无锡书一中复学校2017年中考数学模拟卷(六)

合集下载

无锡市中考数学一模试卷

无锡市中考数学一模试卷

无锡市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·黄石港模拟) 人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A . 1.56×10﹣6mB . 1.56×10﹣5mC . 156×10﹣5mD . 1.56×106m2. (2分)(2020·下城模拟) 九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24252627282930人数▄▄23679下列关于成绩的统计量中,与被遮盖的数据无关的是()A . 平均数,方差B . 中位数,方差C . 中位数,众数D . 平均数,众数3. (2分)已知一次函数y=kx+b的图象经过第一、二、四象限,则函数y= 的图象在()A . 第一、三象限B . 第二、四象限C . 第三、四象限D . 第一、二象限4. (2分)(2017·七里河模拟) 如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T放在()A . 几何体1的上方B . 几何体2的左方C . 几何体3的上方D . 几何体4的上方5. (2分)下列各式:① ,② ,③ ,④ 中,最简二次根式有()A . 1个B . 2个C . 3个D . 4个6. (2分)(2020·西安模拟) 如图,中,,是的中线,E是的中点,连接,若,,则()A .B .C .D .7. (2分)如图,PA切⊙O于A,AB⊥OP于B,若PO=8 cm,BO=2 cm,则PA的长为()A . 16cmB . 48cmC . 6 cmD . 4 cm8. (2分) (2018九上·上虞月考) 将抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A . y=(x-1)2+4B . y=(x-4)2+4C . y=(x+2)2+6D . y=(x-4)2+69. (2分) (2019八下·苏州期中) 菱形的周长为20 cm,两邻角的比为1:2,则较长的对角线长为()A . 5 cmB . 4 cmC . 5 cmD . 4 cm10. (2分)(2020·奉化模拟) 如图,Rt△ABC中,AB⊥BC,AB=4,BC=3,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A . 1B . 1.6C . -2D . 2二、填空题 (共8题;共8分)11. (1分)(2017·青浦模拟) 函数y= 的定义域是________.12. (1分)若关于x , y的二元一次方程组的解也是二元一次方程的解,则k 的值为________ 。

2017无锡锡东片中考模拟试卷含答案

2017无锡锡东片中考模拟试卷含答案

24.(本题满分 8 分)已知:如图,在△ABC 中, AB=AC,AE 是角平分线, BM 平分∠ ABC 交 AE 于点 M,经过 B,M 两点的⊙O 交 BC 于点 G,交 AB 于点 F,FB 恰为⊙O 的 直径. (1)求证:AE 与⊙O 相切; (2)当 BC=4,cosC= 1 时,求⊙O 的半径. 3
第 5 题图 6.下列命题中错误的是
第 8 题图
第 9 题图 ( ▲ )
A.两组对边分别相等的四边形是平行四边形 C.一组邻边相等的平行四边形是菱形
B.对角线相等的平行四边形是矩形
D.对角线相等且互相垂直的四边形是正方形 ( ▲ )
7. 圆锥的主视图是边长为 4 cm 的等边三角形,则该圆锥俯视图的面积是 A.4cm
4.小王在清点本班情况如下:l00 元 的 3 张,50 元的 9 张,l0 元的 23 张,5 元的 l0 张.在这些不同面额的钞票中,众数 是 A.10 B.23 C.50 D.100 ( ▲ ) ( ▲ )
5.如图,AB 为⊙O 的直径,点 C 在⊙O 上,若∠C=16°,则∠BOC 的度数是 A. 74 B. 48 C. 32 D. 16
2
B.8 cm
2
C.12 cm
2
D.16 cm
2
8. 如图, 正六边形 ABCDEF 内接于⊙O, 若直线 PA 与⊙O 相切于点 A, 则∠PAB= ( A.30° B.35° C.45° D.60°
▲ )
9. 已知点 A,B 分别在反比例函数 y=
-8 2 (x>0) , y= (x>0)的图像上且 OA⊥OB,则 tanB 为 x x ( ▲ )
三、解答题(本大题共 10 小题,共 84 分.请在答题卷指定区域内作答,解答时应写出 文字说明、证明过程或演算步骤)

江苏省无锡市2017年中考数学试题(解析版)

江苏省无锡市2017年中考数学试题(解析版)

2017年江苏省无锡市中考数学试卷一、选择题(共10小题)1.(2017无锡)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数。

专题:探究型。

分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(2017无锡)sin45°的值等于()A.B.C.D. 1考点:特殊角的三角函数值。

分析:根据特殊角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记特殊角度的三角函数值即可.3.(2017无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B.x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法。

分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.4.(2017无锡)若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1 B. 1 C.﹣2 D. 2考点:反比例函数与一次函数的交点问题。

专题:计算题。

分析:将x=1代入直线y=2x+1,求出该点纵坐标,从而得到此交点的坐标,将该交点坐标代入y=即可求出k的值.解答:解:将x=﹣1代入直线y=2x+1得,y=﹣2+1=﹣1,则交点坐标为(﹣1,﹣1),将(﹣1,﹣1)代入y=得,k=﹣1×(﹣1)=1,故选B.点评:本题考查了反比例函数与一次函数的交点问题,知道交点坐标符合两函数解析式是解题的关键.5.(2017无锡)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况考点:全面调查与抽样调查。

2017年江苏省无锡市南长区中考数学一模试卷带答案解析

2017年江苏省无锡市南长区中考数学一模试卷带答案解析

2017年江苏省无锡市南长区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣5的相反数是()A.5 B.±5 C.﹣5 D.2.(3分)计算的结果为()A.b B.a C.1 D.3.(3分)不等式的解集是()A.B.x>﹣2 C.x<﹣2 D.4.(3分)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3 5.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补6.(3分)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变7.(3分)已知圆锥的底面半径为2,母线长为4,则它的侧面积为()A.4πB.16πC.4πD.8π8.(3分)以下问题,不适合用普查的是()A.了解全班同学每周体育锻炼的时间B.某中学调查全校753名学生的身高C.某学校招聘教师,对应聘人员面试D.鞋厂检查生产的鞋底能承受的弯折次数9.(3分)图1的矩形ABCD中,E点在AD上,且AB=,AE=1.今分别以BE、CE为折线,将A、D向BC的方向折过去,图2为对折后A、B、C、D、E五点均在同一平面上的位置图.若图2中,∠AED=15°,则∠AEC的度数是()A.10°B.15°C.20°D.22.5°10.(3分)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2),(﹣1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是()A.2+2 B.3+2 C.4 D.2+3二、填空题(共8小题,每小题2分,满分16分)11.(2分)=.12.(2分)2013年清明小长假期间,无锡火车站发送旅客约21.7万人次,将21.7万用科学记数法表示为.13.(2分)使有意义的x的取值范围是.14.(2分)方程=的解是.15.(2分)设反比例函数y=与一次函数y=x+2的图象交于点(a,b),则﹣的值为.16.(2分)两块大小一样的含有30°角且斜边为4的直角三角板如图水平放置.将△CDE绕C点按逆时针方向旋转至△CD′E′,当E′点恰好落在AB上时,线段CE 在旋转过程中扫过的面积为.17.(2分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=3,则DF的长为.18.(2分)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x 轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么AD的长为.三、解答题(共10小题,满分84分)19.(8分)计算:(1)﹣|﹣3|﹣2tan30°+(﹣1+)0(2)a+2﹣.20.(8分)(1)解方程:x2+4x﹣5=0(2)解不等式组并把解集在数轴上表示出来.21.(8分)如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.22.(7分)标有﹣3,﹣2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.求一次函数y=kx+b的图象不经过第三象限的概率.(用树状图或列表法写出分析过程)23.(7分)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整):请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计我市100000名中学生家长中有多少名家长持反对态度?24.(8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).25.(10分)如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.(1)求证:AE•BC=AD•AB;(2)若半圆O的直径为10,sin∠BAC=,求AF的长.26.(8分)在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活成为人们的共识,某企业采用技术革新,节能减排,经分析前5个月二氧化碳排放量y(吨)与月份x(月)之间的函数关系是y=﹣2x+50.(1)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么哪月份,该企业获得的月利润最大?最大月利润是多少万元?(2)受国家政策的鼓励,该企业决定从6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位).(参考数据:=7.14,=7.21,=7.28,=7.35)27.(10分)矩形纸片ABCD中,AB=5,AD=4.(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).28.(10分)在平面直角坐标系xOy中,已知二次函数的图象经过原点及点A(1,2),与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.(1)求二次函数的解析式;(2)点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M 坐标;(3)点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);①当点E在二次函数的图象上时,求OP的长;②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE为直径的⊙M相切,直接写出此刻t的值.2017年江苏省无锡市南长区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣5的相反数是()A.5 B.±5 C.﹣5 D.【解答】解:根据相反数的含义,可得﹣5的相反数是:﹣(﹣5)=5.故选:A.2.(3分)计算的结果为()A.b B.a C.1 D.【解答】解:==a,故选B.3.(3分)不等式的解集是()A.B.x>﹣2 C.x<﹣2 D.【解答】解:﹣x+1>2,﹣x>1,x<﹣2,故选C.4.(3分)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【解答】解:∵抛物线对称轴为直线x=2,∴可排除B、D选项,将点(0,1)代入A中,得(x﹣2)2+1=(0﹣2)2+1=5,故A选项错误,代入C中,得(x﹣2)2﹣3=(0﹣2)2﹣3=1,故C选项正确.故选:C.5.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.6.(3分)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变【解答】解:主视图不变,俯视图改变,故选:B.7.(3分)已知圆锥的底面半径为2,母线长为4,则它的侧面积为()A.4πB.16πC.4πD.8π【解答】解:圆锥的侧面积=2π×2×4÷2=8π,故选D.8.(3分)以下问题,不适合用普查的是()A.了解全班同学每周体育锻炼的时间B.某中学调查全校753名学生的身高C.某学校招聘教师,对应聘人员面试D.鞋厂检查生产的鞋底能承受的弯折次数【解答】解:A、了解全班同学每周体育锻炼的时间适合用普查;B、某中学调查全校753名学生的身高适合用普查;C、某学校招聘教师,对应聘人员面试适合用普查;D、鞋厂检查生产的鞋底能承受的弯折次数不适合用普查,故选:D.9.(3分)图1的矩形ABCD中,E点在AD上,且AB=,AE=1.今分别以BE、CE为折线,将A、D向BC的方向折过去,图2为对折后A、B、C、D、E五点均在同一平面上的位置图.若图2中,∠AED=15°,则∠AEC的度数是()A.10°B.15°C.20°D.22.5°【解答】解:在长方形ABCD中,∠A=90°,AD∥BC,∵BE=2AE,∴∠ABE=30°,∴∠AEB=90°﹣∠ABE=90°﹣30°=60°,∵∠AED=15°,∴∠BED=∠AEB﹣∠AED=60°﹣15°=45°,∴∠DED′=180°﹣60°﹣45°=75°,根据翻折的性质,∠CED′=∠DED′=×75°=37.5°,∴∠AEC=∠CED﹣∠AED=22.5°.故选D.10.(3分)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2),(﹣1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是()A.2+2 B.3+2 C.4 D.2+3【解答】解:如图,作点B关于AC的对称点E,连接EP、EB、ED、EC,则PB+PD=PE+PD,因此ED的长就是PB+PD的最小值,即当点P运动到ED与AC的交点G时,△PBD的周长最小.∵A、B、C三点的坐标分别为(1,2),(﹣1,0),(3,0),点D为BC中点,∴AB==4,BC=4,AC==4,∴△ABC是等边三角形,从点D作DF⊥BE,垂足为F,因为BC=4,所以BD=2,BE=2=4,因为∠DBF=30°,所以DF=BD=1,BF=,EF=BE﹣BF=4﹣=3,DE==2,所以△PBD的周长的最小值是2+2,故选:A.二、填空题(共8小题,每小题2分,满分16分)11.(2分)=0.1.【解答】解:∵0.13=0.001∴原式=0.1.故填0.1.12.(2分)2013年清明小长假期间,无锡火车站发送旅客约21.7万人次,将21.7万用科学记数法表示为 2.17×105.【解答】解:21.7万=217 000=2.17×105.故答案为:2.17×105.13.(2分)使有意义的x的取值范围是x≤1.【解答】解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.14.(2分)方程=的解是x=9.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=915.(2分)设反比例函数y=与一次函数y=x+2的图象交于点(a,b),则﹣的值为.【解答】解:将点(a,b)代入y=得到ab=3,将点(a,b)代入y=x+2得a+2=b,即b﹣a=2,则﹣==.故答案为.16.(2分)两块大小一样的含有30°角且斜边为4的直角三角板如图水平放置.将△CDE绕C点按逆时针方向旋转至△CD′E′,当E′点恰好落在AB上时,线段CE在旋转过程中扫过的面积为.【解答】解:∵三角板是两块大小一样斜边为4且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′=2,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,∴线段CE旋转过程中扫过的面积为:=.故答案是:.17.(2分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=3,则DF的长为1.【解答】解:如图,延长CF交AB于G,∵AE是角平分线,CF⊥AE,∴△AGC是等腰三角形,∴AG=AC=3,CF=GF,∴BG=AB﹣AG=5﹣3=2,∵AD是中线,∴BD=CD,∴DF是△BCG的中位线,∴DF=BG=×2=1.故答案为:1.18.(2分)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x 轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么AD的长为或.【解答】解:①先经过点D,即AB>3,如答图1:设直线过点A时交x轴于点E,过点D交AB于点G,交x轴于点F,作DH⊥AB,由图可知:OE=4,OF=7,DG=2,∴EF=AG=OF﹣OE=3∵直线y=﹣x∴∠AGD=∠EFD=45°∴△HGD是等腰直角三角形∴DH=GH=DG=×2=2∴AH=AG﹣GH=3﹣2=1∴AD===②先经过点B,即AB=3,如答图2:设直线过点A时交x轴于点I,过点B时交AD于点K、x轴于点J,过点D时,交AB延长线于点N、x轴于点M,并过K点作KL⊥AB,由图可知:OI=4,OJ=7,KB=2,OM=8,∴IJ=AB=3,IM=AN=4,由直线y=﹣x,易得△KLB是等腰直角三角形,∴KL=BL=KB=×2=2,∴AL=1,∴AK===,∵△ABK∽△AND,∴=,即=,即AD=.三、解答题(共10小题,满分84分)19.(8分)计算:(1)﹣|﹣3|﹣2tan30°+(﹣1+)0(2)a+2﹣.【解答】解:(1)原式=2﹣3﹣+1=﹣2;(2)原式=﹣==.20.(8分)(1)解方程:x2+4x﹣5=0(2)解不等式组并把解集在数轴上表示出来.【解答】解:(1)(x+5)(x﹣1)=0,可得x+5=0,x﹣1=0,∴x1=﹣5,x2=1;(2)由①得:x<2,由②得:x≥﹣1,则不等式组的解集为﹣1≤x<2,解集表示在数轴上,如图所示,21.(8分)如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.22.(7分)标有﹣3,﹣2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.求一次函数y=kx+b的图象不经过第三象限的概率.(用树状图或列表法写出分析过程)【解答】解:如图所示:所有等可能的情况有6种,分别为(﹣3,﹣2);(﹣3,4);(﹣2,﹣3);(﹣2,4);(4,﹣3);(4,﹣2),其中一次函数y=kx+b的图象不经过第三象限的有(﹣3,4),(﹣2,4)共2种,则P==.23.(7分)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整):请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了200名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计我市100000名中学生家长中有多少名家长持反对态度?【解答】解:(1)调查中学生家长总数为:50÷25%=200人.故答案为200;(2)持赞成态度的学生家长有200﹣50﹣120=30人,图①补充图为:(3)持反对态度的家长有:100000×60%=60000人.24.(8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.25.(10分)如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.(1)求证:AE•BC=AD•AB;(2)若半圆O的直径为10,sin∠BAC=,求AF的长.【解答】(1)证明:∵AB为半圆O的直径,∴∠C=90°,∵OD⊥AC,∴∠CAB+∠AOE=90°,∠ADE=∠C=90°,∵AE是切线,∴OA⊥AE,∴∠E+∠AOE=90°,∴∠E=∠CAB,∴△EAD∽△ABC,∴AE:AB=AD:BC,∴AE•BC=AD•AB.(2)解:作DM⊥AB于M,∵半圆O的直径为10,sin∠BAC=,∴BC=AB•sin∠BAC=6,∴AC==8,∵OE⊥AC,∴AD=AC=4,OD=BC=3,∴sin∠OAD==,∵sin∠OAD=sin∠MAD=,∴DM=,AM===,BM=AB﹣AM=,∵DM∥AE,∴=,∴AF=.26.(8分)在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活成为人们的共识,某企业采用技术革新,节能减排,经分析前5个月二氧化碳排放量y(吨)与月份x(月)之间的函数关系是y=﹣2x+50.(1)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么哪月份,该企业获得的月利润最大?最大月利润是多少万元?(2)受国家政策的鼓励,该企业决定从6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位).(参考数据:=7.14,=7.21,=7.28,=7.35)【解答】解:(1)根据图象知道当x=1,p=80,当x=4,p=95,设p=kx+b,故,解得:,则p=5x+75;根据k>0,p随x增大而增大,∴当x=5时,p最大,p=5×5+75=100万元;∴5月份的利润是:100万×40=4000万元;(2)∵该企业决定从今年6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,而当x=5时,y=40,∴6月份的二氧化碳排放量为40(1﹣a%),7月份的二氧化碳排放量为40(1﹣a%)2,5月份的利润为4000万元,∴6月份的利润为100(1+50%)×40(1﹣a%),7月份的利润为100(1+50%)×(1+50%)×40(1﹣a%)2,∴100(1+50%)×40(1﹣a%)+100(1+50%)×(1+50%)×40(1﹣a%)2=3×4000,∴a=13.27.(10分)矩形纸片ABCD中,AB=5,AD=4.(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).【解答】解:(1)正方形的最大面积是16.设AM=x(0≤x≤4),则MD=4﹣x.∵四边形MNEF是正方形,∴MN=MF,∠AMN+∠FMD=90°.∵∠AMN+∠ANM=90°,∴∠ANM=∠FMD.∵在△ANM和△DMF中,∴△ANM≌△DMF(AAS).∴DM=AN.=MN2=AM2+AN2,∴S正方形MNEF=x2+(4﹣x)2,=2(x﹣2)2+8=2(x﹣2)2+8的开口向上,∵函数S正方形MNEF对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.28.(10分)在平面直角坐标系xOy中,已知二次函数的图象经过原点及点A(1,2),与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.(1)求二次函数的解析式;(2)点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M 坐标;(3)点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);①当点E在二次函数的图象上时,求OP的长;②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE为直径的⊙M相切,直接写出此刻t的值.【解答】解:(1)设二次函数的解析式为y=ax2+bx+c,∵二次函数的图象经过原点及点A(1,2),B(3,0),∴,解得.故二次函数解析式为:y=﹣x2+3x;(2)M是AB的垂直平分线与x轴的交点,点M坐标是(1,0)(舍去);M在B点左边并且BM=AB,点M坐标是(3﹣2,0);M在B点右边并且BM=AB,点M坐标是(3+2,0);故点M坐标为(3﹣2,0)或(3+2,0);(3)①由已知可得C(6,0)如图:过A点作AH⊥x轴于H点,∵DP∥AH,∴△OPD∽△OHA,∴=,即=,∴PD=2a,∵正方形PDEF,∴E(3a,2a),∵E(3a,2a)在二次函数y1=﹣x2+3x的图象上,∴a=;即OP=.②直线AC与以DE为直径的⊙M相切,此刻t的值为t=或t=.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

【真题】2017年无锡市中考数学试卷含答案解析(Word版)

【真题】2017年无锡市中考数学试卷含答案解析(Word版)

江苏省无锡市2017年中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣【考点】17:倒数.【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【考点】E4:函数自变量的取值范围.【分析】根据分式的意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.3.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.4.下列图形中,是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【考点】44:整式的加减.【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【考点】AD:一元二次方程的应用.【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选:C.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【考点】O1:命题与定理.【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别难度验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B 选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD 都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.3【考点】MC:切线的性质;L8:菱形的性质.【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,延长即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD 沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【考点】PB:翻折变换(折叠问题);KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是6.【考点】75:二次根式的乘除法.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.12.分解因式:3a2﹣6a+3=3(a﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11℃.【考点】18:有理数大小比较;1A:有理数的减法.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【考点】G7:待定系数法求反比例函数解析式.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【考点】MO:扇形面积的计算;LB:矩形的性质.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过F⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【考点】T7:解直角三角形.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值.,本题得以解决【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式;6E:零指数幂.【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b220.(1)解不等式组:(2)解方程:=.【考点】B3:解分式方程;CB:解一元一次不等式组.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式的性质求出x的值,进而得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB 的延长线于点F,求证:AB=BF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE , 在△CED 和△BEF 中,,∴△CED ≌△BEF (ASA ), ∴CD=BF , ∴AB=BF .22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程) 【考点】X6:列表法与树状图法.【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=4556,b=600;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【考点】VC:条形统计图.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【考点】N3:作图—复杂作图;KK:等边三角形的性质;MA:三角形的外接圆与外心.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB 于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b,b);若点M经过T变换后得到点N(6,﹣),则点M的坐标为(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【考点】FI:一次函数综合题.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可取A(2,),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b,b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可取A(2,),∴2+×=,×=,∴B(,),设直线OB的函数表达式为y=kx,则k=,解得k=,∴直线OB的函数表达式为y=x;②设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+,∴D(0,),且A(2,),B(,),∴AB==,AD==,∴===.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【考点】MR:圆的综合题.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【考点】LO:四边形综合题.【分析】(1)只要证明△ABD∽△DPC,可得=,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,∵∠A=∠CDP=90°,∴△ABD∽△DPC,∴=,∴=,∴PD=,∴t=s时,B、E、D共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM===,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,=,∴=,∴AD=4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4在Rt△ECQ中,QC=DM==,由△DME∽△CDA,∴=,∴=,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.。

无锡省锡中2017~2018学年度初三中考一模数学试卷(含答案)

无锡省锡中2017~2018学年度初三中考一模数学试卷(含答案)

无锡省锡中2017~2018学年度初三中考一模数学试卷2018.3考试说明:满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.﹣2的绝对值是A .2B .﹣2C .12D .12- 2.下列运算正确的是A .236a a a ⋅=B .33a a a ÷=C .32422a a a -=D .326()a a = 3.下面四个手机应用图标中是轴对称图形的是A B C D4.如果一个多边形的内角和等于1440°,那么这个多边形的边数为 A .8 B .9 C .10 D .11 5.若圆柱的底面半径为3,母线长为5,则这个圆柱的侧面积为A .15B .12πC .15πD .30π 6则这些队员年龄的众数和中位数分别是A .15,15B .15,15.5C .15,16D .16,157.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD ,若∠BAC =35°,则∠ADC 的度数为 A .35° B .65° C .55° D .70°第7题 第8题 第9题8.如图,在菱形ABCD 中,AC 、BD 相交于点O ,E 为AB 的中点,且DE ⊥AB ,若AC =6,则DE 的长为A .3B .C .D .49.如图,矩形ABCD 的顶点A 和对称中心在反比例函数(0ky k x=≠,0)x >上,若矩形ABCD 的面积为8,则k 的值为A .8B .C .D .410.如图,点A 是直线y =﹣x 上的动点,点B 是x 轴上的动点,若AB =2,则△AOB 面积的最大值为A .2B 1C 1D . 第10题二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上) 11.因式分解:39a a -= .12.据统计,2018无锡市春节黄金周共接待游客约3020000人次,这个数据用科学记数法可表示为 .13.函数y =中自变量x 的取值范围是 . 14.分式方程213x x =-的解是 . 15.如图,在△ABC 中,∠ABC =90°,∠C =25°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于 .第15题 第16题 第17题16.如图,四边形ABCD 是平行四边形,其中边AD 是⊙O 的直径,BC 与⊙O 相切于点B ,若⊙O 的周长是12π,则四边形ABCD 的面积为 .17.在如图所示的正方形方格纸中,每个小的四边形都是相等的正方形,A 、B 、C 、D 都是格点,AB 与CD 相交于M ,则AM :BM = .18.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数62(0)y mx m m =-+≠的图像将四边形ABCD 的面积分成1:3两部分,则m 的值为 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:2018(1)2sin 45-+-︒;(2)化简:2(2)(2)(2)x x x --+-.20.(本题满分8分)(1)解不等式组:1253(1)x x x +>⎧⎨+≥-⎩;(2)解方程:2210x x --=.21.(本题满分8分)已知:如图,AB ∥ED ,点F 、C 在AD 上,AB =DE ,AF =DC ,求证:BC =EF .22.(本题满分8分)省锡中实验学校为了解九年级学生的身体素质测试情况,随机抽取了该市九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次共调查了多少名学生; (2)将条形统计图补充完整,并计算扇形统计图中“A ”部分所对应的圆心角的度数; (3)该市九年级共有1000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.23.(本题满分8分)车辆经过江阴大桥收费站时,4个收费通道A 、B 、C 、D 中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A 通道通过的概率是 ;(2)求两辆车经过此收费站时,选择不同通道通过的概率(请用树状图或列表法等方式给出分析过程).。

江苏省无锡市2017年初中毕业数学升学考试副卷(含答案)(PDF版)

江苏省无锡市2017年初中毕业数学升学考试副卷(含答案)(PDF版)

()
A.x2+x2=x4
B.x6÷x3=x2
C.4x3-3x3=x3
D.(x3)2=x5
3.下列图形中,是中心对称图形的是
()
A.
B.
C.
D.
4.下列命题是真命题的是
()
A.三个角相等的平行四边形是矩形
B.对角线相等的四边形是矩形
C.平行四边形的对角线互相垂直
D.对角线互相垂直的四边形是菱形
5.如图,直线 a∥b∥c,直角三角板的直角顶点落在直线 b 上,若∠1=35°,则∠2 等于
23.(本题满分 8 分)甲、乙、丙三人进行羽毛球比赛.他们通过摸球的方式决定首场比赛的两个选 手:在一个不透明的口袋中放入两个红球和一个白球,它们除颜色外其他都相同,将它们搅匀, 三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、乙两人成为比赛选手的概 率.(请用画树状图或列表等方法写出分析过程并给出结果.)
Q
CQ OQ 3
33
3
S△OAQ= 1OA·CQ=1×1×2=1,
2
2
P
S△OPQ=12PB·OA+12PB·AC =5,
∴S△OPQ=5=5. …………………………………………………………………………………(8 分) S△OAQ 1
26.(1)由题意得,96000-( 96000 +24500+ 96000 ×2.5%)=10000,

16.如图,已知 AB 为⊙O 的直径,C 为半圆上异于 A、B 的一个动点,∠ACB 的平分线与⊙O 交于
点 E.若圆的半径为 2 时,则 A⌒E 的长度为

17.如图,在平面直角坐标系中,正方形 OABC 的顶点 A(2,0)、C(0,2),点 Q 在对角线 OB

江苏省无锡市2017年中考数学真题试题(含解析1)

江苏省无锡市2017年中考数学真题试题(含解析1)

2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.下列图形中,是中心对称图形的是()A.B.C. D.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.310.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是.12.分解因式:3a2﹣6a+3= .13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF 与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:(2)解方程: =.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人) 153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= ,b= ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T 变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A型 B型处理污水能力(吨/月) 240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣【考点】17:倒数.【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【考点】E4:函数自变量的取值范围.【分析】根据分式的意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.3.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.4.下列图形中,是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【考点】44:整式的加减.【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【考点】AD:一元二次方程的应用.【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选:C.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【考点】O1:命题与定理.【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别难度验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b 的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.3【考点】MC:切线的性质;L8:菱形的性质.【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,延长即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【考点】PB:翻折变换(折叠问题);KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是 6 .【考点】75:二次根式的乘除法.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.12.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.13.贵州FA ST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11 ℃.【考点】18:有理数大小比较;1A:有理数的减法.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为 2 .【考点】G7:待定系数法求反比例函数解析式.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF 与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【考点】MO:扇形面积的计算;LB:矩形的性质.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过F⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 .【考点】T7:解直角三角形.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan ∠BOD的值.,本题得以解决【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式;6E:零指数幂.【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b220.(1)解不等式组:(2)解方程: =.【考点】B3:解分式方程;CB:解一元一次不等式组.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式的性质求出x的值,进而得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED 和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【考点】X6:列表法与树状图法.【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人) 153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= 4556 ,b= 600 ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【考点】VC:条形统计图.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【考点】N3:作图—复杂作图;KK:等边三角形的性质;MA:三角形的外接圆与外心.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T 变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b, b);若点M经过T 变换后得到点N(6,﹣),则点M的坐标为(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【考点】FI:一次函数综合题.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可取A(2,),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b, b);设M(x,y),则N点坐标为(x+y, y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b, b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可取A(2,),∴2+×=,×=,∴B(,),设直线OB的函数表达式为y=kx,则k=,解得k=,∴直线OB的函数表达式为y=x;②设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+,∴D(0,),且A(2,),B(,),∴AB==,AD==,∴===.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A型 B型处理污水能力(吨/月) 240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y 万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【考点】MR:圆的综合题.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E 到直线BC的距离等于3,求所有这样的m的取值范围.【考点】LO:四边形综合题.【分析】(1)只要证明△ABD∽△DPC,可得=,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC 的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E 到BC的距离为3;【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,∵∠A=∠CDP=90°,∴△ABD∽△DPC,∴=,∴=,∴PD=,∴t=s时,B、E、D共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM===,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,=,∴=,∴AD=4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4在Rt△ECQ中,QC=DM==,由△DME∽△CDA,∴=,∴=,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.。

无锡书一中复学校2017年中考数学模拟卷(四)

无锡书一中复学校2017年中考数学模拟卷(四)

无锡书一中复学校2017年中考数学模拟卷(四)满分130分时间120分钟一、选择题(每小题3分,共30分)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.132.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)3. 下列银行标志中,既不是中心对称图形也不是轴对称图形的是().4.下列运算正确的是().A.x3·x5= x15B. (x2) 5=x7C.327 =3 D.-a+ba+b=-15.如果不等式组⎩⎨⎧x>ax<2恰有3个整数解,则a的取值范围是().A.a≤-1 B.a<-1 C.-2≤a<-1 D.-2<a≤-16.如图,AB为⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=250,则∠D等于( ).A.20°B.30°C.40°D.50°7.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是()A. B. C. D.8.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B. C. D.9.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣10.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.45πC.π+3D.π-8二、填空题(每小题2分,共16分)11.若m﹣n=2,m+n=5,则m2+n2的值为.12.若一组数据1,2,3,x的平均数是2,则这组数据的方差是.13.如图,⊙O内切于△ABC,切点D,E,F分别在BC,AB,AC上.已知∠B=50°,∠C=60°,连结OE,OF,DE,DF,那么∠EDF等于.14.在△ABC中,D,E分别在边AB,AC上,且DE∥BC,过点A作平行于BC的直线分别交CD和BE的延长线于点M,N,若DE=2,BC=6,则MN =OD B AC·(第10题)(第9题)(第6题)(第14题)(第13题)(第16题)无锡市2017中考数学考前模拟试卷(共3套),是润禾教育在研究历年无锡中考数学试卷的基础上编制而成,本套卷以试卷为载体,帮助中考学生总结、梳理和巩固已学知识。

江苏省无锡市锡山区中考数学一模试卷(含解析)

江苏省无锡市锡山区中考数学一模试卷(含解析)

2017年江苏省无锡市锡山区中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.的绝对值是()A.B.C.2 D.﹣22.下列运算中,正确的是()A.a2+a3=a5B.a3•a4=a12C.a6÷a3=a2D.4a﹣a=3a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.若x=3是方程x2﹣3mx+6m=0的一个根,则m的值为()A.1 B.2 C.3 D.45.如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A. B. C.D.6.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A.B.C.D.7.下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四边形MNKP,设AE=x,S四边形MNKP=y,则y关于x的函数图象大致为()A.B.C.D.10.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2 B.3﹣2C.D.1二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.分解因式:x2y﹣2xy+y= .12.体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是S甲2=6.4,乙同学的方差是S乙2=8.2,那么这两名同学跳高成绩比较稳定的是同学.13.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为.14.如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k= .15.已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为.16.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为.17.某商场将一款品牌时装按标价打九折出售,可获利80%,若按标价打七折出售,可获利%.18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为.三、解答题(本大题共10小题,共84分.解答需写出必要的文字说明或演算步骤.)19.计算:(1)()﹣2+﹣20140;(2)(x﹣2)2﹣(x+2)(x﹣3).20.解方程:(x﹣4)2=x﹣4;(2)解不等式组:.21.在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图):画线段AB ,分别以点A ,B 为圆心,以大于AB 的长为半径画弧,两弧相交于点C ,连接AC ;再以点C 为圆心,以AC 长为半径画弧,交AC 延长线于点D ,连接DB ,则△ABD 就是直角三角形.(1)请你说明其中的道理;(2)请利用上述方法作一个直角三角形,使其一个锐角为30°(不写作法,保留作图痕迹).22.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表:请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.23.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.24.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.25.要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的x与小亮设计方案中的x 取值相同)26.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒4个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.27.如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.(1)①当PC∥QB时,OQ= ;②当PC⊥QB时,求OQ的长.(2)当折叠后重叠部分为等腰三角形时,求OQ的长.28.已知:在平面直角坐标系中,抛物线y=ax2﹣x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=﹣2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W 的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)对称轴是直线x=)2017年江苏省无锡市锡山区査桥中学中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.的绝对值是()A.B.C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算中,正确的是()A.a2+a3=a5B.a3•a4=a12C.a6÷a3=a2D.4a﹣a=3a【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、应为a3•a4=a3+4=a7,故本选项错误;C、应为a6÷a3=a6﹣3=a3,故本选项错误;D、4a﹣a=(4﹣1)a=3a,正确.故选D.【点评】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.若x=3是方程x2﹣3mx+6m=0的一个根,则m的值为()A.1 B.2 C.3 D.4【考点】一元二次方程的解;一元二次方程的定义.【专题】计算题;方程思想.【分析】把x=3代入方程,得到关于m的一元一次方程,可以求出m的值.【解答】解:∵x=3是方程的根,∴x=3代入方程有:9﹣9m+6m=0,解得:m=3.故选C.【点评】本题考查的是一元二次方程的解,把方程的解代入方程就可以求出字母系数m的值.5.如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A. B. C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【解答】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共两列,左边一列两个正方体,右边一列三个正方体,故选A.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.6.(课改)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A.B.C.D.【考点】概率公式;二次函数图象上点的坐标特征.【专题】压轴题.【分析】因为掷骰子的概率一样,每次都有六种可能性,因此小莉和小明掷骰子各六次,P的取值有36种.可将x、y值一一代入找出满足抛物线的x、y,用满足条件的个数除以总的个数即可得出概率.【解答】解:点P的坐标共有36种可能,其中能落在抛物线y=﹣x2+4x上的共有(1,3)、(2,4)、(3,3)3种可能,其概率为.故选B.【点评】本题综合考查函数图象上点的坐标特征与概率的确定.7.下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径【考点】命题与定理;直线的性质:两点确定一条直线;平行四边形的性质;等腰梯形的判定;切线的性质.【分析】根据直线的性质、平行四边形的性质、等腰梯形的性质和切线的性质判断各选项即可.【解答】解:A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确D、圆的切线垂直于经过切点的半径,故本选项正确.故选B.【点评】本题考查了直线的性质、平行四边形的性质、等腰梯形的性质和切线的性质,属于基础题,注意这些知识的熟练掌握.8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.【解答】解:A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.【点评】本题主要考查二次函数、一次函数和反比例函数的性质,解答本题的关键是熟练掌握各个函数在每个象限内的单调性.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四边形MNKP,设AE=x,S四边形MNKP=y,则y关于x的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】根据图形得出y=S正方形ABCD﹣2(S△AEF+S△BGF+S△CGH+S△DEH),根据面积公式求出y关于x的函数式,即可得出选项.【解答】解:∵AE=x,∴y=S正方形ABCD﹣2(S△AEF+S△BGF+S△CGH+S△DEH)=2×2﹣2×[++)+]=4x2﹣8x+4=4(x﹣1)2,∵0<x<2,∴0<y<4,∵是二次函数,开口向上,∴图象是抛物线,即选项A、B、C错误;选项D符合,故选D.【点评】本题考查了二次函数的图象和性质的应用,能求出y关于x的函数关系式是解此题的关键.10.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2 B.3﹣2C.D.1【考点】一次函数图象与几何变换;一次函数图象上点的坐标特征;点、线、面、体.【分析】首先证明△MOC≌△NOA,推出∠MPN=90°,推出P在以MN为直径的圆上,所以当圆心G,点P,C(0,2)三点共线时,P到C(0,2)的最小值.求出此时的PC即可.【解答】解:在△MOC和△NOA中,,∴△MOC≌△NOA,∴∠CMO=∠ANO,∵∠CMO+∠MCO=90°,∠MCO=∠NCP,∴∠NCP+∠CNP=90°,∴∠MPN=90°∴MP⊥NP,在正方形旋转的过程中,同理可证,∴∠CMO=∠ANO,可得∠MPN=90°,MP⊥NP,∴P在以MN为直径的圆上,∵M(﹣4,0),N(0,4),∴圆心G为(﹣2,2),半径为2,∵PG﹣GC≤PC,∴当圆心G,点P,C(0,2)三点共线时,PC最小,∵GN=GM,CN=CO=2,∴GC=OM=2,这个最小值为GP﹣GC=2﹣2.【点评】本题考查一次函数与几何变换、正方形的性质、圆的有关知识,解题的关键是发现点P在以MN为直径的圆上,确定点P的位置是解题的关键,属于中考常考题型.二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.分解因式:x2y﹣2xy+y= y(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:x2y﹣2xy+y,=y(x2﹣2x+1),=y(x﹣1)2.故答案为:y(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是S甲2=6.4,乙同学的方差是S乙2=8.2,那么这两名同学跳高成绩比较稳定的是甲同学.【考点】方差;算术平均数.【分析】根据方差的意义可知,方差越小,成绩越稳定.【解答】解:甲同学的方差小于乙的方差,则甲的成绩稳定.故填甲.【点评】本题考查了方差的意义,方差它反映了一组数据的波动大小,方差越大,波动性越大,反13.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为160(1+x)2=250 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据2月份的利润为160万元,4月份的利润250万元,每月的平均增加率相等,可以列出相应的方程,本题得以解决.【解答】解:由题意可得,160(1+x)2=250,故答案为:160(1+x)2=250.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.14.如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k= 12 .【考点】反比例函数系数k的几何意义.【专题】函数思想.【分析】先找到点的坐标,然后再利用矩形面积公式计算,确定k的值.【解答】解:由题意,设点D的坐标为(x D,y D),则点B的坐标为(x D, y D),矩形OABC的面积=|x D×y D|=,∵图象在第一象限,∴k=x D•y D=12.故答案为:12.【点评】本题考查了反比例函数与几何图形的结合,综合性较强,同学们应重点掌握.15.已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为50πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面积=底面周长×母线长÷2求出即可.【解答】解:∵底面圆的半径为5cm,则底面周长=10πcm,∴圆锥的侧面积=×10π×10=50πcm2.故答案为:50πcm2.【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解是解题关键.16.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为(2,).【考点】位似变换;坐标与图形性质.【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,根据此题是线段AC的中点P 变换后在第一象限对应点的坐标进而得出答案.【解答】解:∵△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),∴AC的中点是(4,3),∵将△ABC缩小为原来的一半,∴线段AC的中点P变换后在第一象限对应点的坐标为:(2,).故答案为:(2,).【点评】本题主要考查位似变换中对应点的坐标的变化规律,利用图形得出AC的中点坐标是解题关键.17.某商场将一款品牌时装按标价打九折出售,可获利80%,若按标价打七折出售,可获利40 %.【考点】一元一次方程的应用.【分析】如果设按标价打七折出售,设可获利x,再设成本为a元,那么根据标价不变列出方程,解方程即可.【解答】解:设按标价打七折出售,设可获利x,再设成本为a元,根据题意,得=,解得x=0.4=40%.即按标价打七折出售,可获利40%.故答案为:40.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为2﹣2 .【考点】点与圆的位置关系;坐标与图形性质;垂径定理;圆周角定理.【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP﹣DP求解.【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=PA=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故答案为:2﹣2.【点评】本题主要考查坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有在CP上时CD最短.三、解答题(本大题共10小题,共84分.解答需写出必要的文字说明或演算步骤.)19.计算:(1)()﹣2+﹣20140;(2)(x﹣2)2﹣(x+2)(x﹣3).【考点】实数的运算;整式的混合运算;零指数幂;负整数指数幂.【分析】(1)本题涉及零指数幂、开方、负整数指数幂.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先计算完全平方,再计算多项式乘法,然后去括号合并同类项即可.【解答】解:(1)原式=4﹣2﹣1=1;(2)解:原式=x2﹣4x+4﹣(x2﹣x﹣6),=x2﹣4x+4﹣x2+x+6,=﹣3x+10.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(1)解方程:(x﹣4)2=x﹣4;(2)解不等式组:.【考点】解一元二次方程﹣因式分解法;解一元一次不等式组.【分析】(1)因式分解法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)∵(x﹣4)2﹣(x﹣4)=0,∴(x﹣4)(x﹣5)=0,则x﹣4=0或x﹣5=0,解得:x=4或x=5;(2)解不等式3(x+1)<5x,得:x>,解不等式x﹣1≤7﹣x,得:x≤4,∴不等式组的解集为<x≤4.【点评】本题主要考查解一元二次方程和一元一次不等式的能力,熟练掌握解一元一次不等式的基本步骤和解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图):画线段AB,分别以点A,B为圆心,以大于AB的长为半径画弧,两弧相交于点C,连接AC;再以点C为圆心,以AC长为半径画弧,交AC延长线于点D,连接DB,则△ABD就是直角三角形.(1)请你说明其中的道理;(2)请利用上述方法作一个直角三角形,使其一个锐角为30°(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【专题】压轴题.【分析】(1)由作图可知,△ABC是以点C为圆心,AD为直径的圆内接三角形,故由直径对的圆周角定理是直角知,∠ABC=90°;(2)线段EF,分别以点E,F为圆心,以EF的长为半径画弧,两弧相交于点C,连接EC;再以点C为圆心,以EC长为半径画弧,交EC延长线于点G,连接FG.则△EFG就是直角三角形,其中∠EGF=30°.【解答】解:(1)理由:方法一:连接BC,由作图可知,AC=BC=CD,∴∠A=∠ABC,∠CBD=∠CDB,∵∠A+∠ABC+∠CBD+∠CDB=180°,∴2∠ABC+2∠CBD=180°,∴∠ABC+∠CBD=90°.即∠ABD=90°,∴△ABD是直角三角形;方法二:连接BC,由作图可知,AC=BC=CD,AD=AC+CD∴BC=AD∴△ABD是直角三角形;(2)如图所示,已知线段EF,分别以点E,F为圆心,以EF的长为半径画弧,两弧相交于点C,连接EC;再以点C为圆心,以EC长为半径画弧,交EC延长线于点G,连接FG.则△EFG就是所求作的直角三角形,其中∠EGF=30°.【点评】本题考查了直角三角形的作法和含有30度的直角三角形的作法.22.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表:请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.【考点】加权平均数;用样本估计总体;扇形统计图;条形统计图.【专题】阅读型;图表型.(1)根据调查的总人数100人,结合其它部分数据即可计算出5个对应的频数是100﹣90=10;【分析】然后首先计算样本平均数,再进一步计算2000人需要的塑料袋;(2)根据总百分比是1即可计算收费塑料购物袋占:1﹣75%=25%;结合两个统计图中的数据进行合理分析,提出合理化建议即可.【解答】解:(1)补全图1见下图.因为(个),即这100位顾客平均一次购物使用塑料购物袋的平均数为3个.因为2000×3=6000,所以估计这个超市每天需要为顾客提供6000个塑料购物袋.(2)图2中,使用收费塑料购物袋的人数所占百分比为25%.例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.【点评】本题是社会上的热门话题与统计相结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力.这是北京市这几年考核统计这部分知识的常见题型.本题主要考查条形统计图、扇形统计图、平均数以及用样本估算总体的数学思想.23.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可求得小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图:则共有9种等可能的结果;(2)∵由树状图或表可知,所有可能的结果共有9种,其中笔试题和上机题的题签代码下标为一奇一偶的有4种,∴题签代码下标为一奇一偶的概率是.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.。

江苏省无锡市2017年中考数学真题试题(含解析)

江苏省无锡市2017年中考数学真题试题(含解析)

江苏省无锡市2017年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分) 1.﹣5的倒数是( ) A .15B .±5C .5D .﹣15【答案】D . 【解析】试题解析:∵﹣5×(﹣15)=1, ∴﹣5的倒数是﹣15. 故选D . 考点:倒数 2.函数=2-xy x中自变量x 的取值范围是( ) A .x≠2 B .x≥2 C .x≤2 D .x >2 【答案】A .考点:函数自变量的取值范围. 3.下列运算正确的是( ) A .(a 2)3=a 5B .(ab )2=ab 2C .a 6÷a 3=a 2D .a 2•a 3=a 5【答案】D . 【解析】试题解析:A 、(a 2)3=a 6,故错误,不符合题意; B 、(ab )2=a 2b 2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.4.下列图形中,是中心对称图形的是()A.B.C. D.【答案】C.考点:中心对称图形.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【答案】B【解析】试题解析:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B考点:整式的加减.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【答案】A.考点:1.中位数;2.算术平均数.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【答案】C.【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C.考点:一元二次方程的应用.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【答案】B.故选B.考点:命题与定理.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6C.D.【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,,∴HB=AB﹣AH=8,在Rt△BDH中,=设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,考点:1.切线的性质;2.菱形的性质.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.75【答案】D.【解析】试题解析:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴=5,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,在Rt△BCE中,75== .故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.二、填空题(本大题共8小题,每小题2分,共16分)11⨯的值是.【答案】6.【解析】⨯=考点:二次根式的乘除法.12.分解因式:3a2﹣6a+3= .【答案】3(a﹣1)2.考点:提公因式法与公式法的综合运用.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.【答案】2.5×105.【解析】试题解析:将250000用科学记数法表示为:2.5×105.考点:科学记数法—表示较大的数.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.15.若反比例函数y=kx的图象经过点(﹣1,﹣2),则k的值为.【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为c m2.【答案】15π.考点:圆锥的计算.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由AE ,EF ,FB ,AB 所围成图形(图中阴影部分)的面积等于 .6π. 【解析】试题解析:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,∴四边形EGHF 是矩形, ∴GH=EF=2, ∴O 1G=12, ∵O 1E=1,∴, ∴1112O G O E =; ∴∠O 1EG=30°, ∴∠AO 1E=30°,同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO2O1﹣2S 扇形AO1E ﹣S 梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3)×2=36π. 考点:1.扇形面积的计算;2.矩形的性质.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .【答案】3. 【解析】试题解析:平移CD 到C′D′交AB 于O′,如图所示,则∠BO′D′=∠BOD , ∴tan ∠BOD=tan ∠BO′D′, 设每个小正方形的边长为a ,则==,BD′=3a,作BE ⊥O′D′于点E , 则BE=3a 2322BD O F aO D ''=='',2==,∴tanBO′E=32BEO E ==', ∴tan ∠BOD=3. 考点:解直角三角形.三、解答题(本大题共10小题,共84分) 19.计算:(1)|﹣6|+(﹣2)3+)0;(2)(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】(1)-1;(2)ab ﹣b 2考点:1.平方差公式;2.实数的运算;3.单项式乘多项式;4.零指数幂.20.(1)解不等式组: 11x-2(+2)22x 3①x ②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+ 【答案】(1)﹣1<x≤6;(2)x=13.(2)由题意可得:5(x+2)=3(2x ﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x ﹣1≠0,故x=13是原方程的解.考点:1.解分式方程;3.解一元一次不等式组.21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF .【答案】证明见解析.【解析】试题分析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证.试题解析:∵E 是BC 的中点,∴CE=BE ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∴∠DCB=∠FBE ,在△CED 和△BEF 中,DCA=FBE CE=BECED=BEF ⎧∠∠⎪⎨⎪∠∠⎩, ∴△CED ≌△BEF (ASA ),∴CD=BF ,∴AB=BF .考点:1.平行四边形的性质;2.全等三角形的判定与性质.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】13.考点:列表法与树状图法.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a= ,b= ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【答案】(1)4556;600;(2)补图见解析;(3)①(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.考点:条形统计图.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,,则点M的坐标为.x图象上异于原点O的任意一点,经过T变换后得到点B.(2)A是函数y=2①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【答案】(1)Q (a+2b ,12b );M (9,﹣);(2)①y=7x ;②34试题解析:(1)如图1,连接CQ ,过Q 作QD ⊥PC 于点D ,由旋转的性质可得PC=PQ ,且∠CPQ=60°,∴△PCQ 为等边三角形,∵P (a ,b ),∴OC=a ,PC=b ,∴CD=12PC=12b ,,∴Q (a+2b ,12b );(2)①∵A是函数y=2x图象上异于原点O的任意一点,∴可取A(2),∴×=72,12∴B(72,2),设直线OB的函数表达式为y=kx,则72,解得,∴直线OB的函数表达式为y=7x;②设直线AB解析式为y=k′x+b,把A、B坐标代入可得2+722k bk b⎧'⎪⎨'+=⎪⎩,解得33kb⎧'=-⎪⎪⎨⎪=⎪⎩,∴直线AB解析式为y=,∴D(0,3),且A(2,B(72,2),∴,∴OAB OAD SAB 3===S AD 43. 考点:一次函数综合题.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【答案】(1) 设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)(2)由于求至少要支付的钱数,可知购买6台A 型污水处理器、3台B 型污水处理器,费用最少,进而求解即可.试题解析:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2+3=44+4=42x y x y ⎧⎨⎩,解得=10=8x y ⎧⎨⎩. 答:设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.27.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2.(1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.【答案】(1) P (1,0).(2) y=8x 2﹣4﹣8. 【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出12AC PC AP CE CH HE ===,推出CH=2n ,EH=2m=6,再证明△DPB ∽△DHE ,推出144PB DP n EH DH n ===,可得3-1264m m =+,求出m 即可解决问题; (2)由题意设抛物线的解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可解决问题.∴12 AC PC APCE CH HE===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴144 PB DP nEH DH n===,∴3-1 264mm=+,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,=,∴∴E(9,,∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,代入得到a=8,∴抛物线的解析式为x+3)(x ﹣5),即2 考点:圆的综合题.28.如图,已知矩形ABCD 中,AB=4,AD=m ,动点P 从点D 出发,在边DA 上以每秒1个单位的速度向点A 运动,连接CP ,作点D 关于直线PC 的对称点E ,设点P 的运动时间为t (s ).(1)若m=6,求当P ,E ,B 三点在同一直线上时对应的t 的值.(2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,求所有这样的m 的取值范围.【答案】(1)83;(2) ≤m< 【解析】试题分析:(1)只要证明△ABD ∽△DPC ,可得AD AB CD PD,由此求出PD 即可解决问题; (2)分两种情形求出AD 的值即可解决问题:①如图2中,当点P 与A 重合时,点E 在BC 的下方,点E 到BC 的距离为3.②如图3中,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为3 试题解析:(1)如图1中,∵四边形ABCD 是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴==,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,AD DG=,DM EM∴47AD,∴由△DME∽△CDA,∴DM EM=CD AD,1=AD,∴AD=7,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围7≤m<.考点:四边形综合题.。

2017中考数学模拟考试题含答案(精选5套)

2017中考数学模拟考试题含答案(精选5套)

2017年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C.2D.32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×1010 4. 估计8-1的值在( ) A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名 C. 400名 D. 300名8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为( )A. (x + 2)2 = 9B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2 =1 9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( )A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A.3 B. 23C.23D. 1圆弧 角 扇形菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分∴原不等式组的解是x≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD平分∠ABC,∠ABC = 72°,∴∠ABD =21∠ABC = 36°,…………4分∵AB = AC,∴∠C =∠ABC = 72°,…………5分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x=50551841737231⨯+⨯+⨯+⨯+⨯ =3.3,…………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+= 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt△BDC中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC·cos30°……………………1分3= 9,……………………2分= 63×2∴DF = DC + CF = 9 + 1 = 10,…………………3分∴GE = DF = 10. …………………4分在Rt△BGE中,∠BEG = 20°,∴BG = CG·tan20°…………………5分=10×0.36=3.6,…………………6分在Rt△AGE中,∠AEG = 45°,∴AG = GE = 10,……………………7分∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB的高度约为6.4米. ……………8分24. 解(1)如图,连接OA,则OA⊥AP. ………………1分∵MN⊥AP,∴MN∥OA. ………………2分∵OM∥AP,∴四边形ANMO是矩形.∴OM = AN. ………………3分(2)连接OB,则OB⊥AP,∵OA = MN,OA = OB,OM∥BP,∴OB = MN,∠OMB =∠NPM.∴Rt△OBM≌Rt△MNP. ………………5分∴OM = MP.设OM = x,则NP = 9- x. ………………6分在Rt△MNP中,有x2 = 32+(9- x)2.∴x = 5. 即OM = 5 ……………8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. ……………1分∴4x + 5(x + 40)=1820. ………………………………………2分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴……………4分180 a + 220(200- a)≤40880.解得78≤a≤80. ……………5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. ……………7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( ) A 、4 B 、3 C 、-4 D 、-34、如图是某几何题的三视图,下列判断正确的是( )A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>,则一定成立的是( )BDECA22 主视图左视图俯视图OBOA ‘A、120y y>>B、12y y>>C、120y y>>D、21y y>>10、如图,⊙O和⊙O′相交于A、B两点,且OO’=5,OA=3,O’B=4,则AB=( )A、5B、2.4C、2.5D、4.8二、填空题11、正五边形的外角和为12、计算:3m m-÷=13、分解因式:2233x y-=14、如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A到控制点B的距离约为。

江苏省无锡市锡山区中考数学一模试卷(含解析)

江苏省无锡市锡山区中考数学一模试卷(含解析)

2017年江苏省无锡市锡山区中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.的绝对值是( )A.B.C.2 D.﹣22.下列运算中,正确的是( )A.a2+a3=a5B.a3•a4=a12C.a6÷a3=a2 D.4a﹣a=3a3.下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C. D.4.若x=3是方程x2﹣3mx+6m=0的一个根,则m的值为()A.1 B.2 C.3 D.45.如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A.B.C.D.6.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A.B.C.D.7.下列命题中,假命题是( )A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四边形MNKP,设AE=x,S四边形MNKP=y,则y关于x的函数图象大致为()A.B.C.D.10.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2 B.3﹣2C.D.1二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.分解因式:x2y﹣2xy+y= .12.体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是S甲2=6。

2017年江苏省无锡市中考数学试卷-答案

2017年江苏省无锡市中考数学试卷-答案

江苏省无锡市2017中考试卷数学答案解析90,90∠,ABEOA90,∴△,∴885a b ab=【考点】二次根式的乘法.∠,同理30,30,∴30230π11-(2360224630,根据三角形,梯形,扇形的面积公式即可得90,∵∠L OL OL,390,【解析】解:根据题意画图如下:【提示】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解. 【考点】等可能事件的概率. 23.【答案】(1)4556,600 (2)答案见解析 (3)①【解析】解:(1)由题意3903653455651564556600a b =+==-=,. (2)统计图如图所示,(3)①正确.33531533200-=故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数1535506536007252681=++++=,故错误. 【提示】(1)观察表格中的数据即可解决问题. (2)根据第4天的人数600,画出条形图即可. (3)根据题意一一判断即可. 【考点】统计表,条形统计图. 24.【答案】(1)答案见解析 (2)答案见解析【解析】解:(1)如图所示:点O 即为所求.(2)如图所示:六边形DEFGHI 即为所求正六边形.60,∴△3的面积与OAD △的面积之比.方法2.先确定出OAB △比OAD △(B 与A 横坐标绝对值的比更简单)得出面积关系,即可得出结论.【考点】旋转的性质.26.【答案】(1)答案见解析(2)84万元【解析】解:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2344442x y x y +=⎧⎨+=⎩,解得108x y =⎧⎨=⎩. 所以每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)购买9台A 型污水处理器,费用为1099()0⨯=万元;购买8台A 型污水处理器,1台B 型污水处理器,费用为1088=88()⨯+万元购买7台A 型污水处理器,2台B 型污水处理器,费用为10782=86()⨯+⨯万元购买6台A 型污水处理器,3台B 型污水处理器,费用为10683=84()⨯+⨯万元购买5台A 型污水处理器,5台B 型污水处理器,费用为10585=90()⨯+⨯万元购买4台A 型污水处理器,6台B 型污水处理器,费用为10486=88()⨯+⨯万元购买3台A 型污水处理器,7台B 型污水处理器,费用为10387=86()⨯+⨯万元购买2台A 型污水处理器,9台B 型污水处理器,费用为10289=92()⨯+⨯万元购买1台A 型污水处理器,10台B 型污水处理器,费用为101810=90()⨯+⨯万元购买11台B 型污水处理器,费用为∴()1,0P .290,∴EM 作于,延长交AD 于M .则34EQ CE DC ===,DM EM。

2017年无锡数学中考试卷

2017年无锡数学中考试卷

2017年无锡市初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5-的倒数是( )A .15B .5±C .5D .15- 2.函数2x y x =-中自变量x 的取值范围是( ) A .2x ≠ B .2x ≥ C .2x ≤ D .2x >3.下列运算正确的是( )A .()437a a =B .()22ab ab = C .824a a a ÷= D .246a a a ⋅= 4.下列图形中,是中心对称图形的是( )A .B . C. D .5.若2a b -=,3b c -=-,则a c -等于( )A .B .1- C.5 D .5-6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数 D .男生成绩的中位数小于女生成绩的中位数7.某商店今年月份的销售额是2万元,3月份的销售额是4.5万元,从月份到3月份,该店销售额平均每月的增长率是( )A .20%B .25% C.50% D .62.5%8.对于命题“若22a b >,则a b >.”下面四组关于a 、b 的值中,能说明这个命题是假命题的是( )A .3a =,2b =B .3a =-,2b = C.3a =,1b =- D .1a =-,3b =9.如图,菱形CD AB 的边20AB =,面积为320,D 90∠BA <o ,O e 与边AB 、D A 都相切,10AO =,则O e 的半径长等于( )A .5B .6 C.25 D .3210.如图,C ∆AB 中,C 90∠BA =o ,3AB =,C 4A =,点D 是C B 的中点,将D ∆AB 沿D A 翻折得到D ∆AE ,连C E ,则线段C E 的长等于( )A .2B .54 C.53 D .75第Ⅱ卷(共100分)二、填空题(每题2分,满分16分,将答案填在答题纸上)11.计算123⨯的值是 .12.分解因式:2363a a -+= .13.贵州F S A T 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约2500002m ,这个数据用科学记数法可表示为 .14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 C o .15.已知反比例函数k y x=的图像经过点()1,2--,则k 的值为 . 16.已知圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面展开图的面积等于 2cm .17.如图,已知矩形CD AB 中,3AB =,D 2A =,分别以边D A 、C B 为直径在矩形CD AB 的内部作半圆1O 和半圆2O ,一平行于AB 的直线F E 与这两个半圆分别交于点E 、点F ,且F 2E =(F E 与AB 在圆1O 和2O 的同侧),则由»AE、F E 、»F B 、AB 所围成图形(图中阴影部分)的面积等于 .18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都在格点处,AB与CD相交于O,则tan D∠BO的值等于.三、解答题(本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分8分)计算:(1)()()03627-+-+;(2)()()()a b a b a a b+---.20. (本题满分8分)(1)解不等式组:()2311222xx x+>⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎧⎪⎨-≤+⋅⋅⋅⋅⎪⎩①②;(2)解方程:53212x x=-+.21. (本题满分8分)已知,如图,平行四边形CDAB中,E是CB边的中点,连D E并延长交AB的延长线于点F,求证:FAB=B.22. (本题满分8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档.现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23. (本题满分8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动.在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a = ,b = ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(本题满分6分)如图,已知等边C ∆AB ,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作C ∆AB 的外心O ;(2)设D 是AB 边上一点,在图中作出一个正六边形D FG E HI ,使点F ,点H 分别在边C B 和C A 上.25.(本题满分10分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作C x P ⊥轴于点C ,点C 绕点P 逆时针旋转60o 得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点(),a b P 经过T 变换后得到的点Q 的坐标为 ;若点M 经过T 变换后得到点(6,3N ,则点M 的坐标为 .(2)A 是函数3y x =图像上异于原点O 的任意一点,经过T 变换后得到点B . ①求经过点O 、点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求∆OAB 的面积与D ∆OA 的面积之比.26.(本题满分10分)某地新建的一个企业,每月将产生1960吨污水.为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元;售出的台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(本题满分10分)如图,以原点O 为圆心、3为半径的圆与x 轴分别交于A 、B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与O e 分别交于C 、D 两点(点C 在点D 的上方),直线C A 、D B 交于点E .若C :C 1:2A E =,(1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.28.(本题满分8分) 如图,已知矩形CD AB 中,4AB =,D m A =.动点P 从点D 出发,在边D A 上以每秒个单位的速度向点A 运动,连接C P ,作点D 关于直线C P 的对称点E .设点P 的运动时间为()s t .(1)若6m =,求当P 、E 、B 三点在同一直线上时对应的的值.(2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻,使点E 到直线C B 的距离等于3,求所有这样的m 的取值范围.。

江苏省无锡市中考数学模拟题

江苏省无锡市中考数学模拟题

精品文档江苏省无锡市2017 届中考数学模拟试题(二)本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120 分钟,试卷满分130 分.注意事项:1.答卷前,考生务必用0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对姓名、准考证号是否与本人的相符合.2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5 毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题 ( 本大题共10 小题.每小题 3 分.共 30 分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1. 2 的倒数是:(▲ )A. 2B1C1D .2.2.不存在2.下列运算正确的是(▲ )222351543527 A. 3x·4x=12x B .x·x =x C.x÷x=x D .( x ) =x3.在平面直角坐标系中,点 A 的坐标为(3,4),则 A 关于 x 轴对称的点的坐标是(▲ )A.(- 3, 4)B.( 3,- 4)C.(- 3,- 4) D .( 4,3)4.下列函数中,自变量x 的取值范围是x≥3的是(▲ )1B .y=1C .y= x-3D .y= x- 3A.y=x-3x-35.某校春季运动会比赛中,八年级(1)班、( 2)班的竞技实力相当,关于比赛结果,甲同学说:( 1)班与( 2)班得分比为 6:5;乙同学说:(1)班得分比(2)班得分的 2倍少40 分.若设( 1)班得x分,( 2)班得y分,根据题意所列的方程组应为(▲)6x= 5y,B 6x= 5y,C5x= 6y,5x= 6y,A... D .x=2y-40x=2y+40x=2y+40x=2y-406.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线 AC、 BD应满足条件是(▲ )A. AC⊥BDB.AC=BDC.AC⊥ BD且 AC=BDD. 不确定B F C(第 6题)主视图5左视图6俯视图7.下列说法中,正确的是(▲ )A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C.抛掷一个正方体骰子,点数为奇数的概率是1 3D.“打开电视,正在播放体育节目”是必然事件8.如图是某几何体的三视图及相关数据,则该几何体的全面积是(▲ )A. 15πB. 24 π C .20πD . 10π9.如图,折叠菱形纸片111 ABCD,使得 AD的对应边 A D 过点C, EF为折痕.若∠ B=60°,当 A E⊥ AB时,BE的值等于(▲ )AEA.3B.31C.31D.31 668210.已知k为任意实数,随着k 的变化,抛物线y x22(k1)x k 2 3 的顶点随之运动,则顶点运动时经过的路径与两条坐标轴围成图形的面积是(▲ )A. 1B.3C. 2D.5 22二、填空题 ( 本大题共 8小题,每小题 2分,共 l6分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处 ).........11.已知某种纸一张的厚度约为0.0089cm,用科学计数法表示这个数为▲.12.分解因式: 2x2- 4xy+2y2 =▲.13.如图,已知∥,AEF80°,则DCF为▲°.AB CD14.给出以下 4 个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是▲.(填写序号)15.若关于x的一元二次方程 ( k-1) x2+x-k2 =0 的一个根为1,则k的值为▲.16.直线= +b 与反比例函数y=m、点,其中点A的坐标为(-2,的图象相交于点y kx x A B4),点B的横坐标为4,则不等式kx+b-mx> 0 的解集为▲.AD FFCED 1DBA E BCA(第 9题)1(第 13 题)(第 17 题)17.如图,若干全等正五边形排成环状.图中所示的是前 3 个正五边形,要完成这一圆环还需____▲ ____个正五边形?18.平面直角坐标系中,点A、B 的坐标分别为( 4, 0)、( 0, 4),点D为上任意OB一点,连接 AD,以 OD为直径的圆交 AD于点 E,则当线段 BE的长最短时E的坐标为___▲____.三、解答题 ( 本大题共 10 小题.共 84 分.请在答题卡指定区域内作答,解答时应写出文字说明、证........明过程或演算步骤 )19.(本题满分 8 分)计算:( 1)( 5)2(cos 60o) 0 | 4 |(2)( x 3)2( x 2)( x 2) 2x220.(本题满分 8 分)( 1)解方程:x313;( 2)解不等式组:1x1≥3x22x34(x1)121.(本题满分8 分)阅读下题及证明过程:已知:如图,D是△ ABC中 BC上一点, E 是 AD上一点, EB=EC,∠ ABE=∠ ACE,求:∠ BAE=∠CAE.明:在△ AEB和△ AEC中,∵EB=EC,∠ ABE=∠ ACE, AE=AE,∴△ AEB≌△ AEC⋯第一步∴∠ BAE=∠CAE⋯第二步上面明程是否正确?若正确,写出每一步推理的依据;若不正确,指出在哪一步,并写出你正确的明程.22.(本分 8 分)“知改命运,科技繁荣祖国”.某区中小学每年都要一届科技比.下某区某校2017年参加科技比(包括子百拼、航模、机器人、建模四个)的参人数:年科技比赛某校 2017参赛人数条形统计图参赛人数(单位:人)某校 2017年航模比赛8参赛人数扇形统计图66644电子百拼航模225%0机器人建模电子百拼航模机器人建模参赛类别25%( 1)校参加机器人、建模比的人数分是▲人和▲人;( 2)校参加科技比的人数是▲人,子百拼所在扇形的心角的度数是▲°,并把条形充完整;( 3)从全区中小学参加科技比手中随机抽取85 人,其中有34 人. 2011 年某区中小学参加科技比赛人数共有3625 人,请你估算2017 年参加科技比赛的获奖人数约是多少人?23.(本题满分8 分)如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(x, y)落在第二象限内的概率;(2)直接写出点(x,y)落在函数y 1图象上x24.(本题满分8 分)如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、 BC、 CA跑步(小路的宽度不计).观测得点 B 在点 A 的南偏东30°方向上,点 C在点 A 的南偏东60°的方向上,点 B 在点 C的北偏西75°方向上,AC间距离为400 米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:≈1.414 ,≈1.732)25.(本题满分 8 分)某乒乓球训练馆准备购买n 副某种品牌的乒乓球拍,每副球拍配(≥3)k k个乒乓球.已知A、B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20 元,每个乒乓球的标价都为 1 元.现两家超市正在促销, A 超市所有商品均打九折(按原价的 90%付费)销售,而B超市买 1 副乒乓球拍送 3 个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去 A 超市还是 B超市买更合算?(2)当k=12 时,请设计最省钱的购买方案.26.(本题满分10 分)如图,在△ABC中,已知 AB=AC=10cm, BC=16cm,AD⊥ BC于 D,点 E、 F 分别从 B、C两点同时出发,其中点 E 沿 BC向终点 C运动,速度为4cm/ s;点F沿CA、AB向终点B 运动,速度为5cm/ s,设它们运动的时间为x(s).( 1)求x为何值时,△EFC和△ ACD相似;( 2)是否存在某一时刻,使得△被分得的两部分面积之比为3:5 ,若存在,求出x 的值,EFD AD 若不存在,请说明理由;( 3)若以EF 为直径的圆与线段只有一个公共点,求出相应x的取值范围.ACAFB E D C27.(本题满分 8分)点 P 为图①中抛物线22 ( my x2mx m为常数,>0)上任一点,将抛物线m 绕顶点 G 逆时针旋转 90°后得到的新图象与 y 轴交于 A 、B 两点(点 A 在点 B 的上方),点 Q 为点 P 旋转后的对应点.( 1)若点 Q 的坐标为 ( — 2, 6) ,求该抛物线的函数关系式;(2)如图②,若原抛物线恰好也经过A 点,点 Q 在第一象限内,是否存在这样的点 P 使得△ AGQ是以 AG 为底的等腰三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由.yAOGxB图1 图228.(本题满分 10 分)如图,已知点A ( 2, 0),B ( 0,4),∠ AOB 的平分线交 AB 于 P ,点 M 是线段OP 上一动点, ( 不与 O 、 P 重合 ) ,作 O 关于 M 的对称点 N ,以 MN 为对角线作正方形 MENF .设点 M 的横坐标为 t .( 1)当点 P 与正方形 MENF 的中心重合时,求 t 的值.( 2)设正方形 MENF 与△ OAB 公共部分的面积为 S ,求 S 关于 x 的函数关系式,并求S 的最大值.BFNPME OAx数学参考答案一、 (本大 共10 小 ;每小3 分,共 30 分 . )1 2 3 4 5 6 7 8 9 10 CCBDDBABDA二、填空 (本大 共8 小 ;每空 2 分,共 16 分. )11. 8.9 10 312. 2( x y)213. 100° 14. ②④15. 0 16. x<-2 或 0<x< 417.1018. (22 5,45)5519 . 算(本 分8 分)(1) (5)2(cos 60 o| 4 |( 2) ( x 3)2( x 2)( x 2) 2 x2)=5-1+4 2 分= x 2 6x 9 x 2 4 2x 2 ⋯⋯2分=8⋯⋯4 分=6x 5⋯⋯4分20.( 本 分8 分 )( 1)解方程:x 313( 2)解不等式 :1 x 1≥ ① 3 0 ②x 22x3 4(x1)1解:去分母得 x -3+ x -2=- 3⋯⋯1 分解:由①得 x ≤2⋯⋯1 分整理得 2 =2由②得x >1.5 ⋯⋯2 分x系数化 1 得 x =1⋯⋯2 分∴原不等式的解集是1.5< x ≤2 4 分:当x =1 , x - 2≠0⋯⋯3 分精品文档∴原方程的解是x =1 ⋯⋯4 分21. 解:上面 明 程不正确; 在第一步.正确 程如下:在△ BEC 中,∵ BE=CE∴∠ EBC=∠ ECB又∵∠ ABE =∠ACE∴∠ ABC =∠ ACB∴ AB=AC .在△ AEB 和△ AEC 中, AE=AE , BE=CE , AB=AC∴△ AEB ≌△ AEC ( SSS )∴∠ BAE =∠ CAE .22.本 8 分( 1) 4 6(2 分)( 2)24120(2 分)略 (2 分)( 3)3625×34=1450(2 分)8523.( 1)画 状 或表格 (4 分)得:一共有 12 种可能,点落在第二象限内的有 2 种可能,(5 分)2 1点落在第二象限的概率(6 分)126(2)落在反比例 像上的概率 3 1(8 分)12424. 解: 点 C 作 CD ⊥AB 交 AB 延 于一点 D ,根据 意得∠ BAC=30°,∠ BCA=15°,故∠ DBC=∠DCB=45°,在 Rt △ ADC 中,∵ AC=400米,∠ BAC=30°, ∴ CD=BD=200米,精品文档∴BC=200 米, AD=200 米∴AB=AD﹣ BD=( 200 ﹣ 200)米,∴三角形 ABC的周长为 400+200+( 200﹣ 200)≈ 829 米小金沿三角形绿化区的周边小路跑一圈共跑了约829 米.25. 解:( 1)由题意,去 A 超市购买 n 副球拍和 kn 个乒乓球的费用为0.9 ( 20n+kn)元,去 B 超市购买 n 副球拍和 k 个乒乓球的费用为 [20n+n ( k﹣3) ] 元,由 0.9( 20n+kn)< 20n+n( k﹣3),解得 k> 10;1’由 0.9( 20n+kn) =20n+n( k﹣ 3),解得 k=10;2’由 0.9( 20n+kn)> 20n+n( k﹣3),解得 k< 10.3’∴当 k> 10 时,去 A 超市购买更合算;4’当 k=10 时,去 A、 B 两家超市购买都一样;当 3≤ k< 10 时,去 B 超市购买更合算.( 2)当 k=12 时,购买 n 副球拍应配 12n 个乒乓球.若只在 A 超市购买,则费用为0.9 ( 20n+12n) =28.8n (元);5’若只在 B 超市购买,则费用为20n+( 12n﹣ 3n) =29n(元);6’若在 B 超市购买 n 副球拍,然后再在 A 超市购买不足的乒乓球,则费用为 20n+0.9 ×( 12﹣ 3) n=28.1n (元)7’显然 28.1n <28.8n < 29n∴最省钱的购买方案为:在 B 超市购买 n 副球拍同时获得送的3n 个乒乓球,然后在 A 超市按九折购买 9n 个乒乓球.8’26. ( 1)t64 或24分41(2)不存在。

2017年江苏省无锡市中考数学试卷及答案

2017年江苏省无锡市中考数学试卷及答案

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前江苏省无锡市2017中考试卷数学 .......................................................................................... 1 江苏省无锡市2017中考试卷数学答案解析 .. (5)江苏省无锡市2017中考试卷数学本试卷满分130分,考试时间120分钟.一、选择题(每小题3分,共30分) 1.5-的倒数是( ) A .15B .5±C .5D .15- 2.函数2xy x=-中自变量x 的取值范围是( ) A .2x ≠B .2x ≥C .2x ≤D .2x > 3.下列运算正确的是( ) A .235()a a =B .22()ab ab =C .632a a a ÷=D .235a a a = 4.下列图形中,是中心对称图形的是( )5.若2,3a b b c -=-=-,则a c -等于( )A .1B .1-C .5D .5- 6.下表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C .男生成绩的中位数大于女生成绩的中位数D .男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20%B .25%C .50%D .62.5%8.对于命题“若22a b >,则a b >”,下面四组关于,a b 的值中,能说明这个命题是假命题的是( )A .3,2a b ==B .3,2a b =-=C .3,1a b ==-D .1,3a b =-=9.如图,菱形ABCD 的边20AB =,面积为320,90,BAD ∠<O 与边,AB AD 都相切,10AO =,则O 的半径长等于( )A .5B .6C .D .10.如图,ABC △中,90,3,4BAC AB AC ∠===,点D 是BC 的中点,将ABD △沿AD 翻折得到AED △,连接CE ,则线段CE 的长等于( )A .2B .54 C .53D .75二、填空题(每小题2分,共16分) 11.的值是 . 12.分解因式:2363a a -+= .13.贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约ABC D 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)2250000m ,这个数据用科学记数法可表示为 .14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.15.若反比例函数ky x=的图象经过点(1,2)--,则k 的值为 . 16.已知圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积等于2cm .17.如图,已知矩形ABCD 中,3,2AB AD ==,分别以边,AD BC 为直径在矩形ABCD 的内部作半圆1O 和半圆2O ,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且2EF =(EF 与AB 在圆心1O 和2O 的同侧),则由,,,AE EF FB AB 所围成图形(图中阴影部分)的面积等于 .18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A B C D 、、、都在格点处,AB 与CD 相交于O ,则tan BOD ∠的值等于 . 三、解答题(本大题共10小题,共84分) 19.(8分)计算:(1)30|6|(2)-+-+ ; (2)()()().a b a b a a b +---20.(8分)(1)解不等式组:231,12(2)2x x x +⎧⎪⎨-+⎪⎩>①≤②; (2)解方程:53.212x x =-+21.(8分)如图,平行四边形ABCD 中,E 是BC 边的中点,连接DE 并延长交AB 的延长线于点F ,求证:AB BF =.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档.现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了(1)表格中a = ,b = ; (2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边ABC △,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹): (1)作ABC △的外心O ;(2)设D 是AB 边上一点,在图中作出一个正六边形DEFGHI ,使点F 、点H 分别在边BC 和AC 上.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)25.(10分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作PC x ⊥轴于点C ,点C 绕点P 逆时针旋转60得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点(,)P a b 经过T 变换后得到的点Q 的坐标为 ;若点M 经过T 变换后得到点(6,N -,则点M 的坐标为 . (2)A是函数y x =图像上异于原点O 的任意一点,经过T 变换后得到点B . ①求经过点O 、点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求B OA △的面积与OAD △的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器已知商家售出的2台型、3台型污水处理器的总价为44万元;售出的1台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O 为圆心、3为半径的圆与x 轴分别交于A B 、两点(B 点在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与O 分别交于C D 、两点(点C 在点D 的上方),直线AC DB 、交于点E .若12AC CE =::. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD 中,4AB AD m ==,.动点P 从点D 出发,在边DA 上以每秒1个单位的速度向点A 运动,连接CP ,作点D 关于直线PC 的对称点E .设点P的运动时间为(s)t . (1)若6m =,求当P E B 、、三点在同一直线上时对应的t 的值. (2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,求所有这样的m 的取值范围.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2017年江苏省无锡市中考数学试卷及答案解析(副卷)

2017年江苏省无锡市中考数学试卷及答案解析(副卷)

故选:C.


二、填空题(本大题共 8 小题,每小题 2 分,本大题共 16 分.不需要写出解答过程,只需
把答案直接填写在相应的横线上)
11.(2 分)16 的算术平方根是 解:∵42=16,
4.

4.
故答案为:4.
12.(2 分)化简:
2﹣6x .
解:

故答案为:2﹣6x
13.(2 分)我市火车站在今年端午节假期累计发送旅客 278000 人,这个数据用科学记数法
(4﹣2 2)×2 t t2=6﹣3 .
故答案为 6﹣3 . 18.(2 分)在如图的正方形格点纸中,每个小的四边形都是边长为 1 的正方形,A、B、C、
D 都是格点,AB 与 CD 相交于 O,则 AO:OB=
. 䁚
第 7 页 共 20 页
解:如图, ∵EH∥CF,

,即

∴EH ,
∴AE=AH﹣EH=3
则 B 品牌单车骑行人数所占圆心角的度数为 360°t 60°,
C 品牌单车骑行人数所占圆心角的度数为 360°t 故答案为:60°,120°;
120°,
(2)补全条形图如下:
(3)估算使用 B 型品牌单车的人数约是 120t 20(人).
23.(8 分)甲、乙、丙三人进行羽毛球比赛,他们通过摸球的方式决定首场比赛的两个选 手:在一个不透明的口袋中放入两个红球和一个白球,它们除颜色外其他都相同,将它
可表示为 2.78×105 .
解:278000=2.78×105,
第 5 页 共 20 页
故答案为:2.78×105
14.(2 分)函数
中,自变量 x 的取值范围是 x≥﹣3 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无锡书一中复学校2017年中考数学模拟卷(六)本试卷分试题卷和答题卷两部分,所有答案一律写在答题卷上. 考试时间为120分钟,试卷满分130分.一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把答案直接填写在答题..卷.相应位置....上。

) 1.一元二次方程x 2-6x -3=0的两根为x 1、x 2,则 x 1+x 2的值为 ( ▲ ) A .-3 B .6 C .3 D .-322.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为…………… ( ▲ ) A .7sin35° B .7cos35ºC .7cos35°D .7tan35°3.若关于x 的方程(m -2) x 2-2x+1=0有两个不相等的实数根,那么m 的取值范围是( ▲ ) A .m<3B .m<3且m≠2.C .m ≤3D .m ≤3且m≠24.用配方法解一元二次方程542=-x x 的过程中,配方正确的是 ( ▲ ) A .(1)22=+x B .1)2(2=-x C .9)2(2=+x D .9)2(2=-x 5.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于 点C ,若∠A=25°,则∠D 等于 ( ▲ )A .20° B.30° C.40° D.50°第5题6.已知抛物线21y x x =--与x 轴的一个交点为(m ,0),则代数式22013m m --的值 是( ▲ )A.2012-B.2013-C.2012D.2013 7.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( ▲ ).8.将一条抛物线向左平移2个单位后得到了y=2x 2的函数图象,则这条抛物线是…( ▲ ) A .y=2x 2+2 B .y=2x 2-2 C .y=2(x -2)2D .y=2(x+2)29.如图所示,直线CD 与线段AB 为直径的圆相切于点D ,并交BA 的延长线于点C ,且AB=2,AD=1,P 点在切线CD 上移动.当∠APB 的度数最大时,则∠ABP 的度数为……( ▲ ) A .90° B .60° C .45° D .30°第9题10.在△ABC 中,最大角∠A 是最小角∠C 的2倍,且AB=2,AC=3,则△ABC 的周长为( ▲ ) A .12-13 B .73-10 C .5+2 3 D .5+10二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.) 11.二次函数3)2(2-+-=x y 的顶点坐标是 ▲ 。

12.已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是 ▲ 。

13.某商场销售额3月份为16万元,5月份为25万元,设商场这两个月销售额的平均增长率为x ,则可列方程为 ▲ 。

14.如图,AB 为⊙O 的直径,弦CD⊥AB 于E ,已知CD=12,AB=20.则OE= ▲ 。

第16题第17题15.抛物线c bx x y ++-=2的部分图象如图所示,若0<y ,则x 的取值范围是 ▲ 。

第14题16.如图,在Rt ABC △中,9068C AC BC O ∠===°,,,⊙为ABC △的内切圆,点D 是斜边AB 的中点,则tan ODA ∠= ▲ 。

17.边长为2的正方形ABCD 与边长为2的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与AG 在同一直线上,将正方形ABCD 绕点A 逆时针旋转如图(2),线段DG 与线段BE 相交,交点为H ,则△GHE 与△BHD 面积之和的最大值为 ▲18.已知二次函数1422-++=a ax ax y ,当41x -≤≤时,y 的最大值为5,则实数a 的值为 ▲ 。

三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.) 19.(本题满分8分)计算:(1)45sin 2)2(|22|2+---; (2)()1012cos6022π-⎛⎫-︒+- ⎪⎝⎭20.(本题满分8分)(1)解方程:01522=--x x ; (2)()()03432=-+-x x x21.(本题满分7分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,CD AC =,0120=∠ACD , (1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.22.(本题满分8分)如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A 1B 1C 1及△A 2B 2C 2; (1)若点A 、C 的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B 的坐标; (2)画出△ABC 关于y 轴对称再向上平移1个单位后的图形△A 1B 1C 1;(3)以图中的点D 为位似中心,将△A 1B 1C 1作位似变换且把边长放大到原来的两倍,得到△A 2B 2C 2.23.(本题满分8分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.24.(本题满分6分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.25. (本题满分9分)如图,已知抛物线c bx x y ++=2经过A (﹣1,0)、B (3,0)两点. (1)求抛物线的解析式和顶点坐标; (2)当0<x <3时,求y 的取值范围;(3)点P 为抛物线上一点,若10=∆PAB S ,求出此时点P 的坐标.26.(本题满分10分)有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=43,将这副直角三角板按如图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线..BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M ,则∠EMC= 度;(2)如图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,当D 在BA ..的延长线上.....时.,设BF=x ,两块三角板重叠部分的面积为y .求y 与x 的函数关系式,并求出对应的x 取值范围.A C DEAF CDE A(D ) C F E M▲27.(本题满分10分)在平面直角坐标系中,A点坐标是(0,6),M点坐标是(8,0).P是射线AM上一点,PB⊥x轴,垂足为B.设AP=a.(1)AM= ;(2)如图,以AP为直径作圆,圆心为点C.若⊙C与x轴相切,求a的值;(3)D是x轴上一点,连接AD、PD.若△OAD∽△BDP,试探究满足条件的点D的个数(直接写出点D的个数及相应a的取值范围,不必说明理由).28.(本题满分10分)如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A 运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).(1)当t =0.5时,求线段QM 的长;(2)当M 在AB 上运动时,是否可以使得以C 、P 、Q 为顶点的三角形为直角三角形?若可以,请求t 的值;若不可以,请说明理由。

(3)当t >2时,连接PQ 交线段AC 于点R .请探究RQCQ是否为定值,若是,试求这个定值;若不是,请说明理由.D A BCE P Q M lD ABC(备用图1)D ABC(备用图2)答题卷参考答案一、选择题1-10题:(每题3分)B C B D C A C C D D 二、填空题11-18题:(每题2分)(-2,-3); 15π; 25)x 1162=+(; 8; 13>-<x x 或; 2; 6; 1102或-三、解答题:19、(每题4分)(1) -2; (2)4; 20、(每题4分)(1)4335;433521-=+=x x (2)53;321==x x21、(本题满分7分)(1)3分; (2)π32-32=阴影S 4分 22、(本题满分8分)(1)画出坐标系1分;B 点坐标(﹣4,2)1分 (2)作图3分(3)作图3分23、(本题满分8分) 解:(1)当α=60°时,在Rt △ABE 中, ∵tan60°==,∴AB=10•tan60°=10≈10×1.73=17.3米. 3分答:楼房的高度约为17.3米; 4分(2)当α=45°时,小猫仍可以晒到太阳. 5分理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.∵∠BFA=45°,∴tan45°==1,此时的影长AF=AB=17.3米,∴CF=AF﹣AC=17.3﹣17.2=0.1米,∴CH=CF=0.1米,∴大楼的影子落在台阶MC这个侧面上,∴小猫仍可以晒到太阳. 8分24、(本题满分6分)解:∵30×40=1200<1400,∴奖品数超过了30件, 1分设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400, 3分解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去, 5分答:王老师购买该奖品的件数为40件. 6分25、(本题满分9分)解:(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3. 2分∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4). 3分(2)由图可得当0<x<3时,﹣4≤y<0. 5分(3)∵A(﹣1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB=AB•|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5); 7分②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解; 8分综上所述,P点坐标为(﹣2,5)或(4,5). 9分26、(本题满分10分)解:(1)∠EMC=15°; 1分(2)如题图3所示,当EF经过点C时,FC====; 3分(3)(I)当2<x≤6﹣时, 4分如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x. 5分y=S△ABC﹣S△BFM=AB•AC﹣BF•MN=×62﹣x•x=x2+18; 7分(III)当6﹣<x≤6时, 8分如答图3所示:由BF=x,则AF=AB﹣BF=6﹣x,设AC与EF交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM=AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=. 10分27、解:(1)10. 1分(2)由题意知⊙C与x轴相切,设切点为E.连接CE,则CE⊥x轴,且CE=a易证Rt△CEM∽Rt△AOM所以=,即=,解得a=. 4分(3)①当0<a<时,满足条件的D点有2个; 6分②当a=时,满足条件的D点有3个; 8分③当a>且a≠10时,满足条件的D点有4个. 10分28、解:(1)过点C作CF⊥AB于F,则四边形AFCD为矩形.∴CF=4,AF=2,此时,Rt△AQM∽Rt△ACF,∴=,即=,∴QM=1; 2分(2)有三种情况:①当∠CPQ=90°时,点P与点E重合,此时DE+CP=CD,即t+t=2,∴t=1②当∠PQC=90°时,如备用图1,此时Rt△PEQ∽Rt△QMA,∴=,由(1)知,EQ=EM﹣QM=4﹣2t,而PE=PC﹣CE=PC﹣(DC﹣DE)=t﹣(2﹣t)=2t﹣2,∴=,∴t=;③当P在AD上时,∠PCQ=90°此时PD=CD,所以t-2=2 , t=4;综上所述,t=1或或4; 8分(3)为定值.当t>2时,如备用图2,PA=DA﹣DP=4﹣(t﹣2)=6﹣t,由(1)得,BF=AB﹣AF=4,∴CF=BF,∴∠CBF=45°,∴QM=MB=6﹣t,∴QM=PA,∵AB∥DC,∠DAB=90°,∴四边形AMQP为矩形,∴PQ∥AB,∴△CRQ∽△CAB,∴====. 10分21。

相关文档
最新文档