平面几何的几个重要的定理梅涅劳斯定理
平面几何四大神奇定理
【分析】
【评注】对称变换
12. G是△ABC的重心,以AG为弦作圆切BG于G,延长CG交圆于D。求证:AG2=GC·GD。
【分析】
【评注】平移变换
13. C是直径AB=2的⊙O上一点,P在△ABC内,若PA+PB+PC的最小值是 ,求此时△ABC的面积S。
【分析】
【评注】旋转变换
【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB 于D。
求证: 。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→ (梅氏定理)
DGF截△ACM→ (梅氏定理)
∴ = = =1
【评注】梅氏定理
3.D、E、F分别在△ABC的BC、CA、AB边上,
费马点:已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC。(O为费马点)
【分析】将C C',O O',P P',连结OO'、PP'。则△B OO'、△B PP'都是正三角形。
∴OO'=OB,PP'=PB。显然△BO'C'≌△BOC,△BP'C'≌△BPC。
,AD、BE、CF交成△LMN。
求S△LMN。
【分析】
【评注】梅氏定理
4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。求证:AE、BF、CG相交于一点。
【分析】
【评注】塞瓦定理
5. 已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。
高二数学竞赛讲义11平面几何中的几个重要定理0平面几何知识点总结
平面几何的几个重要定理4.托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:1PC BP R Q P AB CA BC ABC ABC l .1=⋅⋅∆∆RBAR QA CQ ,则、、长线分别交于或它们的延、、的三边并且与的顶点,不经过梅涅劳斯定理:若直线三点共线;、、,则,这时若或数为边上的点的个三点中,位于、、并且三点,上或它们的延长线上的、、三边的分别是、、梅涅劳斯逆定理:设R Q P 1PC BP 20ABC R Q P AB CA BC ABC R Q P .2=⋅⋅∆∆RB AR QA CQ 1:.3=⋅⋅∆RBAR QA CQ PC BP CR BQ AP AB CA BC ABC R Q P 条件是三线共点的充要、、边上的点,则、、的分别是、、塞瓦定理:设M Q R A CP B ;内接于圆,则有:设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BDAC BC AD CD AB ABCD ⋅≥⋅+⋅三点共线;、、则,、、的垂线,垂足分别为、、作外接圆上一点西姆松定理:若从F E D F E D AC AB BC P ABC ∆.5的外接圆上;在则在同一直线上,、、若其垂足作垂线,的延长线或它们的三边向点西姆松的逆定理:从一ABC P N M L ABC P ∆∆)(.6;,则、于分别交和,连接和弦任意引的中点蝴蝶定理:一个圆的弦NP MP N M AB CF DE EF CD P AB =.7 ;2.8GH OG H G O H G O ABC =∆且三点共线,、、,则、、分别为的外心、重心、垂心欧拉定理:设 三线共点。
、、则,、、外面,做三个正三角形的的小于费马点:在每个内角都''''''120.9CC BB AA ABC CAB BCA ABC ∆︒三角形。
平面几何的几个重要的定理--梅涅劳斯定理
平面几何的几个重要的定理(一)梅涅劳斯定理一、基础知识梅涅劳斯定理 若直线l 不经过△ABC 的顶点,并且与△ABC 的三边BC 、CA 、AB 或它们的延长线分别交于P 、Q 、R ,则1BP CQ AR PC QA RB ⋅⋅= 梅涅劳斯定理的逆定理 设P 、Q 、R 分别是△ABC 的三边BC 、CA 、AB 或它们的延长线上的三点(并且P 、Q 、R 三点中,位于△ABC 边上的点的个数为0或2),若1BP CQ AR PC QA RB ⋅⋅=,则P 、Q 、R 三点共线.由和分比定理可得R R '∴与重合 ∴P 、Q 、R 三点共线二、典型例题与基本方法1. 恰当地选择三角形及其截线(或作出截线),是应用梅涅劳斯定理的关键例1 如图,在四边形ABCD 中,△ABD 、△BCD 、△ABC 的面积之比是3∶4∶1,点M 、N 分别在AC 、CD 上,满足AM ∶AC =CN ∶CD ,且B 、M 、N 三点共线.求证:M 与N 分别是AC 和CD 的中点.A BC DM N1A B C C B A C A Bh h h A B C l h h h BP CQ AR PC QA RB h h h ⋅⋅=⋅⋅=证:设、、分别是、、到直线的垂线的长度,则:BP 1PC CQ AR PQ AB R QA R B ''⋅⋅='证:设直线与直线交于,于是由梅氏定理得:BP 1PC CQ AR AR AR QA RB R B RB '⋅⋅='又,则:=AR AR AB AB'=2. 梅涅劳斯定理的逆用(逆定理的应用)与迭用,是灵活应用梅氏定理的一种方法 例2 点P 位于△ABC 的外接圆上,111A B C 、、是从点P 向BC 、CA 、AB 引的垂线的垂足,证明点111A B C 、、共线.三、解题思维策略分析1. 寻求线段倍分的一座桥梁例3 △ABC 是等腰三角形,AB=AC ,M 是BC 的中点;O 是AM 延长线上的一点,使得OB ⊥AB ; Q 为线段BC 上不同于B 和C 的任意一点,E 、F 分别在直线AB 、AC 上使得E 、Q 、F 是不同的和共线的.求证:(1)若OQ EF ⊥,则QE QF =;(2)若QE QF =,则OQ EF ⊥.111111*********|cos |,|cos ||cos ||cos ||cos ||cos |,,1801BA BP PBC CA CP PCB CB CP PCA AB AP PAC AC AP PAB BC PB PBA PAC PBC PAB PCB PCA PBA BA CB AC CA AB BC A B C ⋅∠=⋅∠⋅∠=⋅∠⋅∠=⋅∠∠=∠∠=∠∠+∠=︒⋅⋅证:易得:将上面三个式子相乘,且可得=依梅涅劳斯定理可知、、三点共线.2. 导出线段比例式的重要途径例4 直角△ABC 中,CK 是斜边上的高,CE 是∠ACK 的平分线,E 点在AK 上,D 是AC的中点,F 是DE 与CK 的交点. 求证://BF CE .3. 论证点共线的重要方法例5 设不等腰△ABC 的内切圆在三边BC CA AB 、、上的切点分别为D E F 、、,证明:EF 与CB ,FD 与AC ,ED 与AB 的交点X Y Z 、、在同一条直线上.X Y Z ABC X Y Z ∆又、、都不在的边上,由梅氏定理的逆定理可得、、三点共线 例6 如图,△ABC 的内切圆分别切三边BC 、CA 、AB 于点D 、E 、F ,点X 是△ABC 的一个内点,△XBC 的内切圆也在点D 处与BC 边相切,并与CX 、XB 分别相切于点Y 、 Z. 证明:EFZY 是圆内接四边形.11BX CE AF ABC XFE XC EA FB ∆⋅⋅=证:被直线所截,由定理可得:BX FB AE AF XC CE=又代人上式可得:=CY DC AZ EA YA AF ZB BD同理可得:==1BX CY AZ XC YA ZB⋅⋅=将上面三条式子相乘可得:。
平面几何的几个重要的定理--梅涅劳斯定理
平面几何的几个重要的定理一、梅涅劳斯定理:定理1:若直线l 不经过 ABC 的顶点,并且与的延长线分别交于 P 、Q 、R,贝U BP CQ AR 1 PC QA RB证:设h A 、h B 、h C 分别是A 、B 、C 到直线l 的垂线的长度,贝u :BP CQ AR h B h C hu 』 1PC QA RB h C h A h B注:此定理常运用求证三角形相似的过程中的线段成比例的条件;例1:若直角 ABC 中,CK 是斜边上的高, 在AK 上,D 是AC 的中点, F 是DE 与CK的交点,证明:KF BK ——=—— FC BE KF BK ——=一 KC KE FKB CKE BF //CECE 是 ACK 的平分线, E 点BF // CE 。
证:在 则:EBC 中,作 B"分线BH EBC ACK HBC ACEHBC HCB ACE HCB 90即:BH CEEBC 为等腰三角形作BC 上的高EP,则:对丁 ACK 和三点D 、 CK EPE 、F 依梅涅劳斯定理有:CD AE KF , 1 DA EK FC匚曰KF EK CK 『是——=一 一FC AE ACEP BP BK AC BC BE依分比定理有: ABC 的三边BC 、CA 、AB 或它们【练习1从点K 引四条直线,另两条直 -一 一 、…AC和 A 1、B 1、C 1、D 1,试证: ------- 1 1 1BC线分别交这四条直线丁 A 、B 、C 、DAD BD定理2:设P 、Q 、R 分别是 ABC 的三边 BC 、CA 、AB 上或它们的延长线上的 P 、Q 、R 三点中,位于 ABC 边上的点的个数为 0或2,这时若 既 PC 三点,并且 CQ AR QA RB 1, 求证:P 、Q 、R 三点共线; 证:设直线PQ 与直线AB 交丁 R ', 丁是由定理 BP CQ AR _ __ ' PC QA R B乂 BP CQ AR PC QA RB 由丁在同一直线上的 _ ' ____ AR AR1,则:^―=—— R B RB P 、Q 、R '三点中,位丁 ABC 边上的点的个数也为 0或2,因此R 与R '或者同在AB 线段上,或者同在 AB 的延长线上; 若R 与R '同在AB 线段上,则R 与R '必定重合,不然的话, 设AR AR ', AR AR BR BR 这时AB AR AB AR ',即BR BR ',丁是可得 _ ____ ' 这与AR =竺 矛盾 BR BR 类似地可证得当 R 与R '同在AB 的延长线上时,综上可得:P 、Q 、R 三点共线; 注:此定理常用于证明三点共线的问题,且常需要多次使用 R 与R '也重合再相乘;例2点P 位丁 ABC 的外接圆上;A 1、B 1、C 1是从点P 向BC 、CA 、AB 引的垂线的垂足, 证明点A 1、B 1、 BA 1BP cos PBC CA 1 CP cos PCB CB 1 CP cos PCA AB 1 AP cos PAC AC 1AP cos PABBC 1 PB cos PBAC i 共线; 证:易得: 将上面三条式子相乘, 且 PAC PBC , PAB PCB , 十曰 BA 1 CB 1 AC 1可得 一111= 1 ,CA 1 AB 1 BC 1依梅涅劳斯定理可知 A 1、B 1、C 1三点共线;PCA PBA 180A 1C 1 A 1D 1B 1C ; :BD【练习2设不等腰 ABC 的内切圆在三边 BC 、CA 、AB 上的切点分别为 D 、E 、F,则EF 与BC , FD 与CA , DE与AB 的交点 X 、Y 、Z 在同一条 直线上;【练习&已知直线 AA i, BB i, CC i 相交于O,直线AB 和A 1B 1的交点为C 2,直线 BC 与B 1C 1的交点是 A 2,直 线AC 与A i C i 的交点是B 2,试证:A 2、B 2、C 2三点共线;【练习M 在一条直线上取点 E 、C 、A,在另一条上取点 B 、F 、D,记直线AB 和ED , CD 和AF ,CD 和AF , EF 和BC 的交点依次为 L 、M 、N,证明:L 、M 、N 共线练习i 的证明练习2的证明乂 AE AF 代人上式可得:BXXC FB =—— CE CY DC AZ EA同理口」彳寸: — —YA AFZB BD将上面三条式子相乘可 得:乳CY J i XC YA ZB 乂 X 、Y 、Z 都不在 ABC 的边上,由定理 2可得X 、Y 、 证: ABC 被直线XFE 所截,由定理 Z 三点共线 证:若AD // A i D^,结论显然成立;若AD 与A i D i 相交与点 AD LD LD BD LD 〔 A i K A i D i AK BK BQ B i K LDi L,则把梅涅劳斯定理分 LC AK A 。
平面几何四大定理
.平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是 1RBARQA CQ PC BP =⋅⋅。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1RBAR QA CQ PC BP =⋅⋅。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)该点落在三角形的外接圆上。
例题:1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F。
求证:FBAF2ED AE =。
【分析】CEF 截△ABD →1FABF CB DC ED AE =⋅⋅(梅氏定理)【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM →1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1 【评注】梅氏定理3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EA CEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △LMN 。
【分析】【评注】梅氏定理4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5. 已知△ABC 中,∠B=2∠C 。
求证:AC 2=AB 2+AB ·BC 。
【分析】过A 作BC 的平行线交△ABC 的外接圆于D ,连结BD 。
四个重要定理(梅涅劳斯_塞瓦_托勒密_西姆松)
B平面几何中的四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是1=⋅⋅RBARQA CQ PC BP 。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1=⋅⋅RBARQA CQ PC BP 。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1、设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF 2ED AE =。
【分析】CEF 截△ABD→1FABFCB DC ED AE =⋅⋅(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2、过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
求证:1FACFEA BE =+。
【分析】连结并延长AG 交BC 于M ,则M 为BC 的中点。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM→1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1【评注】梅氏定理3、D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EACEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △【分析】【评注】梅氏定理4、以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5、已知△ABC 中,∠B=2∠C 。
平面几何五大定理及其证明
平面几何定理及其证明一、梅涅劳斯定理1.梅涅劳斯定理及其证明G定理:一条直线与ABC的三边AB、BC、CA所在直线分别交于点D、E、F,且D、E、F均不是ABC的顶点,则有.证明:如图,过点C作AB的平行线,交EF于点G.因为CG // AB,所以————(1)因为CG // AB,所以————(2)由(1)÷(2)可得,即得.2.梅涅劳斯定理的逆定理及其证明定理:在ABC的边AB、BC上各有一点D、E,在边AC的延长线上有一点F,若,那么,D、E、F三点共线.证明:设直线EF交AB于点D/,则据梅涅劳斯定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.二、塞瓦定理3.塞瓦定理及其证明定理:在ABC内一点P,该点与ABC的三个顶点相连所在的三条直线分别交ABC三边AB、BC、CA于点D、E、F,且D、E、F三点均不是ABC的顶点,则有.证明:运用面积比可得.根据等比定理有,所以.同理可得,.三式相乘得.4.塞瓦定理的逆定理及其证明定理:在ABC三边AB、BC、CA上各有一点D、E、F,且D、E、F均不是ABC的顶点,若,那么直线CD、AE、BF三线共点.证明:设直线AE与直线BF交于点P,直线CP交AB于点D/,则据塞瓦定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.三、西姆松定理5.西姆松定理及其证明定理:从ABC外接圆上任意一点P向BC、CA、AB或其延长线引垂线,垂足分别为D、E、F,则D、E、F三点共线.证明:如图示,连接PC,连接 EF 交BC于点D/,连接PD/.因为PE AE,PF AF,所以A、F、P、E四点共圆,可得FAE =FEP.因为A、B、P、C四点共圆,所以BAC =BCP,即FAE =BCP.所以,FEP =BCP,即D/EP =D/CP,可得C、D/、P、E四点共圆.所以,CD/P +CEP = 1800。
201502(梁志斌)平面几何的几个重要的定理--梅涅劳斯定理学生版 (1)
平面几何的几个重要的定理一、梅涅劳斯定理:。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BPR Q P AB CA BC ABC ABC l 1=⋅⋅RB ARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆111111111111D B D A :C B C A BD AD :BC AC D C B A DC B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点引的垂线的垂足,、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆三点共线;、、求证:,,这时若或边上的点的个数为三点中,位于、、三点,并且上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RBAR QA CQ =⋅⋅∆∆直线上;在同一条、、的交点与,与,与,则、、上的切点分别为、、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2三点共线;、、,试证:的交点是与线,直的交点是与,直线的交点为和,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 3共线、、,证明:、、的交点依次为和,和,和,和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4。
专题 平面几何的四个重要定理
竞赛专题讲座06-平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是。
塞瓦(Ceva)定理(塞瓦点)△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1.设AD是△ABC的边BC上的中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3. D、E、F分别在△ABC的BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A 1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
平面几何四大定理
.平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是 1RBARQA CQ PC BP =⋅⋅。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1RBAR QA CQ PC BP =⋅⋅。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)该点落在三角形的外接圆上。
例题:1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F。
求证:FBAF2ED AE =。
【分析】CEF 截△ABD →1FABF CB DC ED AE =⋅⋅(梅氏定理)【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM →1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1 【评注】梅氏定理3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EA CEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △LMN 。
【分析】【评注】梅氏定理4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5. 已知△ABC 中,∠B=2∠C 。
求证:AC 2=AB 2+AB ·BC 。
【分析】过A 作BC 的平行线交△ABC 的外接圆于D ,连结BD 。
平面几何中的几个重要定理
一.梅涅劳斯定理Menelaus (公元98年左右),希腊数学家、天文学家,梅涅劳斯定理包含在其几何著作《球论》里。
梅涅劳斯定理 设ABC ∆的三边AB CA BC ,,或它们的延长线与一条不经过其顶点的直线交于R Q P ,,三点(如图6),则1=⋅⋅RB AR QA CQ PC BP 。
梅涅劳斯定理逆定理 设R Q P ,,分别是ABC ∆的三边AB CA BC ,,上或它们延长线上三点,若有1=⋅⋅RBAR QA CQ PC BP , 则R Q P ,,三点在同一直线上。
设P 为三角形ABC 所在平面上一点,过点P 作PA 的垂线交直线BC 于D ,作PB 的垂线交直线CA 于E ,作PC 的垂线交AB 于F 。
求证:D,E,F 共线。
若三角形的三条外角平分线皆与对边所在直线相交,则三交点共线。
3.设ABC ∆的∠A 的外角平分线与BC 的延长线交于P,∠B 的平分线与AC 交于Q,∠C 的平分线和AB 交于R.求证: R Q P ,,三点在同一直线上。
AB C P Q R S AB C S P R Q 6 图A B CPQ R 7 图4.图8,过△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于P 、Q 、R ,求证:P 、Q 、R 三点共线。
注: 直线PQR 叫做△ABC 的莱莫恩(Lemoine )线5.(戴沙格定理)设△ABC 和△C B A '''对应点的连线A A '、B B '、C C 'S ,这时如果对应边BC 和C B ''、CA 和A C ''、AB 和B A ''(或它们的延长线)相交,则它们的交点D 、E 、F 在同一直线上。
注:戴沙格定理是射影几何中的重要定理。
6(牛顿定理)设四边形ABCD 的一组对边AB 和CD 的延长线交于点E ,另一组对边 AD 和BC 的延长线交于点F ,则AC 的中点L 、BD 的中点M 及EF 的中点N ,三点共线。
平面几何的重要定理
2、塞瓦(Ceva)定理: 塞瓦(Ceva)定理 (Ceva)定理
A B C 别 ∆ B 的 设 ′、 ′、 ′分 是 A C 三 B 、A A 上 点 边C C 、B 的 . 则 A ′、 B、 C′交 ,A B ′ C 于 点 充 条 是 一 的 要 件
A ′ B′ C ′ C A B ⋅ ⋅ =1. ′ ′ C′B AC BA
N
C
5、欧拉(Euler)定理: 欧拉(Euler)定理 (Euler)定理
1
(1)欧 定 : ∆ B 的 心 重 、 拉 理 设A C 外 、 心 垂 分 为、 、 , O G H 心 别 O G H 则、、 1 H 三 共 , O = O . 点 线 且G 3
(2)欧 公 : ∆ B 的 接 半 拉 式 设A C 外 圆 径 为, 切 半 为 两 心 间 R 内 圆 径 r, 圆 之 的 离 d 则 r 距 为 , d = R −2R .
C′
M
B′
C
3、托勒密(Ptolemy)定理: 托勒密(Ptolemy)定理 (Ptolemy)定理
(1)定 : A C 为 内 四 形 理 设B D 圆 接 边 , 则 B⋅ C + B ⋅ A = A ⋅ B . A D C D C D (2)逆 理 若 边 A C 满 : 定 : 四 形B D 足 A ⋅C + B ⋅ A = A ⋅ B , B D C D C D A A B C D 点 圆 则、、、四 共 .
11、莫莱定理 11、莫莱定理:
课后思考: 课后思考:
1 已 ∆ B 中 ∠ = 2∠ = 4∠ ,A 、 知A C , C B 1 1 1 1 1 . = 求 : + 证 A B A C B D
四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)
P 、Q R ,则P 、Q R 共线的充要条件是聖CQ ARj 。
PC QA RBBP CQ AR PC QA RB _ °平面几何中的四个重要定理梅涅劳斯(Menelaus )定理(梅氏线)△ABC 的三边BC CA AB 或其延长线上有点塞瓦(Ceva )定理(塞瓦点)△ABC 的三边 BC CA AB 上有点 P 、Q R ,贝U AP 、BQ CR 共点的充要条件是 托勒密(Ptolemy )定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson )定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 圆上。
例题:PA 1设AD是MBC的边BC上的中线,直线CF交AD于F。
求证:AE 2AFED。
AE DC RF【分析】CEF截△ARCH — .— .— =1 (梅氏定理)ED CR FA【评注】也可以添加辅助线证明:过A、R、D之一作CF的平行线。
2、过△ARC的重心G的直线分别交AB AC于E、F,交CR于D。
RE CF=1。
求证:EA FADEG截A ARM H REEAAGGMMDDR(梅氏定理)DGF截△ACM H =1 (梅氏定理)FA GM DCRE CF=GM (DR DC)=GM2MDEA FA AG MD 2GM MD【评注】梅氏定理3、D E、F分别在A ARC的RC CA AR边上,RD AFDC FRCEEAAD RE、CF交成△ LMN 求S A LM N O【分析】【评注】梅氏定理4、以A ARC各边为底边向外作相似的等腰A RCE A CAF A ARG 求证:AE、RF、CG相交【分析】连结并延长AG交RC于M,则M为RC的中点。
FLEM N【评注】塞瓦定理5、已知△ABC 中,/ B=2/ G 求证:AC^AB+ABBCo【分析】过A 作BC 的平行线交△ABC 的外接圆于D,连结BD 贝 U CD=DA=AB AC=BD由托勒密定理,AC BD=ADBC+CDAB【评注】托勒密定理求证:1 1 1A !A 2=A !A 3 A !A 4。
平面几何的重要定理
8、牛顿(Newton)定理:
已知四边形ABCD的一组对边AB 和CD的延长线交于 点,另一组对边 E AD和BC的延长线交于 点, F AC、BD、EF的中点 E A 分别为L、M、N . D 求证:L、M、N N 三点共线. L M
B
C
F
9、蝴蝶定理:
如图,在圆 中,设P为弦EF的 O 中点,过P作两条弦 D C AC、BD,连接BC、 Q AD分别与弦EF E R 相交于Q、R, 则PR PQ .
2、塞瓦(Ceva)定理:
设A、B、C 分别是ABC的三 边BC、CA、AB上的点. 则,AA、BB、CC 交 于一点的充要条件是
AC BA CB 1. C B AC BA
B
C
M
A
A
B
C
3、托勒密(Ptolemy)定理:
(1)定理:设ABCD为圆内接四边形, 则AB CD BC AD AC BD. ( 2)逆定理:若四边形 ABCD满足: AB CD BC AD AC BD, A 则A、B、C、D四点共圆.
平面几何中的重要定理
1、梅涅劳斯(Menelauss)定理:
设A、B、C 分别是ABC的三边 BC、CA、AB或其延长线上的点 . (1)若A、B、C 三点共线, AC BA CB A 则 1. C B AC BA C ( 2)若A、B、C 有奇数个 B 点在边的延长线上, AC BA CB 且 1, A C B C B AC BA 则A、B、C 三点共线.
A
B
F
P
10、帕普斯(Pappus)定理:
如图,设A1、B1、C1是直线l1上 的任意三点, 2、B2、C 2是直线l 2上 A 的任意三点, 1 B2和A2 B1交于L, A A1C 2和A2C1交于M,B1C 2和B2C1 交于N . 求证:L、M、N三点共线.
平面几何的几个重要的定理梅涅劳斯定理
平面几何的几个重要的定理一、梅涅劳斯定理:注:此定理常运用求证三角形相似的过程中的线段成比例的条件;注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点的外接圆上位于点例111C B A ABC P .2∆平面几何的几个重要定理――――塞瓦定理塞瓦定理:1PC BP R Q PAB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBAcos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=Θ1:=⋅⋅∆RBARQA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设;相交于一点点、、重合,故必与上,所以都在线段和因为=于是:,由塞瓦定理有:,于交,且直线相交于与,设再证充分性:若=以上三式相乘,得:同理:,则:相交于点、、证:先证必要性:设’’‘’‘’‘M CR BQ AP R R AB R R RB ARB R AR BR AR QA CQ PC BP R AB CM M BQ AP RB AR QA CQ PC BP RB ARQA CQ PC BP S S RB AR S S QA CQ S S S S S S PC BP M CR BQ AP BCMACMABMBCMACM ABMCMP BMP ACP ABP 111=⋅⋅=⋅⋅⋅⋅=====∆∆∆∆∆∆∆∆∆∆交于一点;:证明:三角形的中线例1ABCP P AN BM CK BLBCAC AL BLBCAC AL BLBCNB BK BKC BNL ACALAK AM AKC AML NBBKAK AM CNMC AKBKNB CN MC AM AN BM CK P AN BM CK ABCK ⊥∴∴=⋅=⋅=⇒∆≅∆=⇒∆≅∆=⋅==⋅⋅⊥点三线共点,且为、、理可知:依三角形的角平分线定即要证即要证明:又即要证:三线共点,依塞瓦定理、、要证点,三线共点,且为、、下证证:作1111ΘΘ平面几何的几个重要定理--托勒密定理托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).即:;内接于圆,则有:设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点 (不与B 、C 重合), 求证:PA=PB +PC . 四点共圆时成立;、、、上时成立,即当且仅当在且等号当且仅当相似和且又相似和则:,,使内取点证:在四边形D C B A BD E BDAC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EADBAC ADAE AC AB BE AC CD AB CDBE AC AB ACD ABE ACDABE CAD BAE E ABCD ⋅≥⋅+⋅∴+⋅=⋅+⋅∴⋅=⋅⇒=∴∆∆∴∠=∠=⋅=⋅⇒=∴∆∆∠=∠∠=∠)(Θ分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB +AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴ BD=CD.故 AD·BC=AB·BD+AC·BD=BD(AB+AC).三、构造图形借助托勒密定理例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.四、巧变原式妙构图形,借助托勒密定理例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图,作△ABC的外接圆,以 A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.五、巧变形妙引线借肋托勒密定理例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,1.已知△ABC中,∠B=2∠C。
平面几何中的几个重要定理
平面几何的著名定理1998 年,美国科学家和教育家在美国的科学年会上一致认为:21 世纪,几何学万岁. 除几何学理论广泛应用于CT 扫描、无线电、高清晰度电视等最新电子产品与最新医疗科学之外,其本身具有较强的直观效果,有助于提高学生认识事物的能力,有助于培养学生的逻辑推理能力有助于数形结合方法解题.用点、线、面可构成许许多多千姿百态的几何图形,直观的几何图形便于学生认识问题、思考问题、解决问题.如果能养成一个好习惯:“每做一道题都画一个几何图形或一幅几何示意图”,这对于理解、思考、解题都是大有益处的.在中国数学奥林匹克(CMO)的六道试题中,以及国际数学奥林匹克(IMO)的六道试题中,都至少有一道平面几何试题的存在.同样,在每年十月份进行的全国高中数学联赛加试的三道试题中,必有一道是平面几何题,占全国高中数学联赛总分300 分中的50 分,因此有人曾说:“得几何者,得一等奖”.除了在初中的课本中已经介绍的重要定理之外,在数学竞赛中,平面几何问题还要用到许多著名的定理,现择其应用较广的几个介绍如下.一.梅涅劳斯定理梅涅劳斯是古希腊的著名的几何学家,在他著名的几何著作《球论》中,他提出了“梅涅劳斯”这条著名的定理.梅涅劳斯定理:在的三边或其延长线上有点,则共线的充分必要条件是:①这里有几点需要向大家说明:1.不过顶点的直线与三角形3 边的关系有两种情况;(1)若直线与三角形的一边交于内点,则必与第二边交于内点,与第三边交于外点(延长线上的点);(2)直线与三角形的三边均交于外点,因而本题的图形有2 个.2.结论的结构是,三角形三边上6 条被截线段的比,首尾相连,组成一个比值为1 的等式3.这个结论反映了形与数的结合,是几何位置的定量描述:“三点共线”量化为比值等于“1”, 反过来式成立时,可证“ D,E,F 共线”(逆定理也成立).这里的“1”, 如果考虑到线段的方向,应为“-1 ”4.此题证明的基本想法是将6 条线段的比转化为3 条线段的连环比,能使分母相约,为此,可有多种作平行线的方法.下面提供一个不作辅助线的三角证法:证明:证法2:证法3:梅涅劳斯定理的逆定理:设分别是的边或其延长线上的点,且满足有奇数个点在延长线上,若, ②则三点共线。
平面几何四大定理
平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC得三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线得充要条件就是.塞瓦(Ceva)定理(塞瓦点)△ABC得三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点得充要条件就是。
托勒密(Ptolemy)定理四边形得两对边乘积之与等于其对角线乘积得充要条件就是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形得三边所引垂线得垂足共线得充要条件就是该点落在三角形得外接圆上。
例题:1.设AD就是△ABC得边BC上得中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作C F得平行线。
2.过△ABC得重心G得直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC得中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3.D、E、F分别在△ABC得BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似得等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC得平行线交△ABC得外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7.求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC得BC边上得高AD得延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F.求证:BC·EF=BF·CE+BE·CF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何的几个重要的定理
一、梅涅劳斯定理:
注:此定理常运用求证三角形相似的过程中的
线段成比例的条件;
注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;
共线;
、、证明点引的垂线的垂足,
、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆
平面
几何的几个重要定理
――――塞瓦定理 塞瓦定理:
1PC BP R Q P
AB CA BC ABC ABC l 1=⋅⋅RB
AR
QA CQ ,则
、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆ C
B
A
1
A 1
B 1
C 三点共线;
、、依梅涅劳斯定理可知,
=可得且将上面三条式子相乘,
证:易得:1111
1
1111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA
cos PB PAB
cos AP BC AC PAC cos AP PCA
cos CP AB CB ,
PCB
cos CP PBC cos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=Θ
1:
=⋅⋅∆RB
AR
QA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设;
相交于一点点、、重合,故必与上,所以都在线段和因为=
于是:,
由塞瓦定理有:,
于交,且直线相交于与,设再证充分性:若=以上三式相乘,得:同理:,则:
相交于点、、证:先证必要性:设’’‘’‘’
‘
M CR BQ AP R R AB R R RB AR B R AR B
R AR QA CQ PC BP R AB CM M BQ AP RB AR QA CQ PC BP RB AR
QA CQ PC BP S S RB AR S S QA CQ S S S S S S PC BP M CR BQ AP BCM
ACM
ABM
BCM
ACM ABM
CMP BMP ACP ABP 111
=⋅⋅=⋅⋅⋅⋅=
==
==∆∆∆∆∆∆∆∆∆∆交于一点;:证明:三角形的中线例1
AB
CP P AN BM CK BL
BC
AC AL BL
BC
AC AL BL
BC
NB BK BKC BNL AC
AL
AK AM AKC AML NB
BK
AK AM P ⊥∴∴=⋅=⋅=⇒
∆≅∆=
⇒∆≅∆=⋅点三线共点,且为、、理可知:依三角形的角平分线定即要证即要证明:1
1
1
1
Θ
平面几何的几个重要定理--托勒密定理
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).
即:
;
内接于圆,则有:
设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅
一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点 (不与B 、C 重合), 求证:PA=PB +PC . 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗. 若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB , ∵AB=BC=AC . ∴PA=PB+PC . 二、完善图形 借助托勒密定理 例2 证明“勾股定理”:
在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2
证明:如图,作以Rt △ABC 的斜边AC 为一对角线的矩形ABCD ,显然ABCD
是圆内接四边形. 由托勒密定理,有
AC ·BD=AB ·CD +AD ·BC . ① 又∵ABCD 是矩形,
∴AB=CD ,AD=BC ,AC=BD . ② 把②代人①,得AC 2=AB 2+BC 2.
四点共圆时成立;、、、上时成立,即当且仅当在且等号当且仅当相似
和且又相似和则:,,使内取点证:在四边形D C B A BD E BD
AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED
AC BC AED ABC EAD
BAC AD
AE
AC AB BE AC CD AB CD BE AC AB ACD ABE ACD
ABE CAD BAE E ABCD ⋅≥⋅+⋅∴+⋅=⋅+⋅∴⋅=⋅⇒=∴∆∆∴∠=∠=⋅=⋅⇒=∴∆∆∠=∠∠=∠)(Θ E D
C B A
例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).
证明:连结CD,依托勒密定理,
有AD·BC=AB·CD+AC·BD.
∵∠1=∠2,∴BD=CD.
故AD·BC=AB·BD+AC·BD=BD(AB+AC).
三、构造图形借助托勒密定理
例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.
求证:ax+by≤1.
证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,
使AC=a,BC=b,BD=x,AD=y.
由勾股定理知a、b、x、y是满足题设条件的.
据托勒密定理,有AC·BD+BC·AD=AB·CD.
∵CD≤AB=1,∴ax+by≤1.
四、巧变原式妙构图形,借助托勒密定理
例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.
分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.
证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.
∵AD=BC,
∴∠ABD=∠BAC.
又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.
依托勒密定理,有BC·AD=AB·CD+BD·AC.①
而已知a2=b(b+c),即a·a=b·c+b2.②
∴∠BAC=2∠ABC.
五、巧变形妙引线借肋托勒密定理
例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,
分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.
如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD.
在圆内接四边形ADBC中,由托勒密定理,
有AC·BD+BC·AD=AB·CD
易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,
1.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
2.已知正七边形A1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)。