AVL engine noise

合集下载

302_AVL EXCITE 软件在发动机机油盘结构噪声优化中的应用_长安_李凤琴

302_AVL EXCITE 软件在发动机机油盘结构噪声优化中的应用_长安_李凤琴

A VL EXCITE软件在发动机机油盘结构噪声优化中的应用李凤琴李占辉张磊艾晓玉薛军平重庆长安汽车股份有限公司汽车工程研究总院(重庆, 400023)摘要:针对某发动机在台架试验过程中出现的NVH问题,应用A VL EXCITE多体动力学软件和通用有限元软件、边界元软件软件,对发动机表面振动和噪声水平进行评估,重现了发动机的NVH弱点,找出机油盘是降噪关键点,并进行机油盘的结构优化,最终得到合格的产品。

台架试验结果证明了仿真优化方案的合理性。

关键词:机油盘振动噪声结构优化主要软件:MSC.Nastran;A VL EXCITE;LMS Virtual. Lab;1前言随着对环境要求的不断提高和汽车工业的蓬勃发展,世界各国对汽车噪声污染的控制越来越严,人们对汽车舒适性的要求越来越高,汽车振动和噪声已成为衡量汽车性能的重要指标[1-3]。

发动机是汽车最主要的振动与噪声源,是否具有良好的噪声、振动和行驶平顺性(noise,vibration and harshness简写为NVH)现在已成为决定发动机能否被市场接受的重要条件。

随着发动机向高速、大功率、高效率方向的发展,解决发动机的排放和噪声污染显得更加迫切,因此,开展降低发动机噪声的研究具有十分重要的现实意义。

发动机噪声作为汽车的一个主要噪声源,而发动机三大罩壳(缸盖罩、正时罩和机油盘)又往往是主要的噪声辐射源[4,5]。

其中,机油盘的辐射噪声有时可占发动机总噪声的15%~ 22%[6]。

因此降低机油盘的辐射噪声对降低发动机整体噪声有着重要的意义。

对机油盘结构噪声进行优化主要采用虚拟预测方法[7,8,9],这种方法可以很好地对机油盘压痕筋的布置进行优化,从而改变机油盘的固有频率和振型,优化后机油盘辐射噪声得到了大幅度降低。

某发动机在台架试验中发现整机NVH性能较差,不能完全满足开发目标,需要整改。

本文应用有限元法(FEM)、多体动力学(MBS)和边界元法(BEM)相结合的虚拟仿真技术,对该发动机整机进行结构振动噪声分析,找出了机油盘就是噪声源,并对其进行优化分析,最终得到NVH性能较好产品。

AVL_CRUISE_2014_整车经济性动力性分析操作指导书

AVL_CRUISE_2014_整车经济性动力性分析操作指导书

A VL_CRUISE_2014_整车经济性动力性分析操作指导书AVL_CRUISE_2014_整车经济性动力性分析操作指导书目录第一章 AVL Cruise 2014 简介 (1)1.1 动力性经济性仿真集成平台 (1)1.2 AVL Cruise建模分析流程 (2)1.3 主要模块功能 (3)1.4 A VL Cruise计算任务的设定 (9)第二章汽车零部件模型建立 (13)2.1.软件启动 (14)2.2.Project创建 (15)第三章整车动力经济性分析模型连接 (45)3.1.部件之间物理连接 (45)3.2.部件之间信号连接 (47)第四章整车动力经济性分析任务设置 (51)4.1 爬坡性能任务制定 (52)4.2 等速百公里油耗分析 (56)4.3 最大车速分析 (59)4.4 循环工况油耗分析 (62)4.5 加速性能任务制定 (65)第五章计算及分析处理 (69)5.1. 计算参数设置 (69)5.2. 分析处理 (69)第六章整车动力性/经济性计算理论 (75)6.1 动力性计算公式 (75)6.1.1 变速器各档的速度特性 (75)6.1.2 各档牵引力 (75)6.1.3 各档功率计算 (76)6.1.4 各档动力因子计算 (76)6.1.5 最高车速计算 (77)6.1.6 爬坡能力计算 (78)6.1.7 最大起步坡度 (78)6.1.8 加速性能计算 (79)6.1.9 比功率计算 (80)6.1.10 载质量利用系数计算 (80)6.2 经济性计算公式 (81)6.2.1 直接档(或超速档)等速百公里油耗计算 (81)6.2.2 最高档全油门加速500m的加速油耗(L/500m) (81)6.2.3 循环工况百公里燃油消耗量 (83)第一章 AVL Cruise 2014 简介1.1 动力性经济性仿真集成平台AVL Cruise是AVL公司开发的一款整车及动力总成仿真分析软件。

自己总结的avl-fire教程

自己总结的avl-fire教程

A VL—Fire 教程——整理+总结1.AVL公司软件基本介绍:(1)发动机性能分析软件:Boost——一维发动机工作过程循环模拟分析计算BOOST应用:BOOST是一个功能强大,截面友好的发动机稳态和瞬态性能分析软件。

它包含下述四个模块:a.BOOST发动机性能分析模块,可以进行l各种发动机草案的对比l针对发动机输出功率、扭矩和燃油消耗的要求进行发动机部件的设计优化,例如进气系统、排气系统、气门尺寸等l优化气门正时和凸轮型线l增压系统的设计l考虑整车特性和驾驶员状况对瞬态性能评价(加速/加载、减速/减载)l燃烧分析工具,对试验测得的示功图进行分析得到气缸的放热率曲线l与优化软件ISIGHT的接口设置,进行发动机性能的优化方案的选择l使用非线性声学分析方法进行消音器的结构优化,这个模块中的消音器与整机进行联合计算,因此得到的是发动机整机在特点工况下的进排气噪音b.BOOST线性声学分析模块:c.BOOST尾气净化装置模块d.BOOST的热网格生成器模块(TNG)Fame——自动网格生成器FAME里基于八叉树过程的自动网格生成工具可实现又快又稳定的网格生成。

网格建立过程的算法对表面质量不敏感。

只要表面的缝隙宽度不超过该处网格的大小,就不会影响网格的自动生成。

FAME也提供了一系列修补工具,可对不符合要求的CAD数据进行修正。

CAD数据一般通过STL接口读入。

体网格则可以SWIFT v2,Nastran,Ideas和Star-CD的格式读入。

网格种类和局部细化策略可由用户选择:可生成六面体,四面体或混合型网格,不同部分的网格可通过一一对应或任意交界面方式连接。

一旦选定网格生成策略,网格建成后带有用户定义的贴体网格层数以确保计算结果的高精度。

FAME Advanced Hybrid这种网格生成工具有自动识别模型大小的功能,能有效地处理局部结构尺寸差别很大的模型,如对于模型的某些比起其它部位要小很多的部位它能自动识别到,并作相应的网格细化。

AVL技术资料AVL.某钢曲轴改球铁分析

AVL技术资料AVL.某钢曲轴改球铁分析

某曲轴材料改球铁的分析黄第云牟宁斌(广西玉柴机器股份公司技术中心广西玉林市天桥西路88号)摘要:通过A VL EXCITE Designer的仿真计算,比较某曲轴由42CrMo钢曲轴改QT800球铁曲轴后的强度和扭振及轴承性能,论证球铁曲轴的可行性。

关键词:曲轴、42CrMo、QT800主要软件:A VL EXCITE Designer1 前言从技术降成本考虑,拟将某发动机的曲轴材料42CrMo改为QT800,分别对42CrMo钢曲轴及QT800球铁曲轴进行了对比分析,发动机的最高爆压只有120bar,首先不对曲轴形状进行修改,只考虑材料、加工方法及热处理的更改,因此重点评估曲轴强度,同时考虑曲轴系的扭振及轴承。

计算是用有限元软件和A VL EXCITE Designer计算程序完成,需要的示功图和轴承分析用到的机油压力和机油温度数据均来自试验结果。

2.曲轴系模型2.1 曲轴系的主要结构曲轴系主要包括曲轴,与其相连的飞轮和皮带轮。

原曲轴采用传统的42CrMo锻钢曲轴,而更改后的球铁曲轴拟采用QT800曲轴(圆角滚压和轴颈淬火表面强化处理),材料属性见表1。

表1曲轴的材料属性零件名称材料弹性模量(MPa) 泊松比密度(Kg/mm3)钢曲轴 42CrMo 2.06E5 0.30 7.85E-006 球铁曲轴 QT800 1.6E5 0.28 7.35E-006图1 曲轴的EXCITE Designer模型2.2 EXCITE Designer 模型的建立根据曲轴轴系的有关计算边界条件建立EXCITE Designer 计算模型,具体模型见图1。

2.3 各转速下爆发压力曲线图2为不同转速下的气缸压力及不同转速下的最大爆压。

Y A x i s : P r e s s u r e (b a r )X Axis: Crank Angle(deg)Y A x i s :M a x P r e s s u r e (b a r )X Axis:Crank Angle (deg)图2 气缸压力曲线及各转速的最大爆压3 曲轴应力集中系数和扭转刚度的确定3.1曲轴应力集中系数曲轴圆角处的应力集中系数通过EXCITE Designer 计算得出。

AVL-EXCIXE

AVL-EXCIXE

可使用其他系统的数据 For Complex
Parts Data from CAD-System or FECADFEPrepro. and FE Static Analysis is Used
组合单元,并生成: SM Assembles 组合单元,并生成: the Elements and Generates
连接件物理行为的精确模型(非线性油膜行为) 连接件物理行为的精确模型(非线性油膜行为)
Physical Behavior in Joints (Nonlinear Oil Film Behavior)
Precise Models of
考虑所有相关噪声的产生机理
Generation Mechanisms
1 0 -1 -8 0 5 5
活塞敲击 输出扭矩
Piston Slap
8 1 5
Thrust Side Forces over Cylinder Liner Height
M m n (N ) o et m
10 0 0
Output Torque
15 2
1
Engine Cycle (-)
2
3
MSC/NASTRAN
运动和振动结构件的动态相互作用(连杆、曲轴、机体等) 运动和振动结构件的动态相互作用(连杆、曲轴、机体等)
Dynamic Interactions of Moving and Vibrating Structure Parts (Conrod, Crankshaft, Engine Block, etc.)
整体刚度阵和质量阵 Overall Stiffness and Mass Matrices 单元刚度阵、 单元刚度阵、自由度等 Element Stiffness Matrices, DOF’s etc.

AVLMOBEO—为ECU虚拟标定提供精确的发动机实时模型

AVLMOBEO—为ECU虚拟标定提供精确的发动机实时模型

AVLMOBEO—为ECU虚拟标定提供精确的发动机实时模型AVL公司根据多年来在发动机控制策略开发与标定方面的经验,形成了一套用于提高控制策略开发和ECU标定效率的方法和工具,其“ECU虚拟标定”技术已在众多开发项目中得到了充分验证,力求为工程师提供与实际标定过程完全相同的操作环境和流程,将原来大量的需要在整车或台架上完成的标定工作前置到HiL环境。

整个虚拟标定方法的关键点在于能否建立一个高质量的实时模型来代替真实的发动机,这也是AVL开发MOBEO(ModelBased Engine Optimization)的主要目的。

MOBEO集成了AVL多年的发动机开发工程经验,采用半经验—半物理的建模方式,结合了物理建模和经验建模各自的优点,形成了分别用于柴油机、汽油机气缸模拟的MOBEO Cylinder模块,以及专门用于模拟尾气后处理系统的MOBEO EAS模块。

随着MOBEO技术的成熟和用户对虚拟标定技术迫切的需要,AVL已将MOBEO商业化并集成到A VL CRUISE™ M平台的进程,有关MOBEO与CRUISE™ M的关系及具体应用案例本文最后一部分将有更多介绍。

在概念设计阶段,往往很难获得产品最终性能的测试数据,而预研部门工程师此时就需要对比不同的方案、各种技术、参数的敏感度等。

借助于MOBEO中集成的AVL工程数据库,能够为前期的决策提供支持,同时也可以早期就能给供应商或其他部门提出边界条件。

在ECU标定阶段,需要具有足够精度的发动机模型来代替实物发动机,根据实测的数据对所搭建的MOBEO模型进行更新。

MOBEO 模块集成了AVL的模型自动优化工具MOBEO Wizards,能自动地进行快速高效的模型标定工作,以取代传统耗时费力的手动调整参数的过程。

MOBEO的主要价值体现在对发动机开发流程的优化方面。

在概念阶段:•根据有限的输入数据,能够快速、直观的建模;•具有一定的外插能力以及能够满足概念设计要求的精度;•参数的默认值来自于AVL的经验应用于虚拟标定所承担的主要任务:•发动机与整车动力性、经济性和排放性能的电控参数预标定•非标准环境条件下预测和标定,大幅度减少对环境舱的依赖•瞬态过程的预测和标定参数的修正•进行OBD功能检测•分析产品一致性对控制效果和鲁棒性的影响•考虑部件老化的影响1. MOBEO CylinderMOBEO Cylinder适用于汽油机和柴油机缸内过程的模拟。

AVL燃烧分析及在标定的应用培训资料讲解

AVL燃烧分析及在标定的应用培训资料讲解

3、LNV IMEP 为N个循环的最小IMEP当小于
80%时发动机有失火(怠速除外)。
8/21/2012
30
Thermodynamic Correction
Ref: AVL IndiCom User Manual
31
Thermodynamic Correction
32
设置点火信号的工作范 围及观察窗口。
14
Ignition Signal Set-up (点火信号设置)
15
IndiCom Results(采样结果)
选择要测量和计算的参数
16
Pmax(最大燃烧压力)
17
PMax (最大燃烧压力)
18
Indicated Mean Effective Pressure(平均有效燃 烧压力)
点火顺序及转角 。
Type(类型) strokes/cycle(冲程) stroke(缸径)
conrod(活塞连杆中心距) bore(行程) compression(压
缩比) polytropic coefficient(汽油1.32,柴油1.37,直
喷1.35)。
2
Angle Encoder(较标仪)
9
Cylinder Pressure Set-up(绝对压力设置)
由于此类型压力传感器只能测量压力的变化值,而不 能直接测量出压力的绝对值,因此按图示设置零位修 正(zero level correction)以便能计算出压力的绝对 值。
10
Cylinder Pressure Set-up (绝对压力设置)
AVL Indicom SetUp(AVL燃烧分析设置)
Equipment & set-up of AVL Indicom system for combustion measurement(AVL燃烧分 析的基本设置)

AVL 英语

AVL 英语

Vehicle Model 整车模块Gas tank Volume 油箱容积Pressure Difference /Environment 内外压差Temperature Difference Engine/Environment 内外温差Distance from Hitch to Front Axle 牵引点到前轴距离Wheel Base 轴距Height of Support Point at Bench Test 试验台架支撑高度:100empty 空载half 半载full满载Distance Gravity 整车重心到前轴中心距离Height of Gravity Center 重心高度Herght of Hitch 鞍点高度Tire Inflation Preddure Front Axle 前胎充气压力Tire Inflation Pressure Rear Axle后胎充气压力Curb Weight 整备质量Gross Weight 整车质量Frontal Area迎风面积Drag Coeffcient 风阻系数Lift Coeffcient Front Axle 前轮举升系数Lift Coeffcient Rear Axle 后轮举升系数Engine Model 发动机模块Engine Type 型号(Gasoline汽油、diesel柴油)Charger是否有增压器(Without没有、Turbo Charger涡轮增压、TC with Intercooler涡轮增压和中冷却)Engine Displacement 发动机排量Engine Working Temperature 发动机工作温度Number of Cylinders 缸数Number of Strokes 冲程数Idle Speed 怠速转速Maximum Speed 额定最高转速Inertia Moment 惯量(参照值1.25)Response Time 达到全功率响应时间0.1S Fuel Type 燃油类型Heating Value 热值(参考值44000kj/kg)Fuel Density 燃油密度(柴油密度0.82kg/L)Fuel Shut-off 补充燃油关:noFull Load Characleristic 满负荷特性Engine Maps Basic 发动机油耗(Map)图Specific Consumption Map 具体的油耗图Gear Box Model 变速器模块Gear Ratio Table 齿轮速比表Clutch 离合器Inertia Moment In 输入惯量(参考值:1.35)Inertia Monment Out 输出惯量(参考值0.11)Maximum transfer torque最大传动扭矩Clutch Release 离合行程Pressure Force 压盘力Single Tatio 主减速器Transmission Ratio 速比Inertia Moment In 输入惯量(参考值0.02)Inertia Moment Out 输出惯量(参考值0.02)Efficiency 效率(参考值0.94)Efficiency and Torque Correction效率和转矩修正Differentia 差速器Differential 是否锁止(unlocked开锁、locked锁止、Torque Split Factor from Data Bus)Torque Split Factor 扭矩分配因子Inertia Moment Out In 输入惯量Inertia Moment Out 1 输出惯量(参考值0.02)Inertia Moment Out 2 输出惯量(参考值0.02)Brake制动器Brake Piston Surface 制动缸面积Friction Coeffcient 摩擦系数Specific Brake Factoe 制动因子:盘式为1;鼓式大于1Effective Freclion Radius 制动力作用半径Efficiency 制动效率Inertia Moment 惯量:参考值1.0Wheel 轮胎Inertia Moment 惯量:参考值5.0 Friction Coefficient of Tire 轮胎摩擦系数Reference Wheel Load 参考轮荷Wheel Load Correction Coefficient轮荷修正系数(参考值0.02)Static Roling Radius 静态半径Dynamic Roling Radius 动态半径(注:根据最高车速试验条件为设计满载质量下的测量的,因此,此处轮胎半径统一给静态负荷下半径)Cockpit 驾驶员Shift Mode 换挡方式(manual手动、automatic自动)Forward 前进挡Reverse 倒档数Maximum Brake 踏板制动力Number of Retarder Steps缓速器级Acceleration Pedal Characteristic 加速踏板与油门开启比例Clutch Pedal Characteristic 离合踏板与离合行程对应关系Brake Pedal Characteristic 制动踏板与制动压力对应关系。

AVL_先进模拟技术简介-船舶行业

AVL_先进模拟技术简介-船舶行业

CAE的重要性
更快的产品开发周期 缩短开发过程
-42
AVL EDP Step I
-36 -30
-24
-18
-12
Months before SOP
-6
0
Concept Study Concept Definition Design & Procurement Engine Gen. 1 Start of Development on the Test Bed Prototype Development Release of Concept Preproduction Development (Engine Generation 2) Design Freeze LLI Design Freeze MLI Release for Prod. Validation Production Validation
Page No. 6
Source: FORD
Product verification costs
CAE分析的价值
采用模拟计算手段以及虚拟样机仍存在障碍
“除了试验工程师,每个人都相信试验结果,
同时
除了计算工程师,没人相信CAE分析的结果”
Mike Racicot
计算和试验必须同时采用以借助各自的优势来优化产品质量
Page No. 7
AVL的CAE Taskbook
CAE Taskbook CAE Taskbook
Index sorted by: edp Index sorted by: edp
Catalyst inflow optimization
Brief description
Based on CAD data a 3D CFD model including exhaust manifold and catalyst is generated. The simulation of the pulsating flow field towards and through the catalyst/monolith is performed. The substrate is considered as porous medium in the simulation. The boundary conditions are taken from thermodynamic cycle calculations. An assessment of the flow field is performed utilizing a uniformity index together with lateral pressure gradients (damage).

AVL燃烧分析仪去除燃烧噪声的研究 (1)

AVL燃烧分析仪去除燃烧噪声的研究 (1)

第 1期
岳常智等 : AVL 燃烧分析仪去除燃烧噪声的研 究
43
据采集单元包 括 8 个 快速通 道和 16 个慢速 通道。 快速通道用于采集高频信号, 慢速通道用于采集低 频信号。信号放大器包括应变放大器、 石英放大器 和载荷放大器, 分别对应于应变传感器、 石英压力传 感器和进排气阀升程传感器的信号放大。根据需要 还 能对 数 据采 集 单元 和 信号 放 大器 的数 量 加 以 扩充。 1. 3 试验设备与仪器 图 1 所示为该试验设备 , 试验机采用四冲程直 喷式 1135 型柴油机, 四气门 , 喷油器中心正置 , 试验 中使用的主要测试仪器是 AVL620 燃烧分析仪。试 验机主要技术参数见表 1。
2
2. 1
减小误差的主要方案
减小误差的主要理论 本实验主要采取均值滤波 的方法, 对由通道效
应所产生的误差进行修正。 在测压通道内所用的误差均可以近似地认为是 高斯分布的白噪声。在去除噪声时大多选择线性平 滑滤波、 均值滤波、 中值滤波这三种方法。 线性平滑滤波器因易于设计和在多数场合的优 越性能而成为信号处理的重要手段, 尤其表现在信 号频谱和噪声 频谱具有 显著不同 特征的时 候。然 而, 在进行通道效应所产生的误差处理时, 经常要处 理具有陡峭边缘也即具有很宽频谱的信号 , 线性平 滑滤波器却在平滑噪声的同时也使图像边缘变得模
和处理之后的结果。 图 5 为不经滤波时放热率曲线 , 我们可以看出 , 这个放热率曲线锯齿很多, 误差十分大 , 基本属于错 误的曲线。
3
实验结果比较与分析
图 3 中锯齿较多的是原始 缸压曲线, 比较光滑 的是经过数字滤波模块处理之后的曲线, 可以看到 , 未经过任何处理的缸压曲线, 由于有通道效应的存 在, 使得曲线极不光顺, 用它来计算缸内其他数值误 差较大 , 而经过数字滤波处理之后的曲线变得较为 光滑 , 但是着火点不够明显, 还是存在较大误差。这 说明 , 在处理具有陡峭边缘也即具有很宽频谱的信 号时 , 数字滤波的效果不是很明显。

揭秘世界四大发动机设计咨询公司

揭秘世界四大发动机设计咨询公司

揭秘世界四大发动机设计咨询公司展开全文奥地利AVL、德国FEV、英国Ricardo、美国Southwest Research Institute,并称内燃机设计咨询业内四巨头,他们对于发动机的设计都各有各的计算评价标准而且都为行业所认同。

简介如下:1.SwRI- Engine, Emission and Vehicle Research (美国西南研究院1947年)全名:Southwest Reserch Institute中文名:美国西南研究院,发动机、排放和车辆研究所成立年份:1947年总部:得克萨斯州,圣安东尼奥San Antonio, Texas美国西南研究院——SwRI成立于1947年,是一家独立的、非赢利性质的应用技术研发机构。

研究院拥有3200多名员工,总部位于美国德克萨斯州圣安东尼奥市,占地1200多英亩,其中近200万英尺的最先进的实验室及各类试验设施、车间和办公用地。

2009财年总收入为5.64亿美元。

美国西南研究院在美国和世界多地设有办事处,以及时反映客户需求和更好地服务本地客户。

发动机、排放和车辆研究所(Engine, Emissions and Vehicle Research Division)是美国西南研究院的一个重要技术部门,具有当前行业顶级的研发能力、世界一流的设备及工程技术人员为客户提供各种技术服务。

部门提供的服务包括:发动机、变速器和传动系统的设计和分析柴油和天然气发动机开发与研制传动控制系统的开发与研制摩托车和小型发动机技术的开发与研制变速器及车辆的开发与研制2.AVL List(奥地利 1948年)全名: Anstalt fur Verbrennungskraftmaschinen List中文名:AVL李斯特,李斯特内燃机及测试设备公司全球总部:奥地利格拉茨 Graz, Austria创始人:Prof. Dr. h.c. Helmut List. 创立年份:1948年李斯特内燃机及测试设备公司 (AVL List GmbH)成立于1948年,3,100名员工。

内燃机噪音测定方法 英文

内燃机噪音测定方法 英文

内燃机噪音测定方法英文英文回答:Engine Noise Measurement Methods.Engine noise is a major source of noise pollution, and it can also be a nuisance for people who live near roads or highways. There are a number of different methods that can be used to measure engine noise, and the choice of method will depend on the specific application.One common method for measuring engine noise is the sound level meter. A sound level meter is a device that measures the sound pressure level (SPL) at a given point in space. SPL is a measure of the loudness of a sound, and it is expressed in decibels (dB). Sound level meters can be used to measure the noise level of an engine at different speeds and loads.Another method for measuring engine noise is the noisesource identification (NSI) technique. NSI is a technique that uses a microphone array to identify the sources of noise in an engine. The microphone array is placed around the engine, and the signals from the microphones are processed to identify the sources of noise. NSI can be used to identify the specific components of an engine that are generating the most noise.A third method for measuring engine noise is the boundary element method (BEM). BEM is a numerical method that can be used to predict the noise level of an engine. BEM uses a computer model of the engine to calculate the sound pressure level at different points in space. BEM can be used to predict the noise level of an engine atdifferent speeds and loads, and it can also be used to identify the specific components of an engine that are generating the most noise.The choice of engine noise measurement method will depend on the specific application. Sound level meters are a simple and inexpensive method for measuring engine noise, but they can only measure the overall noise level. NSI andBEM are more sophisticated methods that can be used to identify the sources of noise in an engine, but they are also more expensive and time-consuming.中文回答:内燃机噪音测试方法。

AVL DRIVE在整车驾驶性能开发的运用

AVL DRIVE在整车驾驶性能开发的运用

10.16638/ki.1671-7988.2021.012.036AVL DRIVE在整车驾驶性能开发的运用陈铭1,2,黄炯1,2,魏喜乐1,2(1.江铃汽车股份有限公司整车性能及测试部,江西南昌330001;2.江西省汽车噪声与振动重点实验室,江西南昌330001)摘要:文章利用A VL DRIVE系统结合测试的加速度、电流、CAN网络信号对车辆驾驶性进行客观化测试与评估,使驾驶性问题可视化,通过分析客观数据得出车辆差异点及问题点,制定不同工况下的差异化目标。

使用表明A VL DRIVE在整车驾驶性能开发中有良好的助力效果。

关键词:AVL DRIVE;驾驶性;客观评估;整车性能中图分类号:U461 文献标识码:A 文章编号:1671-7988(2021)12-117-03Application of A VL DRIVE in Vehicle Driveability DevelopmentCHEN Ming1,2, HUANG Jiong1,2, WEI Xile1,2( 1.Vehicle performance and test department Jiangling Automobile Co., Ltd., Jiangxi Nanchang 330001;2.Jiangxi Key Laboratory of automobile noise and vibration, Jiangxi Nanchang 330001 )Abstract:The A VL DRIVE system is used to objectively evaluate the vehicle drivability with the tested acceleration, current and CAN network signals, so as to visualize the driveability problems. Through the analysis of objective data, the vehicle differences and problem points are obtained, and the differentiation objectives under different conditions are formulated.The use shows that A VL DRIVE has a good boost effect in the development of vehicle driving performance. Keywords: A VL DRIVE; Driveability; Objective evaluate; Vehicle attributesCLC NO.: U461 Document Code: A Article ID: 1671-7988(2021)12-117-03前言车辆的驾驶性能的评估及验收结果在以往的开发中主要靠工程师的主观感觉,这种方法对评估人员的经验有较高要求且受个人因素影响,如引入客观的评价手段,则可以屏蔽掉主观评估的不稳定性[1]。

08_浙大_郭磊_基于AVL模拟软件包的变速箱振动噪声集成化仿真技术

08_浙大_郭磊_基于AVL模拟软件包的变速箱振动噪声集成化仿真技术

基于A VL模拟软件包的变速箱振动噪声集成化仿真技术郭磊,蓝军,余波(浙江大学发动机振动噪声实验室,A VL AST,长安汽车研究院CAE所)摘要:分别采用Excite Designer、Tycon、Excite对某5挡手动变速箱进行了齿轮传动系动力学计算,在此基础上进行了变速箱壳体结构的振动噪声及强度仿真;讨论了Tycon齿轮传动分析中的咔嗒噪声(Gear Rattle)及呜呜噪声(Gear Whine)的特点,并阐述了Tycon联合Excite及外部边界元软件进行外声场仿真与强度仿真技术。

关键词:多体动力学;变速箱;齿轮传动系;振动噪声0. 前言计算机仿真技术已被证明在汽车产品研发及优化改进中发挥了巨大的作用,在开发成本和分析精度上都体现出明显的优势。

随着汽车行业市场竞争的不断加强,各汽车公司的产品不仅需要占居市场份额,同时还应满足国家各项法规的要求以及消费者对汽车产品的相关品质要求。

汽车及发动机结构振动噪声及舒适性(NVH特性)已成为评价动力机械产品品质的重要指标,A VL公司先进模拟产品线中为动力产品NVH特性仿真提供了一整套解决方案。

1. 动力总成技术规格及参数(1)发动机型式:水冷直列四冲程汽油机;缸数:4缸;缸径:86 mm ;活塞行程:86 mm ;标定工况:112 KW/6000 Rpm ;最大扭矩点:192 Nm/4500 Rpm ;(2)变速箱型式:横置式手动5档;一档速比:15 ;二档速比:8.5 ;三档速比:5.6 ;四档速比:4 ;五档速比:3.3 ;2. 变速箱振动噪声及强度分析计算流程图1 变速箱结构振动噪声及强度仿真计算流程图变速箱壳体作为主要的承载部件,内部齿轮系传动产生的轴承动态激励及壳体结构本身模态特性都对其NVH 特性产生影响;各个档位下齿轮传动系传递的扭矩大小将反映在各处轴承载荷上,可利用此轴承载荷进行强度指标的计算。

图1中表示了采用A VL 结构仿真软件进行变速箱壳体振动响应及强度计算的流程图;3. Excite Designer 计算曲轴系统扭转自由度响应首先,根据A VL Excite Designer 建立活塞曲柄连杆系统运动学仿真模型,在活塞顶部施加不同转速下燃气爆发压力,活塞及连杆大小头质量须正确填入,曲轴及离合器系统分割为多惯量及各惯量间扭转刚度连接。

AVL EXCITE用于车辆降噪的发动机仿真

AVL EXCITE用于车辆降噪的发动机仿真

AVL EXCITE用于车辆降噪的发动机仿真作者:AVL List Harald Pramberger 蓝军[摘要] 噪声和振动工程已成为汽车工业扩大市场的重要因素。

不用置疑,在中国为区别产品优劣和满足外部噪声法规,NVH(噪声、振动和粗暴)问题越来越重要。

与配置良好的工程试验方法一道,发动机噪声辐射和振动的仿真已频繁应用于发动机的开发过程中。

仿真的基本方法仍然在不断发展,并获得稳步提高。

本文着重讨论发动机计算声学的当前常用方法,并展望新方法和新技术,可在不久的将来应用在发动机和车辆的开发过程中。

概述为减少城市环境的噪声污染,并满足不断增长的舒适性要求,需要低噪声的车用发动机和动力总成。

因此在设计阶段,需要适用广泛的仿真方法和软件工具,来分析噪声的产生和传递至机体或总成的复杂物理现象。

AVL EXCITE正是为这些应用而开发的,它结合杰出的仿真技术,可实现发动机动力学和噪声的仿真计算,获得接近真值的理想结果[1]、[2]、[3]、[4]、[5]、[6]、[7]。

1 前言当车辆在公路上高速行驶时,风声和轮胎噪声是主导的,但在城镇中使用时,发动机则是最重要的噪声源。

由于法规旨在降低城镇环境噪声污染,故低噪声发动机是降低车辆噪声的重要手段。

测量技术已在过去的时间里得到发展、应用和报道。

由加窗及随后的其它处理方法,可成功获取单一噪声源,进而估计单一噪声源在车辆行驶总噪声中的主导贡献,包括考虑噪声源辐射的方向性、传播和反射,或使用车辆近场大型麦克风阵[4]。

可确定的单一噪声源常来自发动机表面、油底壳、齿轮箱表面、排气口、排气消声器、排气管、进气口、进气管表面以及轮胎(与道路)等。

图1 为一实例。

图1 行驶噪声源分析实例图2 显示了世界范围产柴油机的1 米噪声级的典型范围,测量依据DIN45636 (SAEJ1074)。

额定转速下汽油机噪声的典型范围和绝对噪声级与此相似。

在低速低负荷下,汽油机噪声级一般会比相当的柴油机小10dB 以上[5]。

基于AVL软件的凸轮型线设计优化及发动机性能模拟验证(3)

基于AVL软件的凸轮型线设计优化及发动机性能模拟验证(3)

30 基于AVL 软件的凸轮型线设计优化及发动机性能模拟验证(3)徐 彦(南京金城机械有限公司)Xu Yan(Nanjing Jincheng Machinery Co., Ltd.)Design Optimization of Cam Profile and Engine PerformanceSimulation Verification based on A VL Software(3)(上接2021年第2期)5 BOOST 发动机燃烧模型的建立及性能模拟计算5.1 BOOST 软件简介BOOST 是AVL 系列软件中发动机设计过程中一流的开发工具,负责对发动机燃烧系统进行模拟分析,模拟计算涵盖发动机工作循环和气体交换模拟程序、管道一维气体动力特性、发动机稳态和瞬态工况模拟、ECU 控制策略预测、尾气净化装置模拟等。

从二冲程到四冲程、从摩托车到汽车,提供了强大的模拟计算结果,包括:功率、转矩、BMEP 、IMEP 、FMEP 、BSFC 、充气效率、进排气管道中的气体压力和温度以及消音器的声学分析和尾气净化装置的分析等[2]。

因此,在发动机原始设计和设计改进过程中,只要模型的边界条件和各计算单元参数准确设置,就可以对发动机各项性能进行精确预测,降低了开发周期,省去了繁琐的样件制作、装配、试验等过程和成本。

此次设计优化主要目的是使5 000r/min 时的转矩尽可能平稳过渡、无下降,提高6 000r/min 以下的发动机转矩,并且不要牺牲太多的高速性能。

因此,主要利用BOOST 模型查看发动机在改进前后的动力性能,主要计算过程和结果详见下文。

5.2 燃烧模型的建立首先建立图36显示的从空滤到消音器的燃烧系统热力学模型,各单元之间用管路连接,在管路中布置好测量点MP ,各管路之间的流量损失均采用节点约束R 中流量系数来控制,SB1和SB2分别是进气口和排气口的边界,CL1是空滤、C1是燃烧单元、PL 是消音器[2]。

AVL模型数据说明

AVL模型数据说明

Simulation control 选项卡Simulation control/globasSpecies Transport(数据传输方式):classic(选general则要设置详细控制参数)Mixture Preparation (预混方式):internal(内部混合-指气缸内混合)Transient Calculation (考虑瞬态效应计算)Fuel :Type: Diesel(柴油)Lower Heating value (低热值):42800 kj/kgStoichiometric A/F (理想空燃比)Ratio 14.7Calculation mode (计算模式):single(如选animation 则要进行动画计算) Identical Cylinders 钩选则只需输入一个气缸参数,其他气缸自动改成一样。

Reference conditions (参考条件)Pressure(大气压力) : 1Temperature(环境温度):24.85。

Gas Properties (混合气体特性):variableBMEP Control(平均有效压力控制) Air Humidity (空气湿度控制)Real Gas Factor (考虑真实的油气燃烧状况中出现的分裂现象建立二维模型)General Species Setup 选项卡表格Species 输入混合气成分表格Key-Chemistry将每一种成分对应一个Key提交计算表格3详细定义每一种成分的量。

用户定义可以详细定义Species表格里无法定义的气体成分。

Air Humidity 选项卡定义空气相对或绝对湿度,参考压力和温度。

Time Step Control(步长控制)选项卡Cycle : 4-Stroke (4冲程)Maximunm Calculation Period (最大计算步长)Degree Crankangle 10800 (指计算持续时间为曲轴转过10800度的时长)Pipes :Average Cell Size :30 (决定着计算精度和计算时间的数据)Calculation Step Size :(用户可以直接定义单元计算步长Boost将由此计算出平均单元大小)Traces Saving Interval(迹线保存间隔):为避免不需要的大文件输出而单独定义的步长。

基于LMS Virtual Lab Acoustics的发动机结构噪声预测

基于LMS Virtual Lab Acoustics的发动机结构噪声预测

基于LMS VirtualLab Acoustics的发动机结构噪声预测作者:邓晓龙李修蓬奇瑞汽车工程研究院动力总成开发部邓晓龙李修蓬摘要:在发动机设计阶段就进行发动机结构噪声预测,并在此基础上进行噪声最优化控制,是提升发动机的NVH性能的根本手段。

在对发动机进行动力学分析、结构响应振动计算后,采用LMS Virtual Lab/Acoustic软件进行了发动机结构噪声预测。

关键词:发动机; 噪声预测;1 前言随着我国汽车自主创新的不断深入,从设计阶段开始就同步进行计算机仿真成为发动机开发的基本需求。

CAE技术的大量应用,降低了发动机开发的成本,缩短了开发周期,提升了产品性能。

汽车的NVH(Noise,Vibration and Harshness;噪声、振动与舒适性)性能日益受到重视,发动机是汽车最主要的振动及噪声源,在发动机的设计阶段就深入进行振动噪声性能的预测与优化,是发动机自主研发过程中非常重要的一项工作。

国内外研究人员对发动机结构噪声的预测做了大量的研究工作,中低频的结构噪声预测方法已经趋于成熟。

出现了一些可进行噪声预测的商业软件,如LMS公司的Virtual Lab/Acoustic 等。

结构振动响应与辐射噪声之间的关系非常复杂,目前根据强迫振动响应计算辐射噪声的计算方法主要有平板理想化法、有限元法和边界元法等[1]。

噪声预测技术的发展,使得发动机在设计阶段进行噪声评价成为可能。

本文建立了发动机主要部件的有限元模型,通过AVL/EXCITE软件,进行了动力学分析,施加发动机的主要激励后,用MSC/NASTRAN计算发动机的振动响应,最后采用Virtual Lab/Acoustic进行噪声预测。

2 结构噪声预测理论2.1 发动机结构噪声预测流程进行发动机结构噪声预测,需要进行大量的研究工作。

图1为发动机结构噪声预测的基本流程。

图1 发动机辐射噪声预测流程2.2 发动机结构强迫振动响应在计算强迫振动响应时,假设发动机受到随时间变化的激励力的作用,系统为线弹性振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

972042Meeting Future Demands for QuieterCommercial Powertrain SystemsChristian V. Beidl and Alfred RustAVL LIST GmbH Copyright 1997 Society of Automotive Engineers, Inc.ABSTRACTNoise legislations and the increasing customer demands determine the NVH-development of modern commercial vehicles. In this paper suitable engineering approaches will be discussed.In order to meet the very stringent legislative requirements of the EEC and some other countries refinement of all vehicle noise sources is required. Cost-effective solutions, however, can only be found with low-noise powertrains, thus being able to avoid excessive noise packages on the vehicle. There is increasing demand, because modular systems should be ready to power a variety of different trucks and busses and allow for easy servicability.With this focus on powertrain noise, the paper discusses and outlines the technological developments required to achieve sufficient noise reduction which aims towards a 1m engine noise level of 93 dBA measured in an acoustic test cell under rated conditions.This very tough target for future engines can only be achieved with low-noise design concepts, with special consideration of the diesel injection and combustion system and a perfectly optimized powertrain structure. Potentials, analysis methods and the application of advanced simulation techniques in combination with experimental development and fine-tuning will be described in this paper and can be demonstrated by case studies.Clearly, future demands will also include competitive noise quality inside and outside the vehicle, not only in drive, but also in idle condition. The AVL Annoyance Index can be successfully applied to support the noise quality development.INTRODUCTIONLegislation and market demands drive the development of internal combustion engines. In both fields the requirements were clearly increased in the last years due to tighter legislative limits and higher standards of comfort. And these requirements will continue to increase. This fact will necessitate a more and more holistic approach of engine development. This means, forinstance, that the acoustic development has not only to be focused on legislative noise limits and comfort requirements. It also has to consider the impacts of other requirements (like those of exhaust emissions, fuel consumption, engine performance, engine weight etc) on the engine concept and hence on the engine acoustics already from the very beginning.In the last decades the noise legislation for vehicles was clearly tightened as shown in Fig. 1 for trucks in the EEC. First, the pass-by noise limits were lowered step-by-step. Second, the pass-by noise test procedure for trucks was also partly modified yielding more severe test conditions. In addition to the noise legislation, the non-legislative requirements as mentioned above (market demands, comfort standards) must be taken into account. With trucks, these additional requirements refer mainly to the exterior noise at low idle and to the noise and vibration behaviour in the vehiclecabin.All these noise requirements have to be met with the complete vehicle. The engine which is generally the main noise source of the vehicle, is most influenced by these requirements. Of course, all other sources of vehicle noise like intake system, exhaust system, cooling system, transmission, drive line and tyres need also aFig.1Reduction of the EEC pass-by noise limits for trucks during the last twenty yearsproper noise development and also the complete vehicle requires a final acoustic development and refinement work. However, the engine is still the acoustic kernel of a vehicle, especially of trucks.For engine development purposes it is commonpractice to estimate the 1m engine noise level at rated condition using the so-called vehicle attenuation. It is defined as the difference between the 1 m engine noise level at rated condition and the pass-by noise level and contains, amongst others, the attenuation of the engine noise by the vehicle body [1]*. Based on empirical data of vehicles which do not have a special low-noise package,the vehicle attenuation of heavy duty trucks (≥ 150 kW) is about 12 to 14 dBA and that of medium duty trucks (< 150kW) amounts to 14 to 16 dBA [2]. With the European pass-by noise limits for these vehicle categories (80 dBA and 78 dBA resp., see Fig.1) and the above vehicle attenuation values, the 1m engine noise level is calculated to 92 to 94 dBA or as mean level to 93 dBA. Hence, a level of 93 dBA is nowadays a preferred noise development target for engines which will be used for trucks in EEC countries, since it can be highly expected that the truck will fulfill the noise legislation without major vehicle related measures against engine noise. Fig. 2illustrates this situation and shows that, in general, a noise level around 93 dBA requires shieldingor even enclosures with conventional engines or, if shielding is excluded, new engine designs based on comprehensive low-noise concepts are required.* Numbers in parentheses designate references at end of paper.CONTRIBUTION OF ENGINE TO VEHICLE NOISEThe contribution of the engine noise to the totalvehicle noise depends strongly on the operating condition of the vehicle. At higher road speeds, for instance at speeds above 60 kph, the vehicle noise emission is dominated by the noise arising from the tyre-road contact [3]. Typical conditions of high contribution of engine noise are the low idle condition and the pass-by test operation.Fig. 3 illustrates the contributions of the individual sources to the pass-by noise of a medium duty truck. Before the acoustic development of the vehicle,i.e. at a higher pass-by noise level, the engine noise is clearly dominating yielding a contribution of nearly 70percent. But even if the engine and the vehicle is treated acoustically meeting the current legislative noise limit, the engine noise gives still the major contribution to the pass-by noise.Also with vehicles which yield a bigger noiseattenuation effect by their body such as the pickup truck of Fig. 4, the engine noise is still predominant. The contribution of the engine (engine block plus oilpan)amounts to half of the total pass-by noise of the pickup truck.The noise source ranking shown in Fig. 4 is theresult of the baseline analysis of the pickup truck to be improved. Such a noise source analysis is indispensable for a noise development work, since an efficient improvement strategy can be derived only from the results of a noise source analysis. The fundamental development procedure for the pass-by noise reduction of the pickup truck by 4 dBA is represented in Fig. 5.Fig. 2Relationship between engine noise and pass-by noise legislationFig.3Contributions to the pass-by noise of a medium duty truck with a 6 I engineCONTRIBUTIONS TO ENGINE NOISECommonly, the noise of truck engines isdetermined by the combustion noise and by mechanical noise contributions arising from engine components such as injection system, gear train, piston, crank train and valve train.Exhaust emission legislations like EURO 2 orfuture EURO 3 as well as the demands for low fuel consumption lead to the use of high pressure injection systems with injection pressures up to 1600 bar [4, 5].This trend towards high pressure injection establishes the injection system as the key component of a Diesel engine which has a significant influence not only on the combustion characteristics of the engine, but also on its noise behaviour. The influence on the noise behaviour refers to combustion noise because of high initial injection rate and to mechanical noise because of big pressure gradients yielding high structure-borne noise and because of great torque fluctuations in cam-driven systems yielding strong rattle noise in the gear train.COMBUSTION NOISE - The typical truckengine is a turbocharged and intercooled Diesel engine.For such an engine the operating conditions with high contribution of combustion noise are the low speed and low load conditions (Fig. 6). Especially at low idle the high combustion noise can result in a severe noise quality problem making the engine even unacceptable for the customer. In this case, countermeasures like injection rate shaping are a must. Proven countermeasures are pilot injection and the use of two-spring injectors [1,4,6]. As shown in Fig. 7 the effectiveness of these countermeasures is high in the low speed and low load range which is the same range as mentioned above where combustion noise is predominant. For example,overall engine noise reductions up to 4 dBA can be obtained by such measures at low idle condition [4].Fig. 4 Contributions of main noise sources to the pass-by noise of a pickup truck with a 2.6 l Diesel engineFig.5Pass-by noise development of a pickup truck with a 2.6 l Diesel engineMECHANICAL NOISE - As a consequence ofthe trend to higher peak firing pressures (to 160 bar and even beyond) and higher injection pressures the forces acting on the power train components will increase the mechanical noise with high contributions from injection pump and gear train. In Fig. 8 the noise radiation behaviour of three different heavy duty truck engines is compared. The engines are different in, power output (200versus 300 kW), fuel injection system (in-line pump vs.unit injectors) and location of gear train (flywheel side vs.front side). The average 1m noise levels at rated conditions are 95 and 97 dBA respectively. The results in Fig. 8 show that the engine block (including pistons and crank train), gear train and injection pump are the engine components of highest noise radiation. The dominance of these three engine components is typical of large today’s truck engines. They are also expected to 6-Cylinder Inline Engine, 121 Class, Full Load / Rated Speedrepresent the acoustic key elements of future truck engines. Therefore, these items will be discussed more detailed in the next section.KEY ELEMENTS FOR ENGINE NOISEFUEL INJECTION SYSTEM - Within allimportant noise sources the fuel injection system,particularly a high pressure injection system, holds the key position in view of both combustion and noise. The necessity of high pressure injection for low emission combustion is well known. Its detrimental effect on noise,however, has to be taken into account already in the engine concept. With cam-driven systems (like in-line pumps, distributor pumps, unit pumps, unit injectors), the generation of high pressure occurs intermittently and has therefore multiple effects on the engine noise as illustrated in Fig. 9. First, there is a high noise radiation from the surface of the injection pump, injection lines andFig. 6Contribution of combustion noise to the total noise of a 6 l TCI-DI Diesel engine (derivedfrom separation method as described in [7])Fig.7Reduction of combustion noise by injectionrate shapingFig. 8Noise radiation of truck engines with different design concepts and power outputFig.9Multiple influence of injection system on engine noisenozzle holders. Second, the vibration transfer from the pump and nozzle holders into the engine structure is increased. Third, the excitation of the gear train is also increased. Fourth, and this is valid not only for cam-driven systems, but for any kind of high pressure injection, the combustion noise excitation is clearly higher particularly at low load conditions (e.g. low idle), if special countermeasures are not applied during the combustion development. The overall noise increasing effect of high pressure injection systems depends on the speed/load condition of the engine and can amount up to 10 dBA at certain conditions [5].TIMING GEAR TRAIN - Generally, the main noise contribution of the gear train arises from gear rattle which is induced by high speed fluctuations resulting from torque fluctuations and occurring at certain gear meshes. Hence, the origins of speed fluctuations are all cam-drives (valve train, injection system), auxiliary drives with highly fluctuating torque requirements (air compressor) and the crankshaft. Therefore, cam-driven high pressure injection systems and multi-valve systems lead to higher gear rattle noise. This disadvantage can be compensated by conceptional and detail measures like gear train location at flywheel side, minimization of the extent of the gear train, additional flywheels at certain gear train elements, minimization and control of backlash etc. In Fig. 10, the benefit of the gear train located at the6-Cylinder Diesel Engine, 6l, 3500 rpm, Full Load flywheel side of an engine instead of its front side is demonstrated. Because of the elasticity and the vibration modes of the crankshaft, the angular displacement caused by the torque fluctuation from the crank train is much higher at the front end of the crankshaft than in the vicinity of the flywheel. This fact results in a clear decrease of the impact energy of the rattling gear meshes. The impact energy is approximately halved which corresponds to a reduction of the gear rattle noise by about 3 dBA. The overall effect of engine noise reduction can reach up to 2 dBA [6].ENGINE STRUCTURE - It is a well known fact that a proper design of the engine structure, especially the assembly of cylinder head, engine block and crankshaft including piston and conrod, is a key requirement for low-noise engines. Any potential for structure optimization which is not used can hardly be compensated by other measures.The dynamic behaviour of the engine structure determines the vibration transfer from the locations of noise generation to the outer surface of the engine radiating the engine noise. Therefore, both the selection of the proper design concept and the optimization of the detail design by means of finite element calculation are a must in order to meet the requirements for an excellent dynamic behaviour of the engine structure with low specific engine weight [8].First, the FE-calculation results give very valuable data in the conceptual design phase as demonstrated in Fig. 11, where different bottom end design concepts of smaller in-line Diesel engines (up to a displacement of 1 l per cylinder) are compared in termsFig. 10 Effect of gear train location on rattle noiseFig.11Effect of crankcase bottom design on weight and vibrationof vibration characteristics and weight. The heaviest versions C and G give lowest vibration. If these two versions are not taken into consideration for weight reasons, the full size ladderframe F has certain benefits against the bedplate version B. From experience it is known that these benefits of the ladderframe compared with the bedplate become the, smaller, the larger the engine is.Secondly, given the design concept, thecalculation can provide all the information necessary for low-noise detail design. As an example, Fig. 12 shows the result of a design modification because of a critical vibration response of the block bottom end at 1.25 kHz. In this phase, full size models; are required, where all relevant input forces and nonlinear, effects are considered. On the basis of such accurate models,advanced methods for the direct airborne noise prediction can be applied [8].The engine structure has to have not only anexcellent vibration behaviour, but also must give the possibility to run small clearances in the cranktrain. In particular, low cylinder liner distortion and optimized piston profile are important to enable small piston-to-liner clearances for reducing piston slap noise [10]. However,since piston slap noise is a significant noise component with turbocharged Diesel engines, because of high peak firing pressure, further measures are necessary to controlpiston slap noise. A common measure is piston pin offset,preferrably to the thrust side [6].As already mentioned above, the finite elementcalculation of the engine structure is an important tool also in view of low engine weight, because the aspect of low weight is gaining importance with truck engines too. This tendency leads to the substitution of metal by plastic material for certain engine components like gear train cover, valve cover or even oilpan [10]. In many cases engine components made of plastic material must be carefully designed in order to avoid an increase in noise.However, if highly damped plastic material can be used,the weight reduction effect can be combined with a noise reduction effect as illustrated in Fig. 13.FURTHER POSSIBILITIES OF ENGINE NOISE REDUCTIONThe control of engine noise by the key elementsmentioned above is the main step toward low engine noise levels. However, to achieve low noise levels like 93dBA, further possibilities of noise reduction have to be checked and utilized. Such possibilities are described below and illustrated by some examples.ATTACHED ENGINE COMPONENTS - Theacoustic treatment of attached components like valve cover, oilpan, intake manifold or timing gear cover is very important, since these components represent a big portion of the noise radiating engine surface. Effective kinds of treatment are decoupled mounting of the parts at the engine structure (“vibration isolation”) and the use of highly damped material such as laminated sheet steel or suitable plastic material. Vibration isolation is especially suitable for intake manifolds and valve covers (Fig. 14),whereas highly damped materials are used for oilpans and covers.Fig. 12Calculated structure modification of a 20 l V8truck engineFig. 13Noise radiation from a timing gear coverALTERNATOR AND TURBOCHARGER - Veryoften the cooling fan of alternators causes disturbing noise which can yield a significant noise contribution, if the engine noise is already on a lower level [1]. In most cases this noise contribution is rotational noise of the fan. Such noise can be reduced by improvement of the air flow conditions in the vicinity of the fan or even by conceptional changes of the alternator cooling. Another kind of tonal aerodynamic noise arises from the turbocharger yielding a distinct peak in the very high frequency range of the engine noise spectrum due to the high speed of the turbine. With the high degree of charging of intercooled engines, this peak can contribute essentially to the overall engine noise level. In this case the peak has to be lowered so that its influence on the engine noise level becomes neglectable. Fig. 15 shows such a reduction of turbocharger noise achieved by modification of the charger housing.OILPUMP - Similar to the situation of alternatorand turbocharger noise, the oilpump system can generate noise components which become important and evident only, if the engine noise is on a certain low level. Such noise phenomena can be suppressed, for instance, by adjustment and refinement of the pressure regulating valve as shown in Fig. 16.SHIELDING - Noise shields can be alternativesolutions to noise reduction measures like decoupled valve covers or oilpans made of laminated sheet steel [1].However, a shield can also be the only solution, if a predominant source like a noisy injection pump cannot be treated in another way. The results of such an injection pump shielding are shown in Fig. 17. The highFig. 14Effect of vibration isolated valve cover on the noise of a V10 truck engineFig.15Influence of turbocharger noise on overall engine noise of a 12 l Diesel engine at rated conditionFig.16Reduction of oilpump noise by refinement of the pressure regulating valve of a 12 l Diesel engineFig. 17Effect of injection pump shielding on noise of a 12 l Diesel engine with 250 kW power outputacoustic effectiveness of the shielding as illustrated in Fig.17 is only possible, if some important features are realized. The shield must be attached to the engine structure using vibration isolating mounts, unless the shield is made of a highly damped material like laminated sheet steel. Low-frequency vibration modes of shield panels have to be avoided, since noise quality can suffer considerably from excessive panel vibration. The balance between sound barrier and sound absorption effect must be well matched to the noise source characteristics. Finally, the necessary attenuation effect has to be achieved with the minimum of shielded area for cost and weight reasons. Above all, overheating of the shielded components must be strictly avoided and might require specific development work.RATED SPEED - A further potential for noise reduction is given by decreasing the engine speed. Typically, with a decrease of 20 percent in rated speed a noise level reduction of 1 dBA can be expected. This potential should be considered in the concept phase of a new powertrain, when the basic specifications of engine, transmission and driveline are decided.NOISE QUALITYFuture noise requirements for commercial vehicles will also include competitive noise quality inside and outside the vehicle. The most critical condition for the outside noise quality is low idle with very specific noise components (combustion noise, gear train noise).For the noise quality development work, a quality indicator like the noise annoyance index as described in [11, 12,13] is a very helpful tool. As an example the AVL Annoyance Index results in Fig. 18 demonstrate the engine noise quality improved at low idle.The analysis of the engine noise, by means of this index gives not only an information on the total noise annoyance, but also on its individual contributions like loudness, sharpness and impulsiveness allowing overall and detail comparisons of different engine versions. However, due to the typical ranges indicated in Fig. 18 which are derived from a wide data base, the AVL Annoyance Index can be used also for a general assessment of an engine.For the noise and vibration comfort inside the cabin which is the drivers working environment in commercial vehicles, the quality of the powertrain mounting system is very decisive. For its specific layout and optimisation, simulation tools like the ADAMS code can be used. Specially adapted optimisation routines allow specification of positions and mount stiffnesses and also direct comparison of various mounting concepts such as the transition from a four point to a three point mounting system [14].CONCLUSIONSThe high demands on commercial powertrain systems regarding exhaust emissions, fuel consumption and noise require the careful check of all possibilities of low-noise features taking into consideration the aspects of production, economy and ecology.For this purpose, key steps in the acoustic development of engines have to be set during all phases of development as shown in Fig. 19.In the concept phase, the decisions on the injection system, engine structure concept and gear train preset the engine noise level achievable.Fig.18Noise quality improvement of a 4 l truck engine by injection rate shaping at low idleFig.19Key steps in the acoustic development of truck enginesDuring the design phase, the most decisive steps are the optimization of the dynamic behaviour of the engine structure, the introduction of primary noise reduction measures (like piston pin offset, small clearances etc) and the layout of attached parts as low-noise components.In the experimental development phase, secondary measures (like shields or damping devices) have to be settled after the final tuning of primary measures. In addition, disturbing noise phenomena must be treated to ensure high noise quality. REFERENCES[1]Leipold, F. and Bergmann, H.: Development Stages for Reducing Noise Emissions of the New OM 904 LA Commercial Vehicle Diesel Engine. AVL-Conference “Engine and Environment” ‘96, Graz, Sept. 1996.[2]Albers, P. and Brandl, F.K.: Vehicle Noise Reduction Strategies. SOBRAC Congress, Santa Catarina, Brazil, April 1994.[3]Fingerhut, H.-P.: From Research to Serial Manufacture: MAN SILENT Trucks - Present and Future Requirements. AVL-Conference “Engine and Environment”’96, Graz, Sept. 1996.[4]Bergmann, H., Scherer, F. and Osterwald, H.: The Combustion Development of the New OM 904 LA Diesel Engine of Mercedes Benz Commercial Vehicles. MTZ Motortechnische Zeitschrift 57 (1996) 4, April 1996.[5]Miyashita, N.: Strategy of Engine Noise Reduction for Trucks and Buses. AVL-Conference “Engine and Environment”’96, Graz, Sept. 1996.[6]Moser, F.X., Spessert, B. and Haller,H.: Possibilities of Noise Reduction in Commercial and Industrial Diesel Engines. AVL-Conference “Engine and Environment”’96, Graz, Sept. 1996.[7]Rust, A. and Brandl, F.: Indicating Technology as a Part of the Noise Analysis of Combustion Engines. First Darmstädter Indicating Symposium, Darmstadt, May 1994.[8]Rainer, G.Ph.: Engine and Vehicle Acoustics - Currently Applied and Future Computational Methods. AVL-Conference “Engine and Environment”’96, Graz, Sept. 1996.[9]Priebsch, H.H., Loibnegger, B. and Tzivanopoulos, G.: Application of an Elastohydrodynamic Calculation Method for the Analysis of Crank Train Bearings. ASME-ICE Spring Technical Conference, Marietta, OH, April 1995.[10]Schittler, M., Heinrich, R. and Kerschbaum, W: The Mercedes-Benz 500 Series - a New Generation of V-Engines for Heavy-Duty Trucks. MTZ Motortechnische Zeitschrift 57 (1996) 9, Sept. 1996.[11]Hussain, M., Gölles, J., Ronacher, A. and Schiffbänker, H,: Statistical Evaluation of an Annoyance Index for Engine Noise Recordings. SAE 911080, Traverse City, MI, May 1991.[12]Schiffbänker, H., Brandl, F.K. and Thien,G.E.: Development and Application of an Evaluation Technique to Assess the Subjective Character of Engine Noise. SAE 911081, Traverse City, MI, May 1991.[13]Beidl, C.V. and Stücklschwaiger, W.: Application of the AVL-Annoyance Index for Engine Noise Quality Development. EAA-European Acoustics Association, Antwerp, March 1996.[14]Stücklschwaiger, W., Ronacher, A.: Optimisation of Vehicle Drive Train Vibrations Using Computation Techniques. IMechE C487/024, Birmingham, May 1994.。

相关文档
最新文档