看马戏?13.已知正方形的边长为2,求右图中阴影部分的面积.14.如图,直线y kx b =+经过点M(1,3)和点N(1-,33),A 、B 是此直线与坐标轴的交点.以AB 为直径作⊙C ,求此圆与y 轴围成的阴影部分面积.15.如图,已知⊙O 半径为10cm ,弦AB 垂直平分半径OC ,并交OC 于点D .(1)求弦AB 的长;(2)求弧AB 的长,并求出图中阴影部分面积.16.如图,CD 为O 的直径,CD AB ⊥于点F ,AO BC ⊥于点E ,2AO =.(1)求AOD ∠的度数;(2)求阴影部分的面积.17.如图,已知点A,B,C,D均在已知圆上,AD∥BC,CA平分∠BCD,∠ADC=120°,四边形ABCD的周长为10.(1)求此圆的半径;(2)求图中阴影部分的面积.18.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.参考答案1.A2.D3.A4.B5.D6.C7.π-28.π-2.9.4.10.33π⎛⎫- ⎪ ⎪⎝⎭11.π-33 12.约421人.解:过O 作OD ⊥AB ,D 为垂足, ∵AB =30m .∴AD =BD =15m ,∴OD =22AO AD -=57∵sin ∠AOD =AD AO =1520=0.75, ∴∠AOD ≈49°,∴∠AOB =98°,∴S 阴影部分=S 扇形OAB -S △OAB =29820360π⨯-12×30×57≈145.7m 2, ∴145.7×3≈437(人).答:大约有437位观众在看马戏.13.2.28解:根据题意,则2(222)2360n r π-⨯÷⨯ 290 3.142(222)2360⨯⨯=-⨯÷⨯ (3.142)2 2.28=-⨯=.14.233π- 解:把()()1,3,1,33-代入y kx b =+ 得:323y x =-+ 令0,23x y 得==∴B ()0,23令0,y =得0x = ∴()2,0A∴()222234AB =+=∴2r =过点C 作CD ⊥OB ,连接OC ,由垂径定理可知:OD=1,∴sin ∠CBD=12 ∴∠CBD=30°∵BC=OC∴∠BOC=300 ,∴∠BCO=120°∴S 扇=221122663r πππ=⨯⨯= ∵S △OBC =123132⨯⨯= ∴S 阴=233π- 15.(1) ;(2) 解:(1)如图,⊙O 半径为10cm , ∴OB =OC =10,∵弦AB 垂直平分半径OC ,∴AB =2BD ,∠ODB =90°,OD =OC =5, 在Rt △BOD 中,根据勾股定理得,BD = =5,∴AB =2BD =10cm ; (2)由(1)知,OD =5,在Rt △BOD 中,cos ∠BOD ==,∴∠BOD =60°,∵OC ⊥AB ,∴∠AOB =2∠BOD =120°,∴l 弧AB ===cm , S 阴影=S 扇形AOB ﹣S △AOB =﹣AB ×OD =﹣×10×5=﹣25(cm 2).16.(1)60AOD ∠=;(2)433π-. 解:(1)∵CD 为直径,CD AB ⊥, ∵AF BF =,AD BD =,∴2AOD AD BD C ∠===∠,∵COE AOF ∠=∠,∴2COE C ∠=∠,∵AE BC ⊥,∴190303C ∠=⨯=, ∴60AOD ∠=;(2)连结OB ,∵2120AOB AOD ∠=∠=,112OF AO ==,223AB AF ==∴2120243603OAB S ππ⨯==扇形, 11231322OAB S AB OF =⋅=⨯ ∴433OAB S π=17.(1)圆的半径为2;(2)2π3-3 (1)∵AC 平分∠BCD ,∴∠ACD=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠DAC=∠ACD ,而∠ADC=120°, ∴∠ACB=∠DAC=∠ACD =30°,∠B=60°, ∴AB=AD=DC ,且∠BAC=90°, ∴BC 为直径,设AB=x ,则BC=2AB=2x , 又∵四边形ABCD 的周长为10cm , ∴x+x+x+2x=10,解得x=2, 即⊙O 的半径为2;(2)设圆心为O ,连接OA 、OD ,由(1)可知OA=OD=AD=2,∴△AOD 为等边三角形,∴∠AOD=60°;∵AD ∥BC ,∴AOD ACD S S ∆∆=2323= ∴26022=333603OD AOD A S S S ππ-⨯==阴影扇形18.(1)相切;(2)16433π- 理由:连接OC .∵OA=OC ,∴∠OAC=∠OCA ,∵∠BOC=∠A+∠OCA=2∠A ,∠BCM=2∠A , ∴∠BCM=∠BOC ,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,BC=23∴S阴=S扇形OAC﹣S△OAC =2120411642343 36023ππ-⨯⨯=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.4 弧长和扇形面积知识点1. 在半径为R 的圆中,1。

的圆心角所对的弧长是 , n°的圆心角所对的弧长是2. 在半径为R 的圆中,1。

的圆心角所对的扇形面积是 形面积S 扇形=.3. 半径为R,弧长为l 的扇形面积S 扇形=.一、选择题1. (2013部江)如果一个扇形的弧长是 4 -兀,半径是6,那么此扇形的圆心角为 ( 3B. 45°C. 60。

D. 80° 2. (2013TW 通) 如图,已知 口 ABCD 的对角线 BD=4cm,将 口 ABCD 绕其对称中心 。

旋转180°,则点D 所转过的路 径长为() A. 4 % cmB. 3 % cmC. 2 %cm6. (2013?恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形 ABCD ,将正方形 ABCD 沿 x 轴的正方向无滑动的在 x 轴上滚动,当点 A 离开 原点后第一次落在 x 轴上时,点A 运动的路径线与为圆心作等圆,( D A 与OB 恰好外切, 若 AC=2 ,那么图中两 个扇形(即阴影部分)的面积之和为( JT JT A. 一 B.— C.M D.J24. (2013螫阳)钟面上的分针的长为 1,)从9点到9点30分, ( A )1 2 1 B. 二 4 C. 1 二 8 3. (2013?宁夏)如图,以等腰直角 △ ABC 两锐角顶点 A 、B 分针在钟面上扫过的面积是 BB ,若角Z BAC=60° ,AC= 1 , 则图中阴影部分的面积是 ( ) 兀 兀 兀A.—B . 一C .一D .二2 3 4 5. (2013?荆州)如图,将含 60°角的直角三角板 ABC 绕顶点‘ ‘ 一 _ 一、,,,",一、, 一A 顺时针旋转45°度后得到△ ABC ,点B 经过的路径为弧 , n°的圆心角所对的扇x轴围成的面积为(A. ■: 1一+ —2 2JTB. _ 12C.二1D.二7. (2013?惠州)如图,扇形AOB的半径为1, Z AOB=90°,以直径画半圆.则图中阴影部分的面积为()1 1A. —Tl B . JI - —4 21 1 1C. ——D. —Ji+2 4 28. (2013?襄阳)如图,以AD为直径的半圆。

经过Rt△ ABC 斜边AB的两个端点,交直角边AC于点E, B、E是半圆弧的三等分点,弧BE的长为&则图中阴影部分的面积为3兀A.—9B3B. -------9 D. 3/3 2兀二、填空题9. (2013?茂名)如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角匕0 =120°,半径OA=3,则现AB的长度为(结果保留n ) .10. (2013?遂宁)如图,△ ABC的三个顶点都在5X5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ ABC绕点B逆时针旋转到△ A BC的位置,且点A'、C仍落在格点上,则图中阴影部分的面积约是.(兀3.14,结果精确到0.1)11. (2013?玉林)如图,实线部分是半径为15m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长是m.12. (2013?眉山)如图,以BC为直径的O 0与^ ABC的另两边分别相交于点D、E。

若/A=60 ° , BC=4,则图中阴影部分的面积为。

(结果保留兀)13. (3 分)(2013?苏州)如图,AB 切OO 于点B , 0A=2 , / OAB=30。

,弦BC // 0A,劣弧E6的弧长为 .(结果保留兀)14. (2013?# 岛)如图,AB 是圆0 直径,弦AC=2, Z ABC=30 则图中阴影部分的面积是15. (2013宜宾)如图,△ ABC是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是16. (2013?乐山)如图,小方格都是边长为1的正方形, 则以格点为圆心,半径为1和2的两种弧围成的叶状” 阴影图案的面积为.17. (2013?遵义)如图,在Rt△ ABC 中,Z ACB=90 °, AC=BC=1 , E为BC边上的一点,以A 为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,贝U AF的长为(结果保留根号).18. (2013?宿迁)如图,AB是半圆O的直径,且AB =8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留n)三、解答题19. 如图,已知AB是OO的直径,点C, D在OO上,点E在③O夕卜,/ EAC= / D=60(1) 求Z ABC的度数;(2) 求证:AE是③。

的切线;(3) 当BC=4时,求劣弧AC的长.第19题20.如图,在矩形ABCD^, AB=1, AD=v&,以BC的中点E为圆心的MPN与AD相切于点P,求图中阴影部分的面积21. 如图,在O O中,弦BC垂直于半径OA,垂足为E, D是优弧BC上一点,连接BD , AD , OC, / ADB=30 ° .(1) 求Z AOC的度数;(2) 若弦BC=6cm,求图中阴影部分的面积.22. 如图,在正方形ABCD^, AB=4,。

为对角线BD的中点,分别以OB OD为直径作。

Oi, OO2.(1)求③Oi的半径;(2)求图中阴影部分的面积23. 如图,在平面直角坐标系中,以A (5,1)为圆心,以2个单位长度为半径的③ A交x轴于点B, C.解答下列问题:⑴将③A向左平移个单位长度与y轴首次相切,得到③ A'.此时点A'的坐标为,阴影部分的面积S=;(2)求BC的长.第23题24.4第1课时 弧长和扇形面积 知识点一、选择题1.A2.C3. B解:AC=2 , △ ABC 是等腰直角三角形,••• AB=2 ",•••。

A 与OB 恰好外切,且③ A 与OB 是等圆, ..•两个扇形(即阴影部分)的面积之和■ I. ,■ . R-】2_T= ------------- + ------------- = ---------------------------- =—兀 R =—— 36。

36。

360 4 24. A5.A6. C解 .2 90 兀 X I 2 ,I 、 -二…W +2 X(三刈 X ) = Ji.360 2 7. C8. D解:连接 BD , BE, BO, EO,B , E 是半圆弧的三等分点,/ EOA= / EOB= / BOD=60 °, BAC=30 °,..•弧BE 的长为2咒,3.60兀 XR_2… -------------------丸,2 .二R 2 360nR180n 二 R 2=S i +S 2+S 3+2a= 9。

兀 x 12 90兀 X (^2)?i?ij + -MI 点A 运动的路径线与x 轴围成的面积180 3解得:R=2,••• AB=ADcos30 =2 而. .BC=_AB= 匚,2 v.AC = . AB 2匚BC 2 = ,(2 . 3)2 一(、3)2 =3, S AABC =1XBC >AC=」蚯 >3=^1, 」 2 2 2•••△BOE 和^ ABE 同底等高,BOE 和^ ABE 面积相等,•••图中阴影部分的面积为: S A ABC - S 扇形BOE =爻宣一迎兰箜-空 ABC : :;二、填空题9. 2 二10.7.2, 90兀 X 2 137T _ __ _ _ S 扇形 BAB = —- ■,- T ------- = ------- , S A BB 'C =BC >B C =3 , 4 贝U S 阴影=S 扇形 BAB — S ABB 'C = -— 3* 7.2一 411.40 兀解:如图,连接 O 1O 2, CD, CO 2,•O 1O 2=C02=CO 1=15cm,•■•Z C02O 1=60°,•■•Z C02D=120 °,则圆O 1, O 2的圆心角为 360 °- 120 =240°,则游泳池的周长为 =2户兀工=2疽入'5 =40兀(m ).180 180故答案为:40 Tt.12.4 二313.1 二3解:连接OB, OC,AB 为圆O 的切线,•••Z ABO=90 °,在 Rt △ ABO 中,OA=2 , / OAB=30 °,. .OB=1 , / AOB=60 °,. • BC // OA ,•.•Z OBC= Z AOB=60 °,又 OB=OC ,BOC 为等边三角形,•••Z BOC=60 °, 解:由题意可得, AB=BB'=, / ABB'=90 °, 360则劣弧反长为BO' 'I =171.180 34 -14. 一二—.3315. 4 二解:弧CD的长是120兀X]=史£ 180 3弧DE的长是:12。

兀*2180 3弧EF的长是:120" x 3=2兀130则曲线CDEF的长是:竺+尘£+2护4兀3 3故答案是:4兀16.2 二-4由题意得,阴影部分面积=2 (S扇形AOB —S A AOB)=2 ( - —>2>2) =2兀-4.36。

2故答案为:2兀-4.2/%17. --------兀解:.••图中两个阴影部分的面积相等,■S 扇形ADF=S AA BC,即:又. AC=BC=1 ,••• AF2/ ,2V TTAF= —.K故答案为竺正.兀18. —2L3解:过点O作ODL BC于点D,交标于点E,连接OC,则点E是旬充的中点,由折叠的性质可得点O为-液的中点, •■- S弓形BO=S弓形CO,在Rt△ BOD 中,OD=DE=』R=2 , OB=R=4 ,2OBD=30 °,•.•Z AOC=60 °,•.•S阴影=S扇形AOC=60兀X 4W360 3故答案为:3三、解答题19.解:(1) ABC与Z D都是弧AC所对的圆周角,•••Z ABC= / D=60°(2) AB是③O的直径,/ ACB=90 °/ BAC=30 ° ,•••Z BAE= Z BAC+ Z EAC=30 ° +60 ° =90° ,即BA J_ AE, •.•OA 为半径,••• AE是③O的切线.(3) 连接OC,. OB=OC, / ABC=60 ° ,OBC是等边三角形,. .OB=BC=4 , / BOC=60 ° ,•••Z AOC=120 ° ,120'::':4 8二劣弧AC的长为120——4=—.180 319. 解:连接PE,•.•四边形ABCD是矩形,BC = AD = 3,•••点E是BC的中点,DC 3BE .2. • AD 切③ E 于点P, PE± AD.. • AB ± AD, AB // PE,AP // BE, / A=90° , 四边形ABEP 为矩形,••• PE=AB=1 , ... ME=1.二在RMBEM中,BM =/ME? —BE? = J _(事2 =1,_ 1 _ ― 一-BM =—ME,NBEM =30令,2同理可得,/ CEN=30 ° ,MEN=180 ° -Z BEM - Z CEN=180 ° -30 ° -30° =120°2 2n R 120〉〉1 ■:-晶= ----------- = ----------------- =—.360 360 321.解:(1)连接OB,/ AOB=2 / ADB=2 X 30° =60 ° ,7OA_BC, AC=AB,/ AOC= / AOB=60 ° .⑵- 1 _ 1(2),OE_BC,. BE BC 6=3.2 2在Rt△ BOE 中,/OBE+ / AOB=90 ° , •.•Z OBE=90 ° -Z AOB=90 ° -60°=30 ° .设OE=x,则OB =2x,在RtABOE中,x2 +32 =(2x)2,x = .3, OB =2x =2、3.了BOC "AOB AOC =60 60 =120 ,_120 二(2,3)2-S扇形BOC = ' = 4,,360S BOC=』 BC OE=] 6 .3=3.3,2 2Sb =S扇形BOC —S.BOC =(4二-3.3)cm2.22.解:(1)在正方形ABCD 中,AB= AD= 4,,A= 90:.BD = 4242=4 2,OO1 "BD =1 4 2 52, 4 4|_。

相关文档
最新文档