高一数学函数综合练习单元练习题

合集下载

高一数学函数单元测试题及答案

高一数学函数单元测试题及答案

高一数学函数单元测试题及答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--单元测试题一.填空题(4*14,时间60分钟)1、设全集,Z U =集合{}{},2,1,0,1,2,1,1-=-=B A 从A 到B 的一个映射为||)(x x x f y x ==→,其中{},)(|,,x f y y P B y A x ==∈∈则=⋂)(P C B U _________________。

2、已知1x 是方程3lg =+x x 的根,2x 是方程310=+x x 的根,则21x x +值为______________。

3、已知函数)(x f y =的图象关于直线1-=x 对称,且当0>x 时,1)(xx f =则当2-<x 时=)(x f ________________。

4、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图所示),则方程()0f x =在[1,4]上的根是x =______________。

5、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,______________。

6、从甲城市到乙城市m 分钟的电话费由函数)47][43(06.1)(+⨯=m m f 给出,其中0>m ,][m 表示不大于m 的最大整数(如3]1,3[,3]9.3[,3]3[===),则从甲城市到乙城市8.5分钟的电话费为______________。

7、函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________。

8、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。

9、若2)5(12-=-x f x ,则=)125(f __________ 。

高一数学函数单元测试题

高一数学函数单元测试题

高一数学函数单元测试题一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、mm nna a a ÷= B 、n m n m a a a ⋅=⋅ C 、()nm m n a a += D 、01n n a a -÷= 2、已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3、.若集合M={y|y=2—x }, P={y|y=1x -}, M ∩P= ( )A .{y|y>1}B .{y|y ≥1}C .{y|y>0 }D .{y|y ≥0} 4、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低31,则现在价格为8100元的计算机经 年后降为2400元. ( )A .14B .15C .16D .175、函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞6、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 7、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a <<8、有以下四个结论 ○1 l g(l g10)=0 ○2 l g(l ne)=0 ○3若10=l gx,则x=10 ○4 若e=l nx,则x=e 2, 其中正确的是 ( ) A.○1○3 B.○2○4 C.○1○2 D. ○3○4 9、已知函数f(x)=2x ,则f(1-x)的图象为 ( )ABCD10、已知f(x)是偶函数,它在[0,+∞)上是减函数,若)1()(lg f x f >,则x 的取值范围是( )A. )1,101(B.),1()101,0(+∞⋃C.)10,101( D.(0,1)∪(10,+∞) 11、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个 ( ) A.新加坡(270万) B.香港(560万) C.瑞士(700万) D.上海(1200万) 12、若函数()l o g (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A B C 、14 D 、12二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 13、()0.7522310.25816--⎛⎫+- ⎪⎝⎭-lg25-2lg2=___________ ____;14、1log 32<a (a>0且a ≠1),a 的取值范围为 ;15、已知函数f(x)=log 2(x-2)的值域是[1,log 214],那么函数f(x)的定义域是 ; 16、设0≤x ≤2,则函数5234)(21+∙-=-x x x f 的最大值是________,最小值是______.三、解答题:(本题共4小题,共50分,解答应写出文字说明,证明过程或演算步骤.) 17、(12分)已知f(x)=log a x1x 1-+ (a>0, 且a ≠1)(1) 求f(x)的定义域(2) 求使 f(x)<0的x 的取值范围.18. (12分)某电器公司生产A 型电脑,1993年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备与加强管理.使生产成本逐年降低.到1997年,尽管A 型电脑出厂价是1993年的80%,但却实现了50%纯利润的高效益. (1) 求1997年每台A 型电脑的生产成本;(2) 以1993年的生产成本为基数,求成1993年至1997年生产成本平均每年降低的百分数(精确度0.01以下数据可供参考:)449.26,236.25==19、(12分)若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=-⎪⎝⎭(1)求()1f 的值; (2)若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.20.(14分)已知函数f(x 2-3)=l g 6x x 22-(1) 求f(x)表达式及定义域 ;(2)判断函数f(x)的奇偶性.21.(选做题)函数f(x)=log a(x-3),当点P(x,y)是函数y=f(x)图象上的点时,Q(x-2,-y)是函数y=g(x)图象上的点.(1)写出函数y=g(x)的解析式.(2)若f(x)>g(x),求x的取值范围.。

(word完整版)高一数学函数经典习题及答案

(word完整版)高一数学函数经典习题及答案

函 数 练 习 题班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

综合题:高一数学函数经典习题及答案

综合题:高一数学函数经典习题及答案

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学习题函数的综合运用

高一数学习题函数的综合运用

高一数学习题函数的综合运用在高一的数学学习中,函数是一个重要的概念和工具。

函数的综合运用则是展示学生对函数知识的掌握程度和应用能力的重要环节。

本文将通过几道具体的数学习题,展示高一学生如何运用函数进行综合问题求解。

1. 题目一:小明正在规划一个植物园,园中有两片草地A和B,其中草地A的面积是草地B的两倍。

小明想在这两片草地上分别种植玫瑰花和向日葵,使得两种花的总数量相等。

已知玫瑰花每平方米需要5株,向日葵每平方米需要3株。

请问小明应该在草地A和草地B分别种植多少面积的玫瑰花和向日葵,才能满足总数量相等的要求?解析:设草地A的面积为x平方米,则草地B的面积为2x平方米。

根据题意,可得到以下两个等式:5x = 3 * 2x接下来,我们解方程组:5x = 6x6x - 5x = 0x = 0根据解出的x值,我们可以得知草地A的面积为0平方米,草地B 的面积为0平方米。

因此,无法满足总数量相等的要求。

2. 题目二:某超市在一次特价促销中,将原价为100元的商品打折出售。

打折后的价格与原价之间的关系如下:当购买数量小于等于5件时,每件商品打8折;当购买数量超过5件时,每件商品打7折。

若小明购买了x件商品,问他所购商品的总金额f(x)与x的函数关系是什么?解析:当购买数量小于等于5件时,每件商品打8折,即折扣后价格为100 * 0.8 = 80元。

当购买数量超过5件时,每件商品打7折,即折扣后价格为100 * 0.7 = 70元。

根据以上分析,可以列出下面的函数关系式:f(x) ={80x, 当 x <= 5,70x, 当 x > 5}通过这个函数关系式,我们可以计算出小明购买任意数量的商品后的总金额。

3. 题目三:某公司的年度利润(单位:亿元)与销售额(单位:亿元)之间的关系如下:当销售额不超过10亿元时,利润为销售额的5%;当销售额超过10亿元但不超过50亿元时,利润为销售额的8%;当销售额超过50亿元时,利润为销售额的10%。

高一数学函数习题(练习题以及答案

高一数学函数习题(练习题以及答案

一、求函数的定义域1、求下列函数的定义域:⑴221533x x y x ⑵211()1x y x ⑶021(21)4111yx x x 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ __;函数f x ()2的定义域为________;3、若函数(1)f x 的定义域为[]23,,则函数(21)f x 的定义域是;函数1(2)f x 的定义域为。

4、知函数f x ()的定义域为[1,1],且函数()()()F x f x m f x m 的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x ()x R ⑵223y x x [1,2]x⑶311x y x ⑷311x y x (5)x ⑸262xy x⑹225941x x y x +⑺31y x x ⑻2y x x ⑼245y x x ⑽2445y x x ⑾12y x x6、已知函数222()1x axb f x x 的值域为[1,3],求,a b 的值。

三、求函数的解析式1、已知函数2(1)4f x x x ,求函数()f x ,(21)f x 的解析式。

2、已知()f x 是二次函数,且2(1)(1)24f x f x x x ,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x ,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x 时,3()(1)f x x x ,则当(,0)x 时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x xR x 且,()f x 是偶函数,()g x 是奇函数,且1()()1f x g x x ,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x ⑵223y x x ⑶261y x x 7、函数()f x 在[0,)上是单调递减函数,则2(1)f x 的单调递增区间是8、函数236x y x 的递减区间是;函数236x y x 的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为()⑴3)5)(3(1x x x y ,52x y ;⑵111x x y ,)1)(1(2x x y ;⑶x x f )(,2)(xx g ;⑷x x f )(,33()g x x ;⑸21)52()(x x f ,52)(2x x f 。

高一函数练习题及答案

高一函数练习题及答案

高一函数练习题及答案高一函数练习题及答案高一阶段是学习数学的重要时期,其中函数是一个重要的内容。

函数作为数学的一个基础概念,对于学生来说是一个相对抽象的概念。

因此,通过练习题的方式来巩固和提高对函数的理解和运用能力是非常必要的。

本文将为大家提供一些高一函数练习题及答案,希望能够帮助大家更好地掌握函数的知识。

一、选择题1. 设函数f(x) = 2x + 3,那么f(4)的值是多少?A. 7B. 11C. 9D. 8答案:B. 11解析:将x = 4代入函数f(x) = 2x + 3中,得到f(4) = 2 × 4 + 3 = 8 + 3 = 11。

2. 已知函数g(x) = x^2 + 3x - 2,求g(-1)的值是多少?A. -6B. -2C. 2D. 6答案:C. 2解析:将x = -1代入函数g(x) = x^2 + 3x - 2中,得到g(-1) = (-1)^2 + 3 × (-1) - 2 = 1 - 3 - 2 = -4。

3. 函数h(x) = 3x^2 - 2x + 1,求h(2)的值是多少?A. 9B. 11C. 15D. 19答案:A. 9解析:将x = 2代入函数h(x) = 3x^2 - 2x + 1中,得到h(2) = 3 × 2^2 - 2 × 2 + 1 = 3 × 4 - 4 + 1 = 12 - 4 + 1 = 9。

二、填空题1. 设函数f(x) = 2x + 3,求f(-1)的值是多少?答案:1解析:将x = -1代入函数f(x) = 2x + 3中,得到f(-1) = 2 × (-1) + 3 = -2 + 3 = 1。

2. 已知函数g(x) = x^2 + 3x - 2,求g(0)的值是多少?答案:-2解析:将x = 0代入函数g(x) = x^2 + 3x - 2中,得到g(0) = 0^2 + 3 × 0 - 2 = 0 - 2 = -2。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

综合题:高一数学函数经典习题及答案

综合题:高一数学函数经典习题及答案

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数经典练习题含答案

高一数学函数经典练习题含答案

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学必修1《第三章 函数的应用》单元测试题(含答案)

高一数学必修1《第三章 函数的应用》单元测试题(含答案)

高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。

高一数学函数经典练习题含答案

高一数学函数经典练习题含答案

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学必修1函数综合试题(带答案)

高一数学必修1函数综合试题(带答案)

函数单元测试一、选择题:(本题共12题,每小题5分,满分60分) 1.若a 、b 、c∈R+,则3a =4b=6c ,则ﻩﻩ( )A.b a c 111+= ﻩB.b ac 122+= ﻩC.ba c 221+= ﻩﻩD.ba c 212+=2.集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:,使任意M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射共有ﻩﻩ( )A .60个ﻩ B.45个C.27个D.11个3.已知()1a x f x x a -=--的反函数...f -1(x )的图像的对称中心是(—1,3),则实数a 等于ﻩ( )ﻩA.2ﻩB.3ﻩC .-2 D.-44.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是ﻩ( )A.11()(2)()43f f f >> ﻩB.11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >>5.函数f (x )=1-x +2 (x ≥1)的反函数是ﻩﻩ( )A .y =(x -2)2+1 (x ∈R)B .x =(y -2)2+1 (x ∈R)C.y =(x-2)2+1 (x ≥2) ﻩD .y=(x -2)2+1 (x ≥1)6.函数y=l g(x 2-3x +2)的定义域为F ,y=lg(x -1)+l g(x -2)的定义域为G ,那么( )A.F ∩G=∅ B.F=GC .FG ﻩﻩD.GF7.已知函数y=f (2x )的定义域是[-1,1],则函数y =f (lo g2x )的定义域是ﻩ( )A.(0,+∞)B .(0,1)C.[1,2]ﻩﻩD.[2,4]8.若()()25log 3log 3x x -≥()()25log 3log 3yy---,则ﻩ( ) A .x y -≥0ﻩB .x y +≥0C .x y -≤0 ﻩD.x y +≤0 9.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是ﻩ( )A.0≥b ﻩB .0≤b C.0<b ﻩD.0>b10.函数)2()(||)(x x x g x x f -==和的递增区间依次是ﻩﻩﻩ( )ﻩA .]1,(],0,(-∞-∞ ﻩﻩB .),1[],0,(+∞-∞ﻩ C .]1,(),,0[-∞+∞ ﻩﻩD),1[),,0[+∞+∞11.将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为 ( ) A .92元B.94元C.95元ﻩD.88元12.某企业2002年的产值为125万元,计划从2003年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元 ﻩ( )A .2004年ﻩB.2005年ﻩC.2006年D.2007年二、填空题:(本题共4小题,每小题4分,满分16分) 13.函数x xy +=12[),1((+∞-∈x ]图象与其反函数图象的交点坐标为 . 14.若4log 15a<(0a >且1)a ≠,则a的取值范围是 . 15.lg 25+32lg8+lg5·lg20+lg 22= . 16.已知函数221)(xx x f +=,那么 =⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛++41)4(31)3(21)2()1(f f f f f f f ____________. 三、解答题:(本题共6小题,满分74分) 17.(本题满分12分)设A ={x ∈R|2≤ x ≤ π},定义在集合A 上的函数y =log a x (a>0,a ≠1)的最大值比最小值大1,求a 的值.18.(本题满分12分)已知f(x)=x2+(2+lg a)x+lg b,f(-1)=-2且f(x)≥2x恒成立,求a、b的值.19.(本题满分12分)“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、薪金中应纳税的部分)为x,x=全月总收入-800(元),税率见下表:(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?20.(本题满分12分)设函数f (x) =21+x +lg xx +-11 . (1)试判断函数f (x )的单调性 ,并给出证明;(2)若f (x )的反函数为f -1 (x ) ,证明方程f -1 (x )= 0有唯一解.21.(本题满分13分)某地区上年度电价为0.80元/kW· h,年用电量为a kW· h .本年度计划将电价降到0.55元/kW·h至0.75元/kW·h 之间,而用户期望电价为0.4元/k W·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本为0.3元/kW·h. (1) 写出本年度电价下调后,电力部门的收益y与实际电价x 的函数关系式. (2) 设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%? (注:收益=实际用电量×(实际电价-成本价)).22.(本小题满分13分)已知.0>c 设P :函数xc y =在R 上单调递减.Q:不等式1|2|>-+c x x 的解集为R,如果P 和Q 有且仅有一个正确,求c 的取值范围.参考答案三、解答题:(本题共6小题,满分74分)17.解析: a >1时,y =log ax 是增函数,log a π-log a 2=1,即lo ga2π=1,得a =2π. 0<a <1时,y =log ax 是减函数,log a2-log a π=1,即l og aπ2=1,得a =π2. 综上知a 的值为2π或π2.18.解析:由f(-1)=-2得:1-(2+lg a )+l gb=-2即lg b =l ga-1 ﻩ ﻩ ﻩ ﻩ ﻩ ①101=a b 由f (x )≥2x恒成立,即x 2+(l ga)x +lg b ≥0, ∴lg2a -4lg b≤0, 把①代入得,l g2a-4l ga +4≤0,(lg a -2)2≤0 ∴lg a =2,∴a =100,b =1019.解:(1)依税率表,有[[13.)0,0(,14.4(0,)(1,)5+∞,15.3,16.27]] 第一段:x ·5% 第二段:(x-500)·10%+500·5% 第三段:(x -2000)·15%+1500·10%+500·5%即:f (x )=⎪⎩⎪⎨⎧≤<+-≤<+-≤<)50002000( 175)2000(15.0)2000500(25)500(1.0)5000(05.0x x x x x x(2)这个人10月份纳税所得额 x =4000-800=3200f(3200)=0.15(3200-2000)+175=355(元) BB ACC DDBAC C C 答:这个人10月份应缴纳个人所得税355元.20.解析:(1)由).1,1()(02011-⎪⎩⎪⎨⎧≠+>+-的定义域为解得函数x f x x x)11lg 11(lg )2121()()(,11:1122122121x x x x x x x f x f x x +--+-++-+=-<<<-则设 )1)(1()1)(1(lg)2)(2(21212121x x x x x x x x +--++++-=.又∵,0,0)2)(2(2121<->++x x x x ).()(0)()(.0)1)(1()1)(1(lg 111)1)(1()1)(1(0,0)1)(1(,0)1)(1(,0)2)(2(1212212121122121212121212121x f x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x <<-∴<+--+⇒<--+--+=+--+<∴>+->-+<++-∴即又故函数f(x )在区间(-1,1)内是减函数.(2)这里并不需要先求出f(x)的反函数f -1(x),再解方程f -1(x )=0∵0)(21,0)21(,21)0(11===∴=--x f x f f 是方程即的一个解. 若方程f -1(x )=0还有另一解x 021≠,则.0)(1=-x f)0(f 又由反函数的定义知21≠,这与已知矛盾.故方程f-1(x)=0有唯一解.21.解析:(1)设下调后的电价为x 元/k W·h,用电量增至(4.0-x k+a)依题意知,y=(4.0-x k+a )(x -0.3),(0.55≤x ≤0.75)(2)依题意有⎪⎩⎪⎨⎧≤≤+⨯-⨯≥-+-75.055.0%)201()]3.08.0([)3.0)(4.02.0(x a x a x a整理得⎩⎨⎧≤≤≥+-75.055.003.01.12x x x 解此不等式得0.60≤x ≤0.75答:当电价最低定为0.60元/kW·h ,仍可保证电力部门的收益比去年至少增长20%. 22.解析:函数xc y =在R上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ ∵⎩⎨⎧<≥-=-+,2,2,2,22|2|c x c c x c x c x x ).,1[]21,0(.1,,.210,,.21121|2|.2|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y。

精选最新版2019年高一数学单元测试试题-函数综合问题考核题库完整版(含标准答案)

精选最新版2019年高一数学单元测试试题-函数综合问题考核题库完整版(含标准答案)

2019年高一年级数学单元测试卷函数综合问题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x (D)()f x 既奇函数,又是周期函数(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))2.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .21x e -B .2x eC .21x e +D .22x e +(2008全国1理6)3.设偶函数()(0,)f x +∞在上为减函数,且(2)0f =,则不等式()()0f x f x x +->的解集为( )A .(2,0)(2,)-+∞B .(,2)(0,2)-∞-C .(,2)(2,)-∞-+∞D .(2,0)(0,2)-4.已知()f x 是单调减函数,若将方程()f x x =与1()()f x f x -=的解分别称为函数()f x 的不动点与稳定点.则“x 是()f x 的不动点”是“x 是()f x 的稳定点”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.满足线性约束条件23,23,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y =+的最大值是 [答]( )(A )1. (B )32. (C )2. (D )3.二、填空题6.方程12log 2x x +=的实数解的个数为 ▲ .7.已知函数f (x )=(31)4(1)log (1)a a x a x xx -+<⎧⎨≥⎩在区间()+∞∞-,内是减函数,则a 的取值范围是___▲____.8.设函数⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(132)(x xx x x f ,若a a f =)(,则实数a 的值是 -1 .9.2log 0x +=的根的个数为 ▲ .10.已知0a ≥,函数21())sin 242f x a x x π=-+的最大值为252,则实数a 的值为 。

高一数学函数单元测试题及答案

高一数学函数单元测试题及答案

高一数学函数单元测试题及答案单元测试题一、填空题1、设全集U=Z,集合A={-1,1,2},B={-1,1,2},从A到B的一个映射为x→y=f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},则B∩(C∪P)={-1,1}。

2、已知x1是方程x+lgx=3的根,x2是方程x+10=3的根,则x1+x2值为2.3、已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)=x/1,则当x<-2时f(x)=-x/1.4、函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=0在[1,4]上的根是x=2.5、设f(x)=2log(x-1),x≥2;f(x)=3x-1,x<2,则f(f(2))的值为1.6、从甲城市到乙城市m分钟的电话费由函数f(m)=1.06×([m]+44)给出,其中[m]表示不大于m的最大整数(如[3]=3,[3.9]=3,[3.1]=3),则从甲城市到乙城市5.8分钟的电话费为7.7、函数f(x)=2-2/(x-1),x≤2;f(x)=1-x/2,x>2,则f(0)=-1.8、函数y=(1-x)/(1+x),x≠-1,的值域为(-1,1)。

9、若f(5/2x-1)=x-2,则f(125)=48.10、已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x+2x+3.若对实数k∈B,在集合A中不存在原象,则k 的取值范围是(-3/2,-3)∪(-3,-2)∪(-2,-3/2)。

11、偶函数f(x)在(-∞,0)上是减函数,若f(-1)<f(lgx),则实数x的取值范围是(1,e)。

12、关于x的方程|x-4x+3|-a=0有三个不相等的实数根,则实数a的值是1/2.13、关于x的方程(2x-1)/(x+2)+a=1有正根,则实数a的取值范围是(-∞,1/2)。

二、改写后的答案1、已知集合A={-1,1,2},B={-1,1,2},全集U=Z,映射f:A→B,f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},求B∩(C∪P)的值。

(word完整版)高一数学必修一函数练习习题及答案

(word完整版)高一数学必修一函数练习习题及答案

高中数学必修一函数试题(一)一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4)(1)(2)(3)(4)7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。

A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -g ≤ D 、()1()f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,ab ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(34)

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(34)

人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 幂函数的图象过点 (2,√2),则该幂函数的解析式是 ( ) A . y =x −1B . y =x 12C . y =x 2D . y =x 32. 函数 f (x )=ax +bx +5(a ,b 均正数),若 f (x ) 在 (0,+∞) 上有最大值 8,则 f (x ) 在(−∞,0) 上 ( ) A .有最大值 −8 B .有最小值 −8 C .有最小值 2D .有最大值 23. 下列函数中,在区间 (0,1) 上是增函数的是 ( ) A . y =−x 2+1 B . y =√xC . y =1xD . y =3−x4. 下列函数是偶函数的为 ( ) A . y =2x B . y =log 12xC . y =x −1D . y =x 25. 已知函数 f (x )=4x 2−kx −8 在 (−∞,5] 上具有单调性,则实数 k 的取值范围是 ( ) A . (−24,40)B . [−24,40]C . (−∞,−24]D . [40,+∞)6. 下列给出的函数是分段函数的是 ( ) A . f (x )={±x,x >0,x +1,x ≤0.B . f (x )={x 2+1,x ∈R,x,x ≥4.C . f (x )=|x +1|D . f (x )={x −1,0<x ≤5,4x,x ≤2.7. 下列函数中,定义域是 R 且为增函数的是 ( ) A . y =e −xB . y =x 3C . y =lnxD . y =∣x ∣8. “f (0)=0”是“y =f (x ) 是奇函数”的 ( ) A .充分非必要条件 B .必要非充分条件; C .非充分非必要条件D .充要条件;9. 设函数 f (x )={3−x,x <02g (x ),x >0,若 f (x ) 是奇函数,则 g (1) 等于 ( )A . −4B . −2C . 2D . 410. 已知函数 y =a x−3−23(a >0,且 a ≠1)的图象恒过点 P .若点 P 在幂函数 f (x ) 的图象上,则幂函数 f (x ) 的图象大致是 ( )A .B .C .D .二、填空题(共6题)11. 偶函数 f (x ) 的定义域为 [t −4,t ],则 t = .12. 2019 年 7 月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳 14 的质量 N 随时间 t (单位:年)的衰变规律满足 N =N 0⋅2−r 5730(N 0 表示碳 14 原有的质量),则经过 5730年后,碳 14 的质量变为原来的 ;经过测定,良渚古城遗址文物样本中碳 14 的质量是原来的 37 至 12,据此推测良渚古城存在的时期距今约在 5730 年到 年之间.(参考数据:lg2≈0.3,lg7≈0.84,lg3≈0.48)13. 函数 f (x )=√x−2x−3的定义域为 .14. 函数 y =f (x ) 在 R 上为增函数,且 f (2m )>f (−m +9),则实数 m 的取值范围是 .15. 如图,图中曲线是幂函数 y =x α 在第一象限的大致图象,已知 α 取 −2,−12,12,2 四个值,则相应于曲线 C 1,C 2,C 3,C 4 的 α 依次为 .16. 已知函数 f (x )={2x ,x <1log 2x,x ≥1,则 f (8)= ;若直线 y =m 与函数 f (x ) 的图象只有 1个交点,则实数 m 的取值范围是 .三、解答题(共6题)17. 北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000 万元从政府购得一块廉价土地,该土地可以建造每层 1000 平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高 0.02 万元,已知建筑第 5 层楼房时,每平方米建筑费用为 0.8 万元.(1) 若学生宿舍建筑为 x 层楼时,该楼房综合费用为 y 万元(综合费用是建筑费用与购地费用之和),写出 y =f (x ) 的表达式.(2) 为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?18. 已知函数 f (x )=3x 2−5x +2,求 f(−√2),f (−a ),f (a +3),f (a )+f (3) 的值.19. 如图(1)(2)所示的分别是函数 y 1=f (x ) 和 y 2=g (x ) 的图象,试分别写出函数 y 1=f (x )和 y 2=g (x ) 的单调递增区间.20. 如何理解区间的概念?21. 判断函数 f (x )={x 2+2x,x <01,x =0−x 2+2x,x >0 的奇偶性.22. 求下列函数的定义域:(1) f (x )=√3x −1+√1−2x +4; (2) f (x )=0√∣x∣−x.答案一、选择题(共10题) 1. 【答案】B【知识点】幂函数及其性质2. 【答案】C【解析】设 g (x )=ax +bx ,则 g (x ) 为奇函数,且在 (0,+∞) 上的最大值为 3, 所以 g (x ) 在 (−∞,0) 上的最小值为 −3, 故 f (x ) 在 (−∞,0) 上有最小值 2. 【知识点】函数的最大(小)值3. 【答案】B【知识点】函数的单调性4. 【答案】D【解析】A 项,y =2x 定义域为 R ,为非奇非偶函数; B 项,y =log 12x 定义域为 (0,+∞) 为非奇非偶函数;C 项,y =x −1 定义域为 {x∣ x ≠0},反比例函数 y =1x为奇函数;D 项,y =x 2=(−x )2,定义域为 R 为偶函数. 【知识点】函数的奇偶性5. 【答案】D【解析】因为函数 f (x )=4x 2−kx −8 的对称轴方程为 x =k8,且函数 f (x )=4x 2−kx −8 在 (−∞,5] 上具有单调性,所以根据二次函数的性质可知 k8≥5,解得 k ≥40.故 k 的取值范围为 [40,+∞). 【知识点】函数的单调性6. 【答案】C【解析】对于A ,取 x =1,得 f (1)=1 或 −1,不是分段函数; 对于B ,取 x =4,得 f (4)=17 或 4,不是分段函数; 对于C ,f (x )=|x +1|={x +1,x ≥−1,−x −1,x ≤−1是分段函数;对于D ,取 x =2,得 f (2)=1 或 8,不是分段函数,故选C . 【知识点】分段函数7. 【答案】B【解析】对于A ,y =e −x =(1e )x,是 R 上的减函数,不合题意; 对于B ,y =x 3 是定义域是 R 且为增函数,符合题意; 对于C ,y =lnx ,定义域是 (0,+∞),不合题意;对于D ,y =∣x ∣,定义域是 R ,但在 R 上不是单调函数,不合题,故选B . 【知识点】函数的单调性、函数的定义域的概念与求法8. 【答案】C【知识点】充分条件与必要条件、函数的奇偶性9. 【答案】B【解析】因为 f (x ) 是奇函数,且 f (x )={3−x,x <02g (x ),x >0,因为 f (1)=−f (−1)=−[3−(−1)]=−4, 所以 g (1)=12f (1)=−2.故选B . 【知识点】函数的奇偶性10. 【答案】A【解析】令 x −3=0,即 x =3, 所以 y =a 0−23=13, 所以 P (3,13). 设 f (x )=x α,因为点 P (3,13) 在幂函数 f (x ) 的图象上, 所以 f (3)=3α=13,解得 α=−1, 所以 f (x )=x −1,故幂函数 f (x ) 的图象大致同选项A . 【知识点】幂函数及其性质二、填空题(共6题) 11. 【答案】2【解析】由于偶函数 f (x ) 的定义域为 [t −4,t ],关于原点对称,故有 t +t −4=0, 所以 t =2.【知识点】函数的奇偶性12. 【答案】 12 ; 6876【知识点】函数模型的综合应用13. 【答案】 [2,3)∪(3,+∞)【知识点】函数的定义域的概念与求法14. 【答案】 (3,+∞)【解析】因为函数 y =f (x ) 在 R 上为增函数,且 f (2m )>f (−m +9), 所以 2m >−m +9,解得 m >3. 【知识点】函数的单调性15. 【答案】 2,12,−12,−2【解析】令 x =2,则 22>212>2−12>2−2,故相应于曲线 C 1,C 2,C 3,C 4 的 α 依次为 2,12,−12,−2.【知识点】幂函数及其性质16. 【答案】 3 ; {0}∪[2,+∞)【解析】 f (8)=log 28=3,作出函数 f (x ) 的图象,如图所示.若直线 y =m 与函数 f (x ) 的图象只有 1 个交点,则 m ≥2 或 m =0.【知识点】分段函数三、解答题(共6题) 17. 【答案】(1) 由题意知建筑第 1 层楼房时,每平方米建筑费用为 0.72 万元, 建筑第 1 层楼房的建筑费用为 0.72×1000=720(万元), 楼房每开高一层,整层建筑费用提高 0.02×1000=20(万元),则建筑第 x 层楼房的建筑费用为 720+(x −1)×20=(20x +700) 万元, 建筑 x 层楼房时,该楼房综合费用为 y =f (x )=(720+20x+700)x2+1000=10x 2+710x +1000,综上可知,y =f (x )=10x 2+710x +1000(x ≥1,x ∈Z ).(2) 设该楼房每平方米的平均综合费用为 g (x ), 则 g (x )=f (x )1000x =x 100+1x+71100≥2√x 100×1x+71100=0.91,当且仅当x 100=1x,即 x =10 时等号成立,综上可知,应把楼房建成 10 层,此时每平方米的平均综合费用最低为 0.91 万元.【知识点】建立函数表达式模型、均值不等式的实际应用问题18. 【答案】 f(−√2)=8+5√2; f (−a )=3a 2+5a +2;f (a +3)=3a 2+13a +14; f (a )+f (3)=3a 2−5a +16. 【知识点】函数的表示方法19. 【答案】由题图(1)可知,在 (1,4] 和 (4,6] 内,y 1=f (x ) 是单调递增的,所以 y 1=f (x ) 的单调递增区间是 (1,4] 和 (4,6].由题图(2)可知,在 (−1,0) 和 (1,2) 内,y 2=g (x ) 是单调递增的, 所以 y 2=g (x ) 的单调递增区间是 (−1,0) 和 (1,2).【知识点】函数的单调性20. 【答案】区间是表示数集的一种形式,因此对于集合的运算仍然成立;区间表示连续的数集,左端点必须小于右端点,开或闭不能混淆;∞ 是一个符号,而不是一个数,以“−∞”或“+∞”作为区间的一端时,这端必须用小括号.【知识点】函数的相关概念21. 【答案】当 x <0 时,−x >0,则 f (−x )=−(−x )2−2x =−(x 2+2x )=−f (x ).当 x >0 时,−x <0,则 f (−x )=(−x )2−2x =x 2−2x =−(−x 2+2x )=−f (x ). 而当 x =0 时,f (0)=1≠−f (0). 所以 f (x ) 既不是奇函数也不是偶函数.【知识点】函数的奇偶性22. 【答案】(1) 要使函数式有意义,必须满足 {3x −1≥0,1−2x ≥0, 即 {x ≥13,x ≤12.所以 13≤x ≤12,即函数的定义域为 {x∣ 13≤x ≤12}.(2) 要使函数式有意义,必须满足 {x +3≠0,∣x ∣−x >0,即 {x ≠−3,∣x ∣>x, 解得 {x ≠−3,x <0.所以函数的定义域为 {x∣ x <0且x ≠−3}.【知识点】函数的定义域的概念与求法。

高一数学必修一函数练习题

高一数学必修一函数练习题

高一数学必修一函数练习题高一数学必修一函数练习题数学作为一门科学,是人类思维的一种高级形式。

而函数作为数学的一个重要概念,是数学研究的基础之一。

在高一数学必修一中,函数是一个重要的知识点。

通过练习函数相关的题目,可以帮助学生更好地理解函数的概念和性质,提高解题能力。

一、基础题1. 已知函数f(x) = 2x + 3,求f(4)的值。

解析:代入x=4,得到f(4) = 2(4) + 3 = 11。

2. 已知函数g(x) = x^2 - 5x + 6,求g(2)的值。

解析:代入x=2,得到g(2) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0。

3. 已知函数h(x) = 3x^3 + 2x^2 - x + 1,求h(-1)的值。

解析:代入x=-1,得到h(-1) = 3(-1)^3 + 2(-1)^2 - (-1) + 1 = -3 + 2 + 1 + 1= 1。

二、综合题1. 已知函数f(x) = 2x + 3,求解方程f(x) = 0的解。

解析:将f(x)置为0,得到2x + 3 = 0。

移项得2x = -3,再除以2得到x = -3/2。

所以方程f(x) = 0的解为x = -3/2。

2. 已知函数g(x) = x^2 - 5x + 6,求解方程g(x) = 0的解。

解析:将g(x)置为0,得到x^2 - 5x + 6 = 0。

该方程可以因式分解为(x - 2)(x - 3) = 0。

所以方程g(x) = 0的解为x = 2或x = 3。

3. 已知函数h(x) = 3x^3 + 2x^2 - x + 1,求解方程h(x) = 0的解。

解析:该方程无法直接因式分解,需要使用其他方法求解。

可以通过试探法或者使用计算工具求解。

经过计算,得到方程h(x) = 0的解为x ≈ -0.347、x ≈ -0.333、和x ≈ 0.347。

通过以上练习题的解析,我们可以看到函数的运算和方程的解都是通过运用函数的性质和运算规则来实现的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学系列练习 (函数综合题)
一、选择题:
1、下列四组函数中表示同一函数的是 ( A )
A f (x)=| x | 与g(x)=2x
B y=x 0 与y=1
C y=x+1与y=1
12--x x D y=x -1与y=122+-x x 2、函数y=)12(log 2
1-x 的定义域为
( C )
A .(
21,+∞) B .[1,+∞) C .( 2
1,1] D .(-∞,1) 3、已知f (x 1)=11+x ,则f (x)的解析式为 ( C ) …
A f(x) =x +11
B f (x)=x x +1
C f (x)=x
x +1 D f (x)=1+x 4、函数y=x 2-6x+10在区间上(2,4)上 ( D )
A 单调递增
B 单调递减
C 先递增后递减
D 先递减后递增
5、若24x =-2x ,则实数x 的取值范围是 ( D )
A x>0
B x<0
C x ≥0
D x ≤0
6、函数y=1
2-+x x 的定义域为 ( D ) A x ≠1 B x ≥-2 C -2<x<1或x>1 D -2≤x<1或x>1
7、若y=(1-a)x 在R 上是减函数,则a 的取值范围是 ( B )

A (1,+∞)
B (0,1)
C (-∞,1)
D (-1,1)
8、函数f (x)=x
x 2)21(2
+ ( B ) A 是奇函数 B 是偶函数 C 非奇非偶 D 既奇既偶
9、指数式b 3=a (b>0,且b ≠1)所对应的对数式是 ( D )
A log 3a=b
B log 3b=a
C log a b=3
D log b a=3
10、下列等式一定成立的是
( D )
A .2331a a ⋅=a
B .2121a a
⋅-=0 C .(a 3)2=a 9 D .613121a a a =÷ 11、函数y=log 2
1|x|的图象特点为 ( B ) ·
A 关于x 轴对称
B 关于y 轴对称
C 关于原点对称
D 关于直线y=x 对称
12、已知ab>0,下面四个等式中,正确命题的个数为 ( B )
①lg (ab )=lga+lgb ②lg b a =lga -lgb ③b
a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .3
二、填空题:
13、已知f(x)=⎩⎨⎧>+-≤+)
1(3)1(1x x x x ,则f(f(25))=_______3______; 14、若f(x)的定义域为[-1,4],则函数f(x+2)的定义域为_____[-3,2]_______;
"
15.若11)1(2-=-x x f ,则)(x f = x
x 212+ . 16.若函数2)(+=
x x x f ,则)31(1-f = 1 . 17.函数4)1lg()(2-+-=x x x f ,则函数定义域为 [2,+∞) .
18.设函数1)1(log )(+-=x x f a ,则它的反函数图像过定点 (1,2) .
19.函数32-+=x x y 的值域为 [3,+∞) .
20.函数)82(log 2
31--=x x y 的单调递减区间为 (4,+∞) .
三、解答题:
21、求证:y=kx+b(k>0)是R 上的增函数.

证明:在R 上任取x 1<x 2,x 1-x 2<0,则
f(x 1)-f(x 2)=(kx 1+b)-(kx 2+b)=k(x 1-x 2)<0
即f(x 1)<f(x 2),所以y=kx+b(k>0)是R 上的增函数.
21、已知二次函数y=f(x)满足条件f(0)=1,f(x+1)-f(x)=2x,求f(x)的表达式.
解:设二次函数f(x)=ax 2+bx+c(a ≠0),
由f (0)=1得,a02+b0+c=1,即c=1;
由f(x+1)-f(x)=2x 得,a(x+1)2+b(x+1)+c -(ax 2+bx+c)=2x,整理得:2ax+a+b=2x
~
即⎩⎨⎧=+=0
22b a a 得a=1,b=-1,c=1
所以:f(x)=x 2-x+1.
22、试判断函数x
x x f 2)(+=在[2,+∞)上的单调性.
解:设+∞<<≤212x x ,则有
=-)()(21x f x f )2(22211x x x x +-+=)22()(2
121x x x x -+- =)22(
)(211221x x x x x x ⋅-+-=)21)((2121x x x x ⋅-- =)2)(
(212121x x x x x x ⋅--. ? +∞<<≤212x x ,021<-x x 且0221>-x x ,021>x x ,
所以0)()(21<-x f x f ,即)()(21x f x f <.
所以函数)(x f y =在区间[2,+∞)上单调递增.
23、定义在(-1,1)上的函数f(x)是增函数,且满足f(a -1)<f(3a),求a 的取值范围.
解:由题意得,⎪⎩⎪⎨⎧<-<<-<-<-a a a a 31131111即⎪⎪⎪⎩
⎪⎪⎪⎨⎧-><<-<<21313120a a a 所以0<a<31
24、给出函数2()log (0,1)2
a x f x a a x +=>≠-. (1) :
(2) 求函数的定义域;
(3) 判断函数的奇偶性;
(4) 求)(1x f -的解析式.
解:(1)由题意,02
2>-+x x 解得:22>-<x x 或, 所以,函数定义域为}22|{>-<x x x 或.
(2)由(1)可知定义域关于原点对称,则
22log )(--+-=-x x x f a =22log +-x x a =1)2
2(log --+x x a =22log -+-x x a =)(x f -.
所以函数)(x f y =为奇函数.
(3)设22log -+=x x y a ,有y a x x =-+2
2,解得122-+=y y a a x , 所以122)(1
-+=-x x a a x f ,{|1,}x x x x ∈≠∈R .。

相关文档
最新文档