1.2 反比例函数的图像和性质(2) 课件3-

合集下载

第1章 1.2 第2课时 y=k╱x(k<0)的图象与性质

第1章 1.2 第2课时 y=k╱x(k<0)的图象与性质

自我诊断 1.已知点 A(-2,y1)、B(3,y2)是反比例函数 y=kx(k<0)图象上的
两点,则有( B )
A.y1<0<y2 C.y1<y2<0
B.y2<0<y1 D.y2<y1<0
求反比例函数解析式
自我诊断 2. 若反比例函数 y=kx的图象经过点(2,-6),则 k 的值为( A )
A.-12
12.如图,直线 y=-3x 与双曲线 y=m-x 5交于点 P(-1,n). (1)求 m 的值; (2)若点 A (x1,y1)、B(x2,y2)在双曲线 y=m-x 5上,且 x1 <x2<0,试比较 y1、y2 的大小.
解:(1)∵点 P(-1,n)在直线 y=-3x 上,∴n=3,∵点 P(-1,3)在双曲线 m-5
B.12
C.-3
D.3
易错点:忽略了反比例函数图象的位置而将 k 值求错.
自我诊断 3. 如图,反比例函数 y=kx的图象经过点 P,则 k= -6 .
1.反比例函数 y=-3x的大致图象是( B )
2.关于反比例函数 y=-2x的图象,下列说法正确的是( C )
A.经过点(-1,-2)
B.无论 x 取何值时,y 随 x 的增大而增大
A.-1 C.-3
B.-2 D.-4
7.关于反比例函数 y=-2x,下列说法正确的是( D ) A.图象过点(1,2) B.图象在第一、三象限 C.当 x>0 时,y 随 x 的增大而减小 D.当 x<0 时,y 随 x 的增大而增大 8.(张家界中考)在同一平面直角坐标系中,函数 y=mx+m(m≠0)与 y=mx (m≠0)的图象可能是( D )
数学 九年级 上册•X
第1章 反比例函数
1.2 反比例函数的图象与性质 第2课时 y=k╱x(k<0)的图象与性质

人教版九年级数学下册26.1.2反比例函数的图像和性质(第2课时) 课件

人教版九年级数学下册26.1.2反比例函数的图像和性质(第2课时) 课件

【解析】因为反比例函数y=mxm²-5,它的两个
分支分别在第一、第三象限,
所以必须满足{
m²-5= m﹥0
-1
得 m =2
y
y=mxm²-5
0
x
1、反比例函数 y kx的图象经过(2,
-1),则k的值为
; -2
2、反比例函数 y kx的图象经过点(2, 5),若点(1,n)在反比例函数图象
【解析】选C.设A点的坐标为(a,b),则k=ab,△ABO的
面积为 1 OB OA 1 ab 3 ,所以ab=6,即k=6
2
2
5.(威海·中考)如图,一次函数y=kx+b的图象与反比
知识巩固
1.函数 y =
5 x
的图象在第_二__,四__象限,在每
个象限内,y 随 x 的增大而_增__大__ .
2. 双曲线 y =
1 3x
经过点(-3,___)
3.函数
y
=
m-2 x
的图象在二、四象限,则m的取
值范围是m__<_2_ .
4.对于函数 y =
1 2x
,当 x<0时,y 随x的_减__小__而
y
y
B
P(m,n)
oA
x
根据象限确定k的符号
B
P(m,n)
oA
x
2.根据图中点的坐标
y A(-2,b).
0
(1)求出y与x的函数解析式.
(2)如果点A(-2,b)在双
x 曲线上,求b的值. B (3,-1) (3)比较绿色部分和黄色部
分的面积的大小.
答案:(1) y 3 x
(2)
y3 2

17.1.2反比例函数的图像和性质(2)

17.1.2反比例函数的图像和性质(2)
法 求反比例 函数解析式 2.我会用反比例函数的性质 来 解决问题
k
(选做题)
k 正比例函数y=x的图像与反比例函数 y= x
的图像有一个交点的纵坐标是2。 求: ⑴当x=-3时,反比例函数y的值; ⑵当-3<x<-1时,反比例函数y的取值范围.
思考
已知反比例函数 y= x 的图像的一 支位于第四象限: ①图像的另一支在哪个象限?常数w 的取值范围是? ②在这个函数图像的某一支上任取一 点A(a,b)和点B(c,d),如果b>d,那么a 与c有怎样的大小关系?
即时训练(10分钟)
请同学们先做P45页的练习,然后请几名同 学回答,再更正。 当堂达标训练(10分钟) (必做题) 1. 点(1,3)在反比例函数 y= x 的图像上,则k= ;在图像的每一支上,y随x 的增大而 . (必做题) 2. 如果y是z的反比例函数,z是x的 反比例函数,那么y与x有怎样的函数关系?
17.1.2 反比例函数的 图像和性质(2)
莲峰第一中学 页, 先快速阅读课本P44-45 何鑫露 何静 并思考P45页练习 制作
学习目标
1.会用待定系数法求反比例函数的解析式 2.会用反比例函数的性质来解决问题
自学指导
先看课本P44-45页,然后回答下列问题(8-10分钟)
问题:已知一个点的坐标,并且反比例函数的图像过这 点,如何求解析式。如:已知反比例函数 y= k 图像过点 x (-3,4),则k= ,y= , y随x增大而 . 点 (-3, -4), (3, -4), (2, 5), (2, -6), (-2,6),(2,6),(3,4)哪些点在函数图像上?

反比例函数的图象和性质(2)课件人教版数学九年级下册

反比例函数的图象和性质(2)课件人教版数学九年级下册

o
x
-1
A
2、下列各点在双曲线
y2 x
上的是( B

A、( 4 , 3 ) 32
B、( 4 , 3 ) 32
C、( 3 , 4 ) 43
D、( 3 , 8 ) 43
例2:如图是反比例函数 y m 5 的图象一支,
根据图象回答下列问题 :
x
(1)图象的另一支在哪个象限?常数m的取值范围是
什么?
探究1.
如图,点P是反比例函数 y 图2 象上的一 x
点,PD⊥x轴于D.求△POD的面积
1
S△POD
=
2
OD·PD
=
1 m n
2
=
1k 2
y
P (m,n)
oD
x
如图,点P是反比例函数 y 图2象上的一 x
点,PA⊥x轴于A, PB⊥y轴于B.则长方形
PAOB的面积为 2. S△POD =OD·PD
y
o SS1 1A
SS2
B
x
C2 D
8.如图,在y 1 (x 0)的图像上有三点A, B,C, x
经过三点分别向x轴引垂线,交x轴于A1, B1,C1三点,
边结OA,OB,OC,记OAA1, OBB1, OCC1的
面积分别为S1, S2, S3,则有 _A_ .
y
A.S1 = S2 = S3
B. S1 < S2 < S3
小测:
1.反比例函数的图象是__双__曲__线______.
2.反比例函数
y2 x
的图象在第__二__、__四___象限内,
在每一象限内,y 随x 的增大而______增__大_.
3.点(m,2) 在双曲线

反比例函数的图像和性质(2)精品课件

反比例函数的图像和性质(2)精品课件

04
05
思路
1. 审题
2. 设定变量
3. 建立反比例函 4. 求解面积 数关…
根据题目所给条件,设定 合适的变量,建立反比例 函数关系式,进而求解面 积。
明确题目中的已知条件和 未知量,确定求解目标。
根据题目中的条件,选择 合适的变量表示面积。
根据题目中的条件,建立 反比例函数关系式。
利用反比例函数的性质, 求解面积。
速度、时间、距离关系建模
1. 明确速度、时间、距离 之间的关系:速度=距离/
时间。
3. 建立反比例函数模型: 根据速度、时间、距离之 间的关系,建立反比例函
数模型。
01
02
03
04
05
思路:根据速度、时间、 距离之间的关系,建立反
比例函数模型。
2. 设定变量:选择合适的 变量表示速度、时间或距
离。
特殊值比较法
在函数的定义域内取特殊值进行比较,从而 判断函数的单调性。
奇偶性判断方法
01
02
03
定义判断法
根据奇函数和偶函数的定 义,判断反比例函数是否 满足奇函数或偶函数的性 质。
图像观察法
通过观察反比例函数的图 像是否关于原点对称或关 于y轴对称,判断函数的 奇偶性。
代数运算判断法
通过代数运算将反比例函 数化为标准形式,从而判 断其奇偶性。
一般地,如果两个变量$x$、$y$ 之间的关系可以表示成$y=k/x (k 为常数,k≠0)$的形式,那么称 $y$是$x$的反比例函数。
表达式
反比例函数的表达式为 $y = frac{k}{x}$,其中 $k$ 是常数且 $k neq 0$。
自变量取值范围
01

九年级数学下册 第1章反比例函数 1.2 反比例函数的图象与性质第2课时课件 湘教版

九年级数学下册 第1章反比例函数 1.2 反比例函数的图象与性质第2课时课件 湘教版


解得k=3.
3.(2013·六盘水中考)下列图形中,阴影部分面积最大的 是( )
【解析】选C.A,B中阴影部分的面积均为 3 3 C3中; 延长MN
22
交x轴于点P,直线MN的解析式y=-x+4,直线MN与x轴的交点P的
坐标(4,0),则C中阴影部分的面积为S△MOP-S△NOP=12 ×4×3-
A.1
B.2
C.3
D.4
【解析】选B.∵点B的横坐标为1,
∴纵坐标为y= 2 =2,
1
∴AB=2,BC=1,∴S矩形OABC=2×1=2.
2.(2013·内江中考)如图,反比例函数
y= k (x>0)的图象经过矩形OABC对角
x
线的交点M,分别与AB,BC相交于点D,
E,若四边形ODBE的面积为9,则k的值为( )
1 ×4×1=4;D中的阴影部分的面积为 ×1 1×6=3;可见,C中阴
2
2
影部分的面积最大.故选C.
4.(2013·永州中考)如图,两个反比例函数 y 4和y 2 在
x
x
第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,
交C2于点B,则△POB的面积为_____.
【解析】根据反比例函数中k的几何意义,得△POA和△BOA的 面积分别为2和1,所以阴影部分的面积为1. 答案:1
【总结提升】反比例函数的性质总结
对于反比例函数 y (kk≠0),k的符号、图象所经过的象限、
x
函数的增减性这三者,知其一则可知其二,即:
知识点 2 反比例函数中k的几何意义
【例2】(2013·孝感中考)如图,函数y=-x与函数 y 4 的图
x

湘教版九年级数学 1.2 反比例函数的图象与性质(学习、上课课件)

湘教版九年级数学  1.2 反比例函数的图象与性质(学习、上课课件)

知3-讲
已知函数 y=kx (k ≠ 0).
感悟新知
知3-讲
特别提醒
◆在利用反比例函数y=kx(k ≠ 0)中k的几何性质确定k的值 时,不仅要注意矩形面积的大小,还要注意函数图象 的位置.
感悟新知
k 值与矩形面积的关系 k 值与三角形面积的关系知3-讲
图形
条件
过图象上任意一点 P 分别作PM ⊥ x 轴于
2-2. [ 中考·天门] 在反比 例函数 y= 4-x k的图象上有两
点 A( x1,y1), B( x2, y2),当 x1 <0 < x2 时,有 y1 < y2,则 k 的取值范围是( C )
A. k < 0
B. k > 0
C. k < 4
D. k > 4
感悟新知
知识点 3 反比例函数 y=kx (k ≠ 0)中k的几何性质
过图象上任意一点 E 作 M,EF ⊥ y 轴于 F,连接 OE
PN ⊥ y 轴于 N
结论
S 矩形 OMPN=|k|
S

OEF=
|k| 2
感悟新知
知3-讲
矩形 OMPN 的面积S=PM·PN=|yP|·|xP|= |xPyP|.所以 S=|k|.同理,S △ OEF= |k2|.
感悟新知
知3-练
示意图(如图1.2-1).
知1-讲
感悟新知
活学巧记 点越多,越精确, 平滑曲线把点过, 两个分支不能少, 对称关系很奇妙.
知1-讲
感悟新知
知1-练
例1 [母题 教材 P7 探究]在同一平面直角坐标系中画出反
比例函数y=8x和y=-8x的图象.
解题秘方:紧扣画图象的“一列、二描、三连” 的步骤作图.

2019年秋九年级数学上册1.2反比例函数的图像与性质第2课时反比例函数y=k╱xk<0的图象与性质课件湘教版

2019年秋九年级数学上册1.2反比例函数的图像与性质第2课时反比例函数y=k╱xk<0的图象与性质课件湘教版

解:(1)把 A(-1,4)代入反比例函数 y=mx ,得 m=-1×4=-4, ∴反比例函数的解析式为 y=-4x; 把 B(2,n)代入 y=-4x,得 n=-2,
∴点 B 的坐标为(2,-2), 把 A(-1,4)和 B(2,-2)代入一次函数 y=kx+b,得-2k+k+b=b=-4,2, 解得 k=-2, b=2, ∴一次函数的解析式为 y=-2x+2.
C(x3,y3).若 x1<0<x2<x3,则下列结论正确的是( C )
A.y3<y2<y1
B.y1<y3<y2
C.y2<y3<y1
D.y3<y1<y2
4.[2018·镇江]反比例函数 y=kx(k≠0)的图象经过点 A“减小”)
例 2 答图
【点悟】 比较反比例函数上的点的坐标值的大小,先要判断是同一象限还是 不同象限内的点,同一象限内的点可根据函数的增减性进行比较,不同象限内的 点,可根据纵坐标的正、负性进行比较. 更直观的方法是利用函数图象进行比较(如 本例题).
当堂测评
1.下列图象中是反比例函数 y=-2x的图象的是( C )
例 1 答图
类型之二 反比例函数 y=kx(k<0)图象的特征 已知直线 y=-3x 与反比例函数 y=m-x 5的图象交于点 P(-1,n).
(1)求 m 的值; (2)若点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数 y=m-x 5的图象上,且 x1<x2<0<x3,试比较 y1,y2,y3 的大小.
∴直线 AB 与 x 轴的交点 D 的坐标为(1,0), ∴DE=1--13=43, ∴S△AED=12×43×4=83.

26.1.2反比例函数的图像与性质 (教学课件)- 初中数学人教版九年级下册

26.1.2反比例函数的图像与性质   (教学课件)- 初中数学人教版九年级下册
作业布置1.课后习题3,5题;2.完成练习册本课时的习题。
典例精析例4如下图,它是反比例函数 图象的一支,根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数 m 的取值范围是什么?(2)在这个函数图象的某一支上任取点 A(x₁,y₁) 和点B(x₂,y₂), 如果x₁>X₂, 那么 y₁ 和 y₂有怎样的大小关系? o A
3.反比例函 的图象如图所示,则k<_0, 在图象的每一支上,y 随 x 的增大而增 大4.如图,M 为反比例函 图象上的一点,MA 垂直y轴,垂足为A,△MAO 的面积为2,则k的 值 为 4 .
yA M0
642o5-2-6
5X
课堂练习
3
课堂练习5.已知一次函数y=kx+b 的图象与反比例函 图象交于点A(3, 司),点B(14-2a,2).(1)求反比例函数的解析式;(2)若一次函数图象与y 轴交于点C, 点 D 为点C 关于原点O 的对称点,求△A CD 的面 积 . yAC ABO X
可得 解 故一次函数的解析式为

课堂练习∵当x=0 时 ,y=6,C(0,6)..OC=6. ∵点D 为点C关于原点O 的对称点, ∴CD=20C=12.
板书设计反比例函数的图象和性质1.反比例函数的性质:反比例函 的图象,当k>0 时,图象位于第一、三象限, 在每一象限内,y 的值随x的增大而减小;当k<0 时,图象位于第二、四象限,y 的 值随x的增大而增大.2.双曲线的两条分支逼近坐标轴但不可能与坐标轴相交。3.反比例函数的图象是一个以原点为对称中心的中心对称图形.4. 在反比例函数 的图象上任取一点,分别作坐标轴的垂线(或平行线), 与 坐标轴所围成的矩形的面积S矩形=|k|.
典例精析解:(1)反比例函数的图象只有两种可能:位于第一、第三象限,或 者位于第二、第四象限.因为这个函数的图象的一支位于第一象限,所以另 一支必位于第三象限.因为这个函数的图象位于第一、第三象限,所以m-5>0解 得 m>5.( 2 ) 因 为m-5>0, 所以在这个函数图象的任一支上,y 都随x 的增大而减小,因此当X₁>X₂ 时 ,y₁<y₂.

湘教版九年级数学《反比例函数的图象及性质》PPT课件

湘教版九年级数学《反比例函数的图象及性质》PPT课件

感悟新知
知1-练
1.若双曲线 y=kx与直线 y=2x+1 的一个交点的横坐 标为-1,则 k 的值为( B )
A.-1
B.1
C.-2
D.2
感悟新知
第一章 反比例函数
1.2反比例函数的图象及性质
第1课时 反比例函数 y = k (k>0)
x
的图象与性质
学习目标
1 课时讲解 2 课时流程
会用描点的方法画反比例函数
y= k x
(k>0)的图象
理解反比例函数 y =
k
(k>0)的性质
x
逐点 导讲练
课堂 小结
作业 提升
课时导入
复习提问
引出问题
我们已经学习了用“描点法”画一次函数的图
四象限内的两支曲线组成, 它们与x 轴、 y 轴都不 相交,在每个象限内,函数值 y 随自变量 x 的增大 而增大.
感悟新知
1.反比例函数 y=-4x(x>0)的图象位于( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
知1-练
感悟新知
知1-练
2.如图,函数 y=1x-(x1x>(x<0),0)的图象所在坐标系的原点是 ( A) A.点 M B.点 N C.点 P D.点 Q
知1-导
(2) 把点A,B 的坐标分别代入 y 8 ,可知点 A 的坐标
x
满足函数表达式 , 点 B 的坐标不满足函数表达式, 所以点 A 在这个函数的图象上,点B不在这个函数 的图象上.
感悟新知
知1-导
(3) 因为k>0,所以这个反比例函数的图象位于第一、 三象限,在每个象限内,函数值 y 随自变量 x 的 增大而减小.
感悟新知

人教版九年级数学下册第二十六章:26.1.2 反比例函数的图像和性质 优秀课件

人教版九年级数学下册第二十六章:26.1.2  反比例函数的图像和性质  优秀课件

-4
-6
-8
当k>0时,两支双曲线分 位于第一,三象限内; 当k<0时,两支双曲线分别 位于第二,四象限内;
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
x
图 象
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小. 当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
一、复习引入
反比例函数的定义:
一般地,形如 (k是常数,k≠0)的函数, 叫做反比例函数。其中, x是自变量,y是函 数.自变量x的取值范围是不等于0的一切实 数.
反比例函数的三种表达式:
① ② ③
1、过点(2,5)的反比例函数的解析 10 式是: y x . 2、一次函数y=2x-1的图象 是 一条直线 ,y随x的增大而 增大. 3、用描点法作函数图象的步骤:
y
4 C(-3,y3)是 y B(5,y2)是反比例函数 x
数形结合

⑴代入求值
y1 y2 y3
A
2
⑵利用增减性
B
5
-3
⑶根据图象判断
x
O
C
7、若点(-2,y1)、(-1,y2)、(2,y3)在
100 反比例函数 y = 的图象上,则( x
B

A、y1>y2>y3
C、y3>y1>y2
B、y2>y1>y3
x
标系中的 图象可能是 D
y o x y o x
:
y o x y o x
(A)
(B)

26.1.2反比例函数的图像和性质课件(共31张PPT)

26.1.2反比例函数的图像和性质课件(共31张PPT)

(1)y 2 (2)y 2x
3x
3
(5)y 2x 3
(3)y 2 3x
(4)y 2x 3
2、如图,这是下列四个函数中哪一个函数的图象
(A)y=5x (B)y=2x+3
(C) y 4 x
(D) y 3 x
练一练 2
已知反比例函数 y 4 k x
-6
-5 -4 -3 -2 -1 0 1 -1
23 4
5
6x
-2
的特征?
-3
-4
-5
再让我们仔细看看,这两个
-6
函数图象在位置上有什么关系?
操作二:
比一比:
同桌两人分别画出函数 y 8 , y 8 或
x
x
的图象,看谁画得又快又好.
y 3,y3
x
x
找一找: 根据大家所画出的函数图象,从以下几个方面出发,你
增减性 当k>0时,在每一象限内,y随x的增大而减小;
当k<0时,在每一象限内,y随x的增大而增大.
图象的发展趋势
反比例函数的图象无限接近于x,y轴,但永远不能到达x,y轴
对称性 ⑴反比例函数的图象是轴对称图形.直线y=x和y=-x
都是它的对称轴; ⑵反比例函数 y 与k
x
轴对称。
y 的 k图象关于x轴对称,也关于y
速度x(km/h)的函数,则这个函数的图象大致是( C )
思前想后
2﹑已知 k<0, 则函数 y1=kx,y2=
k
x

同一坐标系中的图象大致是 ( D )
y
y
(A)
(B)
x
0
x

26.1.2反比例函数的图像和性质(第二课时)

26.1.2反比例函数的图像和性质(第二课时)

(3)研究表明,每立方米的
y(mg)
含药量不低于3mg且持续时间
不低于10min时,才能有效杀
6 o
灭空气中的病菌,那么此次消
毒是否有效?为什么?
8
x(min) 胜利 之舟
1 8.如图, 在y ( x 0)的图像上有三点 A, B, C , x 经过三点分别向 x轴引垂线, 交x轴于A1 , B1 , C1三点, 边结OA, OB, OC, 记OAA 的 1 , OBB 1 , OCC1
3 关系式 y 4 x ,自变量x的取值 6 范围 0 x 8 ,药物燃烧后y关
于x的函数关系式
y
48 x
;o
8
x(min)
y(mg)
(2)研究表明,每立方米的含 药量低于1.6mg时,学生方可进 教室,那么从消毒开始,至少 6 需要经过 30 分钟后,学生才 能回教室; o
8
x(min)
A.S1>S2 B.S1<S2 C.S1 = S2 D.S1和S2的大小关系不能确定.
o
S2
S1
A
B
x
C
D
适度拓展,探究思考
为了预防“非典”,某校对教室采用药熏消毒法进 行消毒。已知药物燃烧时,室内每立方米空气中的 含药量 y(mg)与时间x(min)成正比例,药物燃烧 完后,y与x成反比例。现在测得药物8min燃毕,此 时室内空气中每立方米含药量6mg,请根据题中所 y(mg) 提供信息,解答下列问题: (1)药物燃烧时,y关于x的函数
∵图象过点A(2,6)
12 ∴这个反比例函数的表达式为 y x
∵k>0 ∴这个函数的图象在第一、第三象限, 在每个象限内,y随x的增大而减小。

1.2_反比例函数的图像和性质(2)课件2

1.2_反比例函数的图像和性质(2)课件2

x B
x
O
x
o
A
C
D
想一想
议一议
1、如图1,一次函数与反比例函数的图像 相交于A、B两点, 则图中使反比例函数的 值小于一次函数的值的x的取值范围是( D ) (A)x<-1 (B)x>2 (C)-1<x<0,或x>2 (D)x<-1,或0<x<2
2.如图:一次函数y=ax+b的图象与反比例函数 k y= x 交于M (2,m) 、N (-1,-4)两点 (1)求反比例函数和一次函数的解析式;
反比例函数的图象及性质(3)
反比例函数的性质
1.当k>0时,图象的两个分支分别在第 一、三象限内; 2.当k<0时,图象的两个分支分别在第 二、四象限内。 3.图象的两个分支关于直角坐标系的 原点成中心对称。
双曲线的两个分支无限接近x轴和y 轴,但永远不会与x轴和y轴相交.
复习题:
2),那么这个反比例函数的解析式为
第 称.
k 2.反比例函数 y x ( k 0 ) 的图象与正比例函数 y 2 x
k 1.反比例函数 y x ( k 0 ) 的图象经过点(-1,
象限,它的图象关于 二、四
2 y ,图象在 x 成中心对 原点
的图象交于点A(1,m),则m= 2 ,反比例函数的解 2 y ,这两个图象的另一个交点坐标 析式为 是 . (-1,-2)
综合应用2/2
k y 18.已知点A(3,4),B(-2,m)在反比例函数 x 的图象上,经过点A、B的一次函数的图象分别与x轴、y 轴交于点C、D。 ⑴ 求反比例函数的解析式; ⑵ 求经过点A、B的一次函数的解析式; ⑸ 在y轴上找一点P,使PA+PC最短, 求点P的坐标;

2013年秋浙江省瞿溪华侨中学九年级数学上课件1.2反比例函数的图像和性质(2)

2013年秋浙江省瞿溪华侨中学九年级数学上课件1.2反比例函数的图像和性质(2)

新课探究:
1、函数
2 y x
k值是几?过哪几个象限? y
K=2,过一、三象限
2、我们看第一象限的图象填表并回答
-4-3-2-1
o1 2 3 4
x
2 y x
1
2
2
1
3
2 3
4
1 2
x
1)在第一象限x的取值怎样变化,y的值怎样变化? X增大,y值减小 2)在第一象限内你能得出怎样的结论呢? 在第一象限内,y随x的增大而减小 第三象限 的情况怎 样呢?
则y1-y2的值是( A
A 正数 B负数 C非正数 D不能确定 k 1 0 在每个象限内, y的值随x的值的增大而减小 A1, y1 , B2, y 2 在同一象限, 1 2 y1 y 2 , y1 y 2 0
k 4)反比例函数 y x k 0 的图象上有两点A(x1,y1),B(x2,y2),且
1 解:依题意得 PE=2 , PF= 2
C x
1 S矩形PEOF =PE×PF=2×2 =1 1 1 若点B(-3, )同样方法构造矩形,结果 )点C ( 4, 4 会怎样吗? 3
结果一样,注意点在第三象限,求解的过程中要长宽加绝对值
如果题目再变化一下,大家思考一下又该怎样解?
k 已知点 P 为反比例函数 y (k 0) x 上的点,过P分别作x轴、y轴的平行 线PE、PF,与坐标轴围成的矩形PEOF 的面积为多少? 分析:要解这题,关键表达出长、宽 即要求PE、PF
o
在每个象限内,y随x的增大而减小 x
问题:
2 y 刚才大家分析了 的性质,这里如果函数变换 x 6 y 又会怎样呢? x
请大家看图象思考: 1)它们有什么共同的特征 K>0,图象在一、三象限 2)可以得到怎样的结论 在每个象限内,y随x的增大而减小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)x1 x2 x3; (C) x1 x2 x3; (B) x3 x1 x2; (D) x1 x3 x2 .
3.已知( 1,y1 ),( 3,y2),( 2,y3)是反比例函数
2 的图象上的三个点,则 y1,y2,y3 的大小关系是 y x
y3 y2 y1
y 随 x 的增大而 减少 .
y 随 x 的增大而 增大 .
6 (1)y x
第三象限
-6 -5 -4 -3 -2 -1 1
第一象限
2 3 4 5 6
x
6 y x
… …
… …
-1 -1.2 -1.5 -2
-3
-6
6
3
2 1.5 1.2
1
6 (2)y x
第二象限
-6 -5 -4 -3 -2 -1 1
⑵已知x1,y1和x2,y2是反比例函数 y = 若x1 > x2 > 0。则0 y1

>
5 y x
> >
y2 ;
x
的两对自变量与函数的对应值。
>
(3)若点A(-2,a)、B(-6,b)、C(4,c)在函数 的图像上,则a
__b,b__c。 > >
2、已知(x1,y1),
(x2,y2) (x3,y3)是反比例函数 y =
间的变化关系:
k 观察反比例函数 y ( k 0 ) 的图象,说出y与x之 x
k 0
y
k 0
y
( x1,y1 ) A ( x2,y2 ) B
A ( x1,y1 ) B ( x2,y2 )
O
C ( x3,y3 ) D ( x4,y4 )
x
O
x
D ( x4,y4 )
C ( x3,y3 )
当 k 0时,在 每个象限 内,当 k 0时,在 每个象限 内,
1 2
3 (2)已知 x1,y1 和 x2,y2 是反比例函数 y 的两对自变 x 量与函数的对应值.若 x1 x2 0,则 0 > y1 > y2 .
2.已知( x1,y1 ),( x2,y2),( x3,y3 )是反比例函数
2 的图象上的三个点,并且 y1 y2 y3 0 ,则 y x x1,x2,x3 的大小关系是( C )

4.已知反比例函数 y (2)当x≤5时,则y
5 .(1)当x>5时,0 x
1,或y<
< y<
1;
>
0
(3)当y>5时,x?
做一做:
1、用“>”或“<”填空:
⑴已知x1,y1和x2,y2是反比例函数 y = x1 < x2 <0。则0 y1 y2 ;
π 的两对自变量与函数的对应值。若 x
复习题:
1.反比例函数 y
k ( k 0 )的图象经过点(-1,2),那么这个 x 2 y 反比例函数的解析式为 ,图象在第 二、四 象限, x 它的图象关于 原点 成中心对称.
k 2.反比例函数 y ( k 0 )的图象与正比例函数 y 2 x 的图象 x 交于点A(1,m),则m= 2 ,反比例函数的解析式为 2 y ,这两个图象的另一个交点坐标是 (-1,-2) . x
下图是浙江省境内杭甬铁路的里程示意图。记 从杭州到余姚一段铁路线上的列车行驶的时间为t 时,平均速度为u千米/时,且平均速度限定为不 超过160千米/时。 ⑴ 求u关于t的函数解析式 杭州 和自变量t的取值范围; 21 姚余 ⑵ 画出所求函数的图象; 萧山
39
31
29 48
⑶ 从杭州开出一列火车,在40 绍兴 分内(包括40分)到达余姚可能 吗?;在50分内(包括50分)呢? 如有可能,那么此时对列车的行 驶速度有什么要求?
2 x的图
象上的三点,且y1 > y2 > y3 > 0。则 x1 ,x2 ,x3 的大小关系是( A ) A、x1<x2<x3 B、x3> x1>x2 C、x1>x2>x3 D、x1>x3>x2
例2:
下图是浙江省境内杭甬铁路的里程示意图。记 从杭州到余姚一段铁路线上的列车行驶的时间为t 时,平均速度为u千米/时,且平均速度限定为不 超过160千米/时。 ⑴ 求u关于t的函数解析式 杭州 和自变量t的取值范围; 21 姚余 ⑵ 画出所求函数的图象; 萧山
第四象限
2 3 4 5 6
x
6 y x
… …
… …
1 1.2 1.5
2
3
6
-6
-3
-2 -1.5 -1.2 -1
做一做:
1.用“>”或“<”填空: (1)已知 x1,y1 和 x2,y2 是反比例函数 y

的两对自变
x 量与函数的对应值.若 x x 0 ,则 0 1 2
> y >y.
39
31
29 48
⑶ 从杭州开出一列火车,在40 绍兴 分内(包括40分)到达余姚可能 吗?;在50分内(包括50分)呢? 如有可能,那么此时对列车的行 驶速度有什么要求?
上虞
宁波
小 结:
本节课我学到了……
我的疑惑……
正、反比例函数的图象与性质的比较: 正比例函数
解析式 图象
y kx ( k 0)
上虞
宁波
提高练习1
若图1是正比例函数y=-kx的图像,则反比 例函数 y k 的图像最有可能是 ( )

y
x
y
O
y
y
O
x
x B y
O
x
O
x
A
C
D
图1
O
x
再见
直线
k>0,一、三象限; k<0,二、四象限.
反比例函数 k y ( k 0) x
双曲线 k>0,一、三象限; k<0,二、四象限.
位置
k>0,在每个象限y随x的 k>0,y随x的增大而增大; 增大而减小; 增减性 k<0,在每个象限y随x的 k<0,y随x的增大而减小.增大而增大.
例2:
相关文档
最新文档