Pure anatase TiO2 nanoglue-An inorganic binding agent to improve nanoparticle for DSSCs
滑动弧等离子体中钛酸异丙酯氧化一步合成纳米晶TiO_2光催化剂
滑动弧等离子体中钛酸异丙酯氧化一步合成纳米晶TiO_2光催化剂纳米TiO2是最具应用前景的光催化剂之一,被广泛应用于废水处理和空气净化等方面。
晶化度、晶相组成和比表面积是影响纳米TiO2光催化性能的关键因素,这些关键因素主要取决于其制备方法。
本文以钛酸四异丙酯(TTIP)为钛源,首次开展了滑动弧等离子体一步制备纳米TiO2紫外光催化剂和碳掺杂可见光催化剂的探索研究。
取得了如下结果:1.以空气为旋转气,研究了大气压滑动弧放电空气等离子体一步合成纳米晶TiO2光催化剂。
分别改变放电功率和旋转气流量,考察了等离子体能量密度对纳米TiO2的晶相组成、晶化度、比表面积、粒径、颗粒形貌及紫外光催化活性等方面的影响。
滑动弧等离子体可一步制备出几乎完全晶化的纳米TiO2粉体,其晶相由锐钛矿相和金红石相组成。
当能量密度为38.2kJ/mol时,纳米TiO2的锐钛矿相含量为64.6%,比表面积为58.2m2/g,颗粒形貌以非球形为主,粒径分布为10-60nm,平均粒径约为24nm。
随着能量密度的增加,锐钛矿相含量线性增加,比表面积先快速减小然后缓慢减小,颗粒形貌由非球形向球形转变,粒径分布变宽。
当能量密度增加到76.7kJ/mol时,锐钛矿相含量增加到96.6%,样品的比表面积减小到24.4m2/g,颗粒形貌几乎全为球形,粒径分布为10-150nm,平均粒径约为63nm。
滑动弧等离子体制备的纳米晶TiO2的O/Ti原子比约为2.1,无氮掺杂的TiO2生成。
等离子体能量密度对合成样品的紫外光催化活性具有重要影响。
当能量密度低于47kJ/mol时,样品的紫外表观反应速率常数随着能量密度增加而缓慢增大;当能量密度处在47-61kJ/mol的范围,样品的紫外表观反应速率常数几乎保持不变;当能量密度处在61-69kJ/mol的范围,样品的紫外表观反应速率常数随能量密度增加而快速增大;当能量密度高于69kJ/mol,样品的紫外表观反应速率常数随着能量密度增加而缓慢减小。
纳米二氧化钛论文:纳米二氧化钛 纳米铁 N N-二甲基胺基甲基丙烯酸乙酯(DEAEMA) 贵金属 原子转移
纳米二氧化钛论文:基于SI-ATRP技术制备无机/有机纳米复合微球材料【中文摘要】无机/高分子纳米复合材料越来越受到人们的重视。
由于无机纳米相有较大的表面积和比较强的界面相互作用,使得纳米复合材料表现出了很多不同于一般宏观复合材料的热学性质、力学性质、电学性质、光学性质和磁学性质:同时高分子在表面的引入,使纳米复合材料具有了高分子的环境响应性、环境友好性和生物相容性等优点。
这种复合材料相比于常规材料有较大的改善,甚至会表现出新的性能。
在制备无机/高分子纳米复合材料的诸多方法中,表面引发原子转移自由基聚合(SI-ATRP)是近年来较为流行的方法之一。
该方法是把有机卤化物修饰在纳米材料表面做为表面引发剂,通过原子转移自由基聚合实现对聚合反应的控制。
这种方法是很好的一种修饰纳米材料的方法。
基于以上,本论文分别采用以纳米二氧化钛和纳米铁作为基体,通过SI-ATRP技术将聚N,N-二甲基胺基甲基丙烯酸乙酯(PDMAEMA)聚合物链修饰在其表面上;并在TiO2-g-PDEAEMA上进行季铵化处理得到TiO2-Q-PDEAEMA。
利用表面聚电解质的介导作用在纳米二氧化钛表面修饰上一系列贵金属(如Au、Pd、Pt)。
主要研究内容包括以下两个内容:1.利用钛酸四正丁酯与乙二醇制备钛源...【英文摘要】In recent years, more and more researchers paid attention to inorganic/organic nanocomposites. The inorganic nanomaterials have a larger surface area and the relativelystrong interfacial interaction, so the thermal properties, mechanical properties, electrical properties, optical properties and magnetic properties of the nanocomposites are different from the general composites. At the same time, the inorganic/polymer composite nanomaterials have many advantages compared with the inorganic nanomaterials, su...【关键词】纳米二氧化钛纳米铁 N N-二甲基胺基甲基丙烯酸乙酯(DEAEMA) 贵金属表面引发原子转移自由基聚合(SI-ATRP) 【英文关键词】TiO_2 nanoparticles nano Fe Poly(NN-diethylamino ethyl methacrylate) (PDEAEMA) noble metal surface-initiated atom transfer radical polymerization(SI-ATRP)【索购全文】联系Q1:138113721 Q2:139938848【目录】基于SI-ATRP技术制备无机/有机纳米复合微球材料摘要3-5Abstract5-6第一章绪论9-27 1.1纳米复合材料的简介9-10 1.2 纳米二氧化钛的制备及其表面修饰方法10-23 1.2.1 纳米二氧化钛的性质10-12 1.2.2 纳米二氧化钛的制备方法12-16 1.2.3二氧化钛的表面修饰16-22 1.2.4 纳米二氧化钛/聚合物纳米复合材料的研究进展22-23 1.3 纳米铁的制备及表面修饰23-25 1.3.1 纳米铁的应用23-24 1.3.2 纳米铁的制备方法24 1.3.3 纳米铁聚合物纳米复合材料的研究进展24 1.3.4 纳米铁的表面修饰24-25 1.4 研究思路25-27第二章基于SI-ATRP法合成TiO_2-Q-PDEAEMA/M(0)纳米复合微球27-39 2.1 引言27-28 2.2 实验部分28-31 2.2.1 试剂和仪器28 2.2.2 锐钛型二氧化钛微球的制备28 2.2.3 纳米TiO_2-g-PDEAEMA复合微球的制备28-30 2.2.4 纳米TiO_2-Q-PDEAEMA/M(0)复合微球的制备30 2.2.5 表征30-31 2.2.6 纳米TiO_2-Q-PDEAEMA/M(0)复合微球的性能测试31 2.3 结果与讨论31-38 2.3.1 二氧化钛纳米微球制备机理31-32 2.3.2 二氧化钛纳米微球形成过程中的影响因素32-33 2.3.3 XRD曲线分析33-34 2.3.4TiO_2-g-PDEAEMA的透射电镜分析34-35 2.3.5 红外光谱分析35 2.3.6 透光率分析35-36 2.3.7 纳米复合微球的TEM和EDS分析36-37 2.3.8 紫外吸收光谱分析37-38 2.4 本章小结38-39第三章基于SI-ATRP法合成Fe-g-PDEAEMA纳米复合微球39-47 3.1 引言39 3.2 实验部分39-41 3.2.1 试剂和仪器39-40 3.2.2 利用SI-ATRP合成Fe-g-PDEAEMA40-41 3.2.3 表征41 3.3 结果与讨论41-45 3.3.1 纳米铁的表征41-42 3.3.2 红外分析42-43 3.3.3 透射电镜分析43-44 3.3.4 透光率分析44-45 3.4 本章小结45-47第四章论文总结47-49参考文献49-57缩略语57-59致谢59-61。
一种抗老化的化妆品添加剂及其制备方法[发明专利]
专利名称:一种抗老化的化妆品添加剂及其制备方法专利类型:发明专利
发明人:刘山,李宁,邱菊兰,尹全尹,向文浩
申请号:CN202011392166.4
申请日:20201201
公开号:CN112402342A
公开日:
20210226
专利内容由知识产权出版社提供
摘要:本发明涉及一种抗老化的化妆品添加剂及其制备方法,属于化妆品技术领域,按百分比含量计包括:大鲵皮胶原蛋白15%‑30%、艾地苯3%‑10%、姜黄素12%‑20%、番红花提取物
10%‑20%、谷胱甘肽6%‑10%、棕榈酰三肽‑5 4%‑10、棕榈酰五肽‑4 5%‑15%、寡肽‑1
1%‑8%、寡肽‑2 2%‑8%、十三肽‑1 4%‑8%;本发明包含不同的有效成分和合理的比例,各活性成分之间相互协同,可以同时抵抗由内源性因素和外源性因素引起的皮肤老化,还能使组分中的抗氧化活性物质充分渗透到皮肤中,有助于淡化皱纹、色斑等迹象,帮助抚平细纹,改善肌肤,进而达到抵抗皮肤老化的作用。
该添加物温和安全,可添加应用于乳液、护肤霜等护肤产品中,适用范围广泛。
申请人:广州雅纯化妆品制造有限公司
地址:510470 广东省广州市白云区人和秀水白米工业园2号
国籍:CN
代理机构:北京隆达恒晟知识产权代理有限公司
代理人:杨青
更多信息请下载全文后查看。
化学化工术语英汉对照词典
English Chinese Bulk Drug原料药Sterile Bulk无菌原料药Large Volume Parenteral Solution大容量注射剂Small Volume Parenteral Solution小容量注射剂Powder for Injection粉针剂Lyophilized Powder for Injection冻干粉针剂Tablets片剂Capsules胶囊剂Soft Capsules软胶囊剂Granules颗粒剂Dry Suspension干悬浮剂Pills丸剂Pills Drops滴丸剂Powders散剂Oral Solutions口服溶液剂Oral Suspension口服悬浮剂Oral Emulsion口服乳剂Mixture合剂Syrup糖浆剂Medicinal Wine酒剂Medicinal Teas茶剂Tincture酊剂Membrane膜剂Eye Drops滴眼剂Ear Drops滴耳剂Nasal Drops滴鼻剂Lotion洗剂Enemas灌肠剂Suppositories栓剂Liniment搽剂Aromatic Solution露剂Emulsion乳剂Solution溶液剂Aerosol气雾剂Spray喷雾剂Inhalation吸入剂Ointment软膏剂Plastic涂膜剂Cream乳膏剂Paste糊剂Gels凝胶剂Colloid胶体Subdermal植入剂Plaster硬膏剂Cataplasmata巴布膏剂Transdermal透皮贴剂Adhesive Plaster橡皮膏剂Concentracted Decoctions煎膏剂Fluid Extract流浸膏剂Liquid Extract流浸膏剂Extract浸膏剂Elixir酏剂Spirit醑剂Eye Ointment眼膏剂Pastille锭剂Prepared Slices of Chinese Crude Drugs中药饮片Radiopharmaceutical放射性药剂Biological Products生物制品Blood Products血液制品Extrinsic Diagnostic Tests体外诊断试剂Medical Oxygen医用氧Contrast Media造影剂Penicillins青霉素类Cephalosprins头孢菌素类Hormones激素类Antineoplastic Drugs抗肿瘤药Prophylactic Drugs避孕药claim权利要求alternatively可选择地those skilled in the art本领域技术人员present invention本发明background art背景技术Technical Field技术领域particularly特别地more particularly更特别地preferably优选地more preferably更优选地wherein其中accordingly因此and the like等等applicant申请人application申请assign转让assignee受让人assigner转让人CIP部分继续(申请)continuation in part部分继续(申请)component组分composition组合物consist of由……组成description说明书disclose披露/公开drawing附图e.g.例如such as如for example例如i.e.即et. al.等人formulation制剂optionally任选地prior art现有技术in particular特别地subject主体/受试者said所述thereof其thereafter其后therefore因此thereby由此associated缔合的angiogenesis血管新生aminoalkyl氨烷基associate缔合物analgesic止痛的/止痛剂alkylamino烷氨基alkylthio烷硫基band(电泳)条带complimentary互补的fused稠合的homologic同源的homogenous同质的in situ就地/在原处indicator指示剂labelled标记的nucleotide核苷酸nucleoside核苷abridgment节略abstract摘要infringement侵权affidavit誓书amendment修改voluntary amendment主动修改annual fee年费official fee官费applicant for patent专利申请人application date申请日期application documents申请文件application fee申请费application number申请号arbitration仲裁assignment转让inventor发明人commissioner专利局长compulsory license强制许可period期限priority优先权copyright版权country code国家代码data of application申请日期data of grant授权日期defendant被告plaintiff原告deferred examination延迟审查dependent claim从属权利independent claim独立权利division分案examiner审查员novelty新颖性inventive step创造性first to file principle先申请原则first to invention principle先发明原则gazette公报grace period宽限期intellectual property知识产权invalidation无效national treatment国民待遇non-obviousness非显而易见性office action专利局审查决定书parent application原申请/母案patent agency专利代理机构patent agent专利代理人patent attorney专利代理人patent number专利号patent right专利权patent rules专利实施细则petition请求书reexamination复审refusal驳回remedy补救request请求书revocation撤销specification说明书substantive examination实质性审查succession继承trade mark商标unity单一性utility model实用新型withdrawal撤回taxonomic category分类阶元domain域kingdom界phylum门class纲order目family科genus属species种method方法acetate乙酸盐/乙酸酯dialysate透析液anticoagulant抗凝的/抗凝剂bicarbonate碳酸氢盐/二碳酸酯sodium钠buffer缓冲液metabolic代谢的metabolite代谢物metabolism代谢concentration浓度precipitation沉淀calcium钙magnesium镁commercially available商购的/市售获得的especially尤其inhibition抑制hydrogen氢helium氦lithium锂boron硼carbon碳nitrogen氮oxygen氧fluorine氟neon氖aluminium铝silicon硅phosphorus磷sulfur硫chlorine氯argon氩potassium钾iron铁nickel镍copper铜zinc锌arsenic砷stannum锡bromine溴silver银gold金manganese锰heparin肝素pericarditis心包炎coagulopathy凝血障碍thrombocytopenia血小板减少症cerebral hemorrhage脑溢血saline盐水hypocalcemia低血钙症citrate枸橼酸盐/枸橼酸酯hypotension低血压hypertension高血压cardiovascular心血管spasm痉挛nausea恶心chloride氯化bromide溴化fluoride氟化iodide碘化oxide氧化hydroxide氢氧化hydrochloric acid盐酸lactic acid乳酸malic acid苹果酸in accordance with依照/按照/根据embodiment实施方案example实例/实施例hereinafter以下include包括comprise包含contain含有herein此处illustrative purpose说明性目的purified water纯净水Furthermore此外however然而according to根据induce引起lead to导致cause造成table表figure图scheme图表prepare制备preparation制备/制剂manufacture制备use用途mixture混合物relate to涉及safety range安全范围placebo安慰剂chelating agent螯合剂target cell靶细胞albumin白蛋白microballoon微球percentage百分比semisynthetic半合成antibiotic抗生素haptene半抗原half life period半衰期half life time半衰期coated tablet包衣片saturated饱和的unsaturated不饱和的passive immunity被动免疫passive transport被动转运disintegration崩解度disintegrant崩解剂essential必需allergy变态反应/过敏surface activity表面活性surfactant表面活性剂surface tension表面张力gamma rayγ射线complement补体adverse reaction不良反应side effect副作用antigen抗原antibody抗体complex复合物enterohepatic circulation肝肠循环prescription处方macromolecule大分子micromolecule小分子monoclonal单克隆cholinesterase胆碱酯酶isotonic等渗/等张oligosaccharides低聚糖/寡糖polysaccharides多糖LDL低密度脂蛋白titration滴度/滴定transmitter递质neurotransmitter神经递质electrolyzation电解electrolyte电解质/电解液tingcture酊剂polypeptide多肽oligopeptide寡肽/低聚肽catecholamine儿茶酚胺fermentation发酵aromatic芳香non-essential非必需的excipients赋形剂coenzyme辅酶addictive添加剂desiccant干燥剂receptor感受器acceptor受体donor供体covalent共价filtration过滤filtrate滤液residue残基/残渣superoxide超氧化物peroxide过氧化物oxide氧化物content含量ribonucleic acid核糖核酸deoxyribonucleic acid脱氧核糖核酸nucleocide核苷mixture合剂/混合物chemotherapy化学治疗gene基因hormone激素alkalosis碱中毒acidosis酸中毒medium介质vehicle介质antitoxin抗毒素drug resistance抗药性halogenide卤化物implants埋植剂enzyme酶proenzyme酶原inhibitor抑制剂sensitivity敏感性/灵敏度mole摩尔tolerance耐受性endotoxin内毒素mesomer内消旋体racemate外消旋体enatiomer对映异构体diastereoisomer非对映异构体aerosol气雾剂/气溶胶prodrug前药artificial人工nomenclature命名法solvent溶剂solution溶液solution方案dissolution溶解/溶出/溶出度solute溶质tricarboxylic acid cycle三羧酸循环bactericidal杀菌pesticidal杀虫phytocidal除草的fungicidal杀真菌的viricidal杀病毒的neurotoxin神经毒素adrenergic肾上腺素能osmotic pressure渗透压phenylpropionic acid苯丙酸coumarin香豆素lignan木脂体/木质素anthraquinone蒽醌flavonoid黄酮terpenoid萜类alkaloid生物碱steroid甾体bioavailability生物利用度chiral手性first pass effect首过效应antagonist拮抗剂agonist激动剂double-blind双盲hydrolysis水解gluconeogenesis糖异生isotope同位素mutation突变phagocytosis吞噬作用exotoxin外毒素aqua regia王水microsome微粒体microsomal微粒体potency效价synergy协同作用efficacy有效性safety安全性controlability可控性selectivity选择性chemoselectivity化学选择性regioselectivity区域选择性stereoselectivity立体选择性intramolecular分子内intermolecular分子间intravascular血管内extravascular血管外administration施用/给药plasma血浆serum血清whole blood全血vascular血管blood brain barrier血脑屏障coagulation凝聚equivalence等效性absorption吸收distribution分布excretion排泄elimination消除isomerase异构酶nutrient营养素threshold value阈值carrier载体saponin皂苷linear correlation线性相关carcinogen致癌物teratogen致畸物mutagen致突变物preparation制剂combination组合物intermediate中间体adjuvant佐剂medicinal药物/药品/药用pharmaceutical药学/药物/制药synthetic合成split into分成starting material起始原料synthesis合成(法)lead先导lead铅mercury汞/水银isolation分离extraction提取extract提取物extract萃取物extract浸膏purification纯化elucidation解析identification鉴定precursor前体insulin胰岛素heart心脏liver肝脏spleen脾脏lung肺脏kidney肾脏brain大脑cerebellum小脑brain stem脑干eyebrow眼眉eye眼睛ear耳朵nose鼻子mouth嘴tongue舌头neck脖子/颈部shoulder肩arm手臂the upper arm上臂forearm前臂trunk躯干pharynx咽部throat喉trachea气管stomach胃pancreas胰腺gallbladder胆intextines肠anus肛门chest胸abdomen腹back背leg腿knee膝盖ankle踝finger手指toe脚趾muscle肌肉tissue组织organ器官embryo胚胎sperm精子egg卵细胞/蛋zygote受精卵/合子chromosome染色体nail指甲wrinkle皱纹lip嘴唇heel脚后跟/踵wrist腕fist拳头palm手掌cholesterol胆固醇amino acid氨基酸gelatine明胶interferon干扰素dextran葡聚糖/右旋糖酐lactam内酰胺lactase乳糖酶lactone内酯carboxylic acid羧酸amide酰胺ester酯ether醚alcohol醇phenol苯酚/酚phenthiol苯硫酚methyl甲基ethyl乙基propyl丙基n-propyl正丙基iso-propyl异丙基butyl丁基n-butyl正丁基iso-butyl异丁基sec-butyl仲丁基tert-butyl叔丁基/特丁基pentyl戊基neopentyl新戊基neo-pentyl新戊基cyclopropyl环丙基cyclobutyl环丁基cyclopentyl环戊基cyclohexyl环己基amino氨基hydroxyl羟基nitro硝基acetyl乙酰基formyl甲酰基alkyl烷基alkenyl烯基alkynyl炔基aryl芳基phenyl苯基fluoro氟chloro氯bromo溴iodo碘naphthyl萘基pyrrole吡咯pyrrolyl吡咯基furan呋喃furanyl呋喃基thiophene噻吩thienyl噻吩基pyrazole吡唑pyrazolyl吡唑基imidazole咪唑imidazolyl咪唑基oxazole噁唑oxazolyl噁唑基isoxazolyl异噁唑基isoxazole异噁唑thiazole噻唑isothiazole异噻唑isothiazolyl异噻唑基thiazolyl噻唑基triazole三唑triazolyl三唑基pyridine吡啶pyridinyl吡啶基pyrazine吡嗪pyrazinyl吡嗪基pyrimidine嘧啶pyrimidinyl嘧啶基pyridazine哒嗪pyridazinyl哒嗪基triazine三嗪triazinyl三嗪基pyran吡喃pyranyl吡喃基thiopyran噻喃thiopyranyl噻喃基benzene苯naphthalene萘anthracene蒽phenanthrene菲purine嘌呤pteridine蝶啶chromane色烷/色满protein蛋白质saccharide糖lipid脂质vitamin维生素inorganic无机organic有机derivative衍生物starch淀粉glucose葡萄糖tear泪液urine尿液saliva唾液semen精液mucus黏液anti-tumor抗肿瘤anti-cancer抗癌anti-inflammation抗炎antifungal抗真菌anti-bacterial抗细菌anti-viral抗病毒anti-depressive抗抑郁recombinant重组体encode编码specific专一性regiospecific区域专一性stereospecific立体专一性isomeric同分异构ingredient成分component成分in combination of与……组合by means of借助于mucic acid粘酸fumaric acid富马酸maleic acid马来酸succinic acid琥珀酸sorbic acid山梨酸ascorbic acid抗坏血酸/维生素C citric acid枸橼酸/柠檬酸homogeneous同源的heterogeneous异源的registration注册organometallic有机金属toluene甲苯xylene二甲苯water水methanol甲醇ethanol乙醇propanol丙醇butanol丁醇cinnamyl肉桂基lauryl月桂基stearyl硬脂酰基oleoyl油酰基linoleoyl亚油酰基acetone丙酮dichloromethane二氯甲烷chloroform氯仿tetrahydrofuran四氢呋喃dioxin二氧六环/二恶英ethyl acetate乙酸乙酯triethylamine三乙胺diisopropylethylamine二异丙基乙胺ammonia solution氨溶液/氨水impurity杂质penetration渗透structure-activity relationship构效关系partition coefficient分配系数configuration构型conformation构象tartaric acid酒石酸asymmetric不对称solubility溶解度sequence序列in vivo体内in vitro体外epoxidation环氧化predominant主要dehydrase脱水酶dehydrogenase脱氢酶decarboxylase脱羧酶entity实体anti-infectives抗感染onset着手stability稳定性foetal胎儿rodent啮齿类tannin鞣质/单宁vacuum真空gallic acid没食子酸precipitate沉淀物sediment沉淀distillation蒸馏distill蒸馏salicylic acid水杨酸flask烧瓶beaker烧杯condenser冷凝器cation阳离子anion阴离子decolorize脱色degradation降解antithrombin抗凝血酶thrombin凝血酶sterile无菌的/灭菌的solubilizer助溶剂dispersing agent分散剂antifoaming agent消泡剂clinical临床trial试验protocol方案official compendium法定药典labeled amount标示量batch number批号calibration校正funnel漏斗test tube试管evaporating dish蒸发皿Erlenmeyer flask锥形瓶measuring cylinder量筒washing bottle洗瓶casserole勺皿separalory funnel分液漏斗water bath水浴oil bath油浴ice bath冰浴steam bath蒸气浴stirring bar搅拌子magnetic stirrer磁力搅拌器analytical balance分析天平pipette移液管pipet吸量管rubber suction bulb洗耳球glass rod玻璃棒stopcock玻璃活塞pyknowmeter flask容量瓶dropper滴管medicine spoon药匙volumetric flask容量瓶morta研钵/乳钵siderocradle铁架台burette滴定管rectocondensor直型冷凝器thermometer温度计qualitative定性quantitative定量accuracy准确度precision精密度deviation偏差ionization离子化dissociation解离electrode电极cathrode负极anode正极chromophore生色团auxochrome助色团absorbance吸光度fluorescence荧光internal conversion内转换external conversion外转换ultraviolet紫外visible可见infrared红外spectroscopy光谱学nuclear magnetic resonance核磁共振chemical shift化学位移singlet单峰doublet双峰triplet三重峰quartet四重峰quintet五重峰sextet六重峰coupling偶合geminal coupling偕偶vicinal coupling邻偶mass spectrum质谱interface接口mass range质量范围resolution分辨率sensitivity灵敏度molecular ion分子离子quasi-molecular ion准分子离子fragment ion碎片离子isotopic ion同位素离子metastable ion亚稳离子metastable peak亚稳峰homolytic cleavage均裂heterolytic cleavage异裂rearrangement重排molecular weight分子量stationary phase固定相chemically bonded phase化学键合相gradient梯度elution洗脱detector检测器mobile phase流动相fraction组分/部分eluent洗脱液isocratic等度centrifugal离心centripetal向心stepwise分步activation活化degassing脱气overloading过载acetaldehyde乙醛acetic anhydride乙酸酐achiral非手性retention保留abundance丰度digestion消化myopia近视hyperopia远视astimatism散光nyctalopia夜盲cholinergic胆碱能autocrine自分泌paracrine旁分泌stress应激feedback反馈abscissa横坐标analysis of data数据分析analysis of variance方差分析absolute number绝对数absolute value绝对值accident error偶然误差average平均degree of confidence置信度degree of freedom自由度degree of variation变异度cartogram统计图census普查chi-square test卡方检验correlation coefficient相关系数regression coefficient回归系数confident interval置信区间confident level置信水平confident limit置信限coordinate坐标correlation相关histogram柱状图/直方图critical value临界值mesokurtosis正态峰morbidity发病率/患病率mortality死亡率natality出生率normal curve正态曲线normal deviate正态离差normal distribution正态分布normal population正态总体one-sided test单侧检验one-tailed test单尾检验ordinate纵坐标mean均值parameter参数median中位数pie diagram饼形图regression回归probability概率proportion比率ratio比例sample样本sample样品random随机scaller diagram散点图significance显著性skewness偏态slope斜率standard deviation标准差standard error标准误standard normal distribution标准正态分布statistic统计量statistics统计学variable变量constant恒量two-sided test双侧检验two-tailed test双尾检验acrylic acid丙烯酸resin树脂plastic塑料rubber橡胶ceramic陶瓷adhersion粘附力adhersives粘合剂aggregation聚集amorphous无定形anhydrous无水antiadherent抗粘剂antioxidant抗氧化剂antiseptic防腐剂apparent表观aprotinin抑肽酶ascabin苯甲酸/苯甲酸酯benzoic acid苯甲酸bound water结合水breakage脆碎度cabomer卡波姆/羧基乙烯共聚物ceramide神经酰胺chitin甲壳素/几丁质chitosan壳聚糖cohesion凝聚力compactibility成形性/可压实性compressibility压缩性controlled-release控释cosolvent共溶剂cytotoxicity细胞毒性diluent稀释剂sulfoxide亚砜sulfone砜deionized去离子elastic弹性film膜剂flocculation絮凝flowability流动性freon氟利昂gelatin明胶glidant助流剂granule颗粒hydrophile-lipophile balance亲水亲油平衡值implant植入intradermal皮内intramuscular肌内intravenous静脉isoelectric等电isoosmotic等渗liposome脂质体paraffin石蜡wax蜡oil油lubricant润滑剂microcrystalline微晶cellulose纤维素microsphere微球nanocapsule纳米囊nanoemulsion纳米乳nanoliposome纳米脂质体nanoparticle纳米粒pharmacopoeia药典viscosity粘度poloxamer泊洛沙姆pluronic普郎尼克polyacrylic聚丙烯酸polyethylene聚乙烯polyethylene glycol聚乙二醇polyvinylpyrrolidone聚乙烯吡咯烷酮polyvinylpyrrolidine聚乙烯吡咯烷porosity孔隙率preservative防腐剂pyrogen致热原racemization外消旋化rubbing研磨safflower红花Tween吐温Span司盘subcutaneous皮下sublingual舌下sugar糖supercritical超临界suppository栓剂sustained-release缓释talc滑石粉transfersome传递体vaseline凡士林wool fat羊毛脂。
仿细胞黏合的仿生乳剂可用于工业制造
仿细胞黏合的仿生乳剂可用于工业制造
佚名
【期刊名称】《生物加工过程》
【年(卷),期】2012(10)4
【摘要】纽约大学物理学院和软物质研究中心分部副教授雅斯那·布鲁吉克最近开发出一种模仿生物组织内细胞间黏合方式的新系统,该系统能用于从生物适应性化妆品到人造组织工程等多种工业生产。
在生物体中,细胞间的黏合对组织结构的完整性至关重要,细胞必须按顺序黏合在一起,才能形成特定功能的组织。
研究小组设计的这种原始仿生乳剂能模拟生物组织中细胞之间黏合的主要特征。
通过模拟机械压力如何影响细胞间蛋白质和蛋白质的黏合,找到一种能再现生物组织“打包”功能的方法。
相关研究成果发表在美国《国家科学院院刊》上。
【总页数】1页(P53-53)
【关键词】细胞间;黏合;工业制造;乳剂;仿生;模拟生物组织;生物适应性;物理学院【正文语种】中文
【中图分类】Q25
【相关文献】
1.涤粘仿毛织物与黏合衬黏合前后风格变化的集对分析 [J], 唐立敏;黄伟军;黄孟静;石鲁霞;朱灵晓;林军杰
2.仿生、仿物、仿意服装纺织产品开发的三种手段"三仿" [J],
3.仿生乳剂让细胞粘合方式用于工业制造 [J],
4.引入天然黏合剂作为黏合层的复合膜用于渗透蒸发乙醇脱水(英文) [J], 吴洪;周
田田;李宪实;赵翠红;姜忠义
5.服装纺织产品开发的三种手段“三仿”——仿生、仿物、仿意 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
替考拉宁和万古霉素高效液相色谱手性固定相的研究
替考拉宁和万古霉素高效液相色谱手性固定相的研究
刘金月;苏鹏;祝金艳;艾萍;袁黎明
【期刊名称】《化学研究》
【年(卷),期】2022(33)2
【摘要】分别使用四种不同的方法将替考拉宁和万古霉素键合在硅胶表面,制备了八种不同的高效液相色谱柱固定相,并在反相模式和极性有机相模式下考察了这八种手性柱的性能。
实验表明,固定相制备方法的不同和色谱条件的改变对色谱柱拆分性能有一定的影响,不相同的键合臂,能拆分的对映异构体可能不一样,这些柱之间具有一定的互补性。
八种手性固定相均有一定的手性拆分效果,特别是对α-氨基酸及其衍生物具有较好的手性识别能力,所制备的手性柱可用在高效液相色谱法拆分手性化合物中。
【总页数】7页(P136-142)
【作者】刘金月;苏鹏;祝金艳;艾萍;袁黎明
【作者单位】云南师范大学化学化工学院
【正文语种】中文
【中图分类】O657.7
【相关文献】
1.高效液相色谱-串联质谱测定猪肉中万古霉素、去甲万古霉素和替考拉宁
2.高效液相色谱手性固定相的研究Ⅴ——二肽叔丁酰胺型手性固定相拆分α-氨基酸、二茂铁基氨基酸及二肽衍生物对映异构体
3.替考拉宁高效液相色谱手性固定相的制
备研究4.高效液相色谱手性固定相的研究Ⅳ.(L,L)-二肽叔丁酰胺型手性固定相拆分α-氨基烃基膦酸衍生物对映异构体5.高效液相色谱手性固定相的研究Ⅵ.间隔基结构对L-缬氨酸叔丁酰胺型手性固定相拆分效果的影响
因版权原因,仅展示原文概要,查看原文内容请购买。
2’-岩藻 糖基乳糖 hplc
2’-岩藻糖基乳糖 hplc2'-岩藻糖(2'-Fucosyllactose)是一种在人乳中富含的天然寡糖。
它是由岩藻糖(fucose)和乳糖(lactose)组成的二糖结构,被认为具有许多生理功能和健康益处。
本文将介绍2'-岩藻糖的提取、分离和定量分析方法,主要集中在高效液相色谱(HPLC)技术的应用。
为了提取2'-岩藻糖,可以使用酸水解法。
首先,将人乳样本加入到酸性溶液中,通过加热和搅拌使其完全水解。
接下来,使用无水醋酸乙酯对水解液进行提取,得到含有2'-岩藻糖的有机相。
然后,将有机相进行减压蒸发,得到2'-岩藻糖的浓缩溶液。
对于2'-岩藻糖的分离和纯化,可以使用HPLC技术。
选取一个合适的HPLC柱,并设置合适的流动相,常用的流动相包括乙腈和水。
根据2'-岩藻糖的保留时间和峰面积进行定性和定量分析。
可以通过对标准品的分析,建立岩藻糖的标准曲线,从而确定样品中2'-岩藻糖的含量。
HPLC技术在2'-岩藻糖的定量分析中具有许多优点。
首先,它具有高分辨率和灵敏度,能够分离和检测样品中微量的2'-岩藻糖。
其次,它具有良好的重复性和准确性,能够得到可靠的结果。
此外,HPLC技术还具有快速分析速度和广泛的应用范围,可以应用于不同样品类型和复杂矩阵中。
在2'-岩藻糖的分析中,需要注意一些分析条件的优化。
首先,需要选择合适的柱和流动相,以实现对2'-岩藻糖的分离。
柱的选择应基于其保留时间和峰形的适宜性。
流动相的选择应考虑对柱的相容性和对样品的提取效果。
其次,需要优化流动相的成分和梯度条件,以实现2'-岩藻糖的最佳峰分离和最大灵敏度。
此外,还需要优化其他操作参数,如柱温、流速和检测波长,以进一步提高分析性能。
总结起来,2'-岩藻糖是一种具有许多生理功能和健康益处的天然寡糖。
通过酸水解提取和HPLC分析技术,可以对其进行定量分析。
4种不同浓度的水凝胶在小鼠脑、肝、肾组织透明化中的应用效果比较▲
4种不同浓度的水凝胶在小鼠脑、肝、肾组织透明化中的应用效果比较▲代全楷;何剑波;连芳;明志勇;鞠佳霓;李科志;邬国斌【期刊名称】《广西医学》【年(卷),期】2018(040)021【摘要】目的比较4种不同浓度水凝胶在小鼠脑、肝、肾组织透明化中的应用效果.方法根据丙烯酰胺(A)、甲叉双丙烯酰胺(B)、多聚甲醛(P)的终浓度比,制备A4B4P4(A:B:P=4%:0.05%:4%)、A2B2P4(A:B:P=2%:0.025%:4%)、A1B1P4(A:B:P=1%:0.0125%:4%)、A4B4P0(A:B:P=4%:0.05%:0)水凝胶.选取8只昆明小鼠随机分为4组,每组2只,分别采用A4 B4 P4、A4 B4 P0、A2 B2 P4、A1 B1 P4水凝胶进行灌注,然后行组织固定及透明化处理.计算经4种水凝胶处理后小鼠脑、肝、肾组织的相对透明度及蛋白损失量.结果 A2 B2 P4组、A1 B1 P4组小鼠脑组织相对透明度均高于A4B4P4、A4B4P0组(均P<0.05);A1B1P4组小鼠肝组织的相对透明度高于其他3组(均P<0.05);A2B2P4、A1B1P4组小鼠肾组织的相对透明度均高于A4B4P4、A4B4P0组(均P<0.05).A4B4P0组小鼠脑、肝、肾组织蛋白损失量均大于其他3组(均P<0.05),A2B2P4组小鼠肝、肾组织蛋白损失量均低于A1B1P4组(均P<0.05).结论 A2B2P4、A1B1P4水凝胶在小鼠脑组织透明化中的应用效果最佳,A1B1P4、A2B2P4水凝胶分别在小鼠肝组织、肾组织透明化中的应用效果最佳.【总页数】4页(P2567-2570)【作者】代全楷;何剑波;连芳;明志勇;鞠佳霓;李科志;邬国斌【作者单位】广西医科大学附属肿瘤医院肝胆外科,南宁市 530021;广西医科大学附属肿瘤医院肝胆外科,南宁市 530021;广西医科大学基础医学院,南宁市 530021;广西医科大学附属肿瘤医院肝胆外科,南宁市 530021;广西医科大学附属肿瘤医院肝胆外科,南宁市 530021;广西医科大学附属肿瘤医院肝胆外科,南宁市 530021;广西医科大学附属肿瘤医院肝胆外科,南宁市 530021【正文语种】中文【中图分类】R318【相关文献】1.不同浓度二硫苏糖醇对急性运动小鼠心、肝和肾组织脂质过氧化水平的影响 [J], 熊正英;张婧;战旗;邱娟2.不同浓度利多卡因在纤支镜检查中应用效果比较 [J], 嵇家燕3.6种光学透明化方法在大鼠脑组织块的透明效果比较 [J], 欧毅超;冯展鹏;武广森;张源;包赟;邱炳辉;刘亚伟;漆松涛4.不同浓度罗哌卡因联合舒芬太尼在无痛分娩产妇中的应用效果比较 [J], 贾群峰5.食物脂肪对大鼠脑、肝、肾组织中脂质过氧化作用的影响 [J], 汤宁因版权原因,仅展示原文概要,查看原文内容请购买。
一种触角式氨基酸型固定化离子液体的制备方法和应用[发明专利]
专利名称:一种触角式氨基酸型固定化离子液体的制备方法和应用
专利类型:发明专利
发明人:姚舜,张薇,宋航,聂丽蓉
申请号:CN201610827512.4
申请日:20160918
公开号:CN106422410A
公开日:
20170222
专利内容由知识产权出版社提供
摘要:本发明以化学键合的方式,采用硅胶、聚乙烯醇、甲基咪唑及L‑脯氨酸制备了一种固定化离子液体,该方法包括以下步骤:(1)以γ–氯丙基三甲氧基硅烷为偶联剂与甲基咪唑反应,然后采用离子交换树脂将产物的阴离子由氯离子替换为氢氧根离子;(2)将产物与L‑脯氨酸进行反应,将氢氧根阴离子替换为氨基酸阴离子;(3)将聚乙烯醇长链键合到硅胶表面得到具有多羟基触角的硅胶;(4)将带有偶联剂侧链的氨基酸型甲基咪唑离子液体键合到硅胶触角上。
该方法为制备具有吸附作用的固定化离子液体提供了一种新的方法。
申请人:四川大学
地址:610065 四川省成都市武侯区一环路南一段24号
国籍:CN
更多信息请下载全文后查看。
La/Br共掺杂纳米TiO2的制备及降解苯酚的研究
贵 州 化
工
第3 5卷第 2期
Guzo C e c l d s y ih u h miaI u t n r
L/ r a B 共掺杂纳米 TO i2的制备及降解苯酚 的研究
刘 佳 陈前林 钟春燕
( 贵州大学化 学与化工程学 院, 贵州 贵 阳 5 oo ) 5 o 3 摘 要 采用醇盐水解法制备 了 L/ r a B 共掺杂的 TO i 纳米粒子 , 探讨 了焙烧 温度 对 TO i:光催化 活性 的影响
源为低 压汞 灯 ( 2 W ,6 n 。在所 有 的 光催 化 实 1 5 3 5 m)
验中 , 均未 向体 系用 氧 , 没有加 入 除 目标 产 物之外 也
的其他 物质 。采 用 苯 酚 的 浓 度作 为分 析 指标 , 反应
果 ,确定 了利用 改性 二 氧化钛 降解 苯 酚 的最 佳 工 艺 条 件并 对其 反应 动力学 进行 研究 l J 】 。
前用 超声 波振 荡器 充分 震 荡 2 mn使 催化 剂 与反应 0i 液充 分 混合 , 暗处静 置 3 mn至 吸附平 衡 , 在 0i 然后 打 开光 源 进 行 反 应 , 隔 2 mi 样 , 离 心 机 离 心 每 0 n取 用
后, 取溶 液进行 分 析 。
1 实
验
1 1 化 学试 剂与仪 器 .
限公司)4一 , 氨基安替 比林 ( 天津市福晨 化学试剂 厂 ) 氨水等 。 ,
仪 器 :J 定 时 电 动搅 拌 器 ( J 一1 江苏 金 坛 市 中大 仪 器厂 ) Y w 一12 ,H 0 A型 远 红 外 干燥 箱 , 控 梯 温 数
苯酚浓度的增加苯酚的光催化氧化过程符合一级 动力 学模 型。 关键词 共掺杂 光催化氧化 TO 动力学方程 i:
N_Al共掺杂TiO_2纳米材料的制备及其可见光降解葛根素_刘少友
第28卷第6期2011年6月精细化工FINE CHEMICALSVol .28,No .6June 2011催化与分离提纯技术收稿日期:2010-12-29;定用日期:2011-04-06;网络出版时间:2011-05-0909:11DOI :CNKI :21-1203/TQ.20110509.0911.001;网络出版地址:http ://www.cnki.net /kcms /detail /21.1203.TQ.20110509.0911.001.html 基金项目:国家自然科学基金资助项目(21061006);贵州省科学技术基金计划项目(黔科合J 字[2010]2006);广西区教育厅研究生科研创新项目(1059330901009)作者简介:刘少友(1970-),男,博士研究生,教授,E -mail :lsy651204@163.com 。
联系人:冯庆革(1967-),男,教授,博士生导师。
N ,Al 共掺杂TiO 2纳米材料的制备及其可见光降解葛根素刘少友1,2,冯庆革1*,李举志2(1.广西大学环境学院,广西南宁530004;2.凯里学院应用化学研究所,贵州凯里556011)摘要:采用固相反应法合成了Al 掺杂TiO 2(Al-TiO 2)及N 与Al 共掺杂TiO 2(N-Al-TiO 2)纳米材料,采用XRD 、SEM 、UV -Vis DRS 、XPS 、Raman 以及N 2吸附-脱附等手段对材料进行了物相结构表征。
同时考察了可见光辐照下催化剂对葛根素降解性能。
N-Al-TiO 2纳米材料的微观形貌为短棒形;氮以阴离子(N 3-)形式取代氧进入TiO 2晶格,形成N —Ti 键,Al 3+以同晶取代方式占据TiO 2晶格中Ti 的位置;其表面N 、Al 、Ti 及O 的原子百分比组成(%)分别为7.8、3.6、32.7和55.9;并对葛根素显示出很高的可见光降解活性,2h 对葛根素的降解率达92.7%。
水不溶性的或低水溶性药物在脂质化糖胺聚糖颗粒中的制剂和它们的
专利名称:水不溶性的或低水溶性药物在脂质化糖胺聚糖颗粒中的制剂和它们的诊断和治疗用途
专利类型:发明专利
发明人:诺加·叶鲁沙尔米,达恩·佩尔,里莫纳·毛尔高利特,伊利亚·里夫金
申请号:CN200580044983.8
申请日:20051102
公开号:CN101217946A
公开日:
20080709
专利内容由知识产权出版社提供
摘要:本发明提供在脂质化糖胺聚糖颗粒中包封的水不溶性的或低水溶性药物的剂型,用于靶向药物递送。
申请人:特拉维夫大学未来技术研发有限公司
地址:以色列特拉维夫
国籍:IL
代理机构:中科专利商标代理有限责任公司
代理人:吴小明
更多信息请下载全文后查看。
纳米TiO2管电化学生物传感器用于测定水体中微囊藻毒素
( 扫 : 大 学 生 物 与 环 境 工 程 学 院 , 江 杭 州 30 3 ) 浙 I业 浙 1 0 2
摘 要 : 作 了辣 根 过 氧 化 物 酶 和 溶 胶 一 胶 结 合 Na o — i 修 饰 石 墨 电 化 学 传 感 器 , 示 差 脉 冲 制 凝 i t nT( ) 用
IR( C— . A c a sc lt e — l c r d s t m s a o e . Antbo M IR) l s i a hr e e e t o e ys e wa d pt d i dy, a tg n a e yme n i e nd nz — l be e ntbo a ld a i dy( i d i O2 fxe n Ti )whih mo fe r phie e e t od c e s t e wor l c r e,a c dii d g a t lcr ea td a h k e e t od
Ke r : e e t o h m i a o e o y wo ds lc r c e c lbi s ns r;m ir ys i — ; T i 2;dif r nta l e v t m m e r c oc tn IR e fe e ilpu s ola ty
收 稿 E 期 : O O 1 2 t 2 l 2 2
的毒 性最 强 的 、 急性危 害最 大 的一 种淡 水蓝 藻毒 素.
由 于未及 时地 检测 水 质情 况 的污染 变化 及采 取相 应
的控 制措 施 , 致使 这 些 毒 素 富集 于 鱼类 或 贝类 中并
通过 食物 链传 递 , 直接 存在 于饮 用水 或 娱乐 用水 中 ,
严重 威胁 人类 的健 康 , 球 已 经发 生 了多 起 有 关 藻 全 毒素 中毒 并 引起死 亡 的事 故 . 近年 来 淡 水 藻 类 污 染 已成 为一 个全 球性 的 环境 问题 , 以碳 纳 米 管 修 饰 电
纳米TiO_(2)溶胶催化葡萄糖合成5-羟甲基糠醛
华南师范大学学报(自然科学版)
第53卷
体系,通过在反应过程中不断将水相中的HMF萃取 到有机相中,同样可以减少副反应的发生.ZHAO 等[2提出以[EMIM]:Ct]离子液体作为反应溶剂, 能够显著减少副反应的发生,以葡萄糖作为反应底 物时,HMF的收率达到77%(100 t , h).
通过对反应溶剂的选择,可以获得较高的HMF 收率,特别是离子液体的应用有效抑制了副反应的 发生,降低了反应温度.与有机溶剂相比,离子液体 更环保,目前尚未有数据证明离子液体对环境有污 染•但现实的问题是,离子液体的价格昂贵,难以与 产物分离,不适合在工业上生产HMF[W/]•
AbstracO: Nano Ti—0 g— and PEG-Ti—0 g— were sypthesizea with thv so—a— methoP and were used as catalysts foe glucose convarsion into 5-yyproxymethy- furfevU—lypv ( HMF) - Thv catalytic prope—ivs of nano Ti—0 g— and Ti—0 powdvv were compared. Thv vsu/s sPow that with nano Ti—0 g— as catalyst, thv conversion rata of glucose into HMF was 934%, and thv yiAi of HMF was 204% and with nano Ti—0 as catalyst, thv glucose conversion rate was close to 150%, wh—v thv yieli of HMF was onla 0.4%. PEG-Ti—0 with highvv gelid content of Ti—0 was preqared usind polyethyleav glycol ( PEG 200) and —hyl titanatv as raw mate—als, which was convea—at foe transpoVation, storagv and usv. Undvv thv optiAaI cond—Wns, with PEG-Ti—0 g— and formic acid as catalyst and watvv as ceaction liquid, thv glucose conversion rata reached 92.2%, thv yiAd of HMF reached 56.2%, thv reaction temperature was 107 C , and thv reaction tiov was 17 h. Thv results provibv - new methoP fov tpav-scaiv green and efficient cata lytic conversion of glucose into HMF in industry. Keywordt: nano Ti—0; glucose conversion; 5 -Hyproxymethylfu—'urai (HMF) ; PEG-Ti—0 g—
一种季铵盐化甲壳素抗病原微生物喷雾剂、其制备方法及应用[发明专利]
专利名称:一种季铵盐化甲壳素抗病原微生物喷雾剂、其制备方法及应用
专利类型:发明专利
发明人:王彦峰,夏天,卞晓恩,陈祖涵
申请号:CN202010510996.6
申请日:20200608
公开号:CN111714455A
公开日:
20200929
专利内容由知识产权出版社提供
摘要:本发明提供一种季铵盐化甲壳素抗病原微生物喷雾剂、其制备方法及应用,所述季铵盐化甲壳素抗病原微生物喷雾剂包含以下组分:季铵盐化甲壳素浓度为0.2‑1.0wt%,甘油浓度为
0.5‑3.5wt%,右泛醇浓度为0.3‑4.0wt%,余量为医用无菌纯水;其中,所述季铵盐化甲壳素的脱乙酰度为7.4‑60.5%,季铵盐取代度为0.28‑0.82。
本发明提供的季铵盐化甲壳素抗病原微生物喷雾剂,具有生物安全性优良、无毒、无免疫原性、可生物降解的特点,同时具有包括广谱高效抗菌、抗病毒性能以及促伤口愈合在内的多种作用,其制备方法简单实用,利于工业生产。
申请人:武汉大学
地址:430072 湖北省武汉市武昌区珞珈山武汉大学
国籍:CN
代理机构:武汉科皓知识产权代理事务所(特殊普通合伙)
代理人:胡甜甜
更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pure anatase TiO2“nanoglue”:An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sinteringof dye-sensitized solar cellsYuelong Li,1,2Wonjoo Lee,1Doh-Kwon Lee,1Kyungkon Kim,1Nam-Gyu Park,3andMin Jae Ko1,a͒1Solar Cell Center,Korea Institute of Science and Technology(KIST),Seoul136-791,Republic of Korea2International R&D Academy,University of Science and Technology,Daejeon305-333,Republic of Korea3School of Chemical Engineering,Sungkyunkwan University,Suwon440-746,Republic of Korea͑Received10November2010;accepted10February2011;published online8March2011͒An interparticle-binding agent,or“nanoglue,”was prepared for the fabrication ofwell-interconnected TiO2photoelectrodes in dye-sensitized solar cells͑DSSCs͒sintered at lowtemperature.This nanoglue consisted of pure anatase particles approximately5nm in diameterdispersed in alcoholic solvent.When mixed with TiO2particles21nm in diameter,the nanoglueinduced interparticle chemical bridging via the condensation of hydroxyl groups on surfaces of TiO2particles.The efficiency of nanoglue-based DSSCs was improved by approximately25%comparedto non-nanoglue-based DSSCs.This improvement was mainly ascribed to enhanced interparticleconnections due to the presence of the5nm TiO2particles in nanoglue.©2011American Instituteof Physics.͓doi:10.1063/1.3562030͔Recently,low-temperature fabrication processes for dye-sensitized solar cells͑DSSCs͒have attracted much attention because low temperature is critical for manufacturing light-weight,flexible,and low-cost DSSCs on a plastic substrate. The key to the technology for fabricating DSSCs on a plastic substrate is that all the processes should be performed at low temperature because the plastic substrate cannot withstand a process temperature above150°C.Therefore,well-interconnected and mechanically strong mesoporous TiO2 photoelectrodes should be constructed from a viscous TiO2 paste,without an organic binder.Several methods have been reported for the low-temperature fabrication of photoelec-trodes,such as chemical sintering,1,2mechanical pressing,3 hydrothermal crystallization,4–6electrophoretic deposition,7,8 microwave irradiation,9UV light irradiation,10,11andfilm transfer.12However,most of these require a complicated pro-cess or a post-treatment.Moreover,the incomplete necking of TiO2nanoparticles resulting from low-temperature sinter-ing processes limits the efficiency and practical application offlexible DSSCs.Therefore,the development of a simpler and more efficient method to improve the poor interconnec-tions between nanoparticles is required.In this work,we developed a“nanoglue,”an inorganic interparticle-binding agent composed of pure anatase TiO2 particles with a diameter of approximately5nm,to simulta-neously increase the viscosity of the TiO2paste and improve interparticle connections by the chemical bridging of nano-particles at low temperature when mixed with larger TiO2 particles͑P25;21nm,Degussa͒.A viscous alcoholic paste was prepared by mixing a P25 TiO2suspension with the sol-gel processed TiO2nanoglue gel.This paste was coated onto afluorine-doped tin oxide ͑FTO͒/glass substrate using the doctor blade method.TheTiO2films were sintered at150°C for1h,slowly cooled to 80°C,and then immersed into a0.5mM solution of N719in anhydrous ethanol for dye loading.A Pt on FTO/glass assembly was used as the counterelectrode.The liquid elec-trolyte was composed of0.7M PMII,0.03M I2,0.05M GuSCN,and0.5M tBP in a mixture of acetonitrile and vale-ronitrile͑85:15v/v͒.A solar simulator equipped with a1000 W xenon lamp was used to measure the photovoltaic prop-erties͑see Ref.13for full details of the experimental and characterization procedures͒.Scheme1demonstrates the mechanism of interparticle connections among the TiO2particles in the nanoglue-containing paste.During the paste fabrication process,nano-glue particles,with abundant surface hydroxyl groups,were well mixed with the P25particles.TiO2films were formed on a conducting substrate by coating and drying.During the heating of the TiO2film at150°C,hydroxyl groups on the surfaces of the nanoglue particles underwent a dehydration process with those on the P25particles,accompanied by thea͒Author to whom correspondence should be addressed.Tel.:ϩ82-2-958-5518.FAX:ϩ82-2-958-6649.Electronic mail:mjko@kist.re.kr.SCHEME1.Mechanism of TiO2interparticle connection by nanoglue.APPLIED PHYSICS LETTERS98,103301͑2011͒0003-6951/2011/98͑10͒/103301/3/$30.00©2011American Institute of Physics98,103301-1release of water molecules.This dehydration process en-hanced interparticle connection,resulting in facilitated elec-tron transport in the film.A similar type of dehydration be-tween hydroxyl groups on the surfaces of TiO 2particles by treatment with an aqueous hydrochloric acid solution was suggested by Miyasaka and co-workers.2Figure 1͑a ͒shows the highly viscous gel obtained by dissolving 5wt %nanoglue in ethanol attached to the bottom of a glass bottle.As shown in Fig.1͑b ͒,the viscous gel was readily fluidized by hand shaking and flowed down to the bottom.This thixotropic behavior of the TiO 2gel is essential in the construction of DSSC photoelectrodes to enable coat-ing formation without organic binders in the paste.High-resolution transmission electron microscopy ͑HR-TEM ͒images of the primary TiO 2particles in the as-prepared nanoglue and a single primary particle therein ͑the inset image ͒are presented in Fig.1͑c ͒.We observed that the nanoglue particles were well dispersed without significant agglomeration.The inset HR-TEM image clearly indicates that the size of the single nanoglue particle was approxi-mately 5nm and displayed the lattice plane of anatase ͑101͒,with an interlayer spacing of 0.352nm.Figure 1͑d ͒shows the powder X-ray diffraction ͑XRD ͒results for the TiO 2par-ticles in the nanoglue.The characteristic ͑101͒peak indicates the highly crystalline and pure anatase phase of the TiO 2particles in the nanoglue.The particle size of 5.2nm was confirmed by the ͑101͒peak by using the Scherrer equation,which is consistent with the HR-TEM observations.Figures 2͑a ͒and 2͑b ͒reveal the microstructures of the nanoglue-based TiO 2film containing P25and the primary particles.It was observed that all the TiO 2particles were uniformly dispersed in the mixture of nanoglue and P25,which is necessary to induce interconnections between the P25particles.As shown in the enlarged image of Fig.2͑b ͒,the primary particles from the nanoglue were located in be-tween the larger P25particles,thus serving as an inorganic binder to bridge and connect the P25particles.With further dehydration during the heating process,better interconnec-tion could be achieved between the nanoglue and P25par-ticles and hence faster electron transport could be achieved between particles in DSSCs.To investigate the effect of the nanoglue on the perfor-mance of low-temperature-fabrication DSSCs,TiO 2elec-trodes were prepared with and without added nanoglue.Based on the results of our preliminary experiments for DSSC optimization,TiO 2particles from the P25suspension and nanoglue were mixed at a weight ratio of 7:1.Figure 3͑a ͒compares the photovoltaic performance of cells fabri-cated with and without nanoglue.The efficiency of the solar cells with nanoglue was enhanced by 25%over those with-out nanoglue.The cells without nanoglue displayed a photo-voltage ͑V OC ͒of 763mV ,a photocurrent density ͑J SC ͒of 5.50mA /cm 2,a fill factor ͑FF ͒of 71.12%and an overall conversion efficiency of 2.98%;the nanoglue-based cells ex-hibited a V OC of 763mV ,a J SC of 6.87mA /cm 2,a FF of 70.93%and an overall conversion efficiency of 3.71%.By inspection,it was recognized that the efficiency enhancement was mainly ascribed to the increased J SC rather than the changes FF and V OC ,likely resulting from improved inter-particle connection.Photocurrent transient measurement was performed to elucidate the origin of the higher J SC of the nanoglue-based DSSCs.In this measurement,total photocurrent is generally limited by charge carriers with lower mobility.Therefore theFIG.1.͑Color online ͒Thixotropic behavior of a nanoglue suspension ͑a ͒before and ͑b ͒after shaking.͑c ͒HR-TEM images of the nanoglue particles;the inset shows a single nanoglue TiO 2crystal.͑d ͒Powder XRD spectrum of TiO 2particles in the nanoglue.FIG.2.͑a ͒HR-TEM images of the microstructure of the interparticle con-nections between the P25particles and the smaller nanoglue particles.͑b ͒Enlarged image of nanoglue TiO 2particles located in between the P25par-ticles;the arrows indicate the boundaries of the nanoglue and P25particles.FIG.3.͑Color online ͒͑a ͒Photovoltage-current curves of DSSCs based on TiO 2films fabricated with P25only and with a mixture of P25and nanoglue particles.͑b ͒Electron-diffusion coefficient D e derived from the electron collection time using the equation D e =L 2/͑2.35c ͒,where L is the thickness of the TiO 2film and c is the collection time constant.electron current mainly contributes to the measured photo-current because hole current through electrolyte is faster thanthe electron current through low temperature sintered photo-electrode.The data were obtained by applying a varyingbias light intensity and the time constant was obtained byfitting the decay of the photocurrent transient to the functionexp͑−t/c͒,where t andc are time and the collection-time constant,respectively.In this measurement,the time constantfor electron collection is related to the electron-diffusion co-efficient͑D e͒by the expression14D e=L2/͑2.35c͒,where L is thefilm thickness.The calculated diffusion coefficients of cells with and without nanoglue are compared in Fig.3͑b͒. The diffusion coefficient of the nanoglue-based cell was ap-proximately twice that of the cell without nanoglue,irrespec-tive of the bias light intensity,unambiguously indicating faster electron transport in the nanoglue-based DSSC.This result also suggested that the improved electron transport originated from an enhancement of the interparticle connec-tion in the nanoglue-based DSSCs,as shown in Fig.2͑b͒. Several research groups have reported results similar to ours, where the photocurrent enhancement is related to improved electron transport in the TiO2film due to better interconnec-tion between TiO2particles after the hydrothermal treatment of titanium tetraisopropoxide5or titanium tetrachloride.15,16 Although the improvement of particle interconnections was thought to play a major role in the efficiency enhance-ment of the nanoglue-based solar cell,an increased dye ad-sorption due to the introduction of nanoglue particles may have also contributed to the performance enhancement.This hypothesis was confirmed by the results of a dye desorption measurement,in which the amount of dye desorbed from the TiO2film including nanoglue particles was approximately 10%greater than that without nanoglue.However,this in-creased amount of dye adsorption could not have been solely responsible for the25%increase in photocurrent.Therefore, we concluded that the enhanced cell performance mainly re-sulted from the improved interparticle connection due to the nanoglue,leading to improved charge collection efficiency.In their attempts to enhance the interconnection of TiO2particles,most other researchers have employed Ti precur-sors or brookite particles.2,4–6In the case of the Ti-precursortreatment,a postprocessing such as hydrothermal treatmentin a teflon-lined autoclave for as long as12h is required tocrystallize the Ti precursor into TiO2particles.4–6Moreover,Ti-precursor-based paste is generally not stable due to itsacute sensitivity to humidity and temperature.It is wellknown that brookite-phase TiO2particles are not suitable foruse as efficient photoelectrode materials in DSSCs.17How-ever,for the pure anatase TiO2-based nanoglue,the post-treatment after coating is a simple drying at150°C for1h,which can be easily performed under normal conditions. With respect to stability,we did not observe any noticeable changes in its composition or morphology after one month of storage.In conclusion,a nanoglue gel with5nm anatase TiO2 particles was synthesized by a sol-gel process and served as an inorganic binding agent to facilitate the preparation of a well-interconnected TiO2film at low temperature.The pho-tocurrent of a nanoglue-based solar cell was improved by 25%compared to a cell without nanoglue.Improved inter-particle connection,resulting in faster electron transport,was confirmed by photocurrent transient measurements.The ap-plication of this nanoglue to high-efficiency plastic-based flexible solar cells is under way.This research was supported by a grant͑Grant No. 2010K000335͒from“Center for Nanostructured Materials Technology”under“21st Century Frontier R&D Programs”of the Ministry of Education,Science,and Technology, Korea and the New and Renewable Energy Program of the Korea Institute of Energy Technology Evaluation and Plan-ning͑KETEP͒grant͑Grant No.2010T100100651͒funded by the Korea Government Ministry of Knowledge Economy. 1N.G.Park,K.M.Kim,M.G.Kang,K.S.Ryu,S.H.Chang,and Y.J. Shin,Adv.Mater.17,2349͑2005͒.2Y.Kijitori,M.Ikegami,and T.Miyasaka,Chem.Lett.36,190͑2007͒. 3T.Yamaguchi,N.Tobe,D.Matsumoto,and H.Arakawa,mun.͑Camb.͒45,4767͑2007͒.4D.S.Zhang,T.Yoshida,and H.Minoura,Adv.Mater.15,814͑2003͒. 5T.Oekermann,D.S.Zhang,T.Yoshida,and H.Minoura,J.Phys.Chem. B108,2227͑2004͒.6D.S.Zhang,T.Yoshida,T.Oekermann,K.Furuta,and H.Minoura,Adv. Funct.Mater.16,1228͑2006͒.7T.Miyasaka and Y.Kijitori,J.Electrochem.Soc.151,A1767͑2004͒.8J.H.Yum,S.S.Kim,D.Y.Kim,and Y.E.Sung,J.Photochem.Photo-biol.,A173,1͑2005͒.9S.Uchida,M.Tomiha,H.Takizawa,and M.Kawaraya,J.Photochem. Photobiol.,A164,93͑2004͒.10D.Gutiérrez-Tauste,I.Zumeta,E.Vigil,M.A.Hernández-Fenollosa,X. Domènech,and J. A.Ayllón,J.Photochem.Photobiol.,A175,165͑2005͒.11Y.L.Li,D.Y.Lee,S.R.Min,H.N.Cho,J.S.Kim,and C.W.Chung, Jpn.J.Appl.Phys.47,6896͑2008͒.12M.Dürr,A.Schmid,M.Obermaier,S.Rosselli,A.Yasuda,and G.Nelles, Nature Mater.4,607͑2005͒.13See supplementary material at /10.1063/1.3562030for full details of the experimental and characterization procedures.14J.Van de Lagemaat and A.J.Frank,J.Phys.Chem.B105,11194͑2001͒. 15K.Kim,G.W.Lee,K.Yoo,D.Y.Kim,J.K.Kim,and N.G.Park,J. Photochem.Photobiol.,A204,144͑2009͒.16C.J.Barbé,F.Arendse,te,M.Jirousek,F.Lenzmann,V.Shklover, and M.Grätzel,J.Am.Ceram.Soc.80,3157͑1997͒.17S.Baldassari,S.Komarneni,E.Mariani,and C.Villa,J.Am.Ceram.Soc. 88,3238͑2005͒.。