广东省深圳市罗湖区望桐路七年级数学第11讲角培优讲义
罗湖区望桐路七年级数学 第13讲 平行线的性质及其应用培优讲义(无答案) 新人教版(2021年整理)
广东省深圳市罗湖区望桐路七年级数学第13讲平行线的性质及其应用培优讲义(无答案)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市罗湖区望桐路七年级数学第13讲平行线的性质及其应用培优讲义(无答案)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市罗湖区望桐路七年级数学第13讲平行线的性质及其应用培优讲义(无答案)新人教版的全部内容。
第13讲 平行线的性质及其应用考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理;3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用. 经典·考题·赏析【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD ,∠A =38°,求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等; 两条直线平行,同旁内角互补.平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键。
【解】:∵AB ∥CD BC ∥AD∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38° 【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的度数为( )A .155°B .50°C .45°D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60°D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B 的度数。
七年级数学下册 第十一讲 全等三角形(二)同步练习 北师大版
第十一讲 三角形全等(二)【知识网络】全等三角形的性质与判定:(1)性质:全等三角形的对应边相等,对应角相等;(对应的 中线 、高线 、 角平分线 也分别相等。
)(2)判定:一般三角形有SAS ,ASA ,AAS 、SSS ,直角三角形还有HL 【热身训练】1. 如图1所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________ (只添一个条件即可).12A BC D ABCD EABCD图1 图2 图32. 如图2所示,AE 、BD 相交于点C ,要使△ABC ≌△EDC ,至少要添加的条件是 ________________,理由是________________.3. 如图3所示,在△ABC 中,AB =AC ,D 为BC 的中点,则△ABD ≌△ACD ,根据是_______, AD 与BC 的位置关系是________.4. 如图4所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm,则点D 到BC 的距离 为________cm .①②③ABCDE图4 图55. 如图5所示,某同学不小心把一块三角形的玻璃仪器打碎成三块,现要去玻璃店配制一块完全一样的,那么最省事的办法是带________去. 【欢乐课堂】1. 已知△ABC ,M 为AB 的中点,下列基本作图的叙述中正确的是( )A.过A 作AD ∥BC 交CM 的延长线于N 点 ;B.过点C 作AB 的垂直平分线C.连结CM 使CM ⊥AB ;D.连结CM 使CM 平分∠ACB 2. 已知下列条件,不能作出三角形的是( )A.两边及其夹角;B.两角及其夹边;C.三边;D.两边及除夹角外的另一个角3. 如图,有一湖的湖岸在A 、B 之间呈一段圆弧状,A 、B 间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A 、B 间的距离吗?4. 三角形的两边长分别为2 cm 和9 cm ,第三边长为偶数.求第三边长.5. 如图所示,在△ABC 中,∠ABC =90°,D 是△ABC 内一点,将△ADB 绕点B 旋转至△BD ′C ,△BD ′C 与△ADB 能完全重合,求∠DBD ′的度数.6. 如图是用10根火柴棒搭成的一个三角形,你能否移动其中的3根,摆出一对全等的三角形?画出你的修改方案.移动其中4根能否摆出一对全等三角形? 请画图说明,并与同伴交流.7.已知:如图,AB=AC ,∠BAC=∠DAE ,AD=AE , 求证△ABD △ACE 。
广东省深圳市罗湖区望桐路七年级数学 第17讲 认识多边
第17讲认识多边形考点·方法·破译1.了解多边形的有关概念,探索并了解多边形内角和和外角和公式.2.通过探索平面图形的镶嵌,知道任意一个三角形、四边形、或正六边形可以镶嵌平面,并能进行镶嵌设计.经典·考题·赏析【例1】如图所示是一个六边形.(1)从顶点A出发画这个多边形的所有对角线,这样的对角线有几条?它们将六边形分成几个三角形?(2)画出此六边形的所有对角线,数一数共有几条?【解法指导】本题主要考查多边形对角线的定义,对于n边形,从n边形的一个顶点出发,可引(n-3)条对角线,它们将这n边形分成(n-2)个三角形,n边形一共有(3)2n n条对角线,解:(1)从顶点A出发,共可画三条对角线,如图所示,它们分别是AC、AD、AE.将六边形分成四个三角形:△ABC、△ACD、△ADE、△AEF;(2)六边形共有9条对角线.【变式题组】01.下列图形中,凸多边形有( )A.1个B.2个C.3个D.4个02.过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线条数等于边数,则m=______,n=______,k=________.03.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数是 .【例2】(1)八边形的内角和是多少度?(2)几边形的内角和是八边形内角和的2倍?【解法指导】(1)多边形的内角和公式的推导:从n边形一个顶点作对角线,可以作(n -3)条对角线,并且将n边形分成(n-2)个三角形,这(n-2)个三角形内角和恰好是多边形内角和,等于(n-2)·1800;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.解:(1)八边形的内角和为(8-2)×1800=10800;(2)设n边形的内角和是八边形内角和的2倍,则有(n-2)×1800=10800×2,解得n=14. 故十四边形的内角和是八边形内角和的2倍.【变式题组】01.已知n边形的内角和为21600,求n边形的边数.02.如果一个正多边的一个内角是1080,则这个多边形是()A.正方形B.正五边形C.正六边形D.正七边形03.已知一个多边形的内角和为10800,则这个多边形的边数是()A.8 B.7 C.6 D.504.如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=700,则∠AED的度数为()A.1100B.1080C.1050D.10005.当多边形的边数增加1时,它的内角和与外角和()A.都不变B.内角和增加1800,外角和不变C.内角和增加1800,外角和减少1800D.都增加1800【例3】一只蚂蚁从点A出发,每爬行5cm便左转600,则这只蚂蚁需要爬行多少路程才能回到点A?解:蚂蚁爬行的路程构成一个正多边形,其路程就是这个正多边形的周长,根据已知可得这个正多边形的每个外角均为600,则这个多边形的边数为36060=6.所以这只蚂蚁需要爬行5×6=30(cm)才能回到点A.【解法指导】多边形的外角和为3600.(1)多边形的外角和恒等于3600,它与边数的多少无关.(2)多边形的外角和的推导方法:由于多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于1800·n,外角和等于n·1800-(n-2)·1800=3600.(3)多边的外角和为什么等于3600,还可以这样理解:从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发点时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于3600.(4) 多边形的外角和为3600的作用:①已知各相等外角度数求多边形边数;②已知多边形边数,求各相等外角的度数.【变式题组】01.(无锡)八边形的内角和为_____.度.02.(永州)如图所示,已知△ABC中,∠A=400,剪去∠A后成四边形,则∠1+∠2=_____03.(资阳)n(n为整数,且n≥3)边形的内角和比(n+1)边形的内角和少____度.04.(株洲)如图所示,小明在操场上从点A出发,沿直线前进10米后向左转400,再沿直线前进10米后,又向左转400,……,照这样下去,他第一次回到出发地A点时,一共走了_____米.【例4】已知两个多边形的内角和为18000,且两多边形的边数之比为2:5,求这两个多边形的边数.【解法指导】因为两个多边形的边数之比为2:5,可设两个多边形的边数为2x和5x,利用多边形的内角可列出方程.解:设这两个多边形的边数分别是2x和5x,则由多边形内角和定理可得:(2x-2)·1800+(5x-2)·1800=18000,解得x=2,∴2x=4,5x=10,故这两个多边形的边数分别为4和10.【变式题组】01.一个多边形除去一个角后,其余各内角的和为22100,这个多边形是___________02.若一个多边形的外角和是其内角和的25,则此多边形的边数为_____03.每一个内角都相等的多边形,它的一个外角等于一个内角的23,则这个多边形是()A.三角形B.四边形C.五边形D.六边形04.内角和与其外角和相等的多边形是___________【例5】某人到瓷砖商店去购买一种多边形瓷砖,用来铺设无缝地面,他购买的瓷砖不可以是()A.正三角形B.长方形C.正八边形D.正六边形【解法指导】根据平面镶嵌的定义可知:在一个顶点处各多边形的内角和为3600,由于正三角形、长方形、正六边形的内角都是3600的约数,因此它们可以用来完成平面镶嵌,而正八边形的每个内角为1350,不是3600的约数,所以正八边形不能把平面镶嵌.解:选C.【变式题组】01.用一种如下形状的地砖,不能把地面铺成既无缝隙,又不重叠的是()A.正三角形B.正方形C.长方形D.正五边形02.小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,要铺满地面而不重叠,瓷砖的形状可能有()A.正三角形、正方形、正六边形B.正三角形、正方形、正五边形C.正方形、正五边形D.正三角形、正方形、正五边形、正六边形03.只用下列正多边形•能作平面镶嵌的是()A.正五边形B.正六边形C.正八边形D.正十边形04.(晋江市)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后将其中的一个正方形再剪成四个小正方形,共得7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;……,根据以上操作,若要得到2011个小正方形,则需要操作的次数是()A.669 B.670 C.671 D.672【例6】有一个十一边形,它由若干个边长为1的等边三角形和边长为1的正方形无重叠、无间隙地拼成,求此十一边形各内角的大小,并画出图形.【解法指导】正三角形的每个内角为600,正方形的每个内角为900,它们无重叠、无间隙可拼成600、900、1200、1500四种角度,根据十一边形内角和即可判断每种角的个数.解:因为正三角形和正方形的内角分别为600、900,由此可拼成600、900、1200、1500四种角度,十一边形内角和为(n-2)×1800=(11-2)×1800=16200.因为1200×11<16200<1500×11,所以这个十一边形的内角只有1200和1500两种.设1200的角有m个,1500的角有n个,则有1200m+1500n=16200,即4m+5n=54此方程有唯一正整数解110mn=⎧⎨=⎩,所以这个十一边形内角中有1个角为1200,10个角为1500,此十一边形如图所示.【变式题组】01.如图是某广场地面的一部分,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石砖镶嵌,从里向外共铺了12层(不包括中央的正六边形地砖),每一层的外边界都围成一个正多边形,若中央正六边形的地砖边长为0.5m,则第12层的外边界所围成的多边形的周长是___________.02.(黄冈)小明的书房地面为210cm×300cm的长方形,若仅从方便平面镶嵌的角度出发,最适宜选用的地砖规格为()A.30cm×30cm的正方形,B.50cm×50cm的正方形,C.60cm×60cm的正方形,D.120cm×120cm的正方形,03.正m边形、正n边形及正p边形各取一个内角,其和为3600,求111m n p++的值.演练巩固·反馈提高01.在一个顶点处,若正n边形的几个内角的和为______,则此正n边形可铺满地面,没有空隙.02.(宜昌市)如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为______块,当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为______块.03.(嘉峪关)用黑白两种颜色的正六边形地板砖按图所示的规律拼成如下若干地板图案:则第n个图案中白色的地板砖有______块.04.如图所示的图案是由正六边形密铺而成,黑色正六边形周围的第一层有六个白色正六边形,则第n层有______个白色正六边形.05.如果只用一种正多边形作平面镶嵌,而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的边数为()A.3 B. 4 C.5 D.606.下列不能镶嵌的正多边组合是()A.正三角形与正六边形B.正方形与正六边形C.正三角形与正方形D.正五边形与正十边形07.用两种以上的正多边形镶嵌必须具备的条件是()A.边长相同B.在每一点的交接处各多边形的内角和为1800C.边长之间互为整数倍D.在每一点的交接处各多边形的内角和为3600,且边长相等08.(荆门市)用三块正多边形的木板铺地,拼在一起且相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数是()A.4 B.5 C.6 D.809.[自贡(课改)]张珊的父母打算购买形状和大小都相同的正多边形瓷砖来铺卫生间的地面,张珊特意提醒父母,为了保证铺地面时既没缝隙、又不重叠,所购瓷砖形状不能是()A.正三角形B.正方形C.正六边形D.正八边形10.我们常常见到如图所示那样图案的地板,它们分别是由正方形、等边三角形的材料铺成的,(1)为什么用这样形状的材料能铺成平整、无空隙的地板?(2)你想一想能否用一些全等的任意四边形或不等边三角形镶嵌成地板,请画出图形. 11.某单位的地板由三种各角相等、各边也相等的多边形铺成,假设它们的边数为x、y、z,你能找出x、y、z之间有何种数量关系吗?请说明理由.12.黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满,按第1,2,3个图案[如图(1)、(2)、(3)]规律依次下去,则第n个图案中黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2-n+3 D.4n,2n+1培优升级·奥赛检测01.在一个多边形中,除了两个内角外,其余内角之和为20020,则这个多边形的边数为()A.12 B.12或13 C.14 D.14或1502.有一个边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,则需要这种瓷砖()A.216块B.288块C.384块D.512块03.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数等于()A.3600B.4500C.5400D.720004.从凸n边形的一个顶点引出的所有对角线把这个凸n边形分成了m个小三角形,若m等于这个凸n边形对角线条数的49,那么此n边形的内角和为___________.05.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=1300,求∠B的度数.06.如图,小亮从点A出发,沿直线前进10米后向左转300,再沿直线前进10米,又向左转300,……,照这样下去,他第一次回到出发点A时,一共走了______米.07.如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=()A.6300B.7200C.8000D.900008.将一个宽度相等且足够长的纸条打开个结,如(1),然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形,ABCDE,其中∠BAC=_________.09.矩形ABCD的边长为16,宽为12,沿着对角线BD剪开,得到两个三角形,将这两个三角形拼出各种凸四边形,设这些四边形中周长最大为m,周长最小为n,则m+n的值为()A.120 B.128 C.136 D.14410.对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”(1)如果设正方形OGFN的边长为1,这七块部件的各块长中,从小到大的四个不同值分别为1、x1、x2、x3,那么x1=______;各内角中最小内角是_____度,最大内角是_____度;用它们拼成一个五边形如图②,其面积是_____.(2)请用这块七巧板,既不留下一丝空白,又不相互重叠,拼出两种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上(格点图中上下左右相邻两点距离都为1).(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的多边形,其边数不能超过8”.你认为这个结论正确吗?请说明理由.11.(方案设计题)我们常见到如图的图案地面,它们分别是全用正方形或全用正六边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.(1)你能不能另外想一个用一种多边形(不一定是正多边形)的材料铺地的方案,把你想到的方案画成草图;(2)请你再画一个用两种不同正多边形材料铺地的草图.12.(俄罗斯萨温布竞赛题)如图,在凸六边形ABCDEF中,已知∠A+∠B+∠C=∠D+∠E+∠F 成立,试证明:该六边形必有两条对边是平行的.。
人教版七年级数学上册培优讲义《第11讲 相交线与平行线》
11.相交线与平行线模块一:相交线之两线四角 知识导航:相交线 定义 如果直线AB 与直线CD 只有一个公共点,则称直线AB 与直线CD 相交,O 为交点,其中一条是另一条的相交线邻补角 定义 21∠∠和在有一条公共边OC ,它们的另一边互为相反延长线(1∠和2∠互补),具有这种关系的两个角,互为邻补角 性质 邻补角互补对顶角定义 31∠∠和有一个公共顶点O ,并且1∠的两边分别是3∠的两边的反向延长线,具有这种位置关系的两个角,互为对顶角 性质对顶角相等垂线定义 当两条直线相交所成的四个角中有一个角是直角时,就说这两条直线互相垂直。
如上图,可记作CD AB ⊥垂直是相交的一种特殊情形,两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足性质性质1:在同一平面内,过一点有且只有一条直线与已知直线垂直,如下图,只有直线PO ⊥l性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成“垂线段最短”,如下图,垂线段PO 最短 点到直线距离定义直线外一点到这条直线的垂线段长度,叫做点到直线的距离例1(1)如图,直线AB 、CD 、EF 相交于点O ,则:①AOC ∠的对顶角是________ ②AOD ∠的对顶角是________③BOC ∠的邻补角是________和________ ④BOE ∠的邻补角是________和________⑤图中共有_______对邻补角,_________对对顶角(2)如图,四条直线交于一点,其中共有对顶角( ) A .6对 B .8对 C .12对 D .16对(3)如图,两条直线相交,若122∠=∠,那么4∠的度数是( ) A.︒30 B .︒60 C .︒90 D .︒120练(1)两条相交直线所成的各角中( ) A.必有一个钝角 B .必有一个锐角 C .必有一个不是钝角 D .必有两个锐角(2)如图,三条直线a 、b 、c 相交于一点,则=∠+∠+∠321__________例2(1)如图,P 为直线l 外一点,点A 、B 、C 为l 上的三点,且PB ⊥l ,那么下列说法错误的是( )A.PA 、PB 、PC 三条线段中,PB 最短B.线段PB 叫做点P 到直线l 的距离C.PB 是点P 到直线l 的垂线段D.线段AB 的长是点A 到PB 的距离(2)如图,观察图形,下列说法正确的个数是______ ①图中对顶角共有9对;②线段CD 的长是点C 到直线AD 的距离 ③线段AC 的长是点A 到直线CD 的距离 ④线段AB 的长必大于点A 到直线BD 的距离⑤线段BC 的长小于线段AB 的长,根据是两点之间线段最短练下面说法中正确的有_______①如果两个角相等,则这两个角是对顶角 ②顶点相同并且相等的两个角是对顶角③如果两个角不相等,则这两个角不是对顶角④互为邻补角的两个角一定互补,两个角互补不一定互为邻补角⑤O 是直线AB 上一点,C 、D 分别在直线AB 的两侧,且AOC DOB ∠=∠,则C 、O 、D 三点在同一条直线上⑥过一点有且仅有一条直线与已知直线垂直模块二:三线八角 知识导航:1.同位角的定义两条直线被第三条直线所截,位置相同的一对角(两个角分别在两条直线相同一侧,并且在第三条直线的同旁)叫做同位角如图所示,84736251∠∠∠∠∠∠∠∠与,与,与,与都是同位角 2、内错角的定义两条直线被第三条直线所截,两个角在两条直线之间,并且位置交错(即分别在第三条直线的两旁),这样的一对角叫做内错角如图所示, 6453∠∠∠∠与,与都是内错角3、同旁内角的定义两条直线被第三条直线所截,两个角在两条直线之间,并且在第三条直线的同旁,这样的一对角叫做同旁内角如图所示,5463∠∠∠∠与,与都是同旁内角 总结:同位角、内错角和同旁内角及其特征如下表:角的名称 位置特征 基本图形图形结构特征同位角在两条被截直线的同旁,在截线的同侧形如字母“F ”(或倒置、反置)内错角 在两条被截直线之间,在截线两侧(交错)形如字母“Z ”(或反置)同旁内角 在两条被截直线之间,在截线的同侧形如字母“U ”例3(1)(2015二中七上期末)如图,下列结论:①43∠∠与是内错角;②53∠∠与是同位角;③21∠∠与是同旁内角;④21∠∠与是内错角;⑤31∠=∠;其中正确的有( )A .4个B .3个C .2个D .1个(2)如图:①21∠∠与是两条直线____与_____被第三条直线______所截构成的_________角; ②31∠∠与是两条直线____与_____被第三条直线______所截构成的_________角;③42∠∠与是两条直线____与_____被第三条直线______所截构成的_________角;④43∠∠与是两条直线____与_____被第三条直线______所截构成的_________角; ⑤65∠∠与是两条直线____与_____被第三条直线______所截构成的_________角; 练如图,找出图中用数字表示的各角中,哪些是同位角、内错角、同旁内角?例4找出图中用数字表示的角中,所有的同位角、内错角和同旁内角,并指出它们分别是哪两条直线被哪一条直线所截形成的。
最新七年级数学培优讲义word版(全年级章节培优-绝对经典)
第11讲角考点•方法•破译1.进一步认识角,会比较角的大小,会计算角度的和差,认识度、分、秒,会进行简单的换算.2.了解角平分线及其性质,了角余角、补角,知道等角的余角相等,等角的补角相等.经典•考题•赏析例1:如图AOE是直线,图中小于平角的角共有()A.7个B.9个C.8个D.10个【解法指导】公共端点的两条射线组成的图形叫做角,数角注意抓住概念,表示角用大写字母表示或希腊字母及数字表示,故选择B.【变式题组】01.在下图中一共有几个角?它们应如何表示.02.下列语句正确的是()A.从同一点引出的两条射线组成的图形叫做角B.两条直线相交组成的图形叫做角C.从同一点引出的两条线段组成的图形叫做角D.两条线段相交组成的图形叫做角03.关于平角和周角的说法正确的是()A.平角是一条直线B.周角是一条射线C.反向延长射线OA,就是成一个平角D.两个锐角的和不一定小于平角例2:38.33°可化为()A.38°30′3〃B.38°33'C.38°30′30″〃D.38°19′48″〃【解法指导】注意度、分、秒是60进制的,把度转化成分要乘60,把分转化成秒要乘60;反之把秒化成分要除以60,把分化成度要除以60,把秒化成度要除以3600,故选择D.【变式题组】01.把下列各角化成用度表示的角:⑴15°24′36″〃⑵36°59′96″〃⑶50°65′60″〃02.⑴3.76°=度分秒⑵3.76°=分秒⑶钟表在8:30时,分针与时针的夹角为度.03.计算:⑴23°45′36+66°14′24″;⑵180°-98°24′30″;〃⑶15°50′42″×3;⑷88°14′48″÷4例3:若∠α的余角与∠α的补角的和是平角则∠α=.【解法指导】两个角的和等于90°叫做余角,两个角的和等于180°叫做互补,同角或等角的余角相等,同角或等角的补角相等.解:根据题意得90°-∠α+180°-∠α=180°,所以∠α=45°【变式题组】01.如图所示,那么∠2与12(∠1-∠2)之间的关系是()A.互补B.互余C.和为45°D.和为22.5°02.55°角的余角是()A.55°B.45°C.35°D.125°03.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③12(∠α+∠β)④12(∠α-∠β)()A.4个B.3个C.2个D.1个例4:如图,点O是直线AB上的点,OC平分∠AOD,∠BOD=30°,则∠AOC =.【解法指导】注意找出图中角的和、差、倍、分关系,图中有∠AOD+∠BOD=180°,∠AOD=2∠AOC.解:因为∠AOD=180°-∠BOD=180°-30°=150°,又因为OC平分∠AOD,所以∠AOC=12∠AOD=12×150°=75°.【变式题组】01.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD等于()A.20°B.40°C.50°D.80°02.如图直线a,b相交于点O,若∠1=40°,则∠2等于()A.50°B.60°C.140°D.160°03.一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()A.45°B.60°C.75°D.80°例5:如图是一块手表早点9时20分的时针、分针位置关系示意图,此时时针和分针所成的角的度数是()A.160°B.180°C.120°D.150°【解法指导】角此类问题可结合题意画出相应刻度的示意图,并准确地把握时针、分针的旋转一圈12小时,则它1小时转的角度为360°×112=30°,1分钟转过的角度为30°×160=0.5°,分针转一圈是1个小时,分针每分钟转过的角度为360°×160=6°.故选择A.【变式题组】01.钟表上12时15分,时针与分针的夹角为()A.90°B.82.5°C.67.5°D.60°02.由2点15分到2点30分,时钟的分针转过的角度是.例6:考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.【解法指导】此类问题紧扣方位角的概念作出射线OA,OB是关键.解:如图,以O为顶点,正北方向线为始边向东旋转45°,得OA,以O为顶点,正南方向线为始边向东旋转60°,得OB,则∠AOB=180°-(45°+60°)=75°.【变式题组】01.如图所示,某测绘装置有一枚指针,原来指向南偏西50°,把这枚指针按顺时针旋转14周.⑴指针所指方向为 ;⑵图中互余的角有 对,与∠BOC 互补的角是 . 02.轮船航行到C 处时,观察到小岛B 的方向是北偏西35°,同时从B 观察到轮船C 的方向是( ) A .南偏西35° B .北偏西35° C .南偏东35° D .南偏东55° 03.如图下列说法不正确的是( )A .OA 的方向是东偏北30°B .OB 的方向是西偏北60°C .OC 的方向是西偏南15°D .OD 的方向是西南方向例7:如图,O 是直线 AB 上一点,∠AOD =120°,∠AOC =90°,OE 平分∠BOD ,则图中彼此互补的角共有 对.【解法指导】彼此互补的角只要满足一定的数量关系即可,而与位置无关,从计算相应角的度数入手,故共有6对.【变式题组】 01.如图所示,A 、O 、B 在一条直线上,∠AOC =12∠BOC +30°,OE 平分∠BOC ,则∠BOE = .02.如图,已知∠AOB ∶∠BOC ∶∠COD =3∶2∶4,∠AOD =108°,求∠AOB 、∠BOC 、∠COD 的度数.03.如图,已知∠AOB +∠AOC =180°,OP 、OQ 分别平分∠AOB 、∠AOC ,且∠POQ =50°,求∠AOB 、∠AOC 的度数.演练巩固反馈提高01.已知∠α=35°,则∠α的余角是()A.55°B.45°C.145°D.135°02.如图直线l1与l2相交于点O,OM⊥l1,若∠α=44°,则∠β等于()A.56°B.46°C.45°D.44°03.把一张长方形的纸片按图的方位折叠,EM、FM为折痕,折叠后的C点落在MB'的延长线上,则∠EMF的度数是()A.85°B.90°C.95°D.100°04.书店、学校、食堂在同一个平面上,分别用A、B、C表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC应是()A.65°B.35°C.165°D.135°05.如果∠α=3∠β,∠α=2∠θ,则必有()A.∠β=12∠θB.∠β=23∠θC.∠β=13∠θD.∠β=34∠θ06.某校初一年级在下午3:00开展“阳光体育”活动,下午3:00这一时刻,时针上分针与时针所夹角等于°.07.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC等于()A.10°B.40°C.45°D.70°或10°08.已知∠AOB=120°,OC在它的内部,且把∠AOB分成1:3,那么∠AOC的度数是()A.40°B.40°或80°C.30°D.30°或90°09.⑴如图所示,已知∠AOB是直角,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;⑵如果⑴中∠AOB=α,其他条件不变,求∠MON的度数;⑶你从⑴⑵的结果中,能发现什么规律?10.如图,已知OB 、OC 是∠AOD 内部的两条射线,OM 平分∠AOB ,ON 平分∠COD .⑴若∠AOD =70°,∠MON =50°,求∠BOC 的大小; ⑵若∠AOD =α,∠MON =β,求∠BOC 的大小.(用字母α、β的式子表示) 11.如图所示,已知∠AOE =100°,∠DOF =80°,OE 平分∠DOC ,OF 平分∠AOC ,求∠EOF的度数.12.如图所示,O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线.⑴求∠DOE 的度数;⑵若只将射线OC 的位置改变,其他条件不变,那么∠DOE 的度数会改变吗?13.如图,根据图回答下列问题:⑴∠AOC 是哪两个角的和;⑵∠AOB 是哪两个角的差.14.如图,∠1=∠2=∠3=∠4,根据图形回答问题:⑴图中哪些角是∠2的2倍; ⑵图中哪些角是∠3的3倍;⑶图中哪些角是∠AOD 的12倍; ⑷射线OC 是哪个角的三等分线.15.如图直线AB 与CD 相交于点O ,那么∠1=∠2吗?试说明理由.培优升级奥赛检测01.一个角的补角的117是6°,则这个角是()A.68°B.78°C.88°D.98°02.用一副三角板可以画出大于0°且小于180°的不同角度数有()种.A.9种B.10种C.11种D.12种03.如图,∠AOB=180°,OD是∠COB的平分线,OE是∠AOC的平分线,设∠BOD=α,则与α余角相等的是()A.∠COD B.∠COE C.∠DOA D.∠COA04.4点钟后,时针与分针第二次成90°,共经过()分钟(答案四舍五入到整数).A.60 B.30 C.40 D.33 05.如图OM、ON、OP分别是∠AOB、∠BOC、∠AOC的平分线,则下列各式中成立的是()A.∠AOP >∠MON B.∠AOP=∠MONC.∠AOP <∠MON D.以上情况都有可能06.如图,∠AOC是直角,∠COD=21.5°,且OB、OD分别是∠AOC、∠BOE的平分线,则∠AOE等于()A.111.5°B.138°C.134.5°D.178°07.下列说法不正确的是()A.角的大小与角的边画出部分的长短无关B.角的大小与它们的度数的大小是一至的C.角的平分线是一条线段D.角的和、差、倍、分的度数等于它们度数的和、差、倍、分08.和艘轮船由A地向南偏西45°的方向行驶40海里到达B地,再由B地向北偏西15°方向行驶40海里到达C地,则A、C相距()海里.A.30 B.40 C.50 D.6009.∠A的补角是125°12',则它的余角是()A.54°18'B.35°12'C.35°48'D.54°48'10.如果一个角等于它的余角的2倍,那么这个角等于它补角的()A.2倍B.12倍C.5倍D.15倍11.一个角的补角与这个角的余角的度数之比为3:1,则这个角是度.12.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算115(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中确有一个是正确答案,则α+β+γ=.13.已知∠AOB=50°,∠BOD=3∠AOB,OC平分∠AOB,OM平分∠AOD,求∠MOC的度数.第18讲 二元一次方程组及其解法考点·方法·破译1.了解二元一次方程和二元一次方程组的概念;2.解二元一次方程的解和二元一次方程组的解的意义; 3.熟练掌握二元一次方程组的解法.经典·考题·赏析【例1】 已知下列方程2x m -1+3y n +3=5是二元一次方程,则m +n = . 【解法辅导】二元一次方程必须同时具备三个条件: ⑴这个方程中有且只有两个未知数; ⑵含未知数的次数是1;⑶对未知数而言,构成方程的代数式是整式.【解】根据二元一次方程的概念可知:⎩⎨⎧=+=-1311n m ,解得m =2,n = -2,故m +n =0.【变式题组】01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由.⑴2x +5y =16 (2)2x +y +z =3 (3)x1+y =21 (4)x 2+2x +1=0 (5)2x +10xy =5 02.若方程2x a +1+3=y 2b-5是二元一次方程,则a = ,b = .03.在下列四个方程组①⎩⎨⎧=-=+94210342y x y x ,②⎩⎨⎧==+297124xy y x ,③⎪⎩⎪⎨⎧=+=-432021y x y x,④⎩⎨⎧=-=+045587y x y x 中,是二元一次方程组的有 ( )A .1个B .2个C .3个D .4个 【例2】(十堰中考)二元一次方程组⎩⎨⎧=+=-52723y x y x 的解是 ( )A . ⎩⎨⎧==23y x B .⎩⎨⎧==21y x C . ⎩⎨⎧==24y x D . ⎩⎨⎧==13y x 【解法辅导】二元一次方程组的解,就是它的两个方程的公共解,根据此概念,此类题有两种解法:⑴若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;⑵若方程组较易解,则直接解方程组可得答案.本例中,方程组较易解,故可直接用加减消元法求解,本题答案选D . 【变式题组】 01.(杭州)若x =1,y =2是方程ax -y =3的解,则a 的值是 ( )A .5B .-5C .2D .1 02.(盐城)若二元一次方程的一个解为⎩⎨⎧-==12y x ,则此方程可以是 (只要求写一个)03.(义乌)已知:∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x °,y °,下列方程组中符合题意的是 ( )A . ⎩⎨⎧-==+30180y x y x B .⎩⎨⎧+==+30180y x y x C . ⎩⎨⎧+==+3090y x y x D . ⎩⎨⎧-==+3090y x y x 4.(连云港)若⎩⎨⎧==12y x ,是二元一次方程组⎪⎩⎪⎨⎧=-=+2523by ax by ax ,的解,则a +2b 的值为 .【例3】解方程组⎩⎨⎧=+=+17537y x y x【解法辅导】当二元一次方程组的一个方程中,有一个未知数的系数为1或-1时,可选用带入法解此方程,此例中①变形得y =7-x ③,将③带入②可消去y ,从而求解.解:由①得,y =7-x ③将③带入②,得 3x +5(7-x )=17, 即35-2x =17 x =9故此方程组的解是⎩⎨⎧-==29y x【变式题组】 1.解方程组:(南京)⑴⎩⎨⎧=+=-5242y x y x (海淀)⑵⎩⎨⎧=+-=-16214y x y x(花都)⑶⎩⎨⎧=+=-5242y x y x (朝阳)⑷⎩⎨⎧=+=-232553y x y x2.方程组⎩⎨⎧=-+=525y x y x 的解满足x +y +a =0,则a 的值为 ( )A .5B .-5C .3D .-3 【例4】解方程组⎩⎨⎧=-=+115332y x y x【解法辅导】用加减法解二元一次方程组时,要注意选择适当的“元”来消去,原则上尽量选择系数绝对值较小的未知数消去,特别是如果两个方程中系数绝对值的比为整数时,就选择该未知数为宜,若两系数符号相同,则相减,若系数符号相反,则相加.本题中,y 的系数绝对值之比为5:1=5,因此可以将①×5,然后再与②相家,即可消去y.①②①②解:①×5得,y =7-x ③③+②,得 ,13x =26 ∴x =2 将x =2代入①得 y =-1 ∴此方程组的解是⎩⎨⎧-==12y x .【变式题组】01.(广州)以⎩⎨⎧-==11y x 为解的二元一次方程组是 ( )A .⎩⎨⎧=-=+10y x y x B .⎩⎨⎧-=-=+10y x y x C .⎩⎨⎧=-=+20y x y x D .⎩⎨⎧-=-=+2y x y x02.解下列方程组:(日照)⑴⎩⎨⎧=-=-138332y x y x (宿迁)⑵⎩⎨⎧=+-=-1223532y x y x03.(临汾)已知方程组⎩⎨⎧=+=-24by ax by ax 的解为⎩⎨⎧==12y x ,则2a -3b 的值为 ( )A .4B .6C .-6D .-4 04.已知⎩⎨⎧=+=+6252y x y x ,那么x -y 的值为 ,x +y 的值为 .【例5】已知二元一次方程组⎩⎨⎧+=-+=+243412223k y x k y x 的解满足x +y =6,求k 的值. 【解法辅导】此题有两种解法,一中是由已给的方程组消去k 而得一个二元一次方程,此方程与x +y =6联立,求得x 、y 的值,从而代入①或②可求得k 的值;另一种是直接由方程组解出x 、y ,其中x 、y 含有k ,即用含k 的代数式分别表示x 、y ,再代入x +y =6得以k 为未知数的一元一次方程,继而求k 的值.解:①×2,得, 6x +4y =4k +24 ③ ③-②,得 2x +7y =22 ④ 由x +y =6,得2x +2y =12 ⑤,⑤-④,得 -5y =-10 ∴y =2 将y =2代入x +y =6得 x =4 将⎩⎨⎧==24y x 带入①得 3×4+2×2=2k +12 ∴k =2. 【变式题组】 01.已知⑴⎩⎨⎧-=-=+2513n ny x ny mx 与⑵⎩⎨⎧=+=-82463y x y x 有相同的解,则m = ,n = .02.方程组⎩⎨⎧=-+=525y x y x 的解满足方程x +y -a =0, 那么a 的值为 ( )A .5B .-5C .3D .-3 ①② ①②03.已知方程组⎩⎨⎧+=+=+33223k y x ky x 的解x 与y 的和为8,求k 的值.【例6】解方程组⎩⎨⎧=--+=-++12)(5)3(316)(3)3(4y x y x y x y x【解法辅导】观察发现:整个方程组中具有两类代数式,即(x +3y )和(x -y ),如果我们将这两类代数式整体不拆开,而分别当作两个新的未知数,求解则将会大大减少运算量,当分别求出x +3y 和x -y 的值后,再组成新的方程组可求出x 、y 的值,此种方法称为换元法.解:设x +3y =a , x -y =b , 则原方程组可变形为⎩⎨⎧=-=+12531634b a b a ③×3,得 12a +9b =12 ⑤ ④×4, 得 12a -20b =48 ⑥-⑤,得 29b =0,∴b =0 将b =0代入③,得 a =4 ∴可得方程组⎩⎨⎧=-=+043y x y x 故原方程组的解为⎩⎨⎧==11y x .【变式题组】01.解下列方程组:⑴⎪⎩⎪⎨⎧=--+=-++2)(5)(4632y x y x y x y x ⑵(湖北十堰)⎪⎪⎩⎪⎪⎨⎧-=-=+5791034yx yx02.(淄博)若方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组⎩⎨⎧=--+=--+9.30)1(5)2(313)1(3)2(4y x y x 的解是 ( ) A . ⎩⎨⎧==2.23.6y x B .⎩⎨⎧==2.13.8y x C . ⎩⎨⎧==2.23.10y x D . ⎩⎨⎧==2.03.10y x 03.解方程组:⎪⎪⎩⎪⎪⎨⎧=---=-+-0121221136211y x x x ①② ③ ④① ②【例7】(第二届“华罗庚杯”香港中学邀请赛试题)已知:方程组⎩⎨⎧-=+-=+2242016y cx by ax 的解应为⎩⎨⎧-==108y x ,小明解此题时把c 抄错了,因此得到的解是⎩⎨⎧-==1312y x ,则a 2+b 2+c 2的值为 .【解法辅导】⎩⎨⎧-==108y x 是方程组的解,则将它代入原方程可得关于c 的方程,由题意分析可知:⎩⎨⎧-==1312y x 是方程ax +by =-16的解,由此可得关于a 、b 的又一个方程,由此三个方程可求得a 、b 、c 的值.解:34【变式题组】 01.方程组⎩⎨⎧=-=+472dy cx y ax 时,一学生把a 看错后得到⎩⎨⎧==15y x ,而正确的解是⎩⎨⎧-==13y x ,则a 、c 、d 的值是 ( )A .不能确定B .a =3, c =1, d =1C . c 、d 不能确定D . a =3, c =2, d = -2 02.甲、乙良人同解方程组⎩⎨⎧-=-=+232y Cx By Ax ,甲正确解得⎩⎨⎧-==11y x ,乙因抄错C ,解得⎩⎨⎧-==62y x ,求A 、B 、C 的值.演练巩固 反馈提高01.已知方程2x -3y =5,则用含x 的式子表示y 是 ,用含y 的式子表示x 是 . 02.(邯郸)已知⎩⎨⎧-==11y x 是方程组⎩⎨⎧=-=+241by x by ax 的解,则a +b = .03.若(x -y )2+|5x -7y -2|=0, 则x = , y = .04.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+147by x by ax 的解,则a -b 的值为 .05.若x 3m -n +y 2n -m =-3是二元一次方程,则m = ,n = .06.关于x 的方程(m 2-4)x 2+(m +2)x +(m +1)y =m +5, 当m = 时,它是一元一次方程,当m = 时,它是二元一次方程.07.(苏州)方程组⎩⎨⎧=-=+574973y x y x 的解是 ( )A . ⎩⎨⎧=-=12y x B .⎪⎩⎪⎨⎧=-=732y x C . ⎪⎩⎪⎨⎧-==732y x D . ⎪⎩⎪⎨⎧==732y x 08.(杭州)已知⎩⎨⎧-==11y x 是方程2x -ay =3的一个解,那么a 的值是 ( )A .1B .3C .-3D . -1 09.(苏州)方程组⎩⎨⎧=-=+521y x y x 的解是 ( )A . ⎩⎨⎧=-=21y x B .⎩⎨⎧=-=32y x C . ⎩⎨⎧==12y x D . ⎩⎨⎧-==12y x 10.(山东)若关于x 、y 的二元一次方程组⎩⎨⎧=-=+k y x ky x 95的解也是二元一次方程3x +3y =6的解,则k 的值为 ( ) A .-43 B . 43 C .34 D .- 3411.(怀柔)已知方程组⎩⎨⎧=-=+42by ax by ax 的解为⎩⎨⎧==23y x ,求b a ba 22-+的值为多少?12.解方程组:⑴(滨州)⎩⎨⎧-=+=-22622y x y x ⑵(青岛)⎩⎨⎧=-=+41943y x y x⑶⎪⎪⎩⎪⎪⎨⎧=++-=--+5)32(5)3(186)3(7)32(6y x x y13.已知方程组⎩⎨⎧=--=+1653652y x y x 和方程组⎩⎨⎧-=+-=-84ay bx by ax 的解相同,求代数式3a +7b 的值.14. 已知方程组⎩⎨⎧+=+=+33223k y x ky x 的解x 与y 的和为8,求k 的值.15.(希望杯试题)m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,求m 2的值.培优升级 奥赛检测01.当k 、b 为何值时,方程组⎩⎨⎧+-=+=2)13(x k y b kx y⑴有唯一一组解 ⑵无解 ⑶有无穷多组解02..当k 、m 的取值符合条件 时,方程组⎩⎨⎧+-=+=4)12(x k y mkx y 至少有一组解.03.已知:m 是整数,方程组⎩⎨⎧=+=+266634my x y x 有整数解,求m 的值.04.若4x -3y -6z =0,x +2y -7z =0, (xyz ≠0),则式子222222103225z y x z y x ---+的值等于 ( )A .-21 B .-219 C .-15 D .-13 05.(信利杯赛题)已知:三个数a 、b 、c 满足b a ab +=31,c a bc +=41,a c ca +=51,则ca bc ab abc ++的值为 ( ) A .61 B .121 C .152 D .20106. (广西赛题)已知:满足方程2x -3y +4m =11和3x +2y +5m =21的x 、y 满足x +3y +7m =20,那么m 的值为 ( )A .0B .1C .2D .3 07.(广西赛题)若|a +b +1|与(a -b +1)2互为相反数,则a 与b 的大小关系是 ( )A .a >bB .a =bC .a <bD .a≥b 08.(“华罗庚杯”竞赛题)解方程组⎩⎨⎧=++++=+=+==+=+=+1999119991998211999199819981997433221x x x x x x x x x x x x x x09.(全国竞赛湖北赛区试题)方程组⎪⎩⎪⎨⎧=+=+612y x y x 的解的组数为 ( )A .1B .2C .3D .4①②10.对任意实数x、y定义运算x※y=ax+by,其中a、b为常数,符号右边的运算是通常意义的加乘运算,已知1※2=5且2※3=8,则4※5的值为()A.20 B.18 C.16 D.1411.(北京竞赛题)若a、b都是正整数,且143a+500b=2001,则a+b=.12.(华杯赛题)当m=-5,-4,-3,-1,0,1,3,23,124,1000时,从等式(2m+1)x+(2-3m)y +1-5m=0可以得到10个关于x和y的二元一次方程,问这10个方程有无公共解?若有,求出这些公共解.13.下列的等式成立:x1x2=x2x3=x3x4=… =x99·x100=x100·x101=x101·x1=1,求x1,x2,…x100,x101的值.第19讲 实际问题与二元一次方程组考点·方法·破译1.逐步形成方程思想,进一步适应列方程(组)解决实际问题的新思路. 2.学会用画图,列表等途径分析应用题的方法. 3.熟练掌握各类应用题中的基本数量关系.4.学会找出每道应用题中所蕴藏的各种等量关系,并依此列出方程组.经典·考题·赏析【例1】甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由两地相向而行,1小时20分钟相遇,相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发后半小时追上了拖拉机,这时,汽车、拖拉机各自走了多少千米?【解法指导】(1)画出直线型示意图理解题意(2)本题有两个未知数——汽车的行程和拖拉机的行程.有两个相等关系:①相向而行:汽车行驶113小时的路程+拖拉机行驶113的路程=160千米;②同向而行:汽车行驶12小时的路程=拖拉机行驶(1+12)小时的路程. (3)本题的基本数量关系有:路程=速度×时间.解:设汽车的速度为每小时x 千米,拖拉机的速度为每小时y 千米,根据题意,得⎧+=⎪⎪⎨⎪=+⎪⎩11()160311(1)22x y x y 解这个方程组,得90,30.x y ⎧=⎨=⎩1190(1)165千米,32⨯+=1130(1+1)=85千米。
初一数学七年级数学角课件
初一数学七年级数学角课件一、引言数学角是初中数学教学的重要组成部分,旨在帮助学生巩固课堂所学知识,提高数学思维能力。
本课件以七年级数学角为主要内容,针对初一学生,通过一系列有趣、富有挑战性的数学题目,激发学生的学习兴趣,培养学生的数学素养。
二、教学内容1.数与代数(1)有理数的运算:加、减、乘、除、乘方、开方等基本运算,以及混合运算。
(2)代数式:整式、分式、多项式、单项式等代数式的概念和运算。
(3)方程与不等式:一元一次方程、一元一次不等式、二元一次方程组、不等式组等。
2.几何图形(1)平面图形:点、线、角、三角形、四边形、圆等基本平面图形的性质和判定。
(2)立体图形:长方体、正方体、圆柱、圆锥、球等基本立体图形的性质和计算。
3.统计与概率(1)数据的收集、整理和描述:条形图、折线图、扇形图等统计图表的制作。
(2)概率:事件的分类、概率的计算、随机现象的模拟等。
三、教学目标1.知识与技能:使学生掌握七年级数学的基本知识和技能,能正确运用数学语言进行表达和交流。
2.过程与方法:培养学生运用数学知识解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,提高学生的数学素养。
四、教学重点与难点1.教学重点:有理数的运算、方程与不等式、平面图形的性质和判定、立体图形的计算等。
2.教学难点:有理数的混合运算、一元一次方程的解法、平面图形的判定、立体图形的计算等。
五、教学方法1.启发式教学:引导学生自主探究,发现数学知识,培养学生的创新意识。
2.讲练结合:讲解与练习相结合,使学生充分理解和掌握所学知识。
3.小组合作:分组讨论,培养学生的合作能力和团队精神。
4.多媒体辅助教学:运用多媒体课件,丰富教学手段,提高教学效果。
六、教学评价1.过程性评价:关注学生在课堂上的表现,包括发言、讨论、练习等。
2.终结性评价:期末考试,检验学生对本学期数学知识的掌握程度。
3.自我评价:引导学生进行自我评价,反思学习过程,提高学习效果。
罗湖区望桐路七年级数学 第5讲 整式的加减培优讲义(无答案) 新人教版(2021年整理)
广东省深圳市罗湖区望桐路七年级数学第5讲整式的加减培优讲义(无答案)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市罗湖区望桐路七年级数学第5讲整式的加减培优讲义(无答案)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市罗湖区望桐路七年级数学第5讲整式的加减培优讲义(无答案)新人教版的全部内容。
第05讲 整式的加减考点·方法·破译1.掌握同类项的概念,会熟练地进行合并同类项的运算.2.掌握去括号的法则,能熟练地进行加减法的运算.3.通过去括号,合并同类项和整式加减的学习,体验如何认识和抓住事物的本质特征。
经典·考题·赏析【例1】(济南)如果3231y x a +和1233--b y x 是同类项,那么a 、b 的值分别是( ) A .⎩⎨⎧==21b aB .⎩⎨⎧==20b aC .⎩⎨⎧==12b aD .⎩⎨⎧==11b a【解法指导】同类项与系数的大小无关,与字母的排列顺序也无关,只与是否含相同字母,且相同字母的指数是否相同有关。
解:由题意得⎩⎨⎧=-=+31232b a ,∴⎩⎨⎧==21b a【变式题组】01。
(天津)已知a =2,b =3,则( )A .ax 3y 2与b m 3n 2是同类项B .3x a y 3与bx 3y 3是同类项C .Bx 2a +1y 4与ax 5y b +1是同类项D .5m 2b n 5a 与6n 2b m 5a 是同类项02.若单项式2X 2y m 与-31x n y 3是同类项,则m =___________,n =___________。
罗湖区望桐路七年级数学 第2讲 有理数的加减法培优讲义(无答案) 新人教版(2021年整理)
广东省深圳市罗湖区望桐路七年级数学第2讲有理数的加减法培优讲义(无答案)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市罗湖区望桐路七年级数学第2讲有理数的加减法培优讲义(无答案)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市罗湖区望桐路七年级数学第2讲有理数的加减法培优讲义(无答案)新人教版的全部内容。
第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算。
3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0。
3元,则股票A这天的收盘价为( )A.0.3元B.16。
2元C.16。
8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值。
解:18+(-1。
5)+(0。
3)=16。
8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________ 03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13。
广东省深圳市罗湖区望桐路七年级数学 第11讲 角培优讲义(无答案) 新人教版
第11讲角考点•方法•破译1.进一步认识角,会比较角的大小,会计算角度的和差,认识度、分、秒,会进行简单的换算.2.了解角平分线及其性质,了角余角、补角,知道等角的余角相等,等角的补角相等.经典•考题•赏析例1:如图AOE是直线,图中小于平角的角共有()A.7个B.9个C.8个D.10个【解法指导】公共端点的两条射线组成的图形叫做角,数角注意抓住概念,表示角用大写字母表示或希腊字母及数字表示,故选择B.【变式题组】01.在下图中一共有几个角?它们应如何表示.02.下列语句正确的是()A.从同一点引出的两条射线组成的图形叫做角B.两条直线相交组成的图形叫做角C.从同一点引出的两条线段组成的图形叫做角D.两条线段相交组成的图形叫做角03.关于平角和周角的说法正确的是()A.平角是一条直线B.周角是一条射线C.反向延长射线OA,就是成一个平角D.两个锐角的和不一定小于平角例2:38.33°可化为()A.38°30′3〃B.38°33'C.38°30′30″〃D.38°19′48″〃【解法指导】注意度、分、秒是60进制的,把度转化成分要乘60,把分转化成秒要乘60;反之把秒化成分要除以60,把分化成度要除以60,把秒化成度要除以3600,故选择D.【变式题组】01.把下列各角化成用度表示的角:⑴15°24′36″〃⑵36°59′96″〃⑶50°65′60″〃02.⑴3.76°=度分秒⑵3.76°=分秒⑶钟表在8:30时,分针与时针的夹角为度.03.计算:⑴23°45′36+66°14′24″;⑵180°-98°24′30″;〃⑶15°50′42″×3;⑷88°14′48″÷4例3:若∠α的余角与∠α的补角的和是平角则∠α=.【解法指导】两个角的和等于90°叫做余角,两个角的和等于180°叫做互补,同角或等角的余角相等,同角或等角的补角相等.解:根据题意得90°-∠α+180°-∠α=180°,所以∠α=45°【变式题组】01.如图所示,那么∠2与12(∠1-∠2)之间的关系是()A.互补B.互余C.和为45°D.和为22.5°02.55°角的余角是()A.55°B.45°C.35°D.125°03.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③12(∠α+∠β)④12(∠α-∠β)()A.4个B.3个C.2个D.1个例4:如图,点O是直线AB上的点,OC平分∠AOD,∠BOD=30°,则∠AOC=.【解法指导】注意找出图中角的和、差、倍、分关系,图中有∠AOD+∠BOD=180°,∠AOD=2∠AOC.解:因为∠AOD=180°-∠BOD=180°-30°=150°,又因为OC平分∠AOD,所以∠AOC=12∠AOD=12×150°=75°.【变式题组】01.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD等于()A.20°B.40°C.50°D.80°02.如图直线a,b相交于点O,若∠1=40°,则∠2等于()A.50°B.60°C.140°D.160°03.一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()A.45°B.60°C.75°D.80°例5:如图是一块手表早点9时20分的时针、分针位置关系示意图,此时时针和分针所成的角的度数是()A.160°B.180°C.120°D.150°【解法指导】角此类问题可结合题意画出相应刻度的示意图,并准确地把握时针、分针的旋转一圈12小时,则它1小时转的角度为360°×112=30°,1分钟转过的角度为30°×160=0.5°,分针转一圈是1个小时,分针每分钟转过的角度为360°×160=6°.故选择A.【变式题组】01.钟表上12时15分,时针与分针的夹角为()A.90°B.82.5°C.67.5°D.60°02.由2点15分到2点30分,时钟的分针转过的角度是.例6:考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.【解法指导】此类问题紧扣方位角的概念作出射线OA,OB是关键.解:如图,以O为顶点,正北方向线为始边向东旋转45°,得OA,以O为顶点,正南方向线为始边向东旋转60°,得OB,则∠AOB=180°-(45°+60°)=75°.【变式题组】01.如图所示,某测绘装置有一枚指针,原来指向南偏西50°,把这枚指针按顺时针旋转1 4周.⑴指针所指方向为;⑵图中互余的角有对,与∠BOC互补的角是.02.轮船航行到C处时,观察到小岛B的方向是北偏西35°,同时从B观察到轮船C的方向是()A.南偏西35°B.北偏西35°C.南偏东35°D.南偏东55°03.如图下列说法不正确的是()A.OA的方向是东偏北30°B.OB的方向是西偏北60°C.OC的方向是西偏南15°D.OD的方向是西南方向例7:如图,O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中彼此互补的角共有对.【解法指导】彼此互补的角只要满足一定的数量关系即可,而与位置无关,从计算相应角的度数入手,故共有6对.【变式题组】01.如图所示,A、O、B在一条直线上,∠AOC=12∠BOC+30°,OE平分∠BOC,则∠BOE=.02.如图,已知∠AOB∶∠BOC∶∠COD=3∶2∶4,∠AOD=108°,求∠AOB、∠BOC、∠COD的度数.03.如图,已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC,且∠POQ=50°,求∠AOB、∠AOC的度数.演练巩固反馈提高01.已知∠α=35°,则∠α的余角是()A.55°B.45°C.145°D.135°02.如图直线l1与l2相交于点O,OM⊥l1,若∠α=44°,则∠β等于()A.56°B.46°C.45°D.44°03.把一张长方形的纸片按图的方位折叠,EM、FM为折痕,折叠后的C点落在MB'的延长线上,则∠EMF的度数是()A.85°B.90°C.95°D.100°04.书店、学校、食堂在同一个平面上,分别用A、B、C表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC应是()A.65°B.35°C.165°D.135°05.如果∠α=3∠β,∠α=2∠θ,则必有()A.∠β=12∠θB.∠β=23∠θC.∠β=13∠θD.∠β=34∠θ06.某校初一年级在下午3:00开展“阳光体育”活动,下午3:00这一时刻,时针上分针与时针所夹角等于°.07.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC 等于()A.10°B.40°C.45°D.70°或10°08.已知∠AOB=120°,OC在它的内部,且把∠AOB分成1:3,那么∠AOC的度数是()A.40°B.40°或80°C.30°D.30°或90°09.⑴如图所示,已知∠AOB是直角,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON 的度数;⑵如果⑴中∠AOB=α,其他条件不变,求∠MON的度数;⑶你从⑴⑵的结果中,能发现什么规律?10.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.⑴若∠AOD=70°,∠MON=50°,求∠BOC的大小;⑵若∠AOD=α,∠MON=β,求∠BOC的大小.(用字母α、β的式子表示)11.如图所示,已知∠AOE=100°,∠DOF=80°,OE平分∠DOC,OF平分∠AOC,求∠EOF 的度数.12.如图所示,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.⑴求∠DOE的度数;⑵若只将射线OC的位置改变,其他条件不变,那么∠DOE的度数会改变吗?13.如图,根据图回答下列问题:⑴∠AOC是哪两个角的和;⑵∠AOB是哪两个角的差.14.如图,∠1=∠2=∠3=∠4,根据图形回答问题:⑴图中哪些角是∠2的2倍;⑵图中哪些角是∠3的3倍;⑶图中哪些角是∠AOD的12倍;⑷射线OC是哪个角的三等分线.15.如图直线AB与CD相交于点O,那么∠1=∠2吗?试说明理由.培优升级奥赛检测01.一个角的补角的117是6°,则这个角是()A.68°B.78°C.88°D.98°02.用一副三角板可以画出大于0°且小于180°的不同角度数有()种.A.9种B.10种C.11种D.12种03.如图,∠AOB=180°,OD是∠COB的平分线,OE是∠AOC的平分线,设∠BOD=α,则与α余角相等的是()A.∠COD B.∠COE C.∠DOA D.∠COA04.4点钟后,时针与分针第二次成90°,共经过()分钟(答案四舍五入到整数).A.60 B.30 C.40 D.33 05.如图OM、ON、OP分别是∠AOB、∠BOC、∠AOC的平分线,则下列各式中成立的是()A.∠AOP >∠MON B.∠AOP=∠MONC.∠AOP <∠MON D.以上情况都有可能06.如图,∠AOC是直角,∠COD=21.5°,且OB、OD分别是∠AOC、∠BOE的平分线,则∠AOE 等于()A.111.5°B.138°C.134.5°D.178°07.下列说法不正确的是()A.角的大小与角的边画出部分的长短无关B.角的大小与它们的度数的大小是一至的C.角的平分线是一条线段D.角的和、差、倍、分的度数等于它们度数的和、差、倍、分08.和艘轮船由A地向南偏西45°的方向行驶40海里到达B地,再由B地向北偏西15°方向行驶40海里到达C地,则A、C相距()海里.A.30 B.40 C.50 D.6009.∠A的补角是125°12',则它的余角是()A.54°18'B.35°12'C.35°48'D.54°48'10.如果一个角等于它的余角的2倍,那么这个角等于它补角的()A.2倍B.12倍C.5倍D.15倍11.一个角的补角与这个角的余角的度数之比为3:1,则这个角是度.12.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算115(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中确有一个是正确答案,则α+β+γ=.13.已知∠AOB=50°,∠BOD=3∠AOB,OC平分∠AOB,OM平分∠AOD,求∠MOC的度数.。
【中小学资料】广东省深圳市罗湖区望桐路七年级数学 第20讲 三元一次方程组和一元一次不等式组培优讲义(无
第20讲三元一次方程组和一元一次不等式组考点·方法·破译1.了解三元一次方程组和它的解的概念;2.会解三元一次方程组并会用它解决较简单的应用题;3.了解一元一次不等式和一元一次不等式组的解集;4.会解一元一次不等式和一元一次不等式组,并会进行一些简单的应用.经典·考题·赏析【例1】解方程组275322 34416x yx y zx y z-=⎧⎪++=⎨⎪-+=⎩①②③【解法指导】观察发现,本方程组共有两个三元一次方程,一个二元一次方程.解三元一次方程组的基本思想是消元,将其转化为二元一次方程组来求解.因此,根据本题特点有两种主要思路:一是代入法,将①分别代入②、③消去y,从而得到一个以x、z为未知数的二元一次方程组;二是由②③用加减法消去z得一个以x、y为未知数的方程,再与①联系,得一个二元一次方程组.解:方法⑴由①得:y=2x-7 ④将④代入②,得5x+3(2x-7)-3z=2即11x+3z=23 ⑤将④代入③,得3x-4(2x-7)-4z=16即-5x-4z=-12 ⑥解二元一次113235412x zx z+=⎧⎨+=⎩得212xz=⎧⎪⎨=⎪⎩将x=2代入①得y=-3∴原方程组的解为2312 xyz⎧⎪=⎪=-⎨⎪⎪=⎩方法⑵②×2得 10x+6y+4z=4 ④④+③得 13x+2y=20 ⑤解方程组2713220x yx y-=⎧⎨+=⎩得23xy=⎧⎨=-⎩将23xy=⎧⎨=-⎩代入②得12z=∴原方程组的解为2312xyz⎧⎪=⎪=-⎨⎪⎪=⎩【变式题组】 1.解下列议程组:⑴126218x y x y z x z y -=⎧⎪++=⎨⎪+-=⎩ ⑵27328344x y y z x z -=⎧⎪+=-⎨⎪-=⎩ ⑶:5:3:7:2234x y x z x y z =⎧⎪=⎨⎪-+=⎩2.解方程组864x y y z x z +=⎧⎪+=⎨⎪+=⎩,并且mx +2y -z 1994=10,求m 的值.【例2】北京时间2006年1月23日,科比率领湖人队在洛杉矶迎接多伦多猛龙队的挑战.在比赛中,科比全场46投28中,罚篮命中率高达90%,疯狂砍下职业生涯最高分81分,其中依靠罚球和三分球所得分数比其他投篮得分仅仅少了3分,最终湖人队以122︰104获胜.科比的81分超越了近20年来乔丹69分的得分记录,也成为继张伯伦1962年3月2日对阵纽约尼克斯砍下的NBA 单场最高得分记录100分之后,联盟历史上排名第二的单场个人最高分.在篮球比赛中,三分球每投中一个加3分,除此之外其他的投篮每投中一个加2分.若是对方犯规,罚球每中一个,加1分,且在计算命中率时,罚球是单独计算的,不计入总的出手次数,那么通过上面的这则新闻,你能算出科比投中的三分球、二分球和罚球分别是多少个吗?【解法指导】列方程组解决实际问题时,关键是找出题中的等量关系(注意找全所有的等量关系),然后适当设出未知数,列出各个方程组成方程组.本题中,等量关系有3个:⑴科比全场共得81分;⑵科比46投28中,即他的三分球和二分球总共中了28次;⑶罚球和三分球所得的分数比其他投篮得分仅仅少了3分,即三分球和罚球的分数之和比二分球得分少3分.利用这三点就很容易建立方程组求解.解:设科比投中x 个二分球,y 个三分球,z 个罚球. 依题意得:238128323x y z x y y z x ++=⎧⎪+=⎨⎪+=-⎩解得L 21718x y z =⎧⎪=⎨⎪=⎩【变式题组】1.某车间每天可以生产甲种零件600个或乙种零件300个或丙种零件500个,这三种零件各一个可以配成一套,现要在63天的生产中,使生产的三种零件全部配套,这个车间应该对这三种零件的生产各用几天才能使生产出来的零件配套?2.2003年全国足球甲A 联赛的前12轮(场)比赛后,前三各比赛成绩如下表.胜(场) 平(场) 负(场) 积分大连实德队 8 2 2 26上海申花队 6 5 1 23北京现代队 5 7 0 22问每队胜一场、平一场、负一场各得多少分?【例3】下列各命题,是真命题的有( )①若a >b ,则a -b >0 ②若a >b ,则ac 2>bc 2③若ac >bc ,则a >b④若ac 2>bc 2,则a >b ⑤若a >b ,则3a >3b ⑥若a >b ,则-3a +1>-3b +1A .1个B .2个C .3个D .4个【解法指导】不等式的三条性质,是解决有关不等式的命题的重要依据,深入透彻理解不等式的三条性质的真实内涵,是判断上述各命题的关键.第①题是直接运用不等式的性质1,完全正确.第②题是将不等式a >b 的两边同乘以c 2,但c 2≥0,当c 2=0时,ac 2=bc 2,故本题不对.第③题是将ac >bc 的两边同除c 得到a >b ,虽然条件知c ≠0,但c 可正可负,当c <0时,a >b 就不成立,故本题不对.第④题由条件ac 2>bc 2知c 2≠0,因而c 2>0,故本题正确.第⑤题中,设a >b 两边同乘以3,满足性质2,故正确.第⑥题中由a >b 得-3a <-3b .因而-3a +1<-3b +1,因此不对,本小题运用了性质3和性质1.解:C【变式题组】1.下列各命题,正确的有( )①若a -b >0,则a >b ②若a <b ,则ac <bc③若a b c c>,则a >b ④若a <b ,则22a bc c <⑤若a >b ,则2211a bm m ++> ⑥若a >b ,则a 2>abA .1个B .2个C .3个D .4个2. ⑴关于x 的不等式(m 2+1)x >m 2+1解集是________________;⑵若关于x 的不等式(m +1)x <m +1的解集是x <1,则m 满足的条件是_________3.若关于x 的不等式(2a -b )x >3a +b 的解集是x <73,则关于x 的不等式2ax ≥3b 的解集是多少?【例4】解不等式组159104131722x x x x -<-⎧⎪⎨--⎪⎩①≤②并把解集在数轴上表示出来.【解法指导】不等式的解集就是不等式组中每个不等式的公共解集.这就要求首先会解每个不等式然后会综合不等式组的解集.一般地,对于a <b ,有下列四种情形.⑴x ax b x b>⎧⇒>⎨>⎩即同大取大⑵x a x a x b <⎧⇒<⎨<⎩即同小取小⑶x aa xb x b>⎧⇒<<⎨<⎩即大小小大中间找⑷x ax b >⎧⇒⎨>⎩无解即大大小小无法找 解:由不等式①可得x >1, 由不等式②得x ≤4综合可得此不等式组的解集是1<x ≤4【变式题组】1.解不等式组,并把解集在数轴上表示出来.⑴31422x x x ->-⎧⎨+⎩≤ ⑵5122(43)3112x x x --⎧⎪⎨-<⎪⎩≤2.已知整数x 满足不等式3x -4≤6x -2和不等式21132x x +--1<,并且满足3(x +a )-5a +2=0,试求2152a a-的值.3.已知|1-x |=x -1,则不等式组5421312x x x +>-⎧⎨-<⎩的解集为________________【例5】若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩①②有解,则a 的取值范围是多少?【解法指导】分别解每个不等式,可得22x a x >⎧⎪⎨<⎪⎩,若原不等式组有解,由“大小小大中间找”的法则,可知︰在数轴上看,2与2a 之间必有“空隙”,且2在2a 的左边,将它们表示在数轴上如下图:显然只有图⑶才符合要求,所以2<2a,即a <4. 解:由⑴可知:x >2 由⑵可知:x <2a ∵原不等式有解 ∴2<2a 即a >4故a 的取值范围是a >4 【变式题组】 1.选择题:⑴若关于x 的不等式组210340x a x a -+⎧⎨-+⎩≤≥有解,则a 的取值范围是()A .a <3B .a ≤3C .a >3D .a ≥3⑵若关于x 的不等式组3(2)432x x x a x --<⎧⎨-<⎩无解,则a 的取值范围是()A .a <1B .a ≤1C .a =1D .a ≥1⑶若不等式组0122x a x x +⎧⎨--⎩≥>有解,则a 的取值范围是()A .a >-1B .a ≥-1C .a ≤1D .a <12.试确定a 的取值范围,使不等式组:114111.5(1)()0.5(21)22x x a a a x x +⎧+⎪⎪⎨⎪-+-+-⎪⎩>①>② 只有一个整数解. 3.不等式组12x a x a ->-⎧⎨-<⎩的解集中,任一个x 的值均不在3≤x ≤7的范围内,求a的取值范22 2a22a ⑴⑵⑶围。
广东省深圳市罗湖区望桐路七年级数学第13讲平行线的性质及其应用培优讲义(无答案)新人教版
⑴定:确定平移的方向和距离。
⑵找:找出图形的关键点.
⑶移:过关键点作平行且相等的线段,得到关键点的对应点.
⑷连: 按原图形顺次连接对应点.
【解】①连接AA/②过点B作AA/的平行线l③在l截取BB/=AA/,则点B/就是的B对应点,用同样的方法作出点C的对应点C/.连接A/B/,B/C/,C/A/就得到平移后的三角形A/B/C/。
14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?
15.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.
培优升级·奥赛检测
【变式题组】
01.如图,把四边形ABCD按箭头所指的方向平移21cm,作出平移后的图形.
02.如图,已知三角形ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A/B/C/的位置,若平移距离为3, 求△ABC与△A/B/C/的重叠部分的面积。
03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC方向平移BE
∠α+∠γ+∠ψ-∠β=180°
【解法指导】基本图形
善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路.
【解】过点E作EH∥AB.过点F作FG∥AB.∵AB∥EH∴∠α=∠1(两直线平行,内错角相等)又∵FG∥AB∴EH∥FG(平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB∥CD∴FG∥CD(平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°
罗湖区望桐路七年级数学 第12讲 与相交有关概念及平行线的判定培优讲义(无答案) 新人教版(202
广东省深圳市罗湖区望桐路七年级数学第12讲与相交有关概念及平行线的判定培优讲义(无答案)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市罗湖区望桐路七年级数学第12讲与相交有关概念及平行线的判定培优讲义(无答案)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市罗湖区望桐路七年级数学第12讲与相交有关概念及平行线的判定培优讲义(无答案)新人教版的全部内容。
第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们。
3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系。
经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共 构成哪几对邻补角?【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线。
⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角。
【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 。
邻补角是 . ⑵中有几对对顶角,几对邻补角?02.当两条直线相交于一点时,共有2对对顶角;当三条直线相交于一点时,共有6对对顶角;ABCDEFAB CDEFPQR当四条直线相交于一点时,共有12对对顶角。
人教版七年级数学上册 《角》PPT教育课件
量角器
万能量角器
第十页,共十九页。
量角器介绍
量角器是角的度量工具,可用它量角、度、分、秒(角的度量单位)。
外刻度
想一想:每一个小格代表什么?
1°
10°
内刻度
第十一页,共十九页。
零度刻度线
思考
如何使用量角器测量角的度数?
在纸上画任意度数的角, 你可以用量角器量出它的具体度数吗?
步骤: 1.把量角器放在角的上面;使量角器的中心和角的顶点重合;
第五页,共十九页。
思考
如何表示下面这个角?
A
α
C
β
B
O
∠AOB 或 ∠BOA 或 ∠O
能把∠α记作∠O吗?为什么?
不能,
∠AOB记作∠O, 而∠ α记作∠ AOC, 所以不能用∠α记作∠O
第六页,共十九页。
思考
观察下面动画你发现了什么?
终边
α
始边
运动轨迹
α
0<α<90°锐角
α
α=90°直角
α
90°<α< 180°钝角
角的常见表示方法:
α
B
∠α
第四页,共十九页。
1
∠1
角的表示方法
角用“ ∠”表示,读作“ 角”.角的表示方法有下面四种: (1)角可以用三个大写字母表示,但表示顶点的字母一定要写在中间. (2)用一个字母表示角, 必须是以这个字母为顶点的角,而且只有一个. (3)用一个数字表示角,在靠近顶点处画上弧线,写上数字. (4)用一个希腊字母表示,在靠近顶点处画上弧线,写上希腊字母.
2.零度刻度线和角的一条边重合。
3.角的另一条边所对的量角器上的刻度,就是这个角的度数.
学而思初一数学秋季班第11讲 角的计算与证明
1初一秋季·第11讲·尖子班·教师版原来如此!!!满分晋级阶梯漫画释义11角的计算与证明图形的认识7级 平行线的性质及判定图形的认识6级 直线的相交 图形的认识5级 角的计算与证明2初一秋季·第11讲·尖子班·教师版1. 角的定义、表示方法、分类.2. 角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,这条射线叫做这个角的角平分线. 3. 余角和补角余角:如果两个角的和等于90︒,就说这两个角互为余角,即其中一个角是另一个角的余角. 补角:如果两个角的和等于180︒,就说这两个角互为补角,即其中一个角是另一个角的补角. 两个基本定理:① 同角(或等角)的余角相等.②同角(或等角)的补角相等.注意:暑期班提及过余角、补角、角分线相关知识但只是简单介绍,本讲深入了解,并让学生熟练掌握.对于角的基本概念、分类和表示方法等相关知识这里不再重复讲解,建议教师根据班级情况自行讲解.【例1】 ⑴ 如果90αβ∠+∠=︒,而β∠与γ∠互余,那么α∠与γ∠的关系为( )A .互余B .互补C .相等D .不能确定⑵ 已知α∠是锐角,α∠与β∠互补,α∠与γ∠互余,则βγ∠-∠的值等于( ) A .45° B .60° C .90° D .180°知识互联网思路导航典题精练题型一:余角、补角及角分线的简单运算3初一秋季·第11讲·尖子班·教师版DOECBA⑶如果α∠和β∠互补,且αβ∠>∠,则下列表示β∠的余角的式子中:① 90β︒-∠;②90α∠-︒;③ 1()2αβ∠+∠;④ 1()2αβ∠-∠.正确的有( )A . 4个B .3个C .2个D .1个⑷ 一个角的余角的2倍和它的补角的12互为补角,求这个角的度数.【解析】 ⑴ C ;同角或等角的余角相等;⑵C ;一个角的补角与这个角的余角的差等于90°;⑶B ; ⑷ 设这个角的度数为x ,则它的余角为90x ︒-,补角为180x ︒-,由题意,得:12(90)(180)1802x x ︒-+︒-=︒,解得:36x =︒.【铺垫】⑴ 下列说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的余角,那么它们相等;④锐角和钝角互补.其中正确的说法有( ) A . 4个 B .3个 C .2个 D .1个 ⑵ 下列说法中,正确的是( ) A .一个角的补角必是钝角 B .两个锐角一定互为余角 C .直角没有补角D .如果180MON ∠=︒,那么M ,O ,N 三点在一条直线上 ⑶ 下列语句正确的是( )A .钝角与锐角的差不可能是钝角B .两个锐角的和不可能是锐角C .钝角的补角一定是锐角D .α∠和β∠互补(αβ∠>∠),则α∠是钝角或直角 【解析】 ⑴ C; ⑵ D;⑶C.【备选】⑴ 若一个角的余角是40°,则这个角是( )A .40°B .50°C .60°D .140° ⑵ 互为补角的两个角度比是3:2,这两个角是( )A .108°,72°B .95°,85°C .108°,80°D .110°,70°⑶ 对于互补的下列说法中:①∠A+∠B+∠C=90°,则∠A 、∠B 、∠C 互补;②若∠1是∠2的补角,则∠2是∠1的补角;③同一个锐角的补角一定比它的余角大90°;④互补的两个角中,一定是一个钝角与一个锐角.其中,正确的有( ) A .1个 B .2个 C .3个 D .4个⑷如图,A ,O ,B 在一条直线上,AOC ∠是锐角,则AOC ∠的余角是( )A .12BOC AOC ∠-∠B .1322BOC AOC ∠-∠ C .1()2BOC AOC ∠-∠D .1()3BOC AOC ∠+∠【解析】⑴ B ;⑵ A ;⑶B ;⑷C. 【总结】复习余角与补角的基本概念【例2】 ⑴ 如右图,已知直线AB 、CD 相交于点O ,OE 平 分 COB ∠,若55EOB ∠=︒,则BOD ∠的度数是( ) A B C O4初一秋季·第11讲·尖子班·教师版FE D CBAN MAB C DOAC D E 图2图1FA .35︒B .55︒C .70︒D .110︒⑵ 如右图,分别在长方形ABCD 的边DC 、BC 上取两点E 、F , 使得AE 平分∠DAF ,若∠BAF = 60°,则∠DAE =( ). A .15° B .30° C .45° D .60°⑶ 如右图,OM 平分AOB ∠,ON 平分COD ∠,若50MON ∠=︒,10BOC ∠=︒,求AOD ∠= .【解析】 ⑴ C ;⑵ A ;⑶22501090AOD MON BOC ∠=∠-∠=⨯︒-︒=︒.【例3】 如图所示,OM 是AOC ∠的平分线,ON 是BOC ∠的平分线,⑴ 如果28AOC ∠=°,35MON ∠=°,求出AOB ∠的度数; ⑵ 如果MON n ∠=°,求出AOB ∠的度数;⑶ 如果MON n ∠=°的大小改变,AOB ∠的大小是否随之改变? 它们之间有怎样的大小关系?请写出来. 【解析】 ⑴ ∵OM 平分AOC ∠∴12MOC AOC ∠=∠∵ON 平分AOC ∠∴12NOC BOC ∠=∠∵()1122MON NOC MOC BOC AOC AOB ∠=∠+∠=∠+∠=∠ 35MON ∠=°∴2AOB MON ∠=∠ ∴70AOB ∠=°;⑵ 同上22°AOB MON n ∠=∠=;⑶ MON ∠的大小改变时AOB ∠的大小也随之改变 当090n ︒<︒≤时,2AOB MON ∠=∠. 当90180n ︒<<︒时,3602AOB n ∠=︒-.NM ABOC5初一秋季·第11讲·尖子班·教师版【拓展】已知点O 是直线AB 上的一点,90COE ∠=︒,OF 是AOE ∠的平分线.①当点C ,E ,F 在直线AB 的同侧(如图1所示)时.试说明2BOE COF ∠=∠;②当点C 与点E ,F 在直线AB 的两旁(如图2所示)时,①中的结论是否仍然成立?请 给出你的结论并说明理由;③将图2中的射线OF 绕点O 顺时针旋转(0180)m m ︒<<,得到射线OD .设AOC n ∠=︒,若2(60)3nBOD ∠=-︒ ,则DOE ∠的度数是 (用含n 的式子表示). 图2图1ABOEF CC FEO B A【解析】 ①设COF α∠=,则90EOF α∠=︒-,∵OF 是AOE ∠平分线, ∴90AOF α∠=︒-,∴(90)902AOC ααα∠=︒--=︒-, 180BOE COE AOC ∠=︒-∠-∠ 18090(902)α=︒-︒-︒- 2α=即2BOE COF ∠=∠; ②解:成立,设AOC β∠=,则902AOF β︒-∠=, ∴145(90)22COF ββ∠=︒+=︒+, 180BOE AOE ∠=︒-∠ 180(90)β=︒-︒- 90β=︒+∴2BOE COF ∠=∠; ③解:180DOE BOD AOE ∠=︒-∠-∠ 2180(60)(90)3nn =︒--︒-︒-︒ 5(30)3n =+︒,6初一秋季·第11讲·尖子班·教师版ABCDO 图1ABDO图3故答案为:5(30)3n =+︒.定 义示例剖析角度计算的分类讨论在平面上,已知角的一边和角度大小则角的另一边因为旋转有两种方向会产生不确定性.B 'BAO角的计数问题在计算角的个数时一种方法是按一定顺序累加,固定角的一边,数出另一边共有多少个.另一种方法是使用排列组合知识.【例4】 ⑴ 一条射线OA ,从点O 再引两条射线OB 与OC ,使40AOB ∠=︒,20BOC ∠=︒,则AOC ∠= .⑵ 已知40AOB ∠=︒,从O 点引射线OC ,若23AOC COB ∠∠=∶∶,求OC 与AOB ∠的平分线所成的角的度数为 .⑶ 若170AOB ∠=︒,70AOC ∠=︒,60BOD ∠=︒,求COD ∠的度数. 【解析】 ⑴ 20︒或60︒;⑵ 当OC 在⑴区域,所求的角度数为4︒; 当OC 在⑵区域,所求的角度数为100︒; 当OC 在⑶⑷⑸区域,不符合.(不考虑优角)⑶分四种情况如图1,COD ∠=40AOB AOC BOD ∠-∠-∠=︒ 如图2,COD ∠=160︒如图3,COD ∠=180︒如图4,COD ∠=60︒典题精练题型二:角度计算中的分类讨论5()4()3()2()1()O 角平分线BA7初一秋季·第11讲·尖子班·教师版图2A B CDO 图4A B C D O 东北西南东南西北东西南北【例5】 如下图,在已知角内画射线,画1条射线,图中共有 个角;画2条射线, 图中共有 个角;画3条射线,图中共有 个角,求画n 条射线所得的角的个数.【解析】 3,6,10,(1)(2)2n n ++ 【拓展】已知直角AOB ∠,以O 为顶点,在AOB ∠的内部画出100条射线,则以OA 、OB 及这些射线为边的锐角共有多少个?若以O 为项点,在AOB ∠的内部画出n 条射线(1n ≥的自然数),则OA 、OB 以及这些射线为边的锐角共有多少个?【解析】 200个,2n【提示】在AOB ∠的内部,以O 为顶点,画1,2,3,4条射线,数数各有多少个锐角,找出规律,再计算100条射线、n 条射线所构成的锐角的个数.1. 方位角方位角一般以正北、正南为基准,描述物体运动方向.即“北偏东⨯⨯度”、“北偏西⨯⨯度”、“南偏东⨯⨯度”、“南偏西⨯⨯度”,方位角α的取值范围090α︒︒≤≤. 2. 钟表问题: ⑴ 分针每分钟转6︒ ⑵ 时针每分钟转0.5︒【例6】 ⑴ 如右图所示,下列说法中错误..的是( ) A .OA 的方向是北偏西15°思路导航典题精练题型三:角的综合应用60°75°45°30°北南西东O DCBA8初一秋季·第11讲·尖子班·教师版7654 3 2 1B .OB 的方向是南偏西45°C .OC 的方向是南偏东60°D .OD 的方向是北偏东60°(西城区期末)⑵ 如左下图所示的44⨯正方形网格中,1234567∠+∠+∠+∠+∠+∠+∠= .⑶ 如右下图,将一副三角板叠放在一起,使直角顶点重合于O 点,则AOC DOB ∠+∠= .⑷ 如图,将两块三角板的直角顶点重叠在一起.① 如图1,若20AOD ∠=°,则COB ∠= ° 如图2,若30AOD ∠=°,则COB ∠= ° 如图3,若50AOD ∠=°,则COB ∠= °② 如图4,若AOD α∠=,猜想COB ∠与α的数量关系为: (用式子表示), 证明你的结论.【解析】 ⑴ D ;⑵利用对称性得315︒; ⑶180︒;⑷ ①160︒,150︒,130︒.② 180COB α∠=︒-.A BO图1CAD BO 20︒图2ABCD30︒图3CADB50︒图4AOBDCα9初一秋季·第11讲·尖子班·教师版∠AOB 是平角直线是平角∠CAB ∠ABC BO A B A B A CC B A 证明:90COD ∠=︒,90AOB ∠=︒,AOD α∠= ∴90AOC α∠=︒-, 90BOD α∠=︒-∴COB AOC AOB ∠=∠+∠ 9090180αα=︒-+︒=︒-.【例7】 饭后,韩老师准备外出散步,出发时看了一下钟,时间是6点多,时针与分针成90︒角,散完步后回家,韩老师又看了一下钟,还不到7点,而时针与分针又恰好成90︒角,问韩老师外出多少分钟? 【解析】 钟表上相邻两个数字之间有5个小格,每个小格表示1分钟,如与角度联系起来,每小格6︒,秒针每分钟转过360︒,分针每分钟转过6︒,时针每分钟转过0.5︒. 设小明外出时,时间为6点x 分,又设小明回家时是6点y 分.由题意得18060.590x x -+=°°,61800.590y y --=°°,解得41611x =,14911y =148491632111111y x -=-=.【备选】⑴α∠,β∠都是钝角,甲、乙、丙、丁计算,1()6αβ+的结果依次为50︒,26︒,72︒,90︒,其中有正确的结果,则计算一定正确的是( ) A . 甲 B .乙 C .丙 D .丁⑵已知α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算()115αβγ++的值时,有三位同学分别计算出了23︒、24︒、25︒这三个不同的结果,其中有一个是正确答案,则αβγ++=______. 【解析】 ⑴ A ;⑵345.因为90360αβγ︒<++<︒,故()162415αβγ︒<++<︒,所以三个结果中23︒是正确的,所以1523345⨯=.训练1. ⑴下列图中的角表示方法正确的个数有 ( )思维拓展训练(选讲)10 初一秋季·第11讲·尖子班·教师版A .1个B .2个C .3个D .4个 ⑵把20.3°换算成度、分、秒的结果是 ; ⑶用度表示 722342'''︒= ; ⑷计算 3216'25''47825'︒⨯-︒=____________; ⑸计算 157435'︒÷= .【解析】 ⑴B ;⑵2018'° ;⑶72.395︒;⑷504040'''︒;⑸ 313236'''.训练2. 以AOB ∠的顶点O 为端点引射线OC ,使得54AOC BOC ∠∠=∶∶,若30AOB ∠=︒,则AOC∠的度数为 .【解析】 1640'︒或150︒.训练3. 如右图,在直线AB 上取一点O ,在AB 同侧引射线OC ,OD ,OE ,OF 使COE ∠和BOE∠互余,射线OF 和OD 分别平分COE ∠和BOE ∠, 求证:3AOF BOD DOF ∠+∠=∠.【解析】 COE ∠和BOE ∠互余,所以90AOC BOC ∠=∠=︒111222DOF EOF EOD EOC BOE BOC ∠=∠+∠=∠+∠=∠180451353AOF BOD AOB DOF DOF ∠+∠=∠-∠=︒-︒=︒=∠ 3BOC EOF EOD DOF =∠+∠+∠=∠训练4. 在上午10时30分到11时30分之间,时针和分针成直角的时刻是 .【解析】 设过x 分钟,时针与分针的夹角为90︒,由60.513590x x -=-或60.513590x x -=+,得2811x =或104011.故10点23811分或11点101011分.题型一 余角、补角及角分线的简单运算 巩固练习【演练1】 如果一个角的补角与余角的和,比它的补角与余角的差大60,求这个角的余角度数.【解析】 设这个角为x ,则它的补角和余角分别为180x ︒-和90x ︒-,(180)(90)[(180)(90)]60x x x x ︒-+︒--︒--︒-=︒,所以60x =︒,复习巩固ABC D EO 图2F E B11初一秋季·第11讲·尖子班·教师版所以这个角的余角的度数为30︒.【演练2】 如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.⑴ 请你数一数,图中有多少个小于平角的角; ⑵ 求出BOD ∠的度数; ⑶ 请通过计算说明OE 是否平分BOC ∠.【解析】 ⑴ 图中共有9个小于平角的角;⑵ 155︒;⑶180180902565BOE DOE AOD ∠=︒-∠-∠=︒-︒-︒=︒,902565COE ∠=︒-︒=︒,所以BOE COE ∠=∠,即OE 平分BOC ∠. 题型二 角度计算中的分类讨论 巩固练习【演练3】 已知100AOB ∠=°,50BOC ∠=°,求AOC ∠的度数.【解析】 AOC ∠等于50°或150°.【演练4】 已知:OA 、OB 、OC 是从点O 引出的三条射线,85AOB ∠=︒,4136'BOC ∠=︒,求AOC ∠.【解析】 注意分情况讨论,容易得到答案:4324'︒或12636'︒.题型三 角的综合应用 巩固练习【演练5】 如图,OA 的方向是北偏东15°,OB 的方向是北偏西40°,OD 是OB 的反向延长线.若OC 是AOD ∠的平分线,则BOC ∠的度数为____________,OC 的方向是________________.【解析】 117.5︒;北偏东77.5︒.【演练6】 钟表在8点30分时,时钟上的时针与分针之间的夹角为( )A .60°B .70°C .75°D .85°(顺义区期末)【解析】 C .O E D CB A DC B A O 北西南东初一秋季·第11讲·尖子班·教师版逆境中崛起的天才曾经,因为潦倒,他将自己的诗仅卖了10块钱,而被人嘲笑为“弱智”,而这首诗花了他整整10年的时间;曾经,“穷鬼”一词变成了他的代名词,生活的一连串打击一度让他几近崩溃,走投无路。
罗湖区七年级数学下册 第3讲 有理数的乘除、乘方培优讲义(无答案) 新人教版(2021年整理)
广东省深圳市罗湖区七年级数学下册第3讲有理数的乘除、乘方培优讲义(无答案)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市罗湖区七年级数学下册第3讲有理数的乘除、乘方培优讲义(无答案)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市罗湖区七年级数学下册第3讲有理数的乘除、乘方培优讲义(无答案)新人教版的全部内容。
第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算。
2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算。
5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积。
解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|。
(精品-1)广东省深圳市罗湖区望桐路七年级数学第10讲直线射线线段培优讲义无答案新人教版2019-20200623187
第10讲直线、射线、线段考点·方法·破译1.会正确地画出和表示直线、射线、线段;会用中点解题.2.应用“两点之间,线段最短”解决实际问题,会求两点之间的距离.经典·考题·赏析【例1】指出图中的直线、射线和线段.【解法指导】本题紧扣直线、射线、线段的概念及性质,注意它们的表示方法的不同,找直线、射线时,注意直线两端可以无限延伸,而射线只有一端可以无限延长,线段是无法延长的,只有当两条射线的端点和方向相同时,两条射线才表示同一条射线,在同一直线上,不同两点间的部分表示不同的线段.解:直线有一条是直线AD,射线有六条,分别是射线BA、BD、CA、BE、CD、EF.线段有三条,分别是线段BC、BE、CE.【变式题组】01.(兰州)下列语句表述正确的是()A.延长射线OC B.射线BA与射线AB是同一条射线C.作直线AB=BC D.已知线段AB,作线段CD=AB02.(南京)如图,可以用字母表示出来的不同射线有()ABCA.4条B.6条C.5条D.1条03.(秦皇岛)如图,直线l、线段a及射线DA,能相交的图形是()①②③④⑤⑥lDAA DllA.①③④B.①④⑥C.①④⑤D.②③⑥【例2】(云南)在同一平面内不在同一直线上的3个点,过任意2个点作一条直线,则可作直线的条数为________.【解法指导】因为3点不共线,任意两点都可能确定一条直线,从政个点中任选出两个点,共有3种情况,所以共可作直线的条数为3条.【变式题组】01.(丹东)根据语句“点M在直线a外,过M有一直线b交直线a于点N,直线b上另一点Q位于M、N之间”画图,正确的是()baaa02.(北京)根据下列语句画出图形⑴直线AB 经过点C ;⑵经过点M 、N 的射线NM ; ⑶经过点O 的两条直线m 、n ;⑷经过三点E 、F 、G 中的每两点画直线. 03.(温州)如图A 、B 、C 表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.【例3】已知:线段AB =10cm ,M 为AB 的中点,在AB 所在直线上有一点P ,N 为AP 的中点,若MN =1.5cm ,求AP 的长.【解法指导】题中已说明P 在AB 所在直线上,即说明P 点可能在线段AB 上,也可能在AB 的延长线上(不可能在BA 的延长线上),故应分类讨论.解:⑴如图①,当点P 在线段AB 上时,点N 在点M 的左侧,则AP =2AN =2(AM -MN )=2(12AB -MN )=2×(5-1.5)=7(cm );①⑵当点P 在线段AB 的延长线上时,N 点在M 点的右侧如图②,则AP =2AN =2(AM +MN )=2(12AB +MN )=2×(5+1.5)=13(cm );②所以AP 的长为7cm 或13cm【变式题组】 01.(昆明)已知A 、B 、C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那么A 、C 两点间的距离是( )A .8cmB .9cmC .10cmD .8cm 或10cm 02.(十堰)如图C 、D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )DA .3cmB .6cmC .11cmD .14cm 03.(青海)已知线段AB ,C 是AB 的中点,D 是BC 的中点,下面等式不正确的是( )A .CD =AB -BDB .CD =AD -BC C .CD =12AB -BDD .CD =13AB【例4】往返于甲、乙两地的客车,中途停靠三个站,问: ⑴要有多少种不同的票价? ⑵要准备多少种车票?【解法指导】首先要能把这个实际问题抽象成一个数学问题,把车站和三个停方点当作一条直线上的五个点,票价视路程的长短而变化,实际上就是要找出图中有多少条不同的线段.因为不同的线段就是不同的票价,故求有多少种票价即求有多少条线段,而要求有多少种车票即是求有多少条射线.解:因为图中有10 条不同的线段,故票价有10种;有20条不同的射线,故应准备20种车票. 【变式题组】 01.(河南)如图从A 到C 地,可供选择的方案是走水路、走陆路、走空中、从A 到B 有2条水路、2条陆路;从B 地到C 地有3条陆路可供选择;走空中从A 不经B 地直接到达C 地,则从A 地到C 地可供选择的方案有( )A .20种B .8种C .5种D .13种02.(海南)如图,在菱形ABCD 中,E 、F 、G 、H 分别是菱形四边的中点,连接EG 与FH 交于点O ,则图中的菱形共有( )A .4个B .5个C .6个D .7个 3.(佛山实验区)A 车站到B 车站之间还有3个车站,那么从A 车站到B车站方向发出的车辆,一共有多少种不同的车票( )A .8B .9C .10D .11【例5】如图,B 、C 两点把线段AD 分成2∶3∶4的三部分,M 是AD 的中点,CD =8,求MC 的长. DBA【解法指导】由AB ∶BC ∶CD =2∶3∶4,可设AB =2x ,CD =3x ,CD =4x ,由CD =4x =8,而求得x 的值,进而求出MC 的长.解:设AB =2x ,由AB ∶BC ∶CD =2∶3∶4,得CD =4x ,CD =3x ,AD =(2+3+4)x =9x ,∵CD =8,∴x =2,∴AD =9x =18,∵M 是AD 的中点,∴MC =MD -CD =12AD -CD =12×18-8=1【变式题组】01.(河北)如图,长度为12cm 的线段AB 的中点为M ,C 点将线段MB 分MC ∶CB =1∶2,则线段AC 的长度为( )MCAA .2cmB .8cmC .6cmD .4cm02.(随州)已知线段AB =16cm ,点C 在线段AB 上,且BC =13AC ,M 为BC 的中点,则AM 的长为________.03.(黄冈)已知线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.【例6】如图⑴,一只昆虫要从正方体的一个顶点A 爬行相距它最远的另一个顶点B ,哪条路径最短?说明理由.BD图(2)图(1)【解法指导】解答此类题的方法是将立方体展开,再根据两点之间,线段量短. 解:将立方体展开成如图⑵,由两点之间线段最短知线段AB 即为最短路线. 【变式题组】 01.(天津)下列直线的说法错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .一条直线上只有两个点D .两条直线至多只有一个公共点 02.(湘潭)如图所示,从A 地到B 地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路线,这是因为( )A .两点之间线段最短B .两直线相交只有一个交点C .两点确定一条直线D .垂线段最短【例7】(第五局“华罗庚金杯”赛试题)摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A 、B 两市相距多少千米?【解法指导】条件中只有路程,而没有给出时间与速度,所以可以画出线段表示各段路程,借助图形思考它们之间的关系.解:设小镇为D ,傍晚汽车在E 休息,则AD =12DC ,EB =12CE ,AD +EB =12DE =200,∴AB =AD +EB +DE =200+400=600.答:A 、B 两市相距600千米. 【变式题组】 01.(哈尔滨)已知点O 在直线AB 上,且线段OA 的长度为4cm ,线段OB 的长度为6cm ,E 、F 分别为线段OA 、OB 的中点,则线段EF 的长度为____cm . 02.(银川)AB 、AC 是同一条直线上的两条线段,M 是线段AB 的中点,N 是线段AC 的中点,线段BC 与MN的大小有什么关系?请说明理由. 03.(河南)如图,线段AB =4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明据此很轻松地求得CD =2,但他在反思的过程突发奇想:若点O 运动到AB 的延长线上,原有的结论“CD =2”是否仍成立?请帮小明画出图形并说明理由.演练巩固 反馈提高01.当AB =5cm ,BC =3cm 时,A 、C 两点间的距离是( )A .无法确定B .2cmC .8cmD .7cm 02.下列说法正确的是( )A .延长直线AB B .延长线段ABC . 延长射线ABD .延长线段AB 03.若PA +PB =AB ,则( )A .P 点一定在线段AB 上 B .P 点一定在线段AB 外C .P 点一定在AB 的延长线上D .P 点一定在线段BA 的延长线上 04.(内江)已知点C 是线段AB 上的一点,下列说法中不能说明点C 是线段AB 的中点是( )A .AC =BCB .AC =12ABC .AC +BC =ABD .2AC =AB05.如图,已知线段AD >BC ,则线段AC 与BD 的关系是( )ACDA .AC >BDB .AC =BD C .AC <BD D .不能确定06.(黄冈)某公司员工分别在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,那么它有位置应在( )A .A 区B .B 区C .C 区D .A 、B 两区之间 07.(广州)线段AB =4cm ,在直线AB 上截取BC =1cm ,则AC =________.08.(云南)延长线段AB 到点C ,使BC =13AB ,D 为AC 的中点,且DC =6cm ,则AB 的长是________cm .09.在直线l 上任取一点A ,截取AB =16cm ,再截取AC =40cm ,求AB 的中点D 与AC 的中点E 的距离.10.线段AB 上有两点M 、N ,点M 将AB 分成2∶3两部分,点N 将AB 分成4∶1两部分,且MN =3cm ,求AM 、NB 的长.11.如图,C 是线段AB 上一点,D 是线段BC 的中点,已知图中所有线段长度之和为23,线段AC 与线段CB的长度都是正整数,则线段AC 的长度是多少?ACD12.如图B 、C 两点把线段AD 分成2∶3∶4的三部分,M 是AD 的中点,CD =8,求MC 的长.13.指出图中的射线(以O为端点)和线段.OA B14.判断下列语句是否正确:⑴直线l有两个端点A、B;⑵延长射线OA到C;⑶已知A、B两点,经过A、B两点只有一条线段.15.已知A、B、C三点:⑴AB=10cm,AC=15cm,BC=5cm;⑵AB=5.2cm,AC=9cm,BC=3.8cm;⑴AB=3.2cm,AC=1.5cm,BC=4.5cm.A、B、C三点是否在一条直线上?培优升级奥赛检测01.(全国初中数学联赛试题)在一条直线上已知四个不同的点依次是A、B、C、D的距离之和最小小的点()A.可以是直线AD外的某一点B.只有点B或点CC.只是线段AD的中点D.有无穷多个02.(“五羊杯”邀请赛)如图,已知B是线段AC上一点,M是线段AB的中点,N是线段AC的中点,P为NA 的中点,Q为MA的中点,则MN∶PQ等于()A.1 B.2 C.3 D.403.(海南省竞赛题)如图,点A、B、C顺次在直线l上,M是线段AC的中点,N是线段BC的中点,若想求出MN的长度,则只需条件()lAM NBA.AB=12 B.BC=4 C.AM=5 D.CN=204.(第18届江苏省竞赛题)已知数轴上的三点A、B、C所对应的数a、b、c满足a<b<c,abc<0和a+b +c=0,那么线段AB与BC的大小关系是()05.(江苏省竞赛题)如图,C是线段AB上的一点,D是线段CB的中点,已知AC=p,且p、q、r为质数,p <q,p+q=r,又知图中所有线段长度之和为27,则线段AB的长是()A.8 B.7 C.6 D.非上述答案06.(襄樊)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④07.平面上有四个点,经过其中每两点画一条直线,那么一共可以画直线( )A .6条B .1条或3条或6条C .1条或4条D .1条或4条或6条 08.(第十六届江苏省竞赛题)如图,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 离城市的距离分别为4,10,15,17,19,20公里,而村庄G 正好是AF 的中点,现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在( )A .A 处B .C 处 C .G 处D .E 处 09.如图,A 、B 、C 、D 四点在同一直线上,M 是AB 的中点,N 是线段DC 的中点,MN =a ,BC =b ,则AD =( )NMDABCA .a +bB .a +2bC .2b -aD .2a -b10.如图AC =13AB ,BD =14AB ,且AE =CD ,则CE 为AB 长的( )A .16B .18C .112D .11611.(“希望杯”邀请赛试题)平面内两两相交的6条直线,其交点个数最少为_____个,最多为______个. 12.把线段AB 延长到D 使BD =32AB ,再延长BA 到C ,使CA =AB ,则BC 是CD 的___倍.13.已知A 、B 、C 三点在一条直线上,若线段AB =60,其中点为M ,线段BC =20,其中点为N ,求MN 的长.。
罗湖区七年级数学下册 第1讲 与有理数有关的概念培优讲义(无答案) 新人教版(2021年整理)
广东省深圳市罗湖区七年级数学下册第1讲与有理数有关的概念培优讲义(无答案)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市罗湖区七年级数学下册第1讲与有理数有关的概念培优讲义(无答案)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市罗湖区七年级数学下册第1讲与有理数有关的概念培优讲义(无答案)新人教版的全部内容。
第1讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量。
2.会进行有理的分类,体会并运用数学中的分类思想。
3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克。
【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A.-18%B.-8%C.+2% D.+8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A.-5吨B.+5吨C.-3吨D.+3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-错误!,π,0.033.3这四个数中有理数的个数( )A. 1个B. 2个C. 3个D. 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3。
七年级上册数学培优讲义(角、角平分线)第十二讲
一、角的定义定义1:有公共端点的两条射线组成的图形叫角.这个公共端点是角的顶点.这两条射线是角的两条边.角的大小只与开口的大小有关.而与角的边画出部分的长短无关.这是因为角的边是射线而不是线段.定义2:角由一条射线绕着它的端点旋转到另一个位置所成的图形.处于初始位置的那条射线叫做角的始边.终止位置的那条射线叫做角的终边.(1) 如果角的终边是由角的始边旋转半周而得到.这样的角叫平角. (2) 如果角的终边是由角的始边旋转一周而得到.这样的角叫周角. 注意:由角的定义可知:(1)角的组成部分为:两条边和一个顶点; (2)顶点是这两条边的交点; (3)角的两条边是射线.是无限延伸的.(4)射线旋转时经过的平面部分称为角的内部.平面的其余部分称为角的外部.角平分线:从一个角的顶点出发.把这个角分成相等的两个角的射线.叫做这个角的平分线.二、角的表示方法① 利用三个大写字母来表示.如图1.1.∠AOB图1.1注意:顶点一定要写在中间.也可记为BOA ∠.但不能写成BAO ∠或ABO ∠等. ② 利用一个大写字母来表示.如图1.2.角、角平分线∠A图1.2A注意: 用一个大写字母来表示角的时候.这个大写字母一定要表示角的顶点.而且以它为顶点的角有且只有一个.③ 用数字来表示角.如图2.1.∠1图2.11③ 用希腊字母来表示角.如图2.2.∠α图2.2α三、单位换算1度=60分(160︒=') 1分=60秒(160'=")四、角的度量(1)度量角的工具常用量角器用量角器注意:对中(顶点对中心).重合(角的一边与量角器上的零刻度重合).读数(读出角的另一边所在线的度数)(2)角的度量单位及其换算角的度量单位是度.分.秒.把平角分成180等份.每一份就是一度的角.记做1︒.把一度的角60等分.每一份叫做1分的角.记做1'.把一分的角60等分.每一份叫做1秒的角.记做1''. 角度之间的关系1周角=360︒ 1平角=180︒ 1直角=90︒ 1周角=2平角 1平角=2直角角的分类:锐角α(090α<<︒).直角α(90α=︒).钝角α(90180α︒<<︒).五、两角的和.差.倍.分(1)两角的和.差.倍.分的度数等于它们的度数的和.差.倍.分.(2)从一个角的顶点出发.把它分成两个相等角的射线叫做这个角的平分线. (3)角平分线的画法:①用量角器②用折叠法在一张透明纸上画一个角.记为∠PQR .折线使射线QR 与射线QP 重合.把纸展开.以Q 为端点.沿折痕画一条射线.这条射线就是∠PQR 的平分线.说说为什么这条线平分∠PQR ?六、用尺规做已知角的平分线方法作法:(1)以O 点为圆心.以任意长为半径.交角的两边于A B 、两点;(2)分别以A .B 两点为圆心.以大于12AB 长为半径画弧.画弧交于C 点;(3)过C 点作射线OC . 所以.射线OC 就是所求作的.OCBA七、余角.补角(1)如果两个角的和是一个平角.那么这两个角叫做互为补角.简称“互补”. (2)如果两个角的和是一个直角.那么这两个角叫做互为余角.简称“互余”. (3)补角.余角的性质:同角或等角的补角相等.同角或等角的余角相等.八、 方位角方位角一般以正北.正南为基准.描述物体运动方向.即“北偏东⨯⨯度”.“北偏西⨯⨯度”.“南偏东⨯⨯度”.“南偏西⨯⨯度”.方位角α的取值范围0900≤≤α.“北偏东45度”为东北方向.“北偏西45度”西北方向.“南偏东45度”为东南方向.“南偏西45度”为西南方向.九、 钟表角度问题时针12小时转动360度.每小时转动30度; 分针60分钟转动360度.每分钟转动6度. 秒针60秒钟转动360度.每秒钟转动6度.角的概念及表示【例1】角是由有 的两条射线组成的图形.两条射线的 是这个角的顶点.角也可以看成是由一条射线 . 【解题思路】略【题目答案】公共端点 公共端点 绕端点旋转而得到的图形【例2】下列语句正确的是( )①角的大小与边的长短无关.②如果一个角能用一个大写字母A 表示.那么以A 为顶点的角只有一个 ③如果一个角能表示为1∠.那么以1∠顶点为顶点的角只有一个. ④两条射线组成的图形叫做角A ①.②B ①.③C ①.④D ②.③ 【解题思路】略【题目答案】A【例3】如图.角的顶点是 .边是 .用三种方法表示该角分别为 .αBAO【解题思路】略【题目答案】O ;OA .OB ;AOB ∠.α∠.O ∠.【巩固】 在右图中.角的表示方法正确的是( )A .A ∠B .B ∠C .C ∠D .D ∠ABC DEO【解题思路】本题考查用一个大写英文字母表示角.本题选B .【题目答案】B【巩固】 如图.以B 为顶点的角共有几个?请把它们写出来.以D 为顶点的角呢?D CEBA【解题思路】略【题目答案】以B 为顶点的角有3个:ABE ∠.ABC ∠.EBC ∠以D 为顶点的角有4个:ADE ∠.ADB ∠.BDC ∠.CDE ∠【例4】下图中.以A 为顶点的角是_________.有一边与射线FD 在同一条直线上的角有__________个.HGFEDCB A【解题思路】按照约定.我们讨论的角都是小于平角的角. 【题目答案】以A 为顶点的角有:BAE BAD EAD ∠∠∠,,;一边与射线FD 在同一条直线上的角有10个【例5】判断( )一条射线绕它的端点旋转一周所成的角是平角. ( )用2倍的放大镜看30︒的角.这个角就变成了60︒. ( )由两条射线组成的图形叫做角. ( )延长一个角的两边.( )平角就是一条直线;周角就是一条射线. 【解题思路】略【题目答案】×;×;×;×;×.角的分类【例6】下列语句正确的是()A.平角就是一条直线B.周角就是一条射线C.小于平角的角是钝角D.一周角等于四个直角【解题思路】答题时首先理解角的概念.然后对各选项进行判断.【题目答案】平角是一个点和两条射线组成.故A错误.角度和射线不是同一个概念.故B错误.小于平角的角不一定是钝角.故C错误.一周角等于360°.一直角等于90°.故D正确.故选D.【考点难点】本题主要考查角的概念.不是很难.【例7】如图.图中包含小于平角的角的个数有()A.4个B.5个C.6个D.7个【解题思路】根据三角形的性质及平角的概念结合图形解答.【题目答案】图中角除∠BDC为平角外.∠B.∠C.∠BAD.∠BAC.∠DAC.∠BDA.∠CDA均为小于180°的角.共七个.故选D.【考点难点】先利用三角形的性质.确定三角形的每个内角都小于180°.再根据角的定义数出角的个数即可.但要注意顶点为A的角有3个.【例8】如图.∠AOB是平角.则图中小于平角的角共有()A.4个B.7个C.9个D.10个【解题思路】当AO为角的一边时.有3个角;以OC为角的一边向右再找小于平角的角.依次类推得到所有小于平角的角.【题目答案】小于平角的角为:∠AOC.∠AOD.∠AOE.∠COD.∠COE.∠COB.∠DOE.∠DOB.∠EOB共9个.故选C.【考点难点】应有规律去寻找角的个数.注意各条射线为角的始边依次向右寻找相关角.【例9】如图.必须用三个大写字母表示且小于180°的角共有()A.10个B.15个C.20个D.25个【解题思路】找到以每一个字母为顶点的角.若该顶点处有多个角.则必须用三个大写字母表示.【题目答案】在该题中.以A.B.C.D.E为顶点的角有五个.且该顶点处只有一个小于180度的角.可用一个大写字母表示;以F.G.H.M.N为顶点的角各有四个.共计4×5=20个.而该顶点处只有三个小于180度角.只能用三个大写字母表示.故选C.【考点难点】此题不仅考查了对角的概念的掌握.还考查了数角的方法:找准角的顶点.统计出该顶点处的所有角.做到不漏数.不多数.【例10】如图.∠CAE=90°.锐角有()个.钝角至少有()个.A.4.3B.3.2C.6.3D.4.2【解题思路】根据直角.锐角.钝角的概念来解.∠CAE=90°.通过角的运算.得出结果.【题目答案】∵∠CAE=90°.∴∠FAB+∠BAC=90°.∠CAD+∠DAE=90°.∴∠FAB<90°.∠BAC<90°.∠CAD<90°.∠DAE<90°.锐角有四个.∴∠FAD>90°.∠BAE>90°.故钝角至少有两个.∠BAD不能确定.故选D.【考点难点】本题关键是要做到不重复不遗漏的数出角的数量.同时一定要注意∠BAD不能确定.故不能计算在内.角度的换算及运算【例11】(1)32.43__________'''︒=︒(2)654312_____'''︒=︒【解题思路】(1)首先在第一个空上填上32.然后计算(32.4332)0.43︒-︒=︒.0.430.436025.8''︒=⨯=.25.8250.8'''-=.0.86048''''⨯=32.43322548'''︒=︒(2)这是如何把度分秒形式的度数转化成小数的形式.12600.2'''÷=.430.243.2'''+=.43.2600.72'÷=︒.65431265.72'''︒=︒.【题目答案】(1)322548'''︒;(2)65.72︒【巩固】 (1)51492421________''︒+︒=;(2)39412445__________''︒-︒=;(3)2313423_________'''︒⨯=;(4)12134________'︒÷=.【解题思路】(1)5149242175707610''''︒+︒=︒=︒;(2)394124453810124451456'''''︒-︒=︒-︒=︒;(3)231342369416''''''︒⨯=︒; (4)121343315''''︒÷=︒ 【题目答案】(1)7610'︒;(2)1456'︒;(3)69416'''︒;(4)3315'''︒【例12】(1)2020'4______︒⨯=.(2)4437'3______︒÷= 【解题思路】(1)原式8080'8120'=︒=︒(2)先将度.分.秒的量数都化成3的倍数:4437'42237'47156'1'47156'60''1452'20''︒=︒+︒=︒++=︒++=︒【题目答案】(1)8120'︒;(2)1452'20''︒【巩固】 (1)77423445______''︒+︒=; (2)108185623_______''︒-︒=;(3) 180(34542133)_______''︒-︒+︒=;(4)23295837______'''︒+︒=;(5)513932532______''''︒-︒=; (6) 135********______''︒⨯+︒÷= (7)57.32_________'''︒=︒; (8) 122342_______'''︒=︒ 【解题思路】(1)7742344511227'''︒+︒=︒; (2)1081856235155'''︒-︒=︒;(3)180(34542133)12333'''︒-︒+︒=︒;(4)23295837812937''''''︒+︒=︒;(5)513932532193328'''''''︒-︒=︒; (6)13533157435731136'''''︒⨯+︒÷=︒; (7) 57.3257 19 12'''︒=︒; (8)12234212.395'''︒=︒【题目答案】(1)11227'︒;(2)5155'︒;(3)12333'︒;(4)812937'''︒;(5)193328'''︒;(6)731136'''︒;(7)57 19 12'''︒(8)12.395︒【例13】在小于平角的范围内.用一对普通的三角板能画出确定度数的角有( )个A .4个B .7个C .11个D .16个【解题思路】用一对普通的三角板能确定度数的最小角为604515︒-︒=︒.而其它角都是15︒的倍数.所以在小于平角的范围内.能画出确定度数的角有153045607590105120135150165︒︒︒︒︒︒︒︒︒︒︒,,,,,,,,,,共11个.故选C .【题目答案】C【例14】如右图.AOB 是直线.1:2:31:3:2∠∠∠=.求DOB ∠的度数.123ABC D O【解题思路】设1x ∠=.23x ∠=.32x ∠=.根据题意有32180x x x ++=︒.30x =︒.120DOB ∠=︒. 【题目答案】120︒一、余角和补角【例15】如图.OE AB ⊥于O .OF OD ⊥.OB 平分DOC ∠.则图中与AOF ∠互余的角有______个;互补的角有_________对;FEDCB AO【解题思路】3;2由题意可知90AOF FOE ∠+∠=︒.所以与AOF ∠互余的角必与FOE ∠相等. 由题中条件可知FOE ∠=BOD BOC ∠=∠.所以余角有3个;AOF ∠的补角为,EOB ∠所以与AOF ∠互补的角必与EOB ∠相等.【题目答案】3;2【巩固】 如图.O 是直线AB 上的一点.120AOD ∠=︒.90AOC ∠=︒.OE 平分BOD ∠.则图中彼此互补的角共有______对.ABC DEO【解题思路】根据题意可得:30BOE EOD DOC ∠=∠=∠=︒.60BOD EOC ∠=∠=︒等.互补的角只满足和为180︒这个数量关系即可.与位置无关.所以共有6对:AOE ∠与BOE ∠.AOE ∠与EOD ∠.AOE ∠与DOC ∠. AOD ∠与BOD ∠.AOD ∠与EOC ∠.AOC ∠与BOC ∠.【题目答案】6【例16】如下图.A .O .B 在一条直线上.AOC ∠是锐角.则AOC ∠的余角是( )A .12BOC AOC ∠-∠B .1322BOC AOC ∠-∠C .1()2BOC AOC ∠-∠D .1()3BOC AOC ∠+∠A BCO【解题思路】选C .11190()()222AOC AOB AOC AOC BOC AOC BOC AOC ︒-∠=∠-∠=∠+∠-∠=∠-∠【题目答案】C【例17】一个角和它的余角的比是5:4.则这个角的补角是【解题思路】设这个角为α.则根据题意可知有5904αα=︒-,解得50α=︒. 所以它的补角为18050130︒-︒=︒. 【题目答案】130︒【例18】一个锐角的一半与这个锐角的余角及这个锐角的补角的和等于平角.求这个锐角的度数.【解题思路】设这个锐角为x 度.根据题意可列方程:1(90)(180)1802x x x +︒-+︒-=︒.得60x =︒.【题目答案】60︒【例19】如果一个角的补角与余角的和.比它的补角与余角的差大60︒.求这个角的余角度数. 【解题思路】设这个角为x .则它的补角和余角分别为180x ︒-和90x ︒-.(180)(90)[(180)(90)]60x x x x ︒-+︒--︒--︒-=︒.所以60x =︒.所以这个角的余角的度数为30︒【题目答案】30︒【巩固】 一个角a 与50︒角之和的17等于65︒角的余角.求a . 【解题思路】1(50)90657a +︒=︒-︒.125a =︒.【题目答案】125︒【巩固】 已知α的余角是β的补角的13.并且32βα=.试求αβ+的度数.【解题思路】根据题意可得:190(180)3αβ-=⨯-.1303αβ-=.且32βα=.60,90,150αβαβ==+=(度).【题目答案】150︒【例20】已知两角互补.试说明:较小角的余角等于两角差的一半. 【解题思路】略【题目答案】设两角分别为()αβαβ<,.则180αβ+=︒. ∴较小角的余角()()11190180222αααβαβα︒-=⨯︒-=+-=-∴原结论成立.角平分线【例21】从一个角的顶点出发.把它分成两个角的直线叫做这个角的平分线. (填“正确”或“错误”) 【解题思路】根据角平分线的定义可知.此话是错误的.【题目答案】根据角平分线的定义:从一个角的顶点出发.把它分成相等两个角的射线叫做这个角的平分线.答案为错误.【考点难点】主要考查了角平分线的定义.定义:从一个角的顶点出发.把它分成相等两个角的射线叫做这个角的平分线.【例22】如图.已知直线AB.CD 相交于点O.OE 平分∠COB.若∠EOB=55°.则∠BOD 的度数是( )A.35°B.55°C.70°D.110°【解题思路】利用角平分线的定义和补角的定义求解.【题目答案】OE 平分∠COB.若∠EOB=55°.∴∠BOC=55+55=110°.∴∠BOD=180﹣110=70°.故选C . 【考点难点】本题考查了角平分线和补角的定义.【例23】如图.直线AB.CD 相交于点O.OE 平分∠AOD.若∠BOC=80°.则∠AOE 的度数是( )A.40°B.50°C.80°D.100°【解题思路】根据角平分线的定义计算.【题目答案】∵∠BOC=80°.∴∠AOD=∠BOC=80度.∵OE平分∠AOD.∴∠AOE=∠AOD=°×80°=40度.故填A.【考点难点】角的平分线是中考命题的热点.常与其他几何知识综合考查.【例24】如图所示.将一张长方形纸的一角斜折过去.使顶点A落在A′处.BC为折痕.如果BD为∠ABE的平分线.则∠CBD=()A.80°B.90°C.100°D.70°【解题思路】利用角平分线的性质和平角的定义计算.【题目答案】因为将顶点A折叠落在A′处.所以∠ABC=∠A′BC.又因为BD为∠ABE的平分线.所以∠ABD=∠DBE.因为∠ABC+∠A′BC+∠ABD+∠DBE=180°.所以∠CBD=90°.故选B.【考点难点】本题是角平分线性质及平角的性质的应用.【例25】如图.BE.CF分别是∠ABC.∠ACB的角平分线.∠A=44°.那么∠BDC的度数为()A.68°B.112°C.121°D.136°【解题思路】BE.CF分别是∠ABC.∠ACB的角平分线.且∠A=44°.根据三角形内角和定理结合角平分线定义.即可得出∠DBC+∠DCB=(∠ABC+∠ACB).在△BDC中.根据三角形内角和定理即可得出∠BDC.【题目答案】根据题意.BE.CF分别是∠ABC.∠ACB的角平分线.∠A=44°.所以有∠CAD+∠DCA=(∠ABC+∠ACB)=68°.在△BCD中.即有∠CAD+∠DCA=68°.所以∠BDC=180°﹣68°=112°.故选B.【考点难点】本题主要考查的是三角形的内角和定理和三角形的角平分线定理.【例26】下列说法正确的是()A.两点之间直线最短B.用一个放大镜能够把一个图形放大.也能够把一个角的度数放大C.将一个角分成两个角的射线叫角的平分线D.直线l 经过点A.那么点A 在直线l 上【解题思路】分别判断每个选项的正确性.注意直线是没有长度的. 【题目答案】(1)对于A 选项.直线没长度.故A 错误.(2)放大镜能够把一个图形放大.不能够把一个角的度数放大.故B 错误. (3)对于C 选项.没有提到所分角的相等.故C 错误. (4)直线过A 点.则A 一定在直线上. 综上可得只有D 正确.故选D .【考点难点】本题考查线段和直线的知识.属于基础题.关键在于掌握直线和线段的定义.方位角【例27】下面图形中.表示北偏东60︒的是( )60︒A东西北南B西北南60︒C东西北南60︒D东西北南【解题思路】略【题目答案】C【巩固】 下列说法不正确的是( )A .OA 方向是北偏东30︒B .OB 方向是北偏西15︒C .OC 方向是南偏西25︒D .OD 方向是东南方向东【解题思路】略【题目答案】A .【例28】如图.平面内有两点A B ,(1)分别画出点A 处北偏东70︒的方向和点B 处北偏西40︒的方向. (2)点A 位于B 的什么方向(精确到1︒)BA【解题思路】略【题目答案】(1)如图.射线AC 表示点A 处北偏东70︒的方向.射线BD 表示点B 处北偏西40︒方向.(2)如图.连接AB .测得34α∠≈︒.所以点A 位于点B 南偏西45︒方向.【例29】如图.A .B .C .D 是北京奥运会场馆分布图.请结合图形回答问题.为了方便指明每个场馆的位置.以天安门为中心(即点O 的位置)建立了位置指示图.直线CO DE 相交于O .90COD ∠=︒.请按要求完成下列问题:①若在图上测得20mm OA =.54mm OB =.36BOC AOE ∠=∠=︒.则可知场馆B 的位置是北偏西36︒.据中心54mm .可简记为(54mm .北偏西36︒).据此方法.场馆A 的位置可简记为(_________.________). ②可求得BOA ∠=________;③在现有的图形中(不增加新的字母).AOD ∠与_____________是互补的角.东西北【解题思路】略【题目答案】①20mm .北偏东54︒;②90︒;③AOE ∠.BOC ∠.共定点角的相关计算【例30】如图.在直线AB 上取一点O .在AB 同侧引射线OC .OD .OE .OF 使COE ∠和BOE ∠互余.射线OF 和OD 分别平分COE ∠和BOE ∠.求证:3AOF BOD DOF ∠+∠=∠.ABC DEO 图2F E B【解题思路】略【题目答案】COE ∠和BOE ∠互余.所以90AOC BOC ∠=∠=︒111222DOF EOF EOD EOC BOE BOC ∠=∠+∠=∠+∠=∠AOF BOD AOC EOF BOD ∠+∠=∠+∠+∠3BOC EOF EOD DOF =∠+∠+∠=∠【巩固】 如图.直线AB .CD 相交于点O .作DOE BOD ∠=∠.OF 平分AOE ∠.若28AOC ∠=︒.求EOF ∠.A BCDE FO【解题思路】28AOC DOE BOD ∠=∠=∠=︒.(1802828)262EOF ∠=︒-︒-︒÷=︒.【题目答案】62︒【例31】如图所示.80AOB ∠=︒.OC 是AOB ∠内部的任意一条射线.若OD 平分BOC ∠.OE 平分AOC ∠.试求DOE ∠的度数.EDC BAO【解题思路】因为OD 是BOC ∠的平分线.所以12DOC BOC ∠=∠.同理可得12COE COA ∠=∠所以DOE DOC COE ∠=∠+∠1122BOC COA =∠+∠11()22BOC COA AOB =∠+∠=∠180402=⨯︒=︒. 【题目答案】040【例32】如图.ACB ∠是一个平角DCE ACD ∠-∠ECF DCE =∠-∠FCG ECF =∠-∠GCB FCG =∠-∠10=︒.求GCB ∠的度数.GA B C DE 图2F【解题思路】设ACD x ∠=.则有:10DCE x ∠=+︒.20ECF x ∠=+︒.30FCG x ∠=+︒.40GCB x ∠=+︒.所以5100180x +︒=︒.16x =︒.56GCB ∠=︒【题目答案】56︒【例33】已知:如图.OC 是AOB ∠外的一条射线.OE 平分AOC ∠.OF 平分BOC ∠.①若100AOC ∠=︒.40BOC ∠=︒. 问:?EOF ∠= ②若AOB n ∠=︒.求EOF ∠的度数并说明理由.OC FE BA【解题思路】略【题目答案】①∵OE 平分AOC ∠.OF 平分BOC ∠(已知)∴12EOC AOC ∠=∠. 12FOC BOC ∠=∠(角平分线定义)∵100AOC ∠=︒.40BOC ∠=︒(已知)∴1100502EOC ∠=⨯︒=︒. 140202FOC ∠=⨯︒=︒(等量代换)∵502030EOF EOC FOC ∠=∠-∠=︒-︒︒=(等量代换)②∵OE 平分AOC ∠(已知) ∴AOE EOC ∠=∠(角平分线定义) ∵EOC EOB BOF FOC ∠=∠+∠+∠∴AOE EOB BOF FOC ∠=∠+∠+∠(等量代换) ∵OF 平分BOC ∠(已知) ∴BOF FOC ∠=∠(角平分线定义) ∵AOB AOE EOB ∠=∠+∠∴2AOB EOB BOF EOB ∠=∠+∠+∠ 2AOB BOF EOB ∠=∠+∠()(等量代换) ∵EOB BOF EOF ∠+∠=∠.AOB n ∠=︒(已知)∴1122EOF AOB n ∠=∠=︒(等量代换)即:12EOF n ∠=︒【例34】BOC ∠为AOC ∠外的一个锐角.射线OM .ON 分别平分AOC ∠.BOC ∠.(1)90AOB ∠=°.30BOC ∠=°.求MON ∠的度数; (2)AOB α∠=.30BOC ∠=°.求MON ∠的度数;(3)90AOB ∠=°.BOC β∠=.还能否求出MON ∠的度数吗?若能.求出其值.若不能.说明理由. (4)从前三问的结果你发现了什么规律?C NB MAO【解题思路】略【题目答案】(1)900602MON ∠==°+3?°;(2)302MON α+∠=; (3)902MON β+∠=;(4)2AOB BOCMON ∠+∠∠=.【例35】已知:OA .OB .OC 是从点O 引出的三条射线85AOB ∠=︒.4136'BOC ∠=︒.求AOC ∠. 【解题思路】注意分情况讨论.容易的到答案:4324'︒或12636'︒.【题目答案】4324'︒或12636'︒【巩固】 已知一条射线OA .若从点O 再引两条射线OB 与OC .使60AOB ∠=︒.20BOC ∠=︒.求AOC ∠的度数. 【解题思路】 注意分类讨论.为80︒或40︒. 【题目答案】80︒或40︒【例36】已知αβ,都是钝角.计算()16αβ+.正确的结果只可能是( ) A .26︒ B .40︒ C .72︒ D .90︒【解题思路】根据题意9018090180αβ︒<<︒︒<<︒,.∴180360αβ︒<+<︒∴()130606αβ︒<+<︒.∴选B【题目答案】B【巩固练习】α.β.γ中有两个锐角和一个钝角.其数值已经给出.在计算1()15αβγ++的值时.有三位同学分别算出了23︒.24︒.25︒这三个不同的结果.其中确有一个是正确的答案.求αβγ++的值.【解题思路】00909090180αβγ++<++<++ 16()2415αβγ<++<所以23︒答案正确.【题目答案】23︒【例37】在同一平面内有射线OA OB OC OD ,,,平分BOC ∠.AOC ∠的3倍比AOB ∠的2倍多5︒.10AOD ∠=︒.求AOC ∠的度数. 【解题思路】因为AOC ∠的3倍比AOB ∠的2倍多5︒.所以AOC ∠小于AOB ∠;(1)射线OC 在AOB ∠的外部.如图(1).设 ,AOC x AOB y ∠=∠=.根据题意有 3251()102x y x y x -=⎧⎪⎨+-=⎪⎩. 解得:4565x y =⎧⎨=⎩.即45AOC ∠=︒(2)射线OC 在AOB ∠的内部.如图(2).设AOC x AOB y ∠=∠=,.根据题意有 3251()102x y x y x -=⎧⎪⎨++=⎪⎩.解得:911x y =⎧⎨=⎩.即9AOC ∠=︒图(1)D CBAO图(2)D CBAO【题目答案】45︒或9︒【例38】以AOB ∠的顶点O 为端点引射线OC .使得:5:4AOC BOC ∠∠=.且AOC ∠.BOC ∠均小于180︒.若30AOB ∠=︒.求AOC ∠的度数.【解题思路】如图(1).5230(16)1640'93AOC ∠=⨯︒=︒=︒;如图(2).530150AOC ∠=⨯︒=︒如图(3).51(36030)(183)18320'18093AOC ∠=⨯︒-︒=︒=︒>︒.舍去图(1)CB AO图(2)CBAO图(3)CB AO【题目答案】1640'︒或150︒钟表角度问题【例39】从3时到6时.钟表的时针旋转角的度数是( )A.30B.60°C.90°D.120° 【解题思路】时针1小时走1大格.1大格为30°.【题目答案】从3时到6时.钟表的时针旋转角的度数是(6﹣3)×30°=90°.故选C . 【考点难点】解决本题的关键是得到时针1小时旋转的度数.【例40】下午2点30分时(如图).时钟的分针与时针所成角的度数为( )A.90°B.105°C.120°D.135°【解题思路】钟表12个数字.每相邻两个数字之间的夹角为30度.【题目答案】∵1个小时在时钟上的角度为180°÷6=30°.∴3.5个小时的角度为30°×3.5=105°.故选B . 【考点难点】本题主要考查角度的基本概念.在钟表问题中.常利用时针与分针转动的度数关系:分针每转动1°时针转动()°.并且利用起点时间时针和分针的位置关系建立角的图形.【例41】由2点15分到2点30分.时钟的分针转过的角度是( ) A.30° B.45° C.60° D.90° 【解题思路】出图形.利用钟表表盘的特征解答. 【题目答案】点15分.分针指在数字3上.分针水平.当2点30分时.分针指在数字6上.分针垂直于水平时的分针.故分针转的角度是90°; 解法2:因为钟表上的刻度是把一个圆平均分成了12等份.每一份是30°. 从2点15分到2点30分分针转过了三份.转过的角度为3×30°=90°.故选D .【考点难点】所转过的角度计算.在钟表问题中.常利用时针与分针转动的度数关系:分针每转动1°时针转动()°.并且利用起点时间时针和分针的位置关系建立角的图形.【例42】钟面上从2点到4点有几次时针与分针夹成60︒的角?分别是几点几分? 【解题思路】共有4次时针与分针夹成60︒的角.(1)第一次正好为2点整.(2)第二次设为2点x 分时.则101012x x =++.解得92111x =. (3)第三次设为3点y 分时.则101512y y +=+.解得5511y =.(4)第四次设为3点z 分时.则151012z z =++.解得32711z =【题目答案】4次成60︒角.分别是:2点整;2点92111分;3点5511分;3点32711分.【例43】钟表在12点钟时三针重合.经过x 分钟后.秒针第一次将分针和时针所夹的锐角平分.则x 的值是多少?【解题思路】因为秒针.分针.时针的速度分别是360度/分.6度/分.0.5度/分.显然x 的值大于1而小于2.则有6360(1)360(1)0.5,x x x x --=--解得:1440.1427x =故x 的值是14401427分钟.【题目答案】144014271.一个角的补角和它的余角的3倍的和等于周角的1112.求这个角. 【解题思路】设这个角为x .则11(180)3(90)36012x x ︒-+︒-=︒⨯解得30x =︒.即这个角为30︒. 【题目答案】30︒2.下列图形中.表示南偏西60︒的是( )课后练习60︒A东西北南60︒B东西北南60︒C东西北南 60︒D东西北南【解题思路】略 【题目答案】D3.下列说法中.正确的是( )A.一条射线把一个角分成两个角.这条射线叫做这个角的平分线B.两个锐角的和为钝角C.相等的角互为余角D.钝角的补角一定是锐角【解题思路】根据锐角.钝角.角平线的概念.分析各选项后判断.排除错误答案.【题目答案】A.应为分成两个相等的角.故错误;B.反例:10°+20°=30°<90°.故错误;C.两个角之和为90°时才互余.故错误;D.钝角的补角一定是锐角.故正确. 故选D .【考点难点】正确理解锐角.钝角的概念才能正确作出判断.4.一个角的余角的2倍和它的补角的12互为补角.求这个角的度数. 【解题思路】设这个角的度数为x .则它的余角为90x ︒-.补角为180x ︒-.由题意.得:12(90)(180)1802x x ︒-+︒-=︒.解得:36x =︒.【题目答案】36︒5.已知一个角的补角等于这个角余角的6倍.那么这个角等于多少?【解题思路】设这个锐角为x 度.根据题意可列方程:(180)6(90)x x -=⨯-.72x =. 【题目答案】72︒6.如图.OM 平分AOB ∠.ON 平分COD ∠.若50MON ∠=︒.10BOC ∠=︒.求AOD ∠的小.NMAB C DOAD E图1F【解题思路】22501090∠=∠-∠=⨯︒-︒=︒;AOD MON BOC【题目答案】90︒.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11讲角考点•方法•破译1.进一步认识角,会比较角的大小,会计算角度的和差,认识度、分、秒,会进行简单的换算.2.了解角平分线及其性质,了角余角、补角,知道等角的余角相等,等角的补角相等.经典•考题•赏析例1:如图AOE是直线,图中小于平角的角共有()A.7个B.9个C.8个D.10个【解法指导】公共端点的两条射线组成的图形叫做角,数角注意抓住概念,表示角用大写字母表示或希腊字母及数字表示,故选择B.【变式题组】01.在下图中一共有几个角?它们应如何表示.02.下列语句正确的是()A.从同一点引出的两条射线组成的图形叫做角B.两条直线相交组成的图形叫做角C.从同一点引出的两条线段组成的图形叫做角D.两条线段相交组成的图形叫做角03.关于平角和周角的说法正确的是()A.平角是一条直线B.周角是一条射线C.反向延长射线OA,就是成一个平角D.两个锐角的和不一定小于平角例2:38.33°可化为()A.38°30′3〃B.38°33'C.38°30′30″〃D.38°19′48″〃【解法指导】注意度、分、秒是60进制的,把度转化成分要乘60,把分转化成秒要乘60;反之把秒化成分要除以60,把分化成度要除以60,把秒化成度要除以3600,故选择D.【变式题组】01.把下列各角化成用度表示的角:⑴15°24′36″〃⑵36°59′96″〃⑶50°65′60″〃02.⑴3.76°=度分秒⑵3.76°=分秒⑶钟表在8:30时,分针与时针的夹角为度.03.计算:⑴23°45′36+66°14′24″;⑵180°-98°24′30″;〃⑶15°50′42″×3;⑷88°14′48″÷4例3:若∠α的余角与∠α的补角的和是平角则∠α=.【解法指导】两个角的和等于90°叫做余角,两个角的和等于180°叫做互补,同角或等角的余角相等,同角或等角的补角相等.解:根据题意得90°-∠α+180°-∠α=180°,所以∠α=45°【变式题组】01.如图所示,那么∠2与12(∠1-∠2)之间的关系是()A.互补B.互余C.和为45°D.和为22.5°02.55°角的余角是()A.55°B.45°C.35°D.125°03.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③12(∠α+∠β)④12(∠α-∠β)()A.4个B.3个C.2个D.1个例4:如图,点O是直线AB上的点,OC平分∠AOD,∠BOD=30°,则∠AOC=.【解法指导】注意找出图中角的和、差、倍、分关系,图中有∠AOD+∠BOD=180°,∠AOD=2∠AOC.解:因为∠AOD=180°-∠BOD=180°-30°=150°,又因为OC平分∠AOD,所以∠AOC=12∠AOD=12×150°=75°.【变式题组】01.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD等于()A.20°B.40°C.50°D.80°02.如图直线a,b相交于点O,若∠1=40°,则∠2等于()A.50°B.60°C.140°D.160°03.一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()A.45°B.60°C.75°D.80°例5:如图是一块手表早点9时20分的时针、分针位置关系示意图,此时时针和分针所成的角的度数是()A.160°B.180°C.120°D.150°【解法指导】角此类问题可结合题意画出相应刻度的示意图,并准确地把握时针、分针的旋转一圈12小时,则它1小时转的角度为360°×112=30°,1分钟转过的角度为30°×160=0.5°,分针转一圈是1个小时,分针每分钟转过的角度为360°×160=6°.故选择A.【变式题组】01.钟表上12时15分,时针与分针的夹角为()A.90°B.82.5°C.67.5°D.60°02.由2点15分到2点30分,时钟的分针转过的角度是.例6:考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.【解法指导】此类问题紧扣方位角的概念作出射线OA,OB是关键.解:如图,以O为顶点,正北方向线为始边向东旋转45°,得OA,以O为顶点,正南方向线为始边向东旋转60°,得OB,则∠AOB=180°-(45°+60°)=75°.【变式题组】01.如图所示,某测绘装置有一枚指针,原来指向南偏西50°,把这枚指针按顺时针旋转1 4周.⑴指针所指方向为 ;⑵图中互余的角有 对,与∠BOC 互补的角是 .02.轮船航行到C 处时,观察到小岛B 的方向是北偏西35°,同时从B 观察到轮船C 的方向是( )A .南偏西35°B .北偏西35°C .南偏东35°D .南偏东55°03.如图下列说法不正确的是( )A .OA 的方向是东偏北30°B .OB 的方向是西偏北60°C .OC 的方向是西偏南15°D .OD 的方向是西南方向例7:如图,O 是直线 AB 上一点,∠AOD =120°,∠AOC =90°,OE 平分∠BOD ,则图中彼此互补的角共有 对.【解法指导】彼此互补的角只要满足一定的数量关系即可,而与位置无关,从计算相应角的度数入手,故共有6对.【变式题组】 01.如图所示,A 、O 、B 在一条直线上,∠AOC =12∠BOC +30°,OE 平分∠BOC ,则∠BOE = .02.如图,已知∠AOB ∶∠BOC ∶∠COD =3∶2∶4,∠AOD =108°,求∠AOB 、∠BOC 、∠COD 的度数. 03.如图,已知∠AOB +∠AOC =180°,OP 、OQ 分别平分∠AOB 、∠AOC ,且∠POQ =50°,求∠AOB 、∠AOC 的度数.演练巩固 反馈提高01.已知∠α=35°,则∠α的余角是( )A.55°B.45°C.145°D.135°02.如图直线l1与l2相交于点O,OM⊥l1,若∠α=44°,则∠β等于()A.56°B.46°C.45°D.44°03.把一张长方形的纸片按图的方位折叠,EM、FM为折痕,折叠后的C点落在MB'的延长线上,则∠EMF的度数是()A.85°B.90°C.95°D.100°04.书店、学校、食堂在同一个平面上,分别用A、B、C表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC应是()A.65°B.35°C.165°D.135°05.如果∠α=3∠β,∠α=2∠θ,则必有()A.∠β=12∠θB.∠β=23∠θC.∠β=13∠θD.∠β=34∠θ06.某校初一年级在下午3:00开展“阳光体育”活动,下午3:00这一时刻,时针上分针与时针所夹角等于°.07.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC 等于()A.10°B.40°C.45°D.70°或10°08.已知∠AOB=120°,OC在它的内部,且把∠AOB分成1:3,那么∠AOC的度数是()A.40°B.40°或80°C.30°D.30°或90°09.⑴如图所示,已知∠AOB是直角,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON 的度数;⑵如果⑴中∠AOB=α,其他条件不变,求∠MON的度数;⑶你从⑴⑵的结果中,能发现什么规律?10.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.⑴若∠AOD =70°,∠MON =50°,求∠BOC 的大小; ⑵若∠AOD =α,∠MON =β,求∠BOC 的大小.(用字母α、β的式子表示)11.如图所示,已知∠AOE =100°,∠DOF =80°,OE 平分∠DOC ,OF 平分∠AOC ,求∠EOF的度数.12.如图所示,O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线.⑴求∠DOE 的度数;⑵若只将射线OC 的位置改变,其他条件不变,那么∠DOE 的度数会改变吗?13.如图,根据图回答下列问题:⑴∠AOC 是哪两个角的和;⑵∠AOB 是哪两个角的差.14.如图,∠1=∠2=∠3=∠4,根据图形回答问题:⑴图中哪些角是∠2的2倍; ⑵图中哪些角是∠3的3倍;⑶图中哪些角是∠AOD 的12倍; ⑷射线OC 是哪个角的三等分线.15.如图直线AB 与CD 相交于点O ,那么∠1=∠2吗?试说明理由.培优升级奥赛检测01.一个角的补角的117是6°,则这个角是()A.68°B.78°C.88°D.98°02.用一副三角板可以画出大于0°且小于180°的不同角度数有()种.A.9种B.10种C.11种D.12种03.如图,∠AOB=180°,OD是∠COB的平分线,OE是∠AOC的平分线,设∠BOD=α,则与α余角相等的是()A.∠COD B.∠COE C.∠DOA D.∠COA04.4点钟后,时针与分针第二次成90°,共经过()分钟(答案四舍五入到整数).A.60 B.30 C.40 D.33 05.如图OM、ON、OP分别是∠AOB、∠BOC、∠AOC的平分线,则下列各式中成立的是()A.∠AOP >∠MON B.∠AOP=∠MONC.∠AOP <∠MON D.以上情况都有可能06.如图,∠AOC是直角,∠COD=21.5°,且OB、OD分别是∠AOC、∠BOE的平分线,则∠AOE 等于()A.111.5°B.138°C.134.5°D.178°07.下列说法不正确的是()A.角的大小与角的边画出部分的长短无关B.角的大小与它们的度数的大小是一至的C.角的平分线是一条线段D.角的和、差、倍、分的度数等于它们度数的和、差、倍、分08.和艘轮船由A地向南偏西45°的方向行驶40海里到达B地,再由B地向北偏西15°方向行驶40海里到达C地,则A、C相距()海里.A.30 B.40 C.50 D.6009.∠A的补角是125°12',则它的余角是()A.54°18'B.35°12'C.35°48'D.54°48'10.如果一个角等于它的余角的2倍,那么这个角等于它补角的()A.2倍B.12倍C.5倍D.15倍11.一个角的补角与这个角的余角的度数之比为3:1,则这个角是度.12.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算115(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中确有一个是正确答案,则α+β+γ=.13.已知∠AOB=50°,∠BOD=3∠AOB,OC平分∠AOB,OM平分∠AOD,求∠MOC的度数.。