简谐近似和简正坐标

合集下载

固体物理第四章总结1

固体物理第四章总结1

第四章总结成员及分工1:一维晶格以及三维晶格的振动2:晶格热容的量子理论3:简谐近似和简谐坐标4:晶格的状态方程和热膨胀5:离子晶体的长波近似4-1 一维晶格以及三维晶格的振动一、知识脉络二、重点1.格波的概念和“格波”解的物理意义(1)定义:晶格原子在平衡位置附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。

(2)物理意义:一个格波解表示所有原子同时做频率为ω的振动,不同原子之间有位相差。

相邻原子之间的位相差为aq 。

(3) q 的取值范围:-(π/a)<q ≤(π/a)这个范围以外的值,不能提供其它不同的波。

q 的取值及范围常称为布里渊区(Brillouin zones )。

(4) Born-Von Karman 边界条件: 1)(=-Naq i e h Naq ⨯=π22.一维单原子链的色散关系22241[1cos ]sin ()2aq aq m m ββω=-=把 ω 与q 之间的关系称为色散关系(disperse relation),也称为振动频谱或振动谱。

3.一维单原子链的运动方程相邻原子之间的相互作用βδδ-≈-=d dvF ad v d ⎪⎪⎭⎫ ⎝⎛=22δβ 第n 个原子的运动方程11()(2)n n n n i t naq nq m Ae ωμβμμμμ∙∙+--=+-=4.一维双原子链中两种原子的运动方程及其解(1)运动方程( equation))2(2221212n n n n M μμμβμ---=+++∙∙ )2(2221212n n n n M μμμβμ---=+++∙∙(2)方程的解(solution)])2([2q na t i n Ae -=ωμ ])12([12aq n t i n Be +-+=ωμ5.声学波与光学波的概念与物理意义(1)声学波与光学波的定义}]sin )(41[1{2/1222aq M m mM mM M m +-++=+βω }]sin )(41[1{2/1222aq M m mMmM M m +--+=-βω ω+对应的格波称为光学波(optic wave )或光学支(optic branch) ;ω-对应的格波称为声学波(acoustic wave)或声学支(acoustic branch )(2)两种格波的振幅比aq m A B cos 222ββω--=⎪⎭⎫⎝⎛++aq m A B cos 222ββω--=⎪⎭⎫⎝⎛--(3)ω+ 与ω- 都是q 的周期函数)()(q aq --=+ωπω)()(q aq ++=+ωπω其中aq a22ππ≤〈-6.对色散关系的讨论(1)一维单原子链与一维双原子链的格波解的差异一维单原子链只有一支格波(一个波矢对应一个格波)— 声学波;而一维双原子链则有两支格波(一个波矢对应两个格波)— 声学波和光学波,两支格波的频率各有一定的范围:0)0()(min ==--ωω Maβπωω2)2()(max ==-- m aβπωω2)2()(min ==++ mMM m )(2)0()(max +==++βωω 在ω-max 与ω+min 之间有一频率间隙,说明这种频率的格波不能被激发。

简谐近似和简正坐标

简谐近似和简正坐标

N个原子的位移矢量 N个原子体系的势能函数在平衡位置按泰勒级数展开

平衡位置
—— 不计高阶项
系统的势能函数
V
1 2
i
3N , j1
(
2V
i
j
)0
i
j
03_01_简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
系统的势能函数
系统的动能函数
系统的哈密顿量
H
1 2
3N i1
mi i 2
1 3N 2V (
只考察某一个振动模
系统能量本征值计算
i
aij mi
Qj
aij mi
Asin( jt )
正则动量算符
系统薛定谔方程
(1
2
3N i1
pi2
1 2
3N
i2Qi2 ) (Q1, Q3N )
i1
E (Q1,
Q3N )
03_01_简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
任意一个简正坐标
(
)
—— 一个简正坐标对应一个谐振子方程,波函数是以简正 坐标为宗量的谐振子波函数
声子 —— 晶格振动的能量量子;或格波的能量量子
一个格波是一种振动模,称为一种声子,能量为
当这种振动模处于
时,说明有 个声子
03_01_简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
晶格振动 —— 声子体系 —— 声子是一种元激发,可与电子或光子发生作用 —— 声子具有能量_动量,看作是准粒子 —— 晶格振动的问题 声子系统问题的研究 —— 每个振动模式在简谐近似条件下都是独立的 —— 声子系宗是无相互作用的声子气组成的系统
2 i, j1 i j

固体物理 晶体振动

固体物理 晶体振动

3.2 晶格振动的量子化-声子参考黄昆书3.1节(p79-82)及p88-92Kittel 书 4.3和4.4 两节一. 简谐近似和简正坐标二. 晶格振动的量子化三. 声子一.简谐近似和简正坐标:从经典力学的观点看,晶格振动是一个典型的小振动问题,由于质点间的相互作用,多自由度体系的振动使用拉格朗日方程处理比上节中使用的牛顿方程要简单明了。

本节采用简正坐标重新处理。

(见黄昆书p79-82)N 个原子组成的晶体,平衡位置为,偏离平衡位置的位移矢量为:'()()n n n R t R u t =+n R ()n u t 所以原子的位置表示为:晶体中原子间的耦合振动,在简谐近似下也可以用3nN 个简正坐标下的谐振子运动来描述。

由于简正坐标Q是各原子位移量的某种线性组合,所以一个简正i振动并不是表示一个原子的振动,而是整个晶体所有原子都参与的运动。

由简正坐标所代表的体系中所有原子一起参与的共同振动常被称作晶体的一个振动模。

N个原胞,每个原胞n个原子的晶体总共有3nN种振动模。

或说可以用3nN种简谐振子的运动来表述。

引入简正坐标后,我们可以方便地转入用量子力学的观点来理解晶格振动问题,这才是最为重要的。

显然,一旦找到了简正坐标,就可以直接过渡到量子理论。

每一个简正坐标,对应一个谐振子方程,波函数是以简正坐标为宗量的谐振子波函数,其能量本征值是量子化的,所以把量子力学的基本结论应用到晶格振动上才揭示出了晶格振动的最基本的特征。

从量子力学的观点看,表征原子集体运动的简谐振子的能量是量子化的,每个振动模式能量的最小单位被称为声子(Phonon )。

这是晶格振动量子理论最重要的结论。

在经典理论中,势能函数是连续的,量子理论修正了这个错误,而保留了经典理论中原子振动要用集体运动方式描述的观点,因而按经典力学求出的色散关系是正确的,量子理论并没有改变其结论,只是对各模式振幅的取值做了量子化的规定。

i ω声子概念引入后给我们处理具有强相互作用的原子集体--晶体带来了极大方便,而且生动地反映了晶格振动能量量子化的特点。

4-3 简谐近似和

4-3 简谐近似和

2)化简系统的动能和势能
动能
1 T m 2



n

2 n
1 1 m 2 Nm
1 2

n q

Q ( q )e inaq

q'
Q ( q ' )e inaq'

qq '
1 Q ( q ) Q ( q ' ) N
Department of Physics, Northwest University
Solid State Physics
由(5)式知,当只考察某一个 Qi 的振动时,(5)式可以化为
i
aij mi
A sin( it )
(12)
这表明,一般地说,一个简正振动并不是表示某一个原子的振动,而是表示 整个晶体所有原子都参与的振动,而且它们的振动频率都相同。由简正坐标所代 表的,体系中所有原子一起参与的共同振动,常称为一个振动模或简正模 (normal mode)。 由量子力学我们知道,用(9)式可以直接写出哈密顿算符和薛定谔方程
1 2 2 2 [ i Qi ] (Qi ) i (Qi ) 2 2 Qi
(14)
Department of Physics, Northwest University
Solid State Physics
谐振子方程的解为
i (ni )i
ni (Qi )
i 2l N
0
说明声子不是动量的携带者。
Department of Physics, Northwest University
1 e
Solid State Physics

4-3 简谐近似和

4-3 简谐近似和

一、 简谐近似和非谐作用 (harmonic approximation and an-harmonic interaction) )
晶格振动是一个小振动问题。对于此类问题常采用简谐近似。 晶格振动是一个小振动问题。对于此类问题常采用简谐近似。 假设晶体包含N个原子, 假设晶体包含 个原子,平衡位置为 个原子 偏离平衡位置的位移矢量为 µn (t )
i =1
3N

Qi
2
(6) )
1 V= 2

i =1
3N
ω i 2Qi 2
(7) )
其中仅有简正坐标的平方项之和,而没有了坐标的交叉项。 其中仅有简正坐标的平方项之和,而没有了坐标的交叉项。
Department of Physics, Northwest University
Solid State Physics

(3) )
体系的势能函数只保留至µ 的二次方程,称为简谐近似 简谐近似( 体系的势能函数只保留至 i的二次方程,称为简谐近似(harmonic approximation)。要考虑到高阶作用的则称为非谐作用(an-harmonic 非谐作用( ) 要考虑到高阶作用的则称为非谐作用 interaction)。
Department of Physics, Northwest University
Solid State Physics
将N个原子体系的势能函数在平衡位置附近展开成泰勒级数 个原子体系的势能函数在平衡位置附近展开成泰勒级数
∂V 1 3 N ∂ 2V V = V0 + ( ) 0 µi + ( )0 µi µ+高阶项 j ∂µi 2 i , j =1 ∂µi ∂µ j i =1

03_01简谐近似和简正坐标

03_01简谐近似和简正坐标
1 En= n 2
n=0,1,2…… (3-57)
这表明谐振子处于不连续的能量状态。
1 ,称为零点能。 当n=0时,它处于基态,E0= 2
相邻状态的能量差为,它是谐振子的能量量子, 称它为声子 ,正如人们把电磁辐射的能量量子称 为光子一样。 3NS个格波与3NS个量子谐振子一一对应,因此式 (3-57)也是一个频率为ω的格波的能量。频率 为ωi(q)的格波被激发的程度,用该格波所具有的 能量为ωi (q)的声子数n的多少来表征。
2.声子是一种准粒子
声子与声子,声子与其它粒子、准粒子互作用, 满足能量守恒。 不具有通常意义下的动量,常把q称为声子的
粒子数不守恒,例如温度升高后声子数增加。
准动量。
3.准动量选择定则
准动量的确定只能准确到可以附加任何 一个倒格矢Gh
ω(q)= ω(q+ Gh) Ex: 二声子作用 q1+q2=q3+Gh q1+q2=q3+Gh
系统的势能函数
系统的动能函数
系统的哈密顿量 H
1 1 V 2 i ( mi ) 0 i j 2 i 1 2 i , j 1 i j
3N 3N 2
—— 含有坐标的交叉项
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
引入简正坐标
—— 原子的坐标和简正坐标通过正交变换联系起来 假设存在线性变换
1 能量本征值 i ( ni ) i 2
本征态函数
—— 谐振子方程
n (Qi ) iຫໍສະໝຸດ iexp(

2
2
) H ni ( )
— 厄密多项式
§3-1 简谐近似和简正坐标 ——
晶格振动与晶体的热学性质

简谐震动简正坐标(0301)

简谐震动简正坐标(0301)
声学
在声学领域,声音的传播和辐射都 可以看作是简谐震动的叠加,因此 简谐震动理论也是声学研究的重要 基础。
02
简正坐标的概念
什么是简正坐标
• 简正坐标是一种描述系统振动的坐标方式,它将复 杂的振动问题简化为简单的数学模型,以便于分析 和求解。在简正坐标下,系统的振动形式被分解为 一系列正弦和余弦函数,每个函数代表一种独立的 振动模式。
简谐震动
简谐震动是物理学中一个基本而重要的概念,它描述的是一个振动系统在平衡 位置附近做周期性的往复运动。简谐震动可以用数学公式表示,其运动规律具 有特定的周期性和振幅。
简正坐标
简正坐标是用来描述简谐震动的坐标系,它能够将复杂的振动问题简化,方便 分析和计算。简正坐标系的选择取决于系统的具体形式和物理特性。
实例二:单摆的简谐震动
总结词
单摆在摆角较小的情况下,做近似于简谐振动的往复运动。
详细描述
单摆由一根长度为摆长的细线悬挂着一个质量块组成,在重 力作用下产生往复运动。当摆角较小(小于5度)时,单摆的 运动可以近似看作是简谐振动。在简正坐标系下,单摆的振 动形式可以表示为正弦或余弦函数。
实例三:电磁振荡器的简谐震动
教育教学
在高等教育中,简谐震动和简正坐标是物理学、工程学等专业的重要教学内容。通过深入 学习和理解简谐震动和简正坐标的理论基础,可以培养学生的逻辑思维和分析能力,提高 他们的科学素养。
THANKS
感谢观看
简正坐标的应用
1. 振动分析
简正坐标广泛应用于振动分析 领域,用于研究系统的振动特
性和响应。
2. 结构优化
在结构优化设计中,简正坐标 可以帮助分析结构的振动模态 和频率,从而优化结构的设计 。
3. 声学研究

固体物理总复习

固体物理总复习

gap
2 )q 一维双原子链的长声学波 ( a mM B 长声学波中相邻原子的振动 ( A ) 1
光学波 长波极限
2
mM B m , ( ) - mM A M
§3.4
1. 三维复式格子
三维晶格的振动
l i [ t R l k q ] 格波的一般形式 A e k k
ab c
§5 晶体的宏观对称性
点对称操作 1. 绕轴旋转 2.旋转-反演(反演,镜面) 对称操作
1. 绕轴旋转
2.旋转-反演 3.空间平移
晶体的宏观对称性只有8种独立的对称操作: 1,2,3,4,6, 1 ( i ),
2 (m)

4
能证明为何晶体中没有5次对称性?
第二章
• 晶体结合的类型? • 晶体结合的物理本质? • 固体结合的类型与固体性质之间的联系?
T —— 电子对比热的贡献, 即电子热容
AT 3—— 晶格振动对比热的贡献, 即晶格热容
温度不太低时,可以忽略电子的贡献 爱因斯坦模型与德拜模型 爱因斯坦温度和德拜温度
§3.9 晶格振动模式密度
晶格振动模式密度 —— 单位频率间隔的振动模式数目
n g ( ) lim 0
在q空间,晶格振动模是均匀分布的,状态密度
本课程的主要内容
晶格动力学
原子核的运动规律 核外电子的运动规律
固体物理
固体电子论
晶格动力学
1. 晶体结构 2. 固体的结合 3. 晶格振动和热学性质
固体电子论
4. 能带理论 5. 外场中电子的运动 6. 金属电子论
第一章 摘
§1-1 §1-2 §1-3 §1-4 §1-5 §1-6 §1-7 §1-8 §1-9

固体物理基础第3章-晶格振动与晶体的热学性质

固体物理基础第3章-晶格振动与晶体的热学性质

3-2 一维单原子链模型
格波的色散关系 4 2 2 aq sin ( )
m 2 • ω取正值,则有 (3)
(q)
aq 2 sin( ) m 2 • 频率是波数的偶函数
• 色散关系曲线具有周期性, 仅取简约布里渊区的结果即可 • 由正弦函数的性质可知,只有满足 0 2 / m 的格波 才能在一维单原子链晶体中传播,其它频率的格波将被强
原子n和原子n+1间的距离
非平衡位置
原子n和原子n+1间相对位移
a n1 n
n1 n
3-2 一维单原子链模型
• 忽略高阶项,简谐近似考虑原子 振动,相邻原子间相互作用势能 1 d 2v v(a ) ( 2 ) a 2 2 dr • 相邻原子间作用力 dv d 2v f , ( 2 )a d dr • 只考虑相邻原子的作用,第n个原 子受到的作用力
• 连续介质中的波(如声波)可表示为 Ae ,则可看出 • 格波和连续介质波具有完全类似的形式 • 一个格波表示的是所有原子同时做频率为ω的振动 • 格波与连续介质波的主要区别在于(2)式中,aq取值任意加减 2π的整数倍对所有原子的振动没有影响,所以可将波数q取值 限制为 q a a
V
O
a
r
• 第n个原子的运动方程
(n1 n ) (n n1 ) (n1 n1 2n )
(1)
平衡位置
d 2 n m 2 ( n1 n 1 2n ) dt
非平衡位置
——牛顿第二定律F=ma
3-2 一维单原子链模型
• 上述(1)式的解(原子振动位移)具有平面波的形式

a
)

机械振动知识点总结.

机械振动知识点总结.

机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。

然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。

2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。

运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。

理解好对称性这一点对解决有关问题很有帮助。

4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。

6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

位移x回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

描述简谐运动的物理量

描述简谐运动的物理量

简谐运动的描述一、描述简谐运动的物理量 1.振幅(1)定义:振动物体离开平衡位置的最大距离,用A 表示。

(2)物理意义:表示振动的强弱,是标量。

2.全振动图11-2-1类似于O →B →O →C →O 的一个完整振动过程。

3.周期(T )和频率(f )描述周期性运动在各个时刻所处的不同状态。

二、简谐运动的表达式简谐运动的一般表达式为x =A sin(ωt +φ) 1.x 表示振动物体相对于平衡位置的位移。

2.A 表示简谐运动的振幅。

3.ω是一个与频率成正比的量,表示简谐运动的快慢,ω=2πT =2πf 。

4.ωt +φ代表简谐运动的相位,φ表示t =0时的相位,叫做初相。

1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫作一次全振动。

(2)全振动的四个特征:①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同。

②时间特征:历时一个周期。

③路程特征:振幅的4倍。

④相位特征:增加2π。

2.简谐运动中振幅和几个物理量的关系(1)振幅和振动系统的能量:对一个确定的振动系统来说,系统能量仅由振幅决定。

振幅越大,振动系统的能量越大。

(2)振幅与位移:振动中的位移是矢量,振幅是标量。

在数值上,振幅与振动物体的最大位移相等,但在同一简谐运动中振幅是确定的,而位移随时间做周期性的变化。

(3)振幅与路程:振动中的路程是标量,是随时间不断增大的。

其中常用的定量关系是:一个周期内的路程为4倍振幅,半个周期内的路程为2倍振幅。

(4)振幅与周期:在简谐运动中,一个确定的振动系统的周期(或频率)是固定的,与振幅无关。

做简谐运动的物体位移x 随时间t 变化的表达式: x =A sin(ωt +φ)(1)x :表示振动质点相对于平衡位置的位移。

(2)A :表示振幅,描述简谐运动振动的强弱。

(3)ω:圆频率,它与周期、频率的关系为ω=2πT =2πf 。

机械振动——简谐运动的基本概念

机械振动——简谐运动的基本概念

简谐运动在一切振动中,最简单和最基本的振动称为简谐运动,其运动量按正弦函数或余弦函数的规律随时间变化。

任何复杂的运动都可以看成是若干简谐运动的合成。

本节以弹簧振子为例讨论简谐运动的特征及其运动规律。

一、简谐运动的基本概念: 1.弹簧振子:轻质弹簧(质量不计)一端固定,另一端系一质量为m 的物体,置于光滑的水平面上。

物体所受的阻力忽略不计。

设在O 点弹簧没有形变,此处物体所受的合力为零,称O 点为平衡位置。

系统一经触发,就绕平衡位置作来回往复的周期性运动。

这样的运动系统叫做弹簧振子(harmonic Oscillator ),它是一个理想化的模型。

2.弹簧振子运动的定性分析:考虑物体的惯性和作用在物体上的弹性力:B →O :弹性力向左,加速度向左,加速,O 点,加速度为零,速度最大; O →C :弹性力向右,加速度向右,减速,C 点,加速度最大,速度为零; C →O :弹性力向右,加速度向右,加速,O 点,加速度为零,速度最大; O →B :弹性力向左,加速度向左,减速,B 点,加速度最大,速度为零。

物体在B 、C 之间来回往复运动。

结论:物体作简谐运动的条件:● 物体的惯性 ——阻止系统停留在平衡位置 ● 作用在物体上的弹性力——驱使系统回复到平衡位置二、弹簧振子的动力学特征: 1.线性回复力分析弹簧振子的受力情况。

取平衡位置O 点为坐标原点,水平向右为X 轴的正方向。

由胡克定律可知,物体m (可视为质点)在坐标为x (即相对于O 点的位移)的位置时所受弹簧的作用力为f=-kx式中的比例系数k 为弹簧的劲度系数(Stiffness ),它反映弹簧的固有性质,负号表示力的方向与位移的方向相反,它是始终指向平衡位置的。

离平衡位置越远,力越大;在平衡位置力为零,物体由于惯性继续运动。

这种始终指向平衡位置的力称为回复力。

2.动力学方程及其解根据牛顿第二定律, f=ma可得物体的加速度为x mk m f a -==0202x v v x ωω-⎪⎭⎫⎝⎛+=2020⎪⎭⎫ ⎝⎛+ωv x =求02.072.0=m k =v x 6004.022222020+=+=ω2=4π±,由(4π-。

固体物理:3_1 简谐近似和简正坐标

固体物理:3_1 简谐近似和简正坐标

设V0=0
( V i
)0
0
略去二阶以上的高阶项,
体系势能可表示为
V
1 3N ( 2V
2 i, j1 i j
)0 i j
东北师范大学物理学院
3-1 简谐近似和简正坐标
第三章 晶格振动与晶体的热学性质
简谐近似与非谐近似
• 处理小振动问题一般都只取简谐近似,对 于一个具体物理问题是否可以采用简谐近 似,要看在简谐近似条件下得到的理论是 否与实验相一致。有些问题必须考虑高阶
局限: 低温段结果与实际不符。
低温段的实验结果是:CV~T3
东北师范大学物理学院
3-1 简谐近似和简正坐标
第三章 晶格振动与晶体的热学性质
德拜模型
模型处理方法:把固体当作连续介质,晶格 振动的格波看成边连续介质中的弹性波。
可取之处:获得低温段CV~T3的规律。
东北师范大学物理学院
3-1 简谐近似和简正坐标
第三章 晶格振动与晶体的热学性质
第三章、晶格振动与晶体热学性质
本章扼要介绍在简谐近似下如何用正 则坐标和正则振动描述晶格振动的问题, 介绍格波和声子的概念;此外,在晶格振 动的理论基础上描述了晶体的宏观热学性 质。主要内容分为:
东北师范大学物理学院
3-1 简谐近似和简正坐标
第三章 晶格振动与晶体的热学性质
项的作用,称为非谐作用(晶体的热传导和 热膨胀问题等)。
东北师范大学物理学院
3-1 简谐近似和简正坐标
第三章 晶格振动与晶体的热学性质
2. 简正坐标
对于N个原1
mi
2 i
引入简正坐标: Q1, Q2 ,Q3N
令:
3N
mi i aijQ j j 1

固体物理:3.3 简正振动和声子

固体物理:3.3 简正振动和声子

Nn
当 q' q
q q' 2 s Na
所以
1
N
[eina(q' q) ] 1
n
N
n
(ei2 s N )n
1 N
ei2 s N (1 ei2 s ) 1 ei2 s N
0
1
N
[eina(q' q) ]
n
q' ,q
1
N
[eina(q' q) ]
n
q' ,q
xn (t)
1 Nm
mc2
m
h
c2
p mc h h c
准动量 q . 服从能量守恒和动量守恒
4).由于晶体中可以激发任意个相同的声子,所以声子是玻
色型的准粒子,遵循玻色统计。 系统处于平衡态时的声子数
ni
1
i
e kBT 1
其平均能量
i i
2
i
i
e kBT 1
式中右边第一项为零点能.
若忽略零点能, 当 kT i 时, 即高温时, 频率为 i的格波的
小的,因此,我们可以将势能函数在平衡位置进行泰勒
ห้องสมุดไป่ตู้
展开:
U
U0
N i 1
( U r
)0i
1 2
N i 1
(
2U r 2
)0
2 i
...........
第二项为平衡势能取极小值条件,因此为零。第一项,为平衡时的势能, 这里我们取他为能量零点,并略去二次以上的项,
上式即为简谐近似下,势能的表示式,包含了位移交叉项。 N个原子体系的动能函数为:
当电子(或光子)与晶格振动相互作用时, 交换能量以 为单位,若电子从晶格获得 能量,称为吸收一个声子,若 电子给晶格 能量,称为发射一个声子。

晶格振动-31简谐震动简正坐标

晶格振动-31简谐震动简正坐标

通过该模型,我们能够解释晶体 中原子或分子的振动频率、耦合 机制以及与热力学性质的关系。
该模型在材料科学、化学和物理 学等领域具有广泛的应用前景, 有助于深入理解材料的物理和化
学性质。
研究展望
01
02
03
04
进一步研究晶格振动-31简谐 震动简正坐的适用范围和局限
性,以拓展其应用领域。
结合实验手段,验证该模型的 预测结果,提高模型的可靠性
在化学物理中的应用
分子振动光谱分析
简正坐标在化学物理中常用于分析分子振动光谱,从而了解分子 的结构和化学键信息。
计算分子热容
通过简正坐标,可以计算分子热容,从而了解分子在温度变化时 的热学性质。
分子动力学模拟
简正坐标可以用于分子动力学模拟,通过模拟分子的振动行为, 进一步理解化学反应的动力学过程。
质。
03 简谐振动的数学模型
简谐振动的定义
简谐振动
在物理学中,简谐振动是指物体 在平衡位置附近做周期性往复运 动的振动。
描述参数
简谐振动可以用振幅、频率、相 位等参数来描述。
简谐振动的数学表达式
01
简谐振动的数学表达式通常为: x=A*sin(ωt+φ),其中x表示位移, A表示振幅,ω表示角频率,t表示 时间,φ表示初相角。
05 简正坐标的应用
在固体物理中的应用
1 2
描述晶体中原子或分子的振动
简正坐标是用来描述晶体中原子或分子的振动状 态的,可以用来研究晶体的热容、热膨胀等现象。
计算晶格热容
通过简正坐标,可以计算晶格热容,从而了解晶 体在温度变化时的热学性质。
3
研究声子谱
简正坐标可以用来研究晶格的声子谱,了解晶体 的振动频率和模式,进一步理解晶体的物理性质。

4-3 简谐近似和

4-3 简谐近似和

nq Aq e
i ( q t naq)
(1)
原子的总位移为所有格波的叠加
n nq Aqe
q q
i ( q t naq)
(2)
Department of Physics, Northwest University
Solid State Physics
将(2)式变换形式,写成 则

势能
U

1 2

n
( n n 1 ) 2
1 Nm
1 2

n

q




Q(q)(1 eiaq )Q(q)(1 eiaq ) 2m q
1 Q(q )(1 eiaq )Q(q ' )(1 eiaq ' ) eina ( q q ') 2m qq' N n
1 2 2 2 [ i Qi ] (Qi ) i (Qi ) 2 2 Qi
(14)
Department of Physics, Northwest University
Solid State Physics
谐振子方程的解为
i (ni )i
ni (Qi )
Department of Physics, Northwest University
Solid State Physics
由于动能函数T 是正定的,由线性代数的理论,总可以找到这样的线性 变换,使动能和势能函数同时化为平方项之和。势能函数为正值,用 ωi2 表示,表明原来原子在格点上是一稳定的平衡状态。 依理论力学,由动能和势能公式可以直接写出拉格朗日函数 L L=T-V ,得到正则动量 pi Q i (8) Qi 哈密顿量为 3N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶格振动 —— 研究固体宏观性质和微观过程的重要基础
晶格振动 —— 晶体的热学性质、电学性质、光学性质、超 导电性、磁性、结构相变有密切关系
原子的振动 —— 晶格振动在晶体中形成了各种模式的波
—— 简谐近似下,系统哈密顿量是相互独立简谐振动哈密 顿量之和
—— 这些模式是相互独立的,模式所取的能量值是分立的 —— 用一系列独立的简谐振子来描述这些独立而又分立的振
系统的哈密顿量
拉格朗日函数 正则动量
系统的哈密顿量
正则方程
pi
H Qi
正则动量
pi
L Q i
Qi
Qi i2Qi 0, i 1, 2, 3, 3N
—— 3N个独立无关的方程
简正坐标方程解 Qi Asin(it )
简正振动 —— 晶体中所有原子参与振动,振动频率相同 振动模 —— 简正坐标代表的所有原子共同参与的一个振动
动模式
—— 这些谐振子的能量量子,称为声子 —— 晶格振动的总体可看作是声子的系综
§3.1 简谐近似和简正坐标
简谐近似 —— 只考虑最近邻原子之间的相互作用 研究对象 —— 由N个质量为m的原子组成的晶体
第n个原子的平衡位置 偏离平衡位置的位移矢量
原子的位置 Rn ' Rn n (t) 原子位移宗量
第三章 晶格振动与晶体的热学性质
晶格振动的研究 —— 晶体的热学性质 固体热容量 —— 热运动是晶体宏观性质的表现
杜隆-珀替经验规律 —— 一摩尔固体有N个原子,有3N个振动自由度,按能量均 分定律,每个自由度平均热能为kT,摩尔热容量 3Nk=3R
—— 实验表明在较低温度下,热容量随着温度的降低而下降
ni (Qi )
i
exp(
2
2
)
Hபைடு நூலகம்
ni
(
)
只考察某一个振动模
3N
i
j
aij mi
Qj
3N j
aij mi
Qj Asin( jt
)
系统能量本征值计算
正则动量算符
系统薛定谔方程
(1
2
3N i 1
pi2
1 2
3N
i2Qi2 ) (Q1, Q3N )
i1
E (Q1,
Q3N )
任意一个简正坐标
1 2
[2
2 Qi2
Q 2 2
ii
]
(Qi
)
3个方向上的分量
N个原子的位移矢量 N个原子体系的势能函数在平衡位置按泰勒级数展开

平衡位置
—— 不计高阶项
系统的势能函数
V
1 2
i
3N , j1
(
2V
i
j
)0
i
j
系统的势能函数
系统的动能函数
系统的哈密顿量
H
1 2
3N i1
mi i 2
1 3N 2V (
2 i, j1 i j
)0 i j
引入简正坐标 —— 原子的坐标和简正坐标通过正交变换联系起来 假设存在线性变换
i
(Qi
)
能量本征值
i
(ni
1 2
)i
—— 谐振子方程
本征态函数
ni (Qi )
i
exp(
2
2
)
H
ni
(
)
— 厄密多项式
N个原子组成的晶体 系统薛定谔方程
系统能量本征值
E
3N
i
i 1
3N
(ni
i 1
1 2
)
i
3N
系统本征态函数 (Q1, Q2, Q3,Q3N ) ni (Qi )
i 1
相关文档
最新文档