3.1.2空间向量及其运算

合集下载

原创1:3.1.2 空间向量的基本定理

原创1:3.1.2 空间向量的基本定理
(2)基底不同,对于向量的分解形式不同.
典例分析
若{a,b,Ԧc}是空间的一个基底,判断{a+b,b+Ԧc,Ԧc+a}能否
作为该空间的一个基底.
是否共面
【解析】假设a+b,b+Ԧc,Ԧc+a共面,
则存在实数λ,μ使得
a+b=λ(b+Ԧc)+μ(Ԧc+a),
∴ a+b =μa+λb+(λ+μ)Ԧc.
答案
②③
典例分析
空间四边形OABC中,M,N是△ABC,△OBC的重心,设=a,
=b, =Ԧc,用向量a,b,Ԧc表示向量, , .
利用线性运算,结合图形,
【解析】如图,取BC中点P,
O
对向量进行分解
则A、M、P,O、N、P分别共线,
a

连结AP,OP.
2
AM=OA+AM=a+ AP
= k =k( + )
跟踪训练
=k( − + − )
= − + −
= + .
所以E、F、G、H共面.
(2) = − =k( − )=k ,
且由第(1)问的证明中知=k,
于是EF∥AB,EG∥AC.且EF∩EG=E,AB∩AC=A,
已知平行四边形ABCD,从平面AC外一点O引向量
=k, =k , =k , =k =k,
求证:(1)四点E、F、G、H共面;
(2)平面EG∥平面AC.
证明:(1)因为四边形ABCD是平行四边形,
所以 = + ,
= − = k - k
第三章 空间向量与立体几何
§3.1.2
空间向量的基本定理
高中数学选修2-1·精品课件
引入课题

人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算

人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算

导入新课复习上一节课,我们借助“类比思想”把平面向量的有关概念及加减运算扩展到了空间.(1) 加法法则及减法法则平行四边形法则或三角形法则. (2) 运算律加法交换律及结合律.两个空间向量的加、减法与两个平面向量的加、减法实质是一样的.因为:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.我们知道平面向量还有数乘运算及相应的运算律.借助类比思想,同样可以定义空间向量的数乘运算及相应的运算律.教学目标知识目标正确理解共线、方向向量等基本概念;初步掌握数乘运算,理解运算律;熟练掌握共线向量基本定理、推论及应用.能力目标经历知识形成探索过程,体验“类比”思想,并逐步学会“分析、归纳、抽象、概括等思维方法.情感目标1. 通过自主探究与合作交流,不断体验“成功”,激发学习热情和求知欲,充分体现学生的主体地位;2. 通过类比思想和方法的应用,感受和体会数学思想的魅力,培养学“做数学”的习惯和热情.教学重难点重点共线向量概念、基本定理及推论.难点共线概念的正确理解及较复杂的三点共线判定.知识要点1. 空间向量数乘运算的定义与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘(multiplication of vetor by salar)运算.(1)结果仍然是一个向量;(2)方向:当λ>0时,λa与a方向相同;当λ<0时,λa与a方向相反;当λ=0时,λa是零向量0; (3)大小: λa的长度是a长度的|λ|倍.aλa(λ<0)a λa(λ>0)2.数乘运算的运算律显然,空间向量的数乘运算满足分配律及结合律()λ(a +b )=λa +λbλ+μa =λa +μaλ(μa )=(λμ)a 即:知识要点(1) λa与a 之间是什么关系?(2) λa 与a 所在直线之间的关系?对于空间向量的数乘运算的运算律的证明,方法与证明平面向量数乘运算的运算律类似.知识要点3.共线向量(或平行向量)的定义表示空间向量的有向线段所在直线互相平行或重合,则称这些向量叫共线向量(colliner vectors)或平行向量(parallel vectors)记作a//b(1)向量平行与直线平行的比较;(2)关注零向量; (3)对空间任意两个向量a 与b ,如果 ,那么a 与b 有什么相等关系?反过来呢?b //a 零向量与任何向量平行(1)当我们说a,b共线时,表示a,b的两条有向线段所在直线既可能是同一直线,也可能是平行线;(2)当我们说a // b时,也具有同样的意义.知识要点4.共线向量基本定理对于空间任意两个向量a ,b(b≠0),a // b的充要条件是存在实数λ,使a = λb(1)b≠0的理解.若b=0,则a任意,λ不唯一;(2)若a // b,b // c,则a一定平行于c吗?(不一定,考虑中间向量为零向量)5.共线向量基本定理的推论如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对于空间任意一点像O ,点P 在直线l 上的充要条件是存在实数t ,使 OP = OA + ta. (1) AaOP B其中向量a叫做直线l的方向向量(direction vector)在l上取AB=a,则(1)式可化为OP = (1- t)OA + t OB.(2)说明: (1),(2)都叫做空间直线的向量参数表示式.由此可知,空间任意直线由空间一点及直线的方向向量唯一确定.知识要点6.共面向量定义平行于同一平面的向量,叫做共面向量(coplanar vectors).空间任意两个向量总是共面的,但空间任意三个向量既可能是共面的,也可能是不共面的.7.共面向量的定理如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在唯一的有序实数对(x、y),使p = x a + y b8.共面向量的定理的推论空间一点P位于平面MAB内的充分必要条件是存在有序实数对x、y,使MP = xMA + yMB或对空间任一定点O,有OP = OM + xMA + yMB.Ma AbB A' p P对空间任意一点O 和不共线的三点A 、B 、C ,试问满足向量关系式(其中x+y+z=1)的四点P 、A 、B 、 C 是否共面?OP =xOA+yOB +zOC解答原式可以变形为OP=(1-y-z)OA+yOB+zOC,OP-OA=y(OB-OA)+z(OC-OA), AP=y AB+z AC,所以,点P与点A,B,C共面.例题如下图,已知平行四边形ABCD,过平面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使OE OF OG OH====kOA OB OC OD求证:四点E、F、G、H共面.D'A'B'C'DA B CO分析:欲证E,F,G,H四点共面,只需证明EH,EF,EG共面.下面我们利用AD,AB,AC共面来证明.证明:因为 所以 OE=kOA ,OF=kOB , OG=kOC ,OH=kOD. 由于四边形ABCD 是平行四边形,所以AC=AB+AD. 解答OE OFOGOH====kOA OB OC OD继续因此EG=OG-OE=kOC-kOA=k AC=k(AB+AD)=k(OB-OA+OD-OA)=OF-OE+OH-OE=EF+EH.由向量共面的充要条件知E,F,G,H四点共面.课堂小结1.空间向量的数乘运算.2.空间向量的数乘运算的运算律.满足分配律及结合律.3.共线向量与共面向量共线向量 共面向量 定义 向量所在直线互相平行或重合. 平行于同一平面的向量,叫做共面向量. 定理 推论 运用 判断三点共线,或两直线平行 判断四点共线,或直线平行于平面)0a (b //a ≠b λa =p b a b y αx p +=ABt OA OP +=AC y AB x OA OP ++=共面1)y (x OBy OA x OP =++=1)z y (x 0OC z OB y OA x OP =++=++=高考链接1.(2006年福建卷)已知|OA|=1,|OB|= ,OA·OB=0,点C 在∠AOB 内,且∠AOC=30°,设OC=mOA+nOB (m 、n ∈R),则 等于_______. 3nm 3D. 33 C. 3B. 31 A. BOA =1,OB =3,OA.OB =0,解析: 点C 在AB 上,且∠AOC=30°设A 点坐标为(1,0),B 点的坐标为(0, )C 点的坐标为(x ,y)=( , ) OC =mOA+nOB(m,n R)∈33434则∴ 3n m ,41,n 43m ===课堂练习1.选择(1)若对任一点O 和不共线的三A,B,C,且有 则x+y+z=1是四点P 、A 、B 、C 共面的() A. 必要不充分条件 B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 R),z y,(x,OC z OB y OA x OP ∈++= C(2)对于空间任意一点O ,下列命题正确的是(). A.若 ,则P 、A 、B 共线 B.若 ,则P 是AB 的中点C.若 ,则P 、A 、B 不共线D.若 ,则P 、A 、B 共线 OP =OA+t AB3OP =OA+AB OP=OA -t AB OP=-OA+AB A(3)下列命题正确的是()CA.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面就是它们所在的直线共面C.零向量没有确定的方向D.若a // b,则存在唯一的实数λ使得a = λb解答A.中向量b为零向量时要注意,B.中向量的共线、共面与直线的共线、共面不一样,D.中需保证b不为零向量.答案C.点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处.像零向量与任何向量共线等性质,要兼顾 .2.解答题已知:且m,n,p不共面.若a∥b,求x,y的值.,p2yn8m1)(xb0,p4n2m3a+++=≠--=空间向量在运算时,注意到如何利用空间向量共线定理.解答 ∵a // b,且a ≠0, ∴b= λ a ,即 又∵m ,n ,p 不共面,∴.p 4λn 2λm 3λp 2y n 8m 1)(x --=+++8.y 13,x ,42y 2831x =-=∴-=-=+习题答案1. (1)AD; (2)AG;(3)MG2. (2)x=1; (2)x=y=1/2; (3) x=y=1/2;3.CA QBRPSO。

课件1:3.1.2 空间向量的数乘运算(共线与共面向量)

课件1:3.1.2 空间向量的数乘运算(共线与共面向量)

∴EH ∥FG且|EH |=43|FG |≠|FG |.
又 F 不在直线 EH 上, ∴四边形 EFGH 是梯形.
规律方法 判断向量 a,b 共线的方法有两种: (1)定义法 即证明 a,b 所在基线平行或重合. (2)利用“a=xb⇒a∥b”判断 a,b 是空间图形中的有向线段,利用空间向量的运算性质, 结合具体图形,化简得出 a=xb,从而得 a∥b,即 a 与 b 共 线.
存在有序实数组{x,y,z},使得 p= xa+yb+zc
.
其中,表达式 xa+yb+zc 叫做向量 a,b,c 的线性表
达式或线性组合, a,b,c 叫做空间的一个基底,记 作 {a,b,c} ,a,b,c 都叫做基向量.
互动探究
题型一:共线向量的判定 例 1 如图 3-1-11 所示,已知四边形 ABCD 是空间四边形,E,H 分别是边 AB,AD 的中点,F, G 分别是边 CB,CD 上的点,且C→F=23C→B,C→G=23C→D. 求证:四边形 EFGH 是梯形.
图 3-1-11
【思路探究】 (1)E→H与F→G共线吗?怎样证明? (2)|E→H|与|F→G|相等吗? 【自主解答】 ∵E,H 分别是 AB、AD 的中点, ∴A→E=21A→B,A→H=12A→D, 则E→H=A→H-A→E=12A→D-12A→B=12B→D =21(C→D-C→B)=12(32C→G-32C→F) =43(C→G-C→F)=34F→G,
(2)由(1)知向量M→A,M→B,M→C共面,三个向量的基线又 过同一点 M,
∴M、A、B、C 四点共面, ∴M 在面 ABC 内.
规律方法 1.空间一点 P 位于平面 MAB 内的充分必要条件是存在有序 实数对(x,y),使 MP xMA yMB.满足这个关系式的点 P 都 在平面 MAB 内;反之,平面 MAB 内的任一点 P 都满足这个 关系式.这个充要条件常用于证明四点共面.

苏教版数学选修2-1:3.1 空间向量及其运算3.1.2

苏教版数学选修2-1:3.1 空间向量及其运算3.1.2

1.有4个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中正确的是________(填序号).解析:命题①正确,命题②③不正确,因命题②中若a ∥b ,则P 不能用a ,b 表示,命题③中,若M ,A ,B 三点共线,则MP →也不能用MA →、MB →表示.答案:①2.已知空间四点A 、B 、C 、D 共面,若对空间中任一点O 有xOA →+yOB →+zOC →+OD →=0,则x +y +z =__________.解析:由xOA →+yOB →+zOC →+OD →=0,得OD →=(-x )OA →+(-y )OB →+(-z )OC →, ∴(-x )+(-y )+(-z )=1. ∴x +y +z =-1. 答案:-13.已知P ,A ,B ,C 四点共面且对于空间任一点O 都有OP →=2OA →+43OB →+λOC →,则λ=________.解析:因为P ,A ,B ,C 四点共面,所以OP →=xOA →+yOB →+zOC →,且x +y +z =1,所以2+43+λ=1,得λ=-73. 答案:-73[A 级 基础达标]1.下列命题中正确的个数是__________.①如果a ,b ,c 共面,b ,c ,d 也共面,则a ,b ,c ,d 共面; ②已知直线a 的方向向量a 与平面α平行,即a ∥α,则a ∥α;③若P 、M 、A 、B 共面,则一定存在惟一实数x ,y ,使MP →=xMA →+yMB →;反之,也成立;④对空间任一点O 与不共线的A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 共面.解析:①错,如果b ,c 共线,则a ,b ,c 共面,b ,c ,d 也共面,易知a ,b ,c ,d 不一定共面;②错,若a ∥α,可能a 在平面α内;③错,MP →=xMA →+yMB →使P 、M 、A 、B 四点共面,其前提是M 、A 、B 不共线;④错,前提是O 点与A 、B 、C 不共面.答案:02.以下命题:①两个共线向量是指在同一直线上的两个向量; ②共线的两个向量互相平行;③共面的三个向量是指在同一平面内的三个向量; ④共面的三个向量是指平行于同一平面的三个向量.其中正确命题的序号是__________(把所有正确命题的序号都填上). 解析:根据共线向量、共面向量的定义易知②④正确. 答案:②④3.已知点M 在平面ABC 内,并且对空间任一点O ,OM →=x OA →+13OB →+13OC →,则x 的值为__________.解析:由题意知,x +13+13=1,∴x =13.答案:134.已知O 是空间任意一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA→=2x ·BO →+3y ·CO →+4z ·DO →,则2x +3y +4z =__________.解析:由A 、B 、C 、D 四点共面知OA →=-2x ·OB →+(-3y )·OC →+(-4z )·OD →,所以-2x -3y -4z =1,即2x +3y +4z =-1.答案:-15.对于空间任一点O 和不共线的三点A 、B 、C ,且有6OP →=OA →+2OB →+3OC →,则__________四点必共面.解析:由6 OP →=OA →+2OB →+3OC →,得OP →=16OA →+26OB →+36OC →,所以P 、A 、B 、C 四点共面.答案:P 、A 、B 、C 6.如图,已知空间四边形OABC 中,M 、N 分别是对边OA 、BC 的中点,点G 在MN 上,且MG →=2GN →,设OA →=a ,OB →=b ,OC →=c ,OG →=x a +y b +z c ,则x 、y 、z 的值分别为多少?解:由线段中点的向量表达式,得 OG →=OM →+MG →=OM →+23MN →=12OA →+23(MO →+OC →+CN →) =12a +23[-12a +c +12(b -c )] =12a -13a +23c +13b -13c =16a +13b +13c , ∵OG →=x a +y b +z c ,∴x =16,y =13,z =13.7.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点,求证:B 1C ∥平面ODC 1.证明:设C 1B 1→=a ,C 1D 1→=b ,C 1C →=c ,所以B 1C →=c -a .又因为O 是B 1D 1的中点,所以C 1O →=12(a +b ).OD 1→=C 1D 1→-C 1O →=b -12(a +b )=12(b -a ).因为D 1D C 1C ,所以D 1D →=c .所以OD →=OD 1→+D 1D →=12(b -a )+c .若存在实数x ,y ,使得B 1C →=xOD →+yOC 1→成立,则c -a =x [12(b -a )+c ]+y [-12(a +b )]=-12(x +y )a +12(x -y )b +x c .因为a ,b ,c 不共线,所以⎩⎪⎨⎪⎧12(x +y )=1,12(x -y )=0,x =1,解得⎩⎪⎨⎪⎧x =1,y =1.所以B 1C →=OD →+OC 1→,则B 1C →,OD →,OC 1→是共面向量, 又因为B 1C 不在OD ,OC 1所确定的平面ODC 1内, 所以B 1C ∥平面ODC 1.[B 级 能力提升]8.已知a ,b ,c 是不共面的三个向量,且实数x ,y ,z 使x a +y b +z c =0,则x 2+y 2+z 2=__________.解析:由共面向量基本定理可知a ,b ,c 不共面时,x a +y b +z c =0必有x =y =z =0,∴x 2+y 2+z 2=0.答案:09.已知空间四边形ABCD ,连结AC 、BD ,设M 、G 分别是BC 、CD 的中点,则AB →+12(BD→+BC →+DC →)=__________.解析:原式=AB →+(12BD →+12BC →+12DC →)=AB →+BG →+GC →=AB →+BC →=AC →.答案:AC →10.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,若OM →=2OA →-OB →-OC →,证明:点M 不在平面ABC 内.证明:假设M 在平面ABC 内,则存在实数对(x ,y ),使AM →=xAB →+yAC →(*),于是对空间任意一点O ,O 在平面ABC 外,OM →=(1-x -y )OA →+xOB →+yOC →,比较原式,得⎩⎪⎨⎪⎧1-x -y =2,x =-1,y =-1.此方程组无解,这与假设相矛盾. 所以假设不成立,所以不存在实数对(x ,y ),使(*)式成立,所以M 与A 、B 、C 不共面,即M 不在平面ABC 内.11.(创新题)已知正方体ABCD -A 1B 1C 1D 1,P ,M 为空间任意两点,若PM →=PB 1→+7BA →+6AA 1→+4A 1D 1→,试问M 点是否一定在平面BA 1D 1内?并证明你的结论.解:PM →=PB 1→+7BA →+6AA 1→+4A 1D 1→ =PB 1→-AA 1→+7(BA →+AA 1→)+4A 1D 1→ =PB 1→-BB 1→+7BA 1→+4A 1D 1→ =PB 1→+B 1B →+7BA 1→+4A 1D 1→ =PB →+7BA 1→+4A 1D 1→ =PB →+7(BP →+P A 1→)+4(A 1P →+PD 1→)=-6PB →+3P A 1→+4PD 1→,由-6+3+4=1,得M ,B ,A 1,D 1四点共面, 故M 点在平面BA 1D 1内.。

人教版数学高二数学选修2-1 3.1空间向量及其运算教材解读

人教版数学高二数学选修2-1 3.1空间向量及其运算教材解读

高中新课标数学选修(2-1)空间向量及其运算教材解读山东 尹承利一、空间向量及其运算 1.空间向量及其加减与数乘运算(1)空间向量:在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.零向量、单位向量、相反向量、相等向量、共线(平行)向量、方向向量等概念与平面向量的概念基本相同.(2)空间向量的加减与数乘运算①空间向量的加法、减法与数乘运算与平面向量的运算基本相同;②首尾相接的若干个向量之和,等于由起始向量的起始点指向末尾向量的终点的向量.如A B B C C D A D++=,A BB C C D D A +++=0等.2.共线向量的充要条件(1)共线向量的充要条件:对空间任意两个向量()≠0,,a b b a b的充要条件是存在实数λ,使abλ=.(2)空间直线的向量表过式:如果l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使O P O A t =+a. ①在l 上取A B=a,则①式可化为O PO A t A B=+. ②①和②都称为空间直线的向量表示式,由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.(3)利用向量之间的关系可以判断空间任意三点共线.其依据是:空间三点P A B ,,共线()P B t P A O P O A t A B t ⇔=⇔=+∈R .3.共面向量的充要条件(1)共面向理:平行于同一个平面的向量,叫做共面向量. 注:空间任意两个向量总是共面的.(2)共面向量的充要条件:如果两个向量,a b 不共线,那么向量p与向量a b ,共面的充要条件是存在惟一的有序实数对(),x y ,使p x =a y +b.(3)空间平面A B C 的向量表示式:空间一点P 位于平面A B C 内的充要条件是存在有序实数对x y ,,使A Px A B y A C=+;或对空间任意一点O ,有O PO A x A B y A C=++. ③③式称为平面A B C 的向量表示式.由此可知,空间中任意平面由空间一点及两个不共线向量惟一确定.(4)利用向量判断四点共面.其依据是:对于空间任一点O 和不共线的三点A B C ,,,满足向量关系式O Px O A y O B z O C=++,且当且仅当1x y z ++=时,四点P A B C ,,,共面.(即课本第95页思考2) 4.空间向量的数量积运算(1)空间两个向量的夹角:已知两个非零向量,a b 在空间任取一点O ,作O A =a,O B=b,则A O B ∠叫做向量,a b 的夹角,记作,a b.如果,a bπ2=,那么向量,a b 互相垂直,记作ab⊥.注:0πa b ,≤≤.(2)向量的数量积:两个非零向量,a b 的数量积c o s a b a b a b=,,.(3)数量积的性质:①零向量与任何向量的数量积为0,即aa =00··0=;②a aaa==22·,即a =;③c o s a b a b a b=,·;④ab a b ⊥⇔·0=.(4)数量积的运算律: ①()()a ba b λλ=··;②a bb a=··(交换律);③()a bc a b a c+=+···(分配律).注:向量的数量积不满足结合律,即对于三个均不为零向量的向量()()a b c a b c a b c ≠,,,··.(5)利用空间两个非零向量的数量积为零,可以推证空间线、面的垂直关系.如证明三垂线定理及逆定理(课本第98页例2)、直线和平面垂直的判定定理(例3)等.二、空间向量的坐标表示 1.空间向量基本定理(1)定理:如果三个向量a b c ,,不共面,那么对空间任一向量p,存在有序实数组{},,x y z ,使得p x =+a y b z +c,共中{},,a b c 叫做空间的一个基底,a b c ,,都叫做基向量.注:①空间任何三个不共面的向量都可构成空间的一个基成; ②空间任意一个向量都可以用三个不共面的向量表示出来.(2)单位正交基底:如果123e e e ,,是有公共起点O 的三个两两垂直的单位向量,则称{}123,,e e e 为空间的单位正交基底.2.空间向量运算的坐标表示设a123()=,,a a a ,b123()=,,b b b ,则(1)空间向量的直角坐标运算a b +=112233()+++,,a b a b a b ,ab -=112233()a b a b a b ---,,;λ=a 123()λλλ,,a a a ;a b=·112233++a b a b a b .(2)两个向量平行、垂直的充要条件的坐标表示 ①λ⇔=∥a b a b 112233()a b a b a b λλλλ⇔===∈R ,,;②ab ⊥1122330⇔++=a b a b a b 。

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21
①( AB + BC )+ CC1 ;②( AA1 + A1D1 )+ D1C1 ;③( AB + BB1 )+ B1C1 ;④ ( AA1 + A1B1 )+ B1C1 .
解析:(2)①( AB + BC )+ CC1 = AC + CC1 = AC1 ; ②( AA1 + A1D1 )+ D1C1 = AD1 + D1C1 = AC1 ; ③( AB + BB1 )+ B1C1 = AB1 + B1C1 = AC1 ; ④( AA1 + A1B1 )+ B1C1 = AB1 + B1C1 = AC1 .
3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算
课标要求:1.经历向量及其运算由平面到空间推广的过程,了解空间向量的 概念.2.掌握空间向量的加法、减法和数乘运算.3.理解空间共线向量和共 面向量定理及推论.
自主学习 课堂探究
知识探究
自主学习
1.空间向量及其长度的定义 与平面向量一样,在空间,我们把 具有大小和方向的量 叫做空间向量,
解析:容易判断D是假命题,共线的单位向量是相等向量或相反向量.故
选D.
2.空间两向量a,b互为相反向量,已知向量|b|=3,则下列结论正确的是
(D)
(A)a=b
(B)a+b为实数0
(C)a与b方向相同
(D)|a|=3
3.在下列条件中,使 M 与 A,B,C 一定共面的是( C )
(A) OM =3 OA -2 OB - OC (B) OM + OA + OB + OC =0

§3.1.1-3.1.2空间向量及其加减运算、数乘运算

§3.1.1-3.1.2空间向量及其加减运算、数乘运算

第一章空间向量与立体几何§3.1.1-3.1.2空间向量及其加减运算、数乘运算班级:_____姓名:__________ 编号:_____学习目标1、掌握空间向量单位向量、相反向量的定义2、用空间向量的运算意义及运算律解决问题3、掌握空间向量的数乘运算4、理解共线向量、共面向量的定理及推论5、用数乘运算把未知向量用已知向量表示自主预习(预习课本自主掌握以下概念和原理)1、空间向量的有关概念(1)定义:在空间,把具有_____和_____的量叫做空间向量;(2)长度:向量的___叫做向量的长度或__(3)表示法:①几何表示法:空间向量用_____表示②字母表示法:用字母表示,若向量a的起点是A,终点是B,则向量a也可以记作_____,其模记为_____或_____。

4、空间向量的数乘运算:实数λ与空间向量的乘积____,成为向量的数乘运算。

5、向量a与向量λa的关系(1)分配律:λ(a+b)=________(2)结合律:()______aλμ=7、共线向量与直线的方向向量(1)共向向量的概念:表示空间向量的有向线段所在的直线______共线向量也叫______(2)两向量共线(平行)的充要条件:对于空间任意两个向量,(0)a b b≠,则a b的充要条件是存在实数λ,使______(3)直线的方向向量:如果l为经过点A且平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OA OP ta=+①,其中a叫做直线l的______8、共面向量(1)共面向量的定义:平行于______的向量(2)三个向量共面的充要条件:如果两个向量,a b______,那么向量p与向量,a b共面的充要条件是存在唯一的有序实数对(,),x y使____p=【突破·核心知识】【知识梳理】【题型归纳】【随堂∙自我测评】1、对于空间非零向量AC BC AB ,,下列各式一定不成立的是( )A 、AB →+BC →=AC → B 、AB →-AC →=BC →C 、AB →+BC →=CA →D 、AB →-AC →=CB →2、设有四边形ABCD 中,o 为空间任意一点,且OCDO AO →→→→+=+OB ,则四边形ABCD 是A 、平行四边形B 、空间四边形C 、等腰梯形D 、矩形 3、→→→≠=ba,且ba →→、不共线时ba →→+与ba →→-的关系是( )A 、共面B 、不共面C 、共线D 、无法确定4、已知两个非零向量21,e e不共线,如21A B e e =+ ,2128AC e e =+ ,2133AD e e =- 求证:,,,A B C D 共面.5已知324,(1)82a m n p b x m n yp =--=+++,0a ≠ ,若//a b,求实数,x y 的值6.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC=++,试判断:点P与,,A B C 是否一定共面?【课后∙知能提升】1.在平行六面体ABCD -A 1B 1C 1D 1中,下列各式:①(111A D A A - )-AB; ② (1BC BB + )-11D C ;③ (1A D A B - )+1DD ; ④ (111B D A A -)-1DD,其中运算结果为向量11B D的是( ) A 、①② B 、③④ C 、②④ D 、①③2.在空间四边形ABCD 中,设AB a =,AD b =,M 点是BD 的中点,则下列对应关系正确的是( )A .1()2MA a b =+B .1()2MC a b =+C .1()2MD b a =- D .1()2MB b a =-3.空间四边形ABCD 中,AB a =,,,BC b AD c == 则CD =( )A .a b c +-B .c a b --C .a b c --D .b a c -+4.在长方体ABCD —A ′B ′C ′D ′中,向量AB '、AD ' 、BD是( )A .有相同起点的向量B .等长的向C .共面向量D .不共面向量5、向量,,a b c两两夹角都是60 ,||1,||2,||3a b c === ,则||a b c ++= 。

高中数学第1部分第3章3.1空间向量及其运算3.1.2共面向量定理讲义含解析苏教版选修2_1

高中数学第1部分第3章3.1空间向量及其运算3.1.2共面向量定理讲义含解析苏教版选修2_1

3.1.2 共面向量定理[对应学生用书P50]如图,在平行六面体ABCD-A1B1C1D1中,观察下列几组向量,回答问题.问题1:、、可以移到一个平面内吗?提示:可以,因为=,三个向量可移到平面ABCD内.问题2:,,三个向量的位置关系?提示:三个向量都在平面ACC1A1内.问题3:、、三个向量是什么关系?提示:相等.1.共面向量一般地,能够平移到同一平面内的向量叫做共面向量.2.共面向量定理如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数组(x,y),使得p=x a+y b.1.空间中任意两个向量都是共面的,空间中任意三个向量可能共面,也可能不共面.2.向量共面不具有传递性.3.共面向量定理给出了平面向量的表示式,说明两个不共线的向量能确定一个平面,它是判定三个向量是否共面的依据.[对应学生用书P51][例1] 给出以下命题:①用分别在两条异面直线上的两条有向线段表示两个向量,则这两个向量一定不共面; ②已知空间四边形ABCD ,则由四条线段AB 、BC 、CD 、DA 分别确定的四个向量之和为零向量;③若存在有序实数组(x ,y )使得=x +y ,则O 、P 、A 、B 四点共面; ④若三个向量共面,则这三个向量的起点和终点一定共面; ⑤若a ,b ,c 三向量两两共面,则a ,b ,c 三向量共面. 其中正确命题的序号是________.[思路点拨] 先紧扣每个命题的条件,再充分利用相关概念做出正确的判断. [精解详析] ①错:空间中任意两个向量都是共面的; ②错:因为四条线段确定的向量没有强调方向; ③正确:因为、、共面, ∴O 、P 、A 、B 四点共面; ④错:没有强调零向量;⑤错:例如三棱柱的三条侧棱表示的向量. [答案] ③[一点通] 共面向量不一定在同一个平面内,但可以平移到同一个平面内.判定向量共面的主要依据是共面向量定理.1.下列说法正确的是________(填序号).①以三个向量为三条棱一定可以作成一个平行六面体;②设平行六面体的三条棱是、、,则这一平行六面体的对角线所对应的向量是++; ③若=12(+)成立,则P 点一定是线段AB 的中点;④在空间中,若向量与是共线向量,则A 、B 、C 、D 四点共面.⑤若a ,b ,c 三向量共面,则由a ,b 所在直线所确定的平面与由b ,c 所在直线确定的平面是同一个平面.解析:①②③⑤不正确,④正确. 答案:④2.已知三个向量a ,b ,c 不共面,并且p =a +b -c ,q =2a -3b -5c ,r =-7a +18b +22c ,试问向量p 、q 、r 是否共面?解:设r =x p +y q ,则-7a +18b +22c =x (a +b -c )+y (2a -3b -5c ) =(x +2y )a +(x -3y )b +(-x -5y )c ,∴⎩⎪⎨⎪⎧x +2y =-7,x -3y =18,-x -5y =22.解得⎩⎪⎨⎪⎧x =3,y =-5,∴r =3p -5q .∴p 、q 、r 共面.[例2] 如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.证明:与、共面.[思路点拨] 由共面向量定理,只要用、线性表示出即可. [精解详析] ∵=++ =++13+23=(+13)+(+23)=+++ =+, ∴与、共面.[一点通] 利用向量法证明向量共面问题,关键是熟练的进行向量的表示,恰当应用向量共面的充要条件.解题过程中注意区分向量所在的直线的位置关系与向量的位置关系,解答本题,实质上是证明存在惟一一对实数x ,y 使向量=x +y 成立,也就是用空间向量的加、减法则及运算律,结合图形,用、表示.3.如图,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1和A 1D 1的中点.证明:向量,,是共面向量.证明:法一:=++ =12-+12 =12(+- =12-. 由向量共面的充要条件知,,,是共面向量.法二:连接A1D ,BD ,取A 1D 中点G ,连结FG ,BG ,则有FG 綊12DD 1,BE 綊12DD 1,∴FG 綊BE .∴四边形BEFG 为平行四边形. ∴EF ∥BG .BG ⊆平面A 1BD ,EF 平面A 1BD∴EF ∥平面A 1BD .同理,B 1C ∥A 1D ,∴B 1C ∥平面A 1BD , ∴,,都与平面A 1BD 平行. ∴,,是共面向量.4.已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足=k ,=k (0≤k ≤1).求证:与向量,共面.证明: 如图,在封闭四边形MABN 中,=++.① 在封闭四边形MC 1CN 中,=++② ∵=k , ∴=k (+)∴(1-k )=k ,即(1-k )+k =0, 同理(1-k )+k =0.①×(1-k )+②×k 得=(1-k )+k , ∵=-,∴=(1-k )-k , 故向量与向量,共面.[例3] 如图所示,已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明BD ∥平面EFGH .[思路点拨] (1)要证E ,F ,G ,H 四点共面,根据共面向量定理的推论,只要能找到实数x ,y ,使=x +y 即可.(2)要证BD ∥平面EFGH ,只需证向量与向量、共面即可. [精解详析] (1)如图所示,连接BG ,EG ,则:=+=+12(+)=++=+.由共面向量定理知E ,F ,G ,H 四点共面. (2)设=a ,=b ,=c , 则=-=c -a .=+=-a 2+12(c +b )=-12a +12b +12c ,=+=-12c +12(a +b )=12a +12b -12c .假设存在x ,y ,使=x +y .即c -a =x ⎝ ⎛⎭⎪⎫-12a +12b +12c +y ⎝ ⎛⎭⎪⎫12a +12b -12c =⎝ ⎛⎭⎪⎫y 2-x 2a +⎝ ⎛⎭⎪⎫x 2+y 2b +⎝ ⎛⎭⎪⎫x 2-y2c . ∵a ,b ,c 不共线.∴⎩⎪⎨⎪⎧y 2-x2=-1,x 2+y2=0,x 2-y 2=1,解得⎩⎪⎨⎪⎧x =1,y =-1.∴=-.∴、、是共面向量, ∵BD 不在平面EFGH 内. ∴BD ∥平面EFGH . [一点通]1.空间一点P 位于平面MAB 内的充分必要条件是存在实数对x 、y ,使=x +y .满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式,这个充要条件常用来证明四点共面.在许多情况下,可以用“若存在有序实数组(x ,y ,z )使得对于空间任意一点O ,有=x +y +z ,且x +y +z =1成立,则P 、A 、B 、C 四点共面”作为判定空间中四个点共面的依据.2.用共面向量定理证明线面平行的关键是: (1)在直线上取一向量;(2)在平面内找出两个不共线的向量,并用这两个不共线的向量表示直线上的向量; (3)说明直线不在面内,三个条件缺一不可.5.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点.求证:B 1C ∥平面ODC 1.证明:设=a ,=b ,=c ,则=c -a ,又O 是B 1D 1的中点,所以=12=12(b -a ).因为D 1D 綊C 1C ,所以=c ,=+=12(b -a )+c .=-12(a +b ),假设存在实数x ,y ,使=x +y ,所以c -a =x ⎣⎢⎡⎦⎥⎤12(b -a )+c -y ·12(a +b ) =-12(x +y )a +x c +⎝ ⎛⎭⎪⎫x 2-y 2b ,且a ,b ,c 不共线,所以x =1,12(x +y )=1,且x -y 2=0,即x =1,y =1.所以=+,所以,,是共面向量,又因为不在,所确定的平面ODC 1内,所以B 1C ∥平面ODC 1.6.如图,已知P 是平面四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD ,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心.求证:E 、F 、G 、H 四点共面.证明:分别延长PE 、PF 、PG 、PH 交平面四边形ABCD 各边于M 、N 、Q 、R . ∵E 、F 、G 、H 分别是所在三角形的重心,∴M 、N 、Q 、R 为所在边的中点,顺次连结M 、N 、Q 、R 所得四边形为平行四边形,且有=23,=23, =23,=23. ∵MNQR 为平行四边形, ∴=-=23-23=23=23(+)=23(-)+23(-) =23·⎝ ⎛⎭⎪⎫32 PF -32 PF +23⎝⎛⎭⎪⎫32 PH -32 PF=+.∴由共面向量定理得E 、F 、G 、H 四点共面.向量e 1,e 2,e 3共面⇔存在三个不全为0的实数λ,μ,γ,使得λe 1+μe 2+γe 3=0.若e 1,e 2,e 3是不共面的三个向量,且λe 1+μe 2+γe 3=0(其中λ,μ,γ∈R ),则λ=μ=γ=0.空间一点P 位于平面MAB 内的充要条件是存在惟一的有序实数对x ,y ,使=x +y .[对应课时跟踪训练(十九)]1.下列结论中,正确的是________(填序号). ①若a 、b 、c 共面,则存在实数x ,y ,使a =x b +y c ; ②若a 、b 、c 不共面,则不存在实数x ,y ,使a =x b +y c ;③若a 、b 、c 共面,b 、c 不共线,则存在实数x 、y ,使a =x b +y c .解析:要注意共面向量定理给出的是一个充要条件.所以第②个命题正确.但定理的应用又有一个前提:b 、c 是不共线向量,否则即使三个向量a 、b 、c 共面,也不一定具有线性关系,故①不正确,③正确.答案:②③2.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由向量=15+23+λ确定的点P与A ,B ,C 共面,那么λ=________.解析:∵P 与A ,B ,C 共面, ∴=α+β, ∴=α(-)+β(-), 即=+α-α+β-β =(1-α-β)+α+β, ∴1-α-β+α+β=1. 因此15+23+λ=1.解得λ=215.答案:2153.如图,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1,若=x +y +zAA 1,则x +y +z =________.解析:=-=+-(+)=+23--13=-+13∴x =-1,y =1,z =13.∴x +y +z =13.答案:134.i ,j ,k 是三个不共面的向量,=i -2j +2k ,=2i +j -3k ,=λi +3j -5k ,且A 、B 、C 、D 四点共面,则λ的值为________.解析:若A 、B 、C 、D 四点共面,则向量、、共面,故存在不全为零的实数a ,b ,c , 使得a +b +c =0.即a (i -2j +2k )+b (2i +j -3k )+c (λi +3j -5k )=0. ∴(a +2b +λc )i +(-2a +b +3c )j +(2a -3b -5c )k =0. ∵i ,j ,k 不共面,∴⎩⎪⎨⎪⎧a +2b +λc =0,-2a +b +3c =0,2a -3b -5c =0.∴⎩⎪⎨⎪⎧a =c ,b =-c ,λ=1.答案:15.命题:若A 、B 、C 三点不共线,O 是平面ABC 外一点,=13+13+13,则点M 一定在平面ABC 上,且在△ABC 内部是________命题(填“真”或“假”).解析:=-=-23+13+13=13(-)+13(-)=13(+). 令BC 中点为D ,则=23,∴点M 一定在平面ABC 上,且在△ABC 内部,故命题为真命题.答案:真6.已知A ,B ,C 三点不共线,平面ABC 外的一点O 满足=13+13+13.判断,,三个向量是否共面.解:(1)由已知得++=3, ∴-=(-)+(-), 即=+=--, ∴,,共面.7.若e 1,e 2,e 3是三个不共面的向量,试问向量a =3e 1+2e 2+e 3,b =-e 1+e 2+3e 3,c =2e 1-e 2-4e 3是否共面,并说明理由.解:法一:令x (3e 1+2e 2+e 3)+y (-e 1+e 2+3e 3)+z (2e 1-e 2-4e 3)=0, 亦即(3x -y +2z )e 1+(2x +y -z )e 2+(x +3y -4z )e 3=0, 因为e 1,e 2,e 3是三个不共面的向量, 所以⎩⎪⎨⎪⎧ 3x -y +2z =0,2x +y -z =0,x +3y -4z =0,解得⎩⎪⎨⎪⎧x =-1,y =7,z =5,从而a =7b +5c ,a ,b ,c 三个向量共面. 法二:令存在λ,μ,使a =λb +μ c 成立, 即3e 1+2e 2+e 3=λ(-e 1+e 2+3e 3)+μ(2e 1-e 2-4e 3), 因为e 1,e 2,e 3是三个不共面向量, 所以⎩⎪⎨⎪⎧3=-λ+2μ,2=λ-μ,1=3λ-4μ.解这个方程组得λ=7,μ=5,从而a =7b +5c ,即a ,b ,c 三向量共面.8.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,AB =2EF ,H 为BC 的中点.求证:FH ∥平面EDB .证明:因为H 为BC 的中点,所以=12(+)=12(++++)=12(2+++).因为EF ∥AB ,CD 綊AB ,且AB =2EF , 所以2+=0, 所以=12(+)=12+12.又与不共线,根据向量共面的充要条件可知,,共面.由于FH 不在平面EDB 内, 所以FH ∥平面EDB。

3.1.1与3.1.2空间向量及其加减与数乘运算

3.1.1与3.1.2空间向量及其加减与数乘运算
思考题:考虑空间三个向量共面的充要条件.


练习1
用AB 、AD 、AA 、 BD 、 DB1 1来表示A 1C 1
D1 C1
A1
B1
D
A
C B
空间向量的数乘
a( 0) a( 0)
数乘分配律: 数乘结合律:
(a b) a+b
( a) ( )a

类比平面向量的加法运算,你能推出空间加法 的运算律吗?
加法交换律
ab ba
加法结合律 (a b) c a (b c)
加法结合律:
O
(a b) c a (b c)
O
a
A
a
C
b
A
+
c c
C
b
B
c
b
B
推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;
复习回顾:平面向量
既有大小又有方向的量。 1、定义:
几何表示法:用有向线段表示 字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
B A D C

2、平面向量的加法、减法与数乘运算
b
b
a
向量加法的三角形法则
练习2
在空间四边形ABCD中,点M、G分别是BC、CD 边的中点,化简 A (1) AB BC CD
D G M C
1 (2) AB ( BC BD) 2 1 (3) AG ( AB AC) 2
B

例2. 已知空间四边形ABCD中,G为△BCD的重心,E、F、H分 别为边CD、AD和BC的中点。化简下列各表达式,并标出化简 结果的向量。

2019-2020学年高中数学人教A版选修2-1精讲优练_3.1空间向量及其运算3.1.2空间向量的数乘运算

2019-2020学年高中数学人教A版选修2-1精讲优练_3.1空间向量及其运算3.1.2空间向量的数乘运算

【方法技巧】 证明空间三点共线的三种思路
对于空间三点P,A,B可通过证明下列结论来证明三点 共线. (1)存在实数λ ,使 PA PB 成立.
(2)对空间任一点O,有 OP OA tABt R. (3)对空间任一点O,有 OP xOA yOBx y 1.
【变式训练】 已知A,B,C三点共线,O为直线外空间任意一点,若 OC mOA nOB,求m+n的值.

A1E

2ED1,点F在对角线A1C上,且
A1F

2 3
FC. 求
证:E,F,B三点共线.
【证明】设 AB a,AD b,AA1 c.
因为
A1E

2ED1,A1F

2 3
FC,
所以
A1E

2 3
A1D1,A1F

2 5
A1C,
所以
A1E

2 3
AD

2 3
b,
A1F

OP OA n OB OA AP nAB.
因为 AB≠0,所以 AP和AB 共线,即点A,P,B共线.
2.如图,在三棱柱ABC-A1B1C1中,已知M,N分别是A1B,B1C1 上的点,且BM=2A1M,C1N=2B1N.设 AB =a, AC =b,AA1=c, 则MN=________(用a,b,c表示).
2
【延伸探究】本题条件不变,若 PA=xPO+yPQ+PD. 求 x,y的值. 【解析】因为O为AC的中点,Q为CD的中点, 所以 PA+PC=2PO,PC+PD=2PQ, 所以 PA=2PO-PC,PC=2PQ-PD.
从而有 PA=2PO-(2PQ-PD)=2PO-2PQ+PD. 所以x=2,y=-2.

空间向量的数乘运算

空间向量的数乘运算

O C
D BA OC OD OE c p OB
作 AB // b, BD // a, BC // c
xa yb zc
然后证唯一性
注:空间任意三个不共面向量都可以构成空
间的一个基底.如: a , b, c
即,P、A、B、C四点共面。
∴ OP OA y(OB OA) z(OC OA) ∴ AP y AB z AC
B、 C 共面. ∴点 P 与 A 、
17
试证明:对于不共线的三点 A 、 B、 C 和平面 ABC 外的 一点 O ,空间一点 P 满足关系式 OP xOA yOB zOC ,则 点 P 在平面 ABC 内的充要条件是 x y z 1 . 证明:⑴充分性 ∵ OP xOA yOB zOC (1 z)OA 可变形为 OP y yOB zOC , ∴ OP OA y(OB OA) z(OC OA) ∴ AP yAB z AC
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
6
空间向量的加减法
C a
+
b
B
b
O
A
a
OB OA AB CA OA OC
A
D
F
B
E
C
10
共面向量:平行于同一平面的向量,叫做共面向量.
a
O
A

高二数学 3.1.2空间向量的数乘运算

高二数学  3.1.2空间向量的数乘运算

3.1.2空间向量的数乘运算空间中有向量a,b,c(均为非零向量).问题1:向量a与b共线的条件是什么?提示:存在唯一实数λ,使a=λb.问题2:空间中任意两个向量一定共面吗?任意三个向量呢?提示:一定;不一定.问题3:空间两非零向量a,b共面,能否推出a=λb(λ∈R)?提示:不能.1.空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算.(2)向量a与λa的关系:λ的范围方向关系模的关系λ>0方向相同λa的模是a的模的|λ|倍λ=0λa=0,其方向是任意的λ<0方向相反(3)空间向量的数乘运算律设λ,μ是实数,则有①分配律:λ(a+b)=λa+λb.②结合律:λ(μa)=(λμ)a.2.共线向量共线(平行)向量共面向量定义表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量平行于同一个平面的向量叫做共面向量充要条件对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb.若两个向量a,b不共线,则向量p与a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.推论如果l为经过点A平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OPu u u r=OAu u r+ta,①其中a叫做直线l的方向向量,如图所示. 若在l上取ABu u u r=a,则①式可化为OPu u u r=OAu u r+tABu u u r.如图,空间一点P位于平面MAB内的充要条件是存在有序实数对(x,y),使MPu u u r=x MAu u u r+y MBu u u r,或对空间任意一点O来说,有OPu u u r=OMu u u r+x MAu u u r+y MBu u u r.1.λa是一个向量.当λ=0或a=0时,λa=0.2.平面向量的数乘运算的运算律推广到空间向量的数乘运算,结论仍然成立.3.共线向量的充要条件及其推论是证明共线(平行)问题的重要依据,条件b≠0不可遗漏.4.直线的方向向量是指与直线平行或共线的向量.一条直线的方向向量有无限多个,它们的方向相同或相反.5.共面向量的充要条件给出了空间平面的向量表示式,说明空间中任意一个平面都可以由一点及两个不共线的平面向量表示出来.另外,还可以用OPu u u r=x OAu u r+y OBu u u r+z OCu u u r,且x+y+z=1判断P,A,B,C四点共面.空间向量的线性运算[例1]如图所示,在平行六面体ABCD-A1B1C1D1中,AMu u u r=12MCu u u r,1A Nu u u r=2NDu u u r.设ABu u u r =a,ADu u u r=b,1AAu u u r=c,试用a,b,c表示MNu u u r.[思路点拨]先利用三角形法则进行向量的加减运算,将MNu u u r表示成其他向量,然后进一步用a,b,c表示MNu u u r.[精解详析]如图所示,连接AN,则MNu u u r=ANu u u r-AMu u u r=1AA u u u r +1A N u u u r -13AC u u ur=1AA u u u r +231A D u u u r -13(AB u u u r +BC u u ur )=1AA u u u r +23(AD u u u r -1AA u u u r )-13(AB u u u r +AD u u u r)=c +23(b -c )-13(a +b )=-13a +13b +13c .[一点通] 用已知向量表示未知向量,体现了向量的数乘运算.解题时要结合具体图形,利用三角形法则、平行四边形法则,将目标向量逐渐转化为已知向量.本题也可以先将MNu u u r 表示为MN u u u r =MA u u u r +1AA u u ur +1A N u u u r .1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11A B u u u u r =a ,11A D u u u u r=b ,1A A u u u r =c ,则下列向量中与1B M u u u u r相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c解析:1B M u u u u r =1B B u u u r +BM u u u r =1B B u u u r +12(AD u u u r -AB u u u r )=1B B u u u r +12AD u u u r -12AB u u u r =-12a +12b +c .答案:A2.已知P 是正方形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值:(1) OQ u u u r =PQ u u u r +x PC u u u r +y PA u u r;(2) PA u u r =x PO u u u r +y PQ u u u r +PD u u u r.解:(1)∵OQ u u u r =PQ u u u r -PO u u ur =PQ u u u r -12(PA u u r +PC u u ur )=PQ u u u r -12PA u u r -12PC u u ur ,∴x =y =-12.(2)∵PA u u r +PA u u r =2PO u u u r ,∴PA u u r=2PO u u u r -PC u u u r .又∵PC u u u r +PD u u u r =2PQ u u u r ,∴PC u u u r =2PQ u u u r -PD u u u r .从而有PA u u r =2PO u u u r -(2PQ u u u r -PD u u u r )=2PO u u u r -2PQ u u u r +PD u u u r.∴x =2,y =-2.向量共线问题[例2] M ,N 分别是AC ,BF 的中点,判断CE u u u r 与MN u u u r是否共线.[思路点拨] 分析题意→CE u u u r =CB u u r +BE u u u r→根据M ,N 的位置表示出MN u u u r →根据CE u u u r 与MN u u u r的关系作出判断[精解详析] ∵M ,N 分别是AC ,BF 的中点, 四边形ABCD ,ABEF 都是平行四边形,∴MN u u u r =MC u u u r +CB u u r +BN u u u r=12AC u u ur +CB u u r +12BF u u u r =12(BC u u ur -BA u u r )+CB u u r +12(BA u u r +BE u u u r ) =12BC u u ur +CB u u r +12BE u u u r =12(CB u ur +BE u u u r ) =12CE u u u r . ∴CE u u u r ∥MN u u u r ,即CE u u u r 与MN u u u r共线.[一点通] 判定向量共线就是充分利用已知条件找到实数x ,使a =xb 成立,同时要充分利用空间向量运算法则,结合具体的图形,化简得出a =xb ,从而得出a ∥b ,即a 与b 共线.3.已知空间向量a ,b ,且AB u u u r=a +2b ,BC u u u r =-5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解析:BD u u u r =BC u u ur +CD u u u r =(-5a +6b )+(7a -2b )=2a +4b =2AB u u u r,∴A ,B ,D 三点共线.答案:A4.已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF u u u r =23CB u u r ,CG u u u r =23CD u u u r.求证:四边形EFGH 是梯形.证明:∵E ,H 分别是AB ,AD 的中点,∴AE u u u r =12AB u u u r ,AH u u u r =12AD u u u r,EH u u u r =AH u u u r -AE u u u r =12AD u u u r -12AB u u u r =12(AD u u u r -AB u u u r) =12BD u u ur =12(CD u u u r -CB u u r )=12(32CG u u u r -32CF u u u r ) =34(CG u u ur -CF u u u r )=34FG u u u r , ∴EH u u u r ∥FG u u u r 且|EH u u u r |=34|FG u u ur |≠|FG u u u r |.又点F 不在EH u u u r上,∴四边形EFGH 是梯形.向量共面问题[例3]试证:EF u u u r 与BC u u u r ,AD u u u r共面.[思路点拨] 分析题意→利用向量的运算法则表示EF u u u r→利用中点关系寻求EF u u u r ,BC u u u r ,AD u u u r的关系→应用向量共面的充要条件→得出结论[精解详析] 空间四边形ABCD 中,E ,F 分别是AB ,CD 上的点,则EF u u u r =EA u u r +AD u u u r +DF u u u r ,EF u u u r =EB u u r +BC u u ur +CF u u u r .①又E ,F 分别是AB ,CD 的中点,故有EA u u r =-EB u u r,DF u u u r=-CF u u u r .②将②代入①中,两式相加得2 EF u u u r =AD u u u r +BC u u ur .所以EF u u u r =12 AD u u u r +12BC u u u r ,即EF u u u r 与BC u u u r ,AD u u u r共面.[一点通] 利用向量法证明向量共面问题,关键是熟练进行向量的表示,恰当应用向量共面的充要条件.解答本题实质上是证明存在实数x ,y 使向量EF u u u r =x AD u u u r+y BC u u u r 成立,也就是用空间向量的加、减法则及运算律,结合图形,用AD u u u r ,BC u u u r 表示EF u u u r.5.在下列条件中,使M 与A ,B ,C 一定共面的是( )A .OM u u u r =3OA u u r -2OB u u u r -OC u u u rB .OM u u u r +OA u u r +OB u u u r +OC u u u r =0C .MA u u u r +MB u u u r +MC u u ur =0D .OM u u u r =14OB u u u r -OA u u r +12OC u u u r解析:∵MA u u u r +MB u u u r +MC u u ur =0,∴MA u u u r =-MB u u u r -MC u u ur ,∴M 与A ,B ,C 必共面. 答案:C6.已知e 1,e 2为两个不共线的非零向量,且AB u u u r =e 1+e 2,AC u u u r =2e 1+8e 2,AD u u u r=3e 1-3e 2 ,求证:A ,B ,C ,D 四点共面.证明:设存在实数λ,μ,使得AB u u u r =λAC u u u r +μAD u u u r,即e 1+e 2=λ(2e 1+8e 2)+μ(3e 1-3e 2) =(2λ+3μ)e 1+(8λ-3μ)e 2.∵e 1,e 2为两个不共线的非零向量,∴有⎩⎪⎨⎪⎧2λ+3μ=1,8λ-3μ=1,解得⎩⎨⎧λ=15,μ=15,即AB u u u r =15AC u u u r +15AD u u u r.从而点B 位于平面ACD 中,即A ,B ,C ,D 四点共面.1.共线向量定理包含两个命题,特别是对于两个向量a ,b ,若存在实数λ,使a =λb (b ≠0)⇒a ∥b ,可以作为以后证明线线平行的依据.2.共面向量的充要条件是判断三个向量是否共面的依据.其推论是判定空间四点共面的依据(若对空间任一点O ,有OP u u u r =αOA u u r +βOB u u u r +γOC u u u r(α+β+γ=1)成立,则P ,A ,B ,C 共面).3.在讨论向量共线或共面时,必须注意零向量与任意向量都共线.要注意:向量的共线与共面不具有传递性.1.下列命题中正确的个数是( )①若a 与b 共线,b 与c 共线,则a 与c 共线.②向量a ,b ,c 共面,即它们所在的直线共面.③若a ∥b ,则存在唯一的实数λ,使a =λb . A .0 B .1 C .2D .3①当b =0时,a 与c 不一定共线,故①错误;②中a ,b ,c 共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误; ③当b 为零向量,a 不为零向量时,λ不存在. 解析:①当b =0时,a 与c 不一定共线,故①错误;②中a ,b ,c 共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误; ③当b 为零向量,a 不为零向量时,λ不存在. 答案:A2.在四面体O -ABC 中,OA u u r =a ,OB u u u r =b ,OC u u u r=c ,D 为BC 的中点,E 为AD 的中点,则OE u u u r=( )A.12a -14b +14c B .a -12b +12cC.12a +14b +14cD.14a +12b +14c 解析:OE u u u r =OA u u r +AE u u u r =OA u u r +12AD u u u r=OA u u r +12×12(AB uu u r +AC uuu r )=OA u u r +14(OB u u u r -OA u u r +OC u u u r -OA u u r )=12OA u ur +14OB u u u r +14OC u u u r =12a +14b +14c . 答案:C3.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ,μ∈R 且λ,μ≠0),则( ) A .a ∥e 1 B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能解析:若a ∥e 1,则存在实数t 使得a =te 1, ∴te 1=λe 1+μe 2,∴(t -λ)e 1=μe 2,则e 1与e 2共线,不符合题意. 同理,a 与e 2也不平行.由向量共面的充要条件知C 正确. 答案:C4.A ,B ,C 不共线,对空间任意一点O ,若OP u u u r =34OA u u r +18OB u u u r +18OC u u u r,则P ,A ,B ,C四点( )A .不共面B .共面C .不一定共面D .无法判断是否共面解析:OP u u u r =34OA u u r +18OB u u u r +18OC u u u r=34OA u ur +18(OA u u r +AB u u u r )+18(OA u u r +AC u u u r ) =OA u u r +18AB u u u r +18AC u u u r ,∴OP u u u r -OA u u r =18AB u u u r +18AC u u ur ,∴AP u u u r =18AB u u u r +18AC u u ur .由共面的充要条件知P ,A ,B ,C 四点共面. 答案:B5.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB u u u r +12BC u u u r -32BE u u u r -AD u u u r化简的结果为________.解析:延长DE 交边BC 于点F ,则有AB u u u r +12BC u u u r =AF u u u r ,32DE u u u r+AD u u u r =AD u u u r +DF u u u r =AF u u u r ,故AB u u u r +12BC u u u r -32 DE u u u r -AD u u u r=0.答案:06.设e 1,e 2是平面内不共线的向量,已知AB u u u r=2e 1+ke 2,CB ―→=e 1+3e 2,CD u u u r=2e 1-e 2,若A ,B ,D 三点共线,则k =________.解析:AD u u u r =AB u u u r +BC u u u r +CD u u u r =AB u u u r -CB u u r +CD u u ur =3e 1+(k -4)e 2.由A ,B ,D 三点共线可知,存在λ使AB u u u r =λAD u u u r,即2e 1+ke 2=3λe 1+λ(k -4)e 2.∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧2=3λ,k =λ(k -4),可得k =-8. 答案:-87.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.证明:A ,E ,C 1,F 四点共面.证明:∵ABCD -A 1B 1C 1D 1是平行六面体,∴1AA u u u r =1BB u u u r =1CC u u u r =1DD u u u u r , ∴BE u u u r =13 1AA u u u r ,DF u u u r =231AA u u ur ,∴1AC u u u r =AB u u u r +AD u u u r +1AA u u u r =AB u u u r +AD u u u r +131AA u u ur +231AA u u u r=(AB u u u r +131AA u u u r )+(AD u u u r +231AA u u u r)=AB u u u r +BE u u u r +AD u u u r +DF u u u r =AE u u u r +AF u u u r .由向量共面的充要条件知A ,E ,C 1,F 四点共面.8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且1A E u u u r =21ED u u u r,F 在对角线A 1C上,且1A F u u u r =23FC u u ur .求证:E ,F ,B 三点共线.证明:设AB u u u r =a ,AD u u u r=b ,1AA u u u r =c .∵1A E u u u r =21AA u u u r ,1A F u u u r =23FC u u ur ,∴1A E u u u r =2311A D u u u u r ,1A F u u u r =251AC u u u r ,∴1A E u u u r =23AD u u u r =23b ,1A F u u u r =25(AC u u u r -1AA u u u r )=25(AB u u u r +AD u u u r -1AA u u ur )=25a +25b -25c . ∴EF u u u r =1A F u u u r -1A E u u u r =25a -415b -25c=25(a -23b -c ). 又EB u u r =1EA u u u r +1A A u u u r +AB u u u r =-23b -c +a =a -23b -c ,∴EF u u u r =25EB u u r.所以E ,F ,B 三点共线.。

19-20版 第3章 3.1 3.1.2 空间向量的基本定理

19-20版 第3章 3.1 3.1.2 空间向量的基本定理

3.1.2 空间向量的基本定理学习 目 标核 心 素 养1.了解共线向量、共面向量的意义,掌握它们的表示方法.2.理解共线向量的充要条件和共面向量的充要条件及其推论,并能应用其证明空间向量的共线、共面问题.(重点、难点)3.理解基底、基向量及向量的线性组合的概念.1.通过共线、共面向量基本定理的学习,培养学生数学抽象、逻辑推理素养.2.借助空间向量分解定理及任一空间向量可用一组基向量线性表示提升数学运算素养.1.共线向量定理与共面向量定理 (1)共线向量定理两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数x ,使a =xb . (2)向量共面的条件①向量a 平行于平面α的定义已知向量a ,作OA →=a ,如果a 的基线OA 平行于平面α或在α内,则就说向量a 平行于平面α,记作a ∥α.②共面向量的定义平行于同一平面的向量,叫做共面向量. ③共面向量定理如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是,存在唯一的一对实数x ,y ,使c =xa +yb .2.空间向量分解定理 (1)空间向量分解定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.(2)基底如果三个向量a,b,c是三个不共面的向量,则a,b,c的线性组合xa+yb+zc能生成所有的空间向量,这时a,b,c叫做空间的一个基底,记作{a,b,c},其中a,b,c都叫做基向量.表达式xa+yb+zc叫做向量a,b,c的线性表示式或线性组合.1.对于空间的任意三个向量a,b,2a-b,它们一定是()A.共面向量B.共线向量C.不共面向量D.既不共线也不共面的向量[答案] A2.给出的下列几个命题:①向量a,b,c共面,则存在唯一的有序实数对(x,y),使c=xa+yb;②零向量的方向是任意的;③若a∥b,则存在唯一的实数λ,使a=λb.其中真命题的个数为()A.0B.1C.2D.3B[只有②为真命题.]3.若{a,b,c}是空间的一个基底,且存在实数x,y,z使得xa+yb+zc=0,则x,y,z满足的条件是________.x=y=z=0[若x≠0,则a=-yx b+zx c,即a与b,c共面.由{a,b,c}是空间向量的一个基底,知a,b,c不共面,故x=0,同理y =z=0.]向量共线问题【例1】 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线. [证明] 设AB →=a ,AD →=b ,AA 1→=c . ∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→) =25a +25b -25c . ∴EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c .又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,∴EF →=25EB →.∴E ,F ,B 三点共线.判定两向量共线就是寻找x 使a =xb (b ≠0)成立,为此可结合空间图形并运用空间向量运算法则化简出a =xb ,从而得a ∥b .1.如图所示,已知空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是CB 、CD 上的点,且CF →=23CB →,CG →=23CD →.利用向量法求证四边形EFGH 是梯形. [证明] ∵E 、H 分别是边AB 、AD 的中点, ∴AE →=12AB →,AH →=12AD →,EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →=12(CD →-CB →)=12⎝ ⎛⎭⎪⎫32CG →-32CF →=34(CG →-CF →)=34FG →,∴EH →∥FG →且|EH →|=34|FG →|≠|FG →|,又F 不在EH 上,∴四边形EFGH 是梯形.共面向量定理及应用试证:EF →与BC →、AD →共面.[解] 空间四边形ABCD 中,E 、F 分别是AB 、CD 上的点,则EF →=EA →+AD →+DF →, EF →=EB →+BC →+CF →.①又E 、F 分别是AB 、CD 的中点,故有EA →=-EB →, DF →=-CF →,②将②代入①中,两式相加得2EF →=AD →+BC →.所以EF →=12AD →+12BC →,即EF →与BC →、AD →共面.利用向量法证明四点共面,实质上是证明的向量共面问题,解题的关键是熟练地进行向量表示,恰当应用向量共面的充要条件,解题过程中要注意区分向量所在的直线的位置关系与向量的位置关系.2.如图所示,P 是平行四边形ABCD 所在平面外一点,连接PA ,PB ,PC ,PD ,点E ,F ,G ,H 分别是△PAB ,△PBC ,△PCD ,△PDA 的重心,分别延长PE ,PF ,PG ,PH ,交对边于M ,N ,Q ,R ,并顺次连接MN ,NQ ,QR ,RM .应用向量共面定理证明:E ,F ,G ,H 四点共面.[证明] ∵E ,F ,G ,H 分别是所在三角形的重心, ∴M ,N ,Q ,R 为所在边的中点,顺次连接M ,N ,Q ,R ,所得四边形为平行四边形,且有PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →. ∵MNQR 为平行四边形,∴EG →=PG →-PE →=23PQ →-23PM →=23MQ →=23(MN →+MR →)=23(PN →-PM →)+23(PR →-PM →) =23⎝ ⎛⎭⎪⎫32PF →-32PE →+23⎝ ⎛⎭⎪⎫32PH →-32PE →=EF →+EH →.∴由共面向量定理得EG →,EF →,EH →共面,所以E ,F ,G ,H 四点共面.基底的判断及应用1.构成空间向量的基底唯一吗?是否共面? [提示] 不唯一,不共面. 2.怎样理解空间向量基本定理?[提示] (1)空间向量基本定理表明,用空间三个不共面已知向量组{a ,b ,c }可以线性表示出空间任意一个向量,而且表示的结果是唯一的.(2)空间中的基底是不唯一的,空间中任意三个不共面向量均可作为空间向量的基底.(3)拓展:设O ,A ,B ,C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组{x ,y ,z },使OP →=xOA →+yOB →+zOC →,当且仅当x +y +z =1时,P ,A ,B ,C 四点共面.【例3】 (1)若{a ,b ,c }是空间的一个基底,试判断{a +b ,b +c ,c +a }能否作为该空间的一个基底.(2)如图,在三棱柱ABC -A ′B ′C ′中,已知AA ′→=a ,AB →=b ,AC →=c ,点M ,N 分别是BC ′,B ′C ′的中点,试用基底{a ,b ,c }表示向量AM →,AN →.[思路探究] (1)判断a +b ,b +c ,c +a 是否共面,若不共面,则可作为一个基底,否则,不能作为一个基底.(2)借助图形寻找待求向量与a ,b ,c 的关系,利用向量运算进行分析,直至向量用a ,b ,c 表示出来.[解] (1)假设a +b ,b +c ,c +a 共面. 则存在实数λ、μ使得a +b =λ(b +c )+μ(c +a ), ∴a +b =λb +μa +(λ+μ)c .∵{a ,b ,c }为基底,∴a ,b ,c 不共面.∴⎩⎨⎧1=μ,1=λ,0=λ+μ.此方程组无解,∴a +b ,b +c ,c +a 不共面.∴{a +b ,b +c ,c +a }可以作为空间的一个基底. (2)AM →=AB →+BM →=AB →+12BC ′→=AB →+12(BB ′→+BC →)=AB →+12BB ′→+12(AC →-AB →)=b +12a +12(c -b )=b +12a +12c -12b=12a +12b +12c . AN →=AA ′→+A ′B ′→+B ′N → =AA ′→+A ′B ′→+12B ′C ′→=a +b +12(A ′C ′→-A ′B ′→)=a +b +12(c -b )=a +12b +12c .1.(变换条件)若把本例3(2)中的AA ′→=a 改为AC ′→=a ,其他条件不变,则结果又是什么?[解] AM →=AB →+BM → =AB →+12BC ′→=AB →+12(AC ′→-AB →)=b +12(a -b )=12a +12b . AN →=AC ′→+C ′N → =AC ′→+12C ′B ′→=AC ′→-12B ′C ′→=AC ′→-12(A ′C ′→-A ′B ′→)=a -12(c -b )=a +12b -12c .2.(变换条件、改变问法)如图所示,本例3(2)中增加条件“P 在线段AA ′上,且AP =2PA ′”,试用基底{a ,b ,c }表示向量MP →.[解] MP →=MC ′→+C ′A ′→+A ′P → =12BC ′→-A ′C ′→-13AA ′→ =12(BB ′→+BC →)-AC →-13AA ′→ =12[AA ′→+(AC →-AB →)]-AC →-13AA ′→ =12(a +c -b )-c -13a =16a -12b -12c .用基底表示向量的步骤(1)定基底:根据已知条件,确定三个不共面的向量构成空间的一个基底. (2)找目标:用确定的基底(或已知基底)表示目标向量,需要根据三角形法则及平行四边形法则,结合相等向量的代换、向量的运算进行变形、化简,最后求出结果.(3)下结论:利用空间向量的一个基底{a ,b ,c }可以表示出空间所有向量.表示要彻底,结果中只能含有a ,b ,c ,不能含有其他形式的向量.提醒:利用三角形法则或平行四边形法则,把所求向量用已知基向量表示出来.1.给出下列命题:①若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可作为空间的基底;②已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底;③A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,那么A ,B ,M ,N 共面;④已知向量组{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底.其中正确命题的个数是( )A .1B .2C .3D .4D [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底,否则就不能构成空间的一个基底.显然②正确,③中由BA →、BM →、BN →共面且过相同点B ,故A ,B ,M ,N 共面.下面证明①④正确.①假设d 与a ,b 共面,则存在实数λ,μ,使d =λa +μb , ∵d 与c 共线,c ≠0, ∴存在实数k ,使d ≠kc ,∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面与条件矛盾.∴d 与a ,b 不共面. 同理可证④也是正确的.]2.对空间任一点O 和不共线三点A 、B 、C ,能得到P ,A ,B ,C 四点共面的是( )A.OP →=OA →+OB →+OC →B.OP →=13OA →+13OB →+13OC →C.OP →=-OA →+12OB →+12OC →D .以上皆错B [∵OP →=13OA →+13OB →+13OC →,∴3OP →=OA →+OB →+OC →,∴OP →-OA →=(OB →-OP →)+(OC →-OP →), ∴AP →=PB →+PC →,∴PA →=-PB →-PC →,∴P ,A ,B ,C 共面.]3.已知正方体ABCD -A ′B ′C ′D ′,点E 是A ′C ′的中点,点F 是AE 的三等分点,且AF =12EF ,则AF →等于( )A.AA ′→+12AB →+12AD →B.12AA ′→+12AB →+12AD →C.12AA ′→+16AB →+16AD →D.13AA ′→+16AB →+16AD →D [由条件AF =12EF 知,EF =2AF ,∴AE =AF +EF =3AF , ∴AF →=13AE →=13(AA ′→+A ′E →)=13(AA ′→+12A ′C ′→) =13AA ′→+16(A ′D ′→+A ′B ′→)=13AA ′→+16AD →+16AB →.] 4.已知点M 在平面ABC 内,并且对空间任一点O ,OM →=xOA →+13OB →+13OC →,则x 的值为________.13 [因为点M 在平面ABC 中,即M ,A ,B ,C 四点共面,所以x +13+13=1,即x =13.]课时分层作业(十九) 空间向量的基本定理(建议用时:40分钟)[基础达标练]一、选择题1.下列命题中正确的个数是 ( )①若a 与b 共线,b 与c 共线,则a 与c 共线. ②向量a ,b ,c 共面,即它们所在的直线共面.③如果三个向量a ,b ,c 不共面,那么对于空间任意一个向量p 存在有序实数组{x ,y ,z },使得p =xa +yb +zc .④若a ,b 是两个不共线的向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,,c }构成空间的一个基底.A .0B .1C .2D .3 B [①中当b =0时,a 与c 不一定共线,故①错误;②中a ,b ,c 共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误;③正确;④不对,a ,b 不共线.当c =λa +μb 时,a ,b ,c 共面.]2.已知向量{a ,b ,c }是空间的一个基底,p =a +b ,q =a -b ,一定可以与向量p ,q 构成空间的另一个基底的是( )A .aB .bC .cD .无法确定 C [∵a =12p +12q ,∴a 与p ,q 共面,∵b =12p -12q ,∴b 与p ,q 共面,∵不存在λ,μ,使c =λp +μq ,∴c 与p ,q 不共面,故{c ,p ,q }可作为空间的一个基底,故选C.] 3.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →等于( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23cD.23a +23b -12c B [MN →=ON →-OM →=12(OB →+OC →)-23OA →=12(b +c )-23a =-23a +12b +12c .所以应选B.] 4.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( )A.⎝ ⎛⎭⎪⎫14,14,14B.⎝ ⎛⎭⎪⎫34,34,34C.⎝ ⎛⎭⎪⎫13,13,13D.⎝ ⎛⎭⎪⎫23,23,23 A [连接AG 1交BC 于E ,则E 为BC 中点, AE →=12(AB →+AC →)=12(OB →-2OA →+OC →), AG 1→=23AE →=13(OB →-2OA →+OC →). ∵OG →=3GG 1→=3(OG 1→-OG →),∴OG =34OG 1,∴OG →=34OG 1→=34(OA →+AG 1→)=34(OA →+13OB →-23OA →+13OC →) =14OA →+14OB →+14OC →,故选A.] 5.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→.其中能够化简为向量BD 1→的是( )A .①②B .②③C .③④D .①④[答案] A 二、填空题6.下列命题是真命题的是________(填序号).①若A ,B ,C ,D 在一条直线上,则AB →与CD →是共线向量; ②若A ,B ,C ,D 不在一直线上,则AB →与CD →不是共线向量;③若向量AB →与CD →是共线向量,则A ,B ,C ,D 四点必在一条直线上; ④若向量AB →与AC →是共线向量,则A ,B ,C 三点必在一条直线上. ①④ [①为真命题,A ,B ,C ,D 在一条直线上,向量AB →,CD →的方向相同或相反,因此AB →与CD →是共线向量;②为假命题,A ,B ,C ,D 不在一条直线上,则AB →,CD →的方向不确定,不能判断AB →与CD →是否为共线向量;③为假命题,因为AB →,CD →两个向量所在的直线可能没有公共点,所以A ,B ,C ,D 四点不一定在一条直线上;④为真命题,因为AB →,AC →两个向量所在的直线有公共点A ,且AB →与AC →是共线向量,所以A ,B ,C 三点共线.故填①④.]7.已知空间的一个基阿底{a ,b ,c },m =a -b +c ,n =xa +yb +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线,所以存在实数λ,使m =λn ,即a -b +c =λxa +λyb +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]8.如图,点M 为OA 的中点,{OA →,OC →,OD →}为空间的一个基底,DM →=xOA →+yOC →+zOD →,则有序实数组(x ,y ,z )=________.⎝ ⎛⎭⎪⎫12,0,-1 [DM →=OM →-OD →=12OA →-OD →, 所以有序实数组(x ,y ,z )=⎝ ⎛⎭⎪⎫12,0,-1.]三、解答题9.已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底.[解] 假设OA →,OB →,OC →共面,由向量共面的充要条件知,存在实数x ,y ,使得OA →=xOB →+yOC →成立, 即e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3) =(-3x +y )e 1+(x +y )e 2+(2x -y )e 3. 因为{e 1,e 2,e 3}是空间的一个基底, 所以e 1,e 2,e 3不共面,所以⎩⎨⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解.即不存在实数x ,y ,使得OA →=xOB →+yOC →成立, 所以OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 10.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB →=a ,AD →=b ,AA ′→=c ,P 是CA ′的中点,M 是CD ′的中点,N 是C ′D ′的中点,点Q 在CA ′上,且CQ ∶QA ′=4∶1,用基底{a ,b ,c }表示以下向量:(1)AP →;(2)AM →;(3)AN →;(4)AQ →.[解] 连接AC ,AD ′,AC ′(图略). (1)AP →=12(AC →+AA ′→)=12(AB →+AD →+AA ′→) =12(a +b +c ). (2)AM →=12(AC →+AD ′→)=12(AB →+2AD →+AA ′→) =12a +b +12c . (3)AN →=12(AC ′→+AD ′→)=12[(AB →+AD →+AA ′→)+(AD →+AA ′→)] =12(AB →+2AD →+2AA ′→) =12a +b +c . (4)AQ →=AC →+CQ → =AC →+45(AA ′→-AC →)=15AC →+45AA ′→ =15AB →+15AD →+45AA ′→ =15a +15b +45c . [能力提升练]1.如图,空间四边形ABCD 中,点G 为△BCD 的重心,E ,F ,H 分别为边CD ,AD 和BC 的中点,则AG →+13BE →+12CA →的化简结果为( )A.AF →B.AH →C.AE →D.CF →A [∵G 是△BCD 的重心, ∴|GE →|=13|BE →|,∴GE →=13BE →.又EF →=12CA →,∴AG →+13BE →=AG →+GE →=AE →,AE →+EF →=AF →,从而AG →+13BE →+12CA →=AF →.]2.在平行六面体ABCD -A 1B 1C 1D 1中,AM →=12MC →,A 1N →=2ND →.设AB →=a ,AD→=b ,AA 1→=c ,试用a ,b ,c 表示MN →为________.-13a +13b +13c [如图所示,连接AN , 则MN →=AN →-AM → =AA 1→+A 1N →-13AC →=AA 1→+23A 1D →-13(AB →+BC →)=AA 1→+23(AD →-AA 1→)-13(AB →+AD →)=c +23(b -c )-13(a +b )=-13a +13b +13c .]。

高中数学 第三章3.1.2 空间向量的数乘运算讲解与例题

高中数学 第三章3.1.2 空间向量的数乘运算讲解与例题

3.1.2 空间向量的数乘运算问题导学一、空间向量的数乘运算活动与探究1如图所示,已知正方体ABCD -A ′B ′C ′D ′,点E 是上底面A ′B ′C ′D ′的中心,求下列各式中x ,y ,z 的值:(1)''BD xAD y AB z AA =++u u u u r u u u r u u u r u u u r ;(2)'AE x AD y AB z AA =++u u u r u u u r u u u r u u u r .迁移与应用1.已知正方体ABCD -A ′B ′C ′D ′中,点F 是侧面CDD ′C ′的中心,若AF u u u r =AD u u u r+x AB u u u r +y 'AA u u u r,则x -y 等于( ).A .0B .1C .12D .-122.如图,平行六面体A 1B 1C 1D 1-ABCD 中,AM u u u u r =12MC u u u u r ,1A N u u u u r =2ND u u u r ,设AB u u u r =a ,ADu u u r=b ,1AA u u u r=c ,试用a ,b ,c 表示MN u u u u r .确定要表示的向量的终点是否是三角形边的中点,若是,利用平行四边形法则即可;若不是,利用封闭图形,寻找到所要表示的向量所对应的线段为其一边的一个封闭图形,利用这一图形中欲求向量与已知向量所在线段的联系,进行相应的向量运算是处理此类问题的基本技巧.一般地,可以找到的封闭图形不是唯一的.但无论哪一种途径,结果应是唯一的.二、共线向量活动与探究2如图,在平行六面体ABCD-A1B1C1D1中,M,N分别是C1D1,AB的中点,E在AA1上且AE=2EA1,F在CC1上且CF=12FC1,判断MEu u u r与NFu u u r是否共线?迁移与应用1.已知向量a ,b 且AB u u u r=a +2b ,BC uuu r =-5a +6b ,CD uuu r =7a -2b ,则一定共线的三点为( ).A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D2.如图,四边形ABCD 和ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点.判断CE u u u r 与MN u u u u r是否共线.1.判断向量a,b共线的方法有两种:(1)定义法,即证明a,b所在基线平行或重合.(2)利用“a=λb⇒a∥b”判断.2.如果a,b是由空间图形中的有向线段表示的,可利用空间向量的运算性质,结合具体图形,化简得出a=λb,从而得出a∥b,即a与b共线.三、共面向量活动与探究3已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM u u u u r =13OA u u u r +13OB uuu r +13OC u u u r.(1)判断MA u u u r ,MB u u u r ,MC u u uu r 三个向量是否共面;(2)判断点M 是否在平面ABC 内.迁移与应用1.下列说法中正确的是( ). A .平面内的任意两个向量都共线 B .空间的任意三个向量都不共面 C .空间的任意两个向量都共面 D .空间的任意三个向量都共面2.如图所示,已知ABCD ,从平面AC 外一点O 引向量OE uuu r =k OA u u u r ,OF u u u r =k OB uuu r ,OG u u u r=k OC u u u r ,OH u u u r =k OD u u u r,求证:(1)四点E ,F ,G ,H 共面; (2)平面AC ∥平面EG .1.证明向量共面,可以利用共面向量的充要条件,也可直接利用定义,通过线面平行、直线在平面内等进行证明.2.利用向量法证明点共面、线共面问题,关键是熟练地进行向量表示,恰当应用向量共面的充要条件,解题过程中注意直线与向量的相互转化.3.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP u u u r =x MA u u u r+y MB u u u r.满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面.答案:课前·预习导学 【预习导引】1.(1)λa 向量 (2)①相同 ②0 ③相反 ④|λ| (3)①λa +λb λa +μa ②(λμ)a预习交流1 提示:OG u u u r =OM u u u u r +MG u u u u r =OM u u u u r +23MN u u u u r=12OA u u ur +23(MO u u u u r +OC u u u r +CN u u u r )=12a +2311+()22⎡⎤-+-⎢⎥⎣⎦a c b c =12a -13a +23c +13b -13c =16a +13b +13c . 2.(1)互相平行或重合 共线向量 平行向量 (2)a =λb (3)方向向量 OA u u u r +t AB u u u r预习交流2 提示:由加法的平行四边形法则知①中P ,A ,B 三点不共线;②中向量表达式可化为PA u u u r =-2PB u u u r,故三点共线;同理③中P ,A ,B 三点也共线.3.(1)同一个平面 (2)(x ,y ) x a +y b (3)x AB u u u r +y AC u u u r OA u u u r +x AB u u u r+y AC u u u r预习交流3 (1)提示:不成立.因为当p 与a ,b 都共线时,存在不唯一的实数对(x ,y )使p =x a +y b 成立.当p 与a ,b 不共线时,不存在实数对(x ,y )使p =x a +y b 成立.(2)提示:原式可以变形为OP uuu r =(1-y -z )OA u u u r +y OB uuu r +z OC u u u r, ∴OP uuu r -OA u u u r =y (OB uuu r -OA u u u r )+z (OC u u u r -OA u u u r),即AP u u u r =y AB u u u r+z AC u u u r .∴点P 与点A ,B ,C 共面. 课堂·合作探究 【问题导学】活动与探究1 思路分析:利用三角形法则或平行四边形法则表示出指定向量,再根据对应向量系数相等,求出x ,y ,z 的值.解:(1)因为'BD u u u u r =BD u u u r +'DD u u u u r=BA u u u r +AD u u u r +'DD u u u u r =-AB u u u r +AD u u u r +'AA u u u r , 又'BD u u u u r =x AD u u u r +y AB u u u r +z 'AA u u u r ,所以x =1,y =-1,z =1.(2)因为AE u u u r ='AA u u u r +'A E u u u u r ='AA u u u r +12''A C u u u u ur='AA u u u r +12(''A B u u u u u r +''A D u u u u u r )='AA u u u r +12''A B u u u u u r +12''A D u u u u u r=12AD u u ur +12AB u u u r +'AA u u u r , 又AE u u u r =x AD u u u r +y AB u u u r +z 'AA u u u r ,所以x =12,y =12,z =1.迁移与应用 1.A解析:如图所示,∵AF AD DF =+u u u r u u u r u u u r,∴'DF x AB y AA =+u u u r u u u r u u u r .∴1''2DC xAB y AA =+u u u ur u u u r u u u r . ∴1''2AB xAB y AA =+u u uu r u u u r u u u r 'xAB yBB =+u u u r u u u r .∴11'''22AB BB xAB yBB +=+u u uu r u u u r u u u r u u u r . ∴12x y ==,x -y =0.2.解:MN u u u u r =MC u u u u r +CD uuu r +DN u u u r =23AC u u u r -AB u u u r +131DA u u uu r=23(AB u u ur +AD u u u r )-AB u u u r +13(1DD u u u u r +11D A u u u u r ) =23(AB u u ur +AD u u u r )-AB u u u r +13(1AA u u u r -AD u u u r ) =-13AB u u ur +13AD u u u r +131AA u u u r=-13a +13b +13c .活动与探究2 思路分析:结合给出的平行六面体,利用向量的线性运算对ME u u u r 或NFu u u r 进行化简转化,根据共线向量定理进行判断.解:由已知可得:ME u u u r =1MD u u u u r +11D A u u u u r +1A E u u u r=12BA u uu r +CB u u u r +131A A u u u r =-NB uuu r +CB u u u r +131C C u u u u r =CN u u u r +FC uuu r =FN u u u r =-NF u u u r .所以ME u u u r=-NF u u u r ,故ME u u u r 与NF u u ur 共线.迁移与应用 1.A 解析:因为BD u u u r =BC uuur +CD uuu r =-5a +6b +7a -2b =2a +4b =2AB u u u r ,所以AB u u u r 与BD u u u r共线,即A ,B ,D 三点共线.2.解:∵M ,N 分别是AC ,BF 的中点,而四边形ABCD ,ABEF 都是平行四边形,∴MN u u u u r =MA u u u r +AF u u u r +FN u u u r =12CA u u u r +AF u u u r +12FB u u u r .又∵MN u u u u r =MC u u u u r +CE u u u r +EB u u u r +BN u u u r=-12CA u uu r +CE u u u r -AF u u u r -12FB u u u r ,∴12CA u uu r +AF u u u r +12FB u u u r =-12CA u uu r +CE u u u r -AF u u u r -12FB u u u r .∴CE u u u r =CA u u u r +2AF u u u r +FB u u u r =2(MA u u u r +AF u u u r +FN u u ur )=2MN u u u u r , ∴CE u u u r ∥MN u u u u r ,即CE u u u r 与MN u u u u r共线.活动与探究3 思路分析:要证明三个向量共面,只需证明存在实数x ,y ,使MA u u u r =x MB u u u r+y MC u u u u r,证明了三个向量共面,点M 就在平面内.解:(1)∵OA u u u r +OB uuu r +OC u u u r =3OM u u u u r, ∴OA u u u r -OM u u u u r =(OM u u u u r -OB uuu r )+(OM u u u u r -OC u u u r),∴MA u u u r =BM u u u u r +CM u u u u r =-MB u u u r -MC u u uu r .∴向量MA u u u r ,MB u u u r ,MC u u uu r 共面.(2)由(1)向量MA u u u r ,MB u u u r ,MC u u uu r 共面,三个向量又有公共点M ,∴M ,A ,B ,C 共面.即点M 在平面ABC 内. 迁移与应用 1.C2.证明:(1)因为四边形ABCD 是平行四边形,所以AC u u u r =AB u u u r +AD u u u r ,EG u u u r =OG u u u r -OE uuu r =k OC u u u r -k OA u u u r =k AC u u u r =k (AB u u u r +AD u u u r )=k (OB uuu r -OA u u u r +OD u u u r -OA u u u r )=OF u u u r -OE uuu r +OH u u u r -OE uuu r =EF u u u r +EH u u u r .所以E ,F ,G ,H 共面.(2)EF u u u r =OF u u u r -OE uuu r =k (OB uuu r -OA u u u r )=k AB u u u r,且由第(1)小题的证明中知EG u u u r =k AC u u u r,于是EF ∥AB ,EG ∥AC .所以平面EG ∥平面AC .当堂检测1.当|a|=|b|≠0,且a ,b 不共线时,a +b 与a -b 的关系是( ). A .共面 B .不共面 C .共线 D .无法确定答案:A 解析:空间中任何两个向量都是共面向量,但不一定共线. 2.下面关于空间向量的说法正确的是( ). A .若向量a ,b 平行,则a ,b 所在的直线平行B .若向量a ,b 所在直线是异面直线,则a ,b 不共面C .若A ,B ,C ,D 四点不共面,则向量AB u u u r ,CD uuur 不共面D .若A ,B ,C ,D 四点不共面,则向量AB u u u r ,AC u u u r ,AD u u u r不共面答案:D 解析:可以通过平移将空间中任意两个向量平移到一个平面内,因此空间任意两个向量都是共面的,故B ,C 都不正确.注意向量平行与直线平行的区别,可知A 不正确,可用反证法证明D 是正确的.3.如图所示,已知空间四边形ABCD 中,F 为BC 的中点,E 为AD 的中点,若EF u u u r =λ(AB u u u r+DC u u u r),则λ=______.答案:12 解析:如图所示,取AC 的中点G ,连结EG ,GF ,则EF u u u r =EG u u u r +GF u u u r =12(AB u u u r +DC u u u r ).∴12λ=. 4.在空间四边形ABCD 中,连结AC ,BD .若△BCD 是正三角形,且E 为其中心,则1322AB BC DE AD +--u u u r u u u r u u u r u u u r 的化简结果为__________. 答案:0 解析:如图,延长DE 交BC 于点F ,根据题意知F 为BC 的中点.又因为E 为正三角形BCD 的中心, 所以DE u u u r =23DF u u u r 即DF u u u r =32DE u u u r , 所以AB u u u r +12BC u u u r -32DE u u u r -AD u u u r =(AB u u u r -AD u u u r )+BF u u u r -32DE u u u r =DB u u u r +BF u u u r -DF u u u r =DF u u u r -DF u u u r =0.5.已知ABCD -A ′B ′C ′D ′是平行六面体.(1)化简12'23AA BC AB ++u u u r u u u r u u u r ,并在图中标出其结果; 答案:解:)如图,取AA ′的中点E ,则12'AA u u u r ='EA u u u r .又BC uuu r =''A D u u u u u r ,AB u u u r =''D C u u u u u r ,取F 为D ′C ′的一个三等分点2'''3D F D C ⎛⎫= ⎪⎝⎭,则'D F u u u u r =23AB u u u r . ∴12'AA u u u r +BC uuu r +23AB u u u r ='EA u u u r +''A D u u u u u r +'D F u u u u r =EF u u u r . (说明:表示方法不惟一) (2)设M 是底面平行四边形ABCD 的中心,N 在侧面BCC ′B ′的对角线BC ′上,且BN =3NC ′,设MN u u u u r =αAB u u u r +βAD u u u r +γ'AA u u u r ,试求α,β,γ的值. 答案:解:MN u u u u r =MB u u u r +BN u u u r =12DB u u u r +34'BC u u u u r =12(DA u u u r +AB u u u r )+34(BC uuu r +'CC u u u u r )=12(-AD u u u r +AB u u u r )+34(AD u u u r +'AA u u u r )=12AB u u u r +14AD u u u r +34'AA u u u r , ∴12α=,14β=,34γ=.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.。

高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2 空间向量的数乘运算学案(

高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2 空间向量的数乘运算学案(

3.1.2 空间向量的数乘运算[目标] 1.掌握空间向量的数乘运算的定义和运算律,了解共线(平行)向量的意义.2.理解共线向量定理和共面向量定理及其推论,会证明空间三点共线与四点共面问题.[重点] 应用共线定理与共面定理解决共线问题与共面问题.[难点] 证明线面平行与面面平行.知识点一空间向量的数乘运算[填一填][答一答]1.空间向量的数乘运算与平面向量的数乘运算有什么关系?提示:相同.2.类比平面向量,空间向量的数乘运算满足(λ+μ)a=λa+μa(λ,μ∈R),对吗?提示:正确.类比平面向量的运算律可知.知识点二共线、共面定理[填一填][答一答]3.a =λb 是向量a 与b 共线的充要条件吗?提示:不是.由a =λb 可得出a ,b 共线,而由a ,b 共线不一定能得出a =λb ,如当b =0,a ≠0时.4.空间中任意两个向量一定共面吗?任意三个向量呢?提示:空间任意两个向量一定共面,但空间任意三个向量不一定共面. 5.共面向量定理中为什么要求a ,b 不共线?提示:如果a ,b 共线,则p 一定与向量a ,b 共面,却不一定存在实数组(x ,y ),使p =x a +y b ,所以共面向量基本定理的充要条件要去掉a ,b 共线的情况.6.已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP →=xOA →+yOB →+zOC →(其中x +y +z =1)的点P 与点A ,B ,C 是否共面?提示:四点共面.∵x +y +z =1,∴x =1-y -z ,又∵OP →=xOA →+yOB →+zOC →∴OP →=(1-y -z )OA →+yOB →+zOC →∴OP →-OA →=y (OB →-OA →)+z (OC →-OA →) ∴AP →=yAB →+zAC →, ∴点P 与点A ,B ,C 共面.1.共线向量、共面向量不具有传递性.2.共线向量定理及其推论是证明共线(平行)问题的重要依据.定理中的条件a ≠0不可遗漏.3.直线的方向向量是指与直线平行或共线的向量.一条直线的方向向量有无限多个,它们的方向相同或相反.4.空间任意两个向量总是共面的,空间任意三个向量可能共面,也可能不共面. 5.向量p 与a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.类型一 空间向量的数乘运算【例1】 设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,试用向量OA →,OB →,OD →表示AE →.【分析】 将向量AE →分解成OA →,OB →,OD →的线性组合的形式. 【解】 由题意,可以作出如下图所示的几何图形.在封闭图形ADOE 中,有:AE →=AD →+DO →+OE →, ①在△AOD 中,AD →=OD →-OA →. ②在△BOC 中,OC →=BC →-BO →,∵AD →=BC →,∴OC →=AD →+OB →=OD →-OA →+OB →. 又∵OE →=12OC →,∴OE →=12(OD →-OA →+OB →)=-12OA →+12OB →+12OD →. ③又DO →=-OD →, ④ 将②、③、④代入①可得: AE →=(OD →-OA →)-OD →+⎝ ⎛⎭⎪⎫-12OA →+12OB →+12OD →=-32OA →+12OB →+12OD →,∴AE →=-32OA →+12OB →+12OD →.寻找到以欲表示的向量所对应的线段为其一边的一个封闭图形,利用这一图形中欲求向量与已知向量所在线段的联系进行相应的向量运算是处理此类问题的基本技巧,一般地,可以找到的封闭图形不是唯一的.但需知,无论哪一种途径,结果应是唯一的.如下图所示,在平行六面体ABCD ­A ′B ′C ′D ′中,设AB →=a ,AD →=b, AA ′→=c ,E 和F分别是AD ′和BD 的中点,用向量a ,b ,c 表示D ′B →,EF →.解:D ′B →=D ′A ′→+A ′B ′→+B ′B →=-b +a -c .EF →=EA →+AB →+BF →=12D ′A →+a +12BD →=12(-b -c )+a +12(-a +b )=12(a -c ).类型二 空间向量的共线问题【例2】 如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.【解】 因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.判断向量共线就是充分利用已知条件找到实数λ,使a =λb 成立,同时要充分运用空间向量的运算法则,结合空间图形,化简得出a =λb ,从而得出a ∥b .如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.证明:设AB →=a ,AD →=b ,AA 1→=c . ∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c . ∴EF →=A 1F →-A 1E →=25a -415b -25c =25(a -23b -c ).又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,∴EF →=25EB →,所以E ,F ,B 三点共线.类型三 空间向量的共面问题【例3】 已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.【解】 (1)∵OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →)=BM →+CM →,∴MA →=BM →+CM →=-MB →-MC →,∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1证明向量共面,可以利用共面向量的充要条件,也可直接利用定义,通过线面平行或直线在平面内进行证明.2向量共面向量所在的直线不一定共面,只有这些向量都过同一点时向量所在的直线才共面向量的起点、终点共面.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证: (1)E ,F ,G ,H 四点共面. (2)BD ∥平面EFGH .证明:如下图,连接EG ,BG .(1)因为EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知:E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .1.下列命题中正确的是( C )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量a ,b ,c 共面,即它们所在的直线共面C .零向量没有确定的方向D .若a ∥b ,则存在唯一的实数λ,使a =λb解析:A 中,若b =0,则a 与c 不一定共线;B 中,共面向量的定义是平行于同一平面的向量,表示这些向量的有向线段所在的直线不一定共面;D 中,若b =0,a ≠0,则不存在λ.2.当|a |=|b |≠0,且a 、b 不共线时,a +b 与a -b 的关系是( A ) A .共面 B .不共面 C .共线D .无法确定解析:a +b 与a -b 不共线,则它们共面.3.设O ­ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( A )A .(14,14,14)B .(34,34,34)C .(13,13,13)D .(23,23,23)解析:因为OG →=34OG 1→=34(OA →+AG 1→)=34OA →+34×23[12(AB →+AC →)]=34OA →+14[(OB →-OA →)+(OC →-OA →)]=14OA →+14OB →+14OC →,而OG →=xOA →+yOB →+zOC →,所以x =14,y =14,z =14.4.已知A 、B 、C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A 、B 、C 共面,则λ=2.解析:M 与A 、B 、C 共面,则OM →=xOA →+yOB →+zOC →,其中x +y +z =1,结合题目有-2+1+λ=1,即λ=2.5.如下图,正方体ABCD ­A 1B 1C 1D 1中,E 、F 分别为BB 1和A 1D 1的中点.证明:向量A 1B →,B 1C →,EF →是共面向量.证明:EF →=EB →+BA 1→+A 1F →=12B 1B →-A 1B →+12A 1D 1→=12(B 1B →+BC →)-A 1B →=12B 1C →-A 1B →.由向量共面的充要条件知,A 1B →,B 1C →,EF →是共面向量.。

3.1.2空间向量数乘运算

3.1.2空间向量数乘运算
=kO→C-kO→A=kA→C=k(A→B+A→D)=k(O→B-O→A+O→D-O→A) =O→F-O→E+O→H-O→E=E→F+E→H.
由向量共面的充要条件知 E,F,G,H 四点共面.
研一研·问题探究、课堂更高效
因此E→G=O→G-O→E =kO→C-kO→A=kA→C =k(A→B+A→D)=k(O→B-O→A+O→D-O→A) =O→F-O→E+O→H-O→E=E→F+E→H. 由向量共面的充要条件知 E,F,G,H 四点共面.
是对只平于有面这一内一对的平实两面数个内1 不的,2共任使线意的 向a 向 量 量a1e,1,那有2么e且2
如果空间向量
p
与两不共线向量
a
,b

面,那么可将三个向量平移到同一平面 ,则
有 p x yb
反果过p来 ,x对空y间b,任那意么两向个量不p共与线向的量向a量 ,
小结 证明三个向量共面(或四点共面),需利用共面向量定 理,证明过程中要灵活进行向量的分解与合成,将其中一 个向量用另外两个向量进行表示.
跟踪训练 3 如图所示,已知矩形 ABCD 和
矩形 ADEF 所在的平面互相垂直,点 M, N 分别在对角线 BD,AE 上,且 BM=13BD, AN=13AE.求证:向量M→N,C→D,D→E共面.

a
a // b(b 0)
b (b 0)

a b (b 0) 性质 a // b (b 0) 判定
由此可判断空间中两直线平行或三点共线问题
如图,l 为经过已知点A且平行已知非零向量 a
的直线, 若点P是直线l上任意一点,则

l
//
a
知存在唯一的t,

空间向量及其运算

空间向量及其运算

3.1空间向量及其运算3.1.1空间向量的线性运算教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.起点与重点重合的向量叫做零向量。

选修2-1 第三章 3.1.2 空间向量的数乘运算

选修2-1  第三章 3.1.2 空间向量的数乘运算
[解析] M、N 分别是 AC、BF 的中点,而 ABCD、ABEF 都是平行四边形, → → → → 1→ → 1→ ∴MN=MA+AF+FN=2CA+AF+2FB.
→ → → → → 又∵MN=MC+CE+EB+BN 1 → → → 1→ =-2CA+CE-AF-2FB, 1→ → 1→ 1→ → → 1→ ∴2CA+AF+2FB=-2CA+CE-AF-2FB. → → → → → → → ∴CE=CA+2AF+FB=2(MA+AF+FN). → → → → → → ∴CE=2MN,∴CE∥MN,即CE与MN共线.
新知导学
6.a∥α是指a所在的直线____________ 在平面α内 或_____________. 平行于平面α 同一个平面 的向量叫做共面向量,共面向量所在 平行于____________ 异面 . 的直线可能相交、平行或________
7.空间任意两个向量总是共面的, 但空间任 意三个向量就不一定共面了.例如,图中的长 → → → 方体,向量AB、AC、AD,无论怎样平移都不 能使它们在同一平面内.
指明两向量有公共点,同理证明二直线平行方法类似.
如右图,已知四边形 ABCD 是空间 四边形, E、 H 分别是边 AB、 AD 的中点, → F、G 分别是边 CB、CD 上的点,且CF= 2→ → 2 → 3CB,CG=3CD. 求证:四边形 EFGH 是梯形.
[证明] ∵E、H 分别是 AB、AD 的中点, → 1→ → 1 → ∴AE=2AB,AH=2AD. → 2→ → 2 → ∵CF=3CB,CG=3CD, → 3→ → 3 → ∴CB=2CF,CD=2CG,
共线向量 温故知新 回顾复习平面向量中数乘向量与共线向量的概念与定理, 运算律. 思维导航 1 .参照平面向量思考,空间向量中,数乘向量的定义, 运算律,共线向量定理还成立吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 1.2空间向量及其运算(2)
教学目标:1.理解共线向量定理和共面向量定理及它们的推论;
2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.
教学重、难点:共线、共面定理及其应用. 教学过程:
(一)复习:空间向量的概念及表示; (二)新课讲解:
1.共线(平行)向量:
如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或
平行向量。

读作:a 平行于b ,记作://a b .
2.共线向量定理:
对空间任意两个向量,(0),//a b b a b ≠
的充要条件是存在实数λ,使a b λ= (λ唯一).
推论:如果l 为经过已知点A ,且平行于已知向量a
的直线,那么对任一点O ,点P 在直
线l 上的充要条件是存在实数t ,满足等式OP OA t AB =+ ①,其中向量a
叫做直线l 的方
向向量。

在l 上取AB a = ,则①式可化为OP OA t AB =+ 或(1)OP t OA tOB =-+

当1
2t =时,点P 是线段AB 的中点,此时1()2
OP OA OB =+ ③
①和②都叫空间直线的向量参数方程,③是线段AB 的中点公式.
3.向量与平面平行:
已知平面α和向量a ,作OA a = ,如果直线OA 平行于α或在α内,那么我们说向
量a 平行于平面α,记作://a α

通常我们把平行于同一平面的向量,叫做共面向量.
说明:空间任意的两向量都是共面的. 4.共面向量定理:
如果两个向量,a b 不共线,p 与向量,a b
共面的充要条件是存在实数,x y 使
p xa yb =+

推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使
MP xMA yMB
=+ 或对空间任一点O ,有OP OM xMA yMB =++
① 上面①式叫做平面MAB 的向量表达式.
(三)例题分析:
例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555
OP OA OB OC =++

试判断:点P 与,,A B C 是否一定共面?
a
l
P
B
A O
a a
α
解:由题意:522OP OA OB OC =++

∴()2()2()OP OA OB OP OC OP -=-+- , ∴22AP PB PC =+ ,即22PA PB PC =-- ,
所以,点P 与,,A B C 共面.
说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当
的充要条件形式,然后对照形式将已知条件进行转化运算. 【练习】:对空间任一点O 和不共线的三点,,A B C ,问满足向量式
OP xOA yOB zOC =++
(其中1x y z ++=)的四点,,,P A B C 是否共面? 解:∵(1)OP z y OA yOB zOC =--++ ,
∴()()OP OA y OB OA z OC OA -=-+- , ∴AP yAB zAC =+
,∴点P 与点,,A B C 共面.
例2.已知
ABCD ,从平面AC 外一点O 引向量
,,,OE kOA OF KOB OG kOC OH kOD ==== ,
(1)求证:四点,,,E F G H 共面; (2)平面AC //平面EG .
解:(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+

∵EG OG OE =-

()()
()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OE EF EH
=⋅-⋅=-==+=-+-=-+-=+ ∴,,,E F G H 共面;
(2)∵()EF OF OE k OB OA k AB =-=-=⋅
,又∵EG k AC =⋅ ,
∴//,//EF AB EG AC
所以,平面//AC 平面EG .
课堂练习:
课堂小结:1.共线向量定理和共面向量定理及其推论;
2.空间直线、平面的向量参数方程和线段中点向量公式.
作业:
1.已知两个非零向量21,e e 不共线,如果21AB e e =+ ,2128AC e e =+ ,2133AD e e =-

求证:,,,A B C D 共面.
2.已知324,(1)82a m n p b x m n yp =--=+++ ,0a ≠
,若//a b ,求实数,x y 的值。

3.如图,,,,E F G H 分别为正方体1AC 的棱11111111,,,A B A D B C DC 的中点,
求证:(1),,,E F D B 四点共面;(2)平面AEF //平面BDHG . 4.已知,,,E F G H 分别是空间四边形ABCD 边,,,AB BC CD DA 的中点, (1)用向量法证明:,,,E F G H 四点共面; (2)用向量法证明://BD 平面EFGH .
3.1.2空间向量及其运算(2)
课前预习学案
预习目标:1.理解共线向量定理和共面向量定理及它们的推论;
2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式 预习内容:
⑴怎样的向量叫做共线向量?
⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量?
⑹向量p 与不共线向量a 、b 共面的充要条件是什么? ⑺空间一点P 在平面MAB 内的充要条件是什么? 提出疑惑:
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
学习目标:1.理解共线向量定理和共面向量定理及它们的推论;
2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.
学习重、难点:共线、共面定理及其应用. 学习过程:
例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555
OP OA OB OC =++

试判断:点P 与,,A B C 是否一定共面?
【练习】:对空间任一点O 和不共线的三点,,A B C ,问满足向量式
OP xOA yOB zOC =++
(其中1x y z ++=)的四点,,,P A B C 是否共面?

例2.已知ABCD
,从平面AC 外一点O 引向量
,,,OE kOA OF KOB OG kOC OH kOD ==== ,
(1)求证:四点,,,E F G H 共面; (2)平面AC //平面EG . 当堂检测:
1、如图中,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且分
所成的定比为2,现用基向量
( )
A .
B .
C .
D .
2.下列命题正确的是
( )
()A 若a 与b 共线,b 与c 共线,则a 与c
共线;
()B 向量,,a b c
共面就是它们所在的直线共面;
()C 零向量没有确定的方向;
()D 若//a b ,则存在唯一的实数λ使得a b λ= ;
3.已知A 、B 、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A 、
B 、
C 一定共面的是 ( )
()A OC OB OA OM ++= ()B OC OB OA OM --=2
()C OC OB OA OM 3121++= ()D OC OB OA OM 31
3131++= 4.已知两个非零向量21,e e 不共线,如果21AB e e =+ ,2128AC e e =+ ,2133AD e e =-

求证:,,,A B C D 共面. 课堂练习与提高:
1.已知324,(1)82a m n p b x m n yp =--=+++ ,0a ≠
,若//a b ,求实数,x y 的值。

2.如图,,,,E F G H 分别为正方体1AC 的棱11111111,,,A B A D B C DC 的中点, 求证:(1),,,E F D B 四点共面;(2)平面AEF //平面BDHG . 3.已知,,,E F G H 分别是空间四边形ABCD 边,,,AB BC CD DA 的中点,
E F G H四点共面;(1)用向量法证明:,,,
BD平面EFGH.(2)用向量法证明://。

相关文档
最新文档