高数(1)期末考试模拟题 (3)

合集下载

大一上学期(第一学期)高数期末考试题(有答案)

大一上学期(第一学期)高数期末考试题(有答案)

其通解为
y C1e x C2 e2x
1, r2 2.
2
1
代入初始条件 y(0)
y (0) 1,得
C1
, C2 3
3
y
2 e
x
故所求曲线方程为:
3
五、解答题(本大题 10 分)
1 e2 x 3
y 15. 解:(1)根据题意,先设切点为 ( x0 , ln x0 ) ,切线方程:
ln x0
1
(x x0
x0 )
设 ( x) 1 x , ( x) 3 33 x,则当 x 1时( )
2.
1x
.
(A) ( x)与 (x) 是同阶无穷小,但不是等价无穷小; 是等价无穷小;
(B) ( x)与 (x)
(C) ( x) 是比 ( x) 高阶的无穷小; 无穷小 .
(D) ( x) 是比 (x) 高阶的
x
3.
F (x) 若
1
(1 q) f ( x) d x q f ( x)dx
0
q
1 [0, q ] 2 [ q,1]
q (1 故有:
q) f ( 1)
q (1
f ( 1) f ( 2)
q) f ( 2 )
0
q
1
f ( x) d x q f ( x )dx
0
0
证毕。
17.
x
F ( x) f ( t)dt , 0 x
证:构造辅助函数:
x 0, y 0 , y (0) 1 10. 解: u x7 7 x6dx du
原式
1 (1 u)
11
du
(
2 )du
7 u(1 u) 7 u u 1

高数模拟习题集含参考答案

高数模拟习题集含参考答案

高等数学模拟题A .上册:上册期中(一)一、试解下列各题: 1.求。

2.求。

3.设处连续,在处不连续,试研究在处的连续性。

4.求在上的最大值与最小值。

二、试解下列各题: 1.判断的奇偶性。

2.[5分]设,其中,求。

3.[5分]设,求。

4.[5分]验证罗尔定理对在上的正确性。

三、试解下列各题:1.[6分]设函数由方程所确定,且,其中是可导函数,,求的值。

2.求极限。

3.求的极值。

四、设圆任意一点M (点M 在第一象限)处的切线与轴,轴分别交于A 点和B 点,试将该切线与两坐标轴所围成的三角形AOB 的面积S 表示为的函数。

1cos cos 21cos 2cos 8lim223-+--→x x x x x π242320)1()1(limx x x x --+→0)(x x x f =在)(x g 0x )()()(x g x f x F +=0x x x x f +=2)(]1,1[-)11(11ln 11)(<<-+-+-=x x x e e x f x x )]1ln 1ln(1ln[x x x y ++=10<<x y 'x xy +-=11)(n y 1074)(23--+=x x x x f ]2,1[-)(x y y =)()(22y x f y x f y +++=2)0(=y )(x f 1)4(,21)2(='='f f 0=x dxdy xx x 10)(cos lim +→22)13()(e x x e x f x +++=-222a y x =+),(y x ox oy x五、用函数连续性“”的定义,验证函数在任意点处连续。

六、求极限七、求与的公切线方程。

八、证明:当时,。

九、]一气球从距离观察员500米处离地匀速铅直上升,其速率为140米/分,当此气球上升到500米空中时,问观察员的视线的倾角增加率为多少? 参考答案:一、1.2。

高数一期末试题及答案

高数一期末试题及答案

高数一期末试题及答案考生须知:本试卷共分为两部分,包括选择题和计算题两大部分。

请考生仔细阅读每个问题,并按照要求完成答题。

所有答案应用钢笔或黑色签字笔书写,不得使用铅笔。

考试时间为120分钟,答题结束后,请将试卷和答题纸一并交回。

一、选择题(共40题,每题2分,共80分)根据题目要求,从四个选项中选择一个正确答案,并将其字母代号填写在答题纸上。

每题只有一个正确答案。

1. 下列哪个函数是可导的?A. f(x) = |x|B. f(x) = sin(x)C. f(x) = |x| + 5D. f(x) = ln(x)2. 函数f(x) = x^2 + 3x - 4的导数f'(x) = ?A. 2x + 3B. x + 3C. x + 4D. 2x + 43. 设函数f(x) = 3x^2 + 4x - 1,求f(-1)的值为多少?A. -2B. -4C. -6D. 64. 函数f(x) = e^x 的导数是?A. f'(x) = e^xB. f'(x) = 1C. f'(x) = xD. f'(x) = e5. 若 y = sin(x),则dy/dx = ?A. cos(x)B. sin(x)C. -cos(x)D. -sin(x)...四、计算题(共5题,每题16分,共80分)请在答题纸上按照要求,完成下列计算题。

1. 求函数f(x) = 4x^3 - 2x^2 + 3的导函数f'(x)。

2. 求极限lim(x→2) (x^2 - 4)/(x - 2)。

3. 求曲线y = 2x^3 - 3x的斜率k。

4. 已知函数f(x) = x^3 - 2x^2 + 4x + 1的一个零点x = 1,请求其余的根。

5. 求不定积分∫(2x - 1)dx,其中积分常数为C。

...参考答案:一、选择题(共40题,每题2分,共80分)1. C2. D3. A4. A5. A...四、计算题(共5题,每题16分,共80分)1. f'(x) = 12x^2 - 4x2. -13. k = 6x^2 - 34. x = 1, x = 25. ∫(2x - 1)dx = x^2 - x + C...本试题仅作为练习使用,请同学们参考答案并自行核对答案。

2021年大学高等数学高数期末考试试卷及答案 (3)

2021年大学高等数学高数期末考试试卷及答案 (3)

20XX年大学高等数学高数期末考试试卷及答案(3)20XX学年第1学期考试科目:高等数学(经贸类)一.填空题(每空2分)1.已知0→x 时,1)1(312-+x 与1cos -x 为等价无穷小量,则=2.函数216ln x x y -+=的定义域为3. 已知10)0('=f ,则xx f x f x )()2(lim 0-→= 。

4.已知x x y 3cos 31sin +=在3π=x 处有极值,则=5.设)3cos(x y =,则)12(y = 。

6.若等式)34(x d dx -=成立,则=7.设收益函数201.0150)(x x x R -=(元),当产量100=x 时,其边际收益是。

8.由曲线)(θr r =及射线βθαθ==,所围的曲边扇形面积公式为。

9.设曲线的参数方程为???==)()(t y y t x x ,βα≤≤t ,则弧长公式为。

10.53)1(lim e x k x x =+∞→,则=k二.选择题(每题3分)1.当0→x 时,x e x sin 1--是2x 的无穷小。

. 低阶;B. 高阶;C. 等价;D. 同阶非等价;2.设x x x f -+=22)(在区间),(+∞-∞内是。

偶函数B.单调增函数C.有界函数D.单调减函数3.设)1(1)(2--=x x x x f ,则x=1是)(x f 的间断点。

.第二类间断点;B.可去;C.跳跃;4.函数)(x f 在0x 处左、右连续是)(x f 在0x 处连续的。

.必要条件;B.充分条件;C.充分必要条件;D.都不是;5.?+=c ex dx x f x 22)(,则)(x f = . x xe 22 B. x e x 222 C. c xe x +22 D. )1(22x xe x +三.解答下列各题(第9题10分,其余每题5分)1.20XXlim 22x dt e t x t x ?+→2. 设sin x y x =,求dy 3.?--+dx e e xx1 4. ?xdx ln 5. ?-2022dx x 6. ?+∞-1dx xe x 7. 确定、b 的值,使函数???≤>+=1,1,)(2x x x b x x f 在定义域内可导。

大学高等数学一下册期末考试模拟试题含答案

大学高等数学一下册期末考试模拟试题含答案

《高等数学一(下)》期末考试模拟试题班别_________ 姓名___________ 成绩_____________ 要求: 1、本卷考试形式为闭卷,考试时间为1.5小时。

2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。

3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。

4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。

5、考生禁止携带手机、耳麦等通讯器材。

否则,视为为作弊。

6、不可以使用普通计算器等计算工具。

一、选择题(本大题共5个小题,每小题4分,满分20分)。

1.函数()3x f x =的一个原函数是13ln 3x ( ) A .正确 B .不正确 2.定积分 114300d d x x x x >⎰⎰ ( )A .正确B .不正确3.( )是2sin x x 的一个原函数( ) A .22cos x -B . 22cos xC .21cos 2x -D . 21cos 2x 4.设函数0()sin ,xf x tdt =⎰ 则()f x '=( ) A .sin xB . sin x -C .cos xD . cos x - 5.微分方程x y e '=的通解是( )( ) A .x y Ce -=B . x y eC -=+ C .x y Ce =D . xy e C =+ 二、填空题(本大题共4个小题,每小题4分,满分16分)。

1.219dx x =+⎰ . 2. ()cos ,f x dx x C =-+⎰,则()f x '= .3. 定积分20cos d 1sin x x xπ=+⎰ . 4.微分方程440y y y '''-+=的通解为 .三、计算下列各题(本大题共5个小题,每小题8分,共40分)1.求不定积分cos 2cos sin x dx x x -⎰.2.求不定积分⎰.3.已知()f x 的一个原函数是2x e-,求()xf x dx '⎰.4.求定积分40x ⎰.5.求定积分10x xe dx ⎰四、(8分)求椭圆22221x y a b+=绕x 轴旋转构成的旋转体的体积.五、(8分)求方程22(1)(1)0x y dx y x dy +-+=的通解.六、(8分)求方程22sin y y x x x'-=的通解.《高等数学一(下)》期末考试模拟试题答案一、选择题(本大题共5个小题,每小题4分,满分20分)。

嘉应学院高数第一学期期末模拟试卷及答案

嘉应学院高数第一学期期末模拟试卷及答案

一、填空题(每小题3分,共15分):1. 设函数⎪⎩⎪⎨⎧>≤+=0sin 03)(2x xax x x x f 在定义域内连续,则=a 。

2.曲线x x y 2sin +=在点⎪⎭⎫ ⎝⎛+21,2ππ处的切线方程为 ; 3. 曲线xx y ln 1+=的水平渐近线为 ; 4. 已知C x x dx x f +=⎰ln )(2,则f (x )= 。

5. 设⎰=xdt t x f 02cos )(,则)(4πf '= 。

二、单项选择题(每小题3分,共15分):6.当1→x 时,下列是)1(2x -的等价无穷小的是( )A .x -1 B. )1(2x - C. )sin 1(2x - D. 21x -7.设)(x f 在a x =处可导,则=--+→xx a f x a f x )()(lim 0( ) A. );(a f ' B. );(2a f 'C. 0D..);2(a f '8.)(0)(0)()(],[)(x f ,x f a f a f ,b a x f 则及且上三阶可导在若>'''=''=').(),(内在b aA. 函数递减、曲线凹B. 函数递增、曲线凹C. 函数递减、曲线凸D. 函数递增、曲线凸9. 设e -x 是f (x )的一个原函数,则⎰dx x xf )(=( )。

A. C x e x +--)(1B. C x e x ++-)(1C. C x e x +--)(1D. C x e x ++--)(110. 函数dt t t x f x⎰-=0)4()(在[-1,5]上的最大值与最小值分别为( )。

A.37-,325- B. 0,325- C. 37-,332- D. 0,332-三、计算题(每小题5分,共40分):11.求极限)ln 11(lim 1xx x x --→ 12. 求极限131sin lim 220-+→x x x13. 求极限x x x )11(lim 2+∞→ 14. 设242x x x y -+=arcsin ,求y '. 15. 设)1ln(2x x y ++=,求.22dxy d 16. 方程y e x x y 2=+sin ln 确定y 是x 的隐函数,求dy .17. 求不定积分⎰-dx x x 2ln 11 18. 求定积分.2cos 1dx x ⎰--ππ四、综合应用题(每小题8分,共24分):19 求函数13)(23+-=x x x f 的单调区间及极值。

高数(1)期末考试模拟题共36页

高数(1)期末考试模拟题共36页
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
高数(1)期末考试模拟题
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你ቤተ መጻሕፍቲ ባይዱ人生

专升本高数一模拟题3

专升本高数一模拟题3

成人专升本高等数学—模拟试题三一、选择题(每小题4分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求的,把所选项前的字母填写在题后的括号中)1.0sin lim=xx xA :0B :21C :1D :22.当0x时,x 是ln(1)x 的A :较高阶无穷小B :等价无穷小C :同阶但不等价无穷小D :较低阶无穷小3.设函数x x f arcsin )(,则:)(x f 等于A :xsin B :xcos C :211xD :211x4.函数)(x f y 在),(b a 内二阶可导,且()<0f x ,()>0f x ,则:曲线)(x f y在),(b a 内A :单调增加且上凸B :单调减少且下凹C :单调减少且上凸D :单调减少且下凹5.设1x 为ax xy 3的极小值点,则:a 等于A :3B :3C :1D :316.函数2y xx 在区间[0,1]上满足罗尔定理的值等于A :12B :0C :43D :17.设)(x f 的一个原函数为2x ,则:)(x f 等于A :331xB :2xC :x 2D :28.112x dx 等于A :2B :32C :23D :09.设有直线1l :zy x 2211,直线2l :15412z y x ,当两直线平行时,等于A :1B :0C :21D :110.下列命题中正确的是A :设级数1n n u 收敛,级数1n n v 发散,则:1)(n n n v u 可能收敛B :设级数1n n u 收敛,级数1n n v 发散,则:1)(n n n v u 必定发散C :设级数1n n u 收敛,且),1,(k k nv u n n ,则:级数1n n v 必定收敛D :设级数1)(n n n v u 收敛,且有111)(n nn nn n n v u v u 二、填空题:11~20小题,每小题4分,共40分。

将答案填写在答题卡相应题号后。

高数期末考试题及答案大全

高数期末考试题及答案大全

高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。

答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。

在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。

切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。

试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。

则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。

利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。

积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。

高数一期末考试题及答案

高数一期末考试题及答案

高数一期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是函数f(x)=x^2+3x+2的导数?A. 2x+3B. x^2+3C. 2x+6D. x+2答案:A2. 求极限lim(x→0) (sin(x)/x)的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是函数f(x)=e^x的不定积分?A. e^x + CB. e^xC. ln(e^x) + CD. x*e^x + C答案:A4. 以下哪个选项是函数f(x)=x^3-6x^2+11x-6的极值点?A. x=1B. x=2C. x=3D. x=4答案:B二、填空题(每题5分,共20分)5. 求定积分∫(0 to 1) x^2 dx的值是______。

答案:1/36. 函数y=x^3-3x+2的拐点是x=______。

答案:07. 函数f(x)=ln(x)在x=1处的切线斜率是______。

答案:18. 函数f(x)=x^2+2x+1的最小值是______。

答案:0三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:单调增区间为(3, +∞)和(-∞, 1);单调减区间为(1, 3)。

10. 求函数f(x)=x^2-4x+3的极值。

答案:当x=2时,函数取得极小值f(2)=-1。

11. 求函数f(x)=x^3-3x+2在x=1处的切线方程。

答案:切线方程为y=5x-2。

12. 求定积分∫(0 to 2) (x^2-2x+1) dx的值。

答案:413. 求函数f(x)=e^x-x-1的零点。

答案:函数f(x)=e^x-x-1的零点为x=0。

14. 求函数f(x)=ln(x)+x^2在x=1处的切线方程。

答案:切线方程为y=2x-1。

四、证明题(每题10分,共20分)15. 证明:函数f(x)=x^3+3x^2-2x+1在(-∞, -2)上是单调递减的。

答案:首先求导f'(x)=3x^2+6x-2,令f'(x)<0,解得x<-2,因此函数在(-∞, -2)上单调递减。

大一高等数学期末模拟试卷五套

大一高等数学期末模拟试卷五套

大一高等数学期末模拟试卷(一)一、填空题(本题共5小题,每小题4分,共20分).(1)210)(cos lim x x x →=_____e 1.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且0)1(=f ,则=)(x f ______=)(x f 2)(ln 21x _____.(4)曲线132+=x x y 的斜渐近线方程为.9131-=x y (5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y 二、选择题(本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是(D )(A)0111=⎰-dx x (B)21112-=⎰-dx x (C)+∞=⎰∞+141dx x (D)+∞=⎰∞+11dx x (2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则(D).(A)21,x x 都是极值点.(B)()())(,,)(,2211x f x x f x 都是拐点.(C)1x 是极值点.,())(,22x f x 是拐点.(D)())(,11x f x 是拐点,2x 是极值点.图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是(D ).(A)23e .xy y y x '''--=(B)23e .xy y y '''--=(C)23e .x y y y x '''+-=(D)23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h→--为(A).(A)()0f x '.(B)()0f x '-.(C)0.(D)不存在(5)下列等式中正确的结果是(A).(A)(())().f x dx f x '=⎰(B)()().=⎰df x f x (C)[()]().d f x dx f x =⎰(D)()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分).1.求极限)ln 11(lim 1x x x x --→.解ln 11(lim 1x x x x --→=xx x x x x ln )1(1ln lim1-+-→1分)(x f y '=y O1x 2x ab x=x xx x x ln 1ln lim1+-→2分=x x x x x x ln 1ln lim1+-→1分=211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==tt t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx yd .解,sin )()(t t t x t y dx dy =''=(3分).sin tan sin )()sin (22t t t t t x t t dxy d +=''=(6分)3.计算不定积分.2arctan 22(1) =2arctan arctan 2 =arctan 2d x C =----------+-------+---------⎰⎰分分(分4.计算定积分⎰++3011dxx x.解⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=3011(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分所以所求通解C 分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图220322203*********RR P g R x g R x g R ρρρρ=---------=--------=--------=----------------⎰⎰分)分[()]分分3.(本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1baf x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b baabab b aaxf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4.(本题8分)过坐标原点作曲线xy ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1)(3)求D 的面积A;(2)(4)求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+=----1分由该切线过原点知01ln 0=-x ,从而.0e x =所以该切线的方程为.1x ey =----1分平面图形D 的面积⎰-=-=1.121)(e dy ey e A y ----2分(2)切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为.3121e V π=2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 212)(⎰-=π,1分xyxyO1e1D因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+解法二:设() 1.xf x e x =--则(0)0.f =1分因为() 1.xf x e '=-1分当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥=2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥=2分所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。

高等数学期末考试模拟测试题含答案

高等数学期末考试模拟测试题含答案

高等数学期末考试模拟测试题含答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高等数学(一)模拟测试题模拟测试一一、判断题( )1、数列}{n x 有界是数列}{n x 收敛的充分条件。

( )2、函数)(x f 在点0x 连续是)(x f 在点0x 可导的必要非充分条件。

( )3、函数)(x f 的极值点一定是驻点。

( )4、若函数0)(''0=x f ,则0x 是)(x f 的拐点。

( )5、C x f dx x f +=⎰)()(',C 是任意常数。

二、选择题1、设322,1,()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩,则)(x f 在1x =处的( )(A )左、右导数都存在; (B )左导数存在,右导数不存在; (C )左导数不存在,右导数存在; (D )左右导数都不存在。

2、已知函数)(x f ,[,]x a b ∈则下列选项中不满足罗尔定理条件的是( )。

(A )在[,]a b 上连续; (B )在(,)a b 可导; (C )对任一(,),'()0x a b f x ∈≠; (D )()()f a f b =。

3、若函数)(x f 的导函数是sin x ,则)(x f 的一个原函数是( ) (A )1sin x +; (B )1sin x -; (C )1cos x +;(D )1cos x -。

4、设函数1()x tF x e dt =⎰,则21'()F x dx =⎰( )(A )2e e -; (B )2e e -; (C )2e ; (D )e 。

5、下列说法错误的是( )(A )闭区间上连续函数必有界;(B )闭区间上的连续函数一定有最小值最大值; (C )闭区间上函数必有界; (D )闭区间上连续函数必可积。

三、填空题1、曲线3221y x x =-+在点(1,2)处的切线方程为 。

高等数学期末考试模拟测试题含答案

高等数学期末考试模拟测试题含答案

高等数学(一)模拟测试题模拟测试一一、判断题( )1、数列}{n x 有界是数列}{n x 收敛的充分条件。

( )2、函数)(x f 在点0x 连续是)(x f 在点0x 可导的必要非充分条件。

( )3、函数)(x f 的极值点一定是驻点。

( )4、若函数0)(''0=x f ,则0x 是)(x f 的拐点。

( )5、C x f dx x f +=⎰)()(',C 是任意常数。

二、选择题1、设322,1,()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩,则)(x f 在1x =处的( )(A )左、右导数都存在; (B )左导数存在,右导数不存在; (C )左导数不存在,右导数存在; (D )左右导数都不存在。

2、已知函数)(x f ,[,]x a b ∈则下列选项中不满足罗尔定理条件的是( )。

(A )在[,]a b 上连续; (B )在(,)a b 可导; (C )对任一(,),'()0x a b f x ∈≠; (D )()()f a f b =。

3、若函数)(x f 的导函数是sin x ,则)(x f 的一个原函数是( ) (A )1sin x +; (B )1sin x -; (C )1cos x +;(D )1cos x -。

4、设函数1()x tF x e dt =⎰,则21'()F x dx =⎰( )(A )2e e -; (B )2e e -; (C )2e ; (D )e 。

5、下列说法错误的是( )(A )闭区间上连续函数必有界;(B )闭区间上的连续函数一定有最小值最大值; (C )闭区间上函数必有界; (D )闭区间上连续函数必可积。

三、填空题1、曲线3221y x x =-+在点(1,2)处的切线方程为 。

2、1lim(12)x x x →+= 。

3、若函数2,1,(),1x x f x ax b x ⎧≤=⎨+>⎩在1x =处连续且可导,则a = ,b = 。

考研高数1试题及答案

考研高数1试题及答案

考研高数1试题及答案考研高数1模拟试题一、选择题(每题4分,共40分)1. 下列函数中,满足条件f(-x) = f(x)的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)答案:B2. 设函数f(x)在点x=a处连续,且lim (x->a) [f(x) - f(a)]/(x-a) = L,那么f(x)在x=a处的导数为:A. LB. aC. f(a)D. 不存在答案:A3. 设数列{an}满足an+1 = an + 1/n^2,若a1=1,则a5的值为:A. 2B. 5/4C. 11/4D. 3答案:C4. 曲线y = x^2在点(1,1)处的切线斜率为:A. 2B. 1C. 0D. -1答案:A5. 设函数f(x)在区间(a,b)内单调递增,则其反函数f^(-1)(x)在区间(b,a)内:A. 单调递增B. 单调递减C. 无单调性D. 不存在答案:B6. 微分方程dy/dx + y^2 = 0的通解为:A. y = CxB. y = C/xC. y^2 = CxD. y = Cxe^x答案:B7. 设函数f(x)在区间[a,b]上连续,若f(x)在(a,b)内单调递增,则定积分∫[a,b] f(x)dx的值:A. 一定为正B. 一定为负C. 可以为零D. 可以是正也可以是负答案:C8. 设函数f(x)在点x=0处可导,且f'(0)=1,则lim (x->0) [xsin(1/x) - cos(1/x)]/x^2为:A. 0B. 1C. -1D. 不存在答案:B9. 若级数∑[n=1,∞) (a_n^2)收敛,则级数∑[n=1,∞) a_n必定:A. 收敛B. 发散C. 条件不足,无法判断D. 绝对收敛答案:C10. 设函数f(x)在区间[a,b]上二阶可导,且f''(x)≥0恒成立,则f(x)在[a,b]上是:A. 单调递增B. 单调递减C. 凸函数D. 凹函数答案:C二、填空题(每题4分,共20分)11. 若函数f(x) = ∫[a, x] g(t) dt,则f'(x) = __________。

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷B)及参考答案

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷B)及参考答案

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷B )一、选择题(每题4分,共40分) 1.设111e()23ex xf x +=+,则0x =是()f x 的 A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点2.设函数()f x 在区间(,)a b 内连续,则在区间(,)a b 内 A .()f x 必有界 B .()f x 必存在反函数C .()f x 必存在原函数D .必存在(,)a b ξ∈,使得()0f ξ=3.π1lim tan 4n n n →∞+的值为A .eB .1C .2e4.若sin ,0()1,0xx f x xx ≠= = ,则(0)f ′ A .等于0 B .等于1 C .等于1− D .不存在5.曲线2(sin )2(1cos )x t t y t =− =−在π2t =处的切线方程为A .πx y +=B .π4x y −=−C .πx y −=D .π4x y +=−6.设()f x 是在点00x =的某个邻域(0,)(0)N δδ>内的连续函数,0()()d xΦx f t t =∫,(0,)x N δ∈,且3()lim0x f x A x →=>,则 A .(0)Φ是()Φx 的极小值B .(0)Φ是()Φx 的极大值C .(0)Φ一定不是()Φx 的极值D .不能断定(0)Φ是否为()Φx 的极值7.设π(1,2,,)i i x i n n ==,n 为正整数,则11lim cos n i n i x n →∞==∑ A .1cos d x x ∫B .1cos(π)d x x ∫C .π1cos d πx x ∫ D .π1cos(π)d πx x ∫8.已知π42π22sin cos d 1xM x x x−=+∫,π342π2(sin cos )d N x x x −=+∫,π2342π2(sin cos )d Px x x x −=−∫,则有A .N P M <<B .M P N <<C .N M P <<D .P M N <<9.双纽线22222()x y x y +=−所围成区域面积可表示为 A .π402cos 2d θθ∫B .π404cos 2d θθ∫ C .2θD .π2401(cos 2)d 2θθ∫10.微分方程24e x y y x ′′−=+的特解形式为 A .2e x a bx c ++ B .22e x ax bx c ++ C .22e x ax bx cx ++ D .2e x ax bx c ++二、填空题(每题4分,共24分)1.2sin()d lime cos xx x x t tx→−=−∫___________.2.设()f u 可导,2()y f x =在01x =−处取得增量0.05x ∆=时,函数增量y ∆的线性部分为0.15,则(1)f ′=___________.3.设函数()f x 在[1,)+∞上连续,若广义积分1()d f x x +∞∫收敛,且满足24111()()d 2f x f x x x x +∞=−∫,则()f x =___________.4.设(0,0)y x x y x y =>>,则1d d x y x==___________.5.x =___________.6.曲线5442411x x y x −+=+的斜渐近线为___________.三、解答题(每题6分,共36分)1.求微分方程22x y xy y ′+=满足初始条件(1)1y =的特解.2.求函数2()(2)e d x t f x t t −=−∫的最大值与最小值.3.计算下列积分.(1)求定积分10x x ∫.(2)求定积分0∫,其中0a >.4.设曲线y =,过原点作切线,求此曲线、切线及x 轴所围成的平面图形绕x 轴旋转一周所称旋转体的表面积.5.证明:当01x <<时,21e 1x xx−−<+.6.设()f x 在区间[,]a b 上二阶连续可导,证明:存在(,)a b ξ∈使得3()()d ()()224baa b b a f x x b a f f ξ+− ′′=−+∫.《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷B )解答参考一、选择题(每题4分,共40分) 1.设111e()23ex xf x +=+,则0x =是()f x 的 A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点答案 B解析 令1t x=,因为 11001e 1e 1lim ()lim lim 23e 223e txt t x x x f x −−→−∞→→++===++,11001e 1e 1lim ()lim lim 23e 323e t xt t x x xf x ++→+∞→→++===++, 则0lim ()lim ()x x f x f x −+→→≠,所以0x =是()f x 的跳跃间断点,故选B 项. 2.设函数()f x 在区间(,)a b 内连续,则在区间(,)a b 内A .()f x 必有界B .()f x 必存在反函数C .()f x 必存在原函数D .必存在(,)a b ξ∈,使得()0f ξ=答案 C解析 连续函数在闭区间有界,开区间无法保证有界,故A 错误;单调的连续函数存在反函数,故B 错误;零点定理需要函数在端点处函数值异号,故D 错误;连续函数必存在原函数,故本题选C .3.π1lim tan 4n n n →∞+的值为A .eB .1C .2e答案 D 解析 因为111tan 2tan lim ln lim ln 1π111ln tan 1tan 1tan 4π1lim tan lim e e e4n n n n n n n nn n n n n n →∞→∞+++−−→∞→∞+=== ,而00112tan 2tan 2tan 2lim ln 1lim lim lim 211(1tan )(1tan )1tan 1tan n n t t n t t n n n t t t t n n ++→∞→∞→→+==== −− −−, 所以2π1lim tan e 4n n n →∞ +=, 故选D 项.4.若sin ,0()1,0xx f x xx ≠= = ,则(0)f ′ A .等于0 B .等于1 C .等于1− D .不存在答案 A解析 因为200000sin 1()(0)sin cos 1sin lim limlim lim lim 0022x x x x x xf x f x x x x x x x x x →→→→→−−−−−=====−, 故选A 项.5.曲线2(sin )2(1cos )x t t y t =−=−在π2t =处的切线方程为 A .πx y += B .π4x y −=− C .πx y −= D .π4x y +=−答案 B 解析 当π2t =时,有π22x y =− =,故πππ222d ()22cos 1d ()2sin t t t y y t tx x t t ===′−===′, 由点斜式可得切线方程为2(π2)y x −=−−,整理得本题选B .6.设()f x 是在点00x =的某个邻域(0,)(0)N δδ>内的连续函数,0()()d xΦx f t t =∫,(0,)x N δ∈,且3()lim0x f x A x →=>,则 A .(0)Φ是()Φx 的极小值 B .(0)Φ是()Φx 的极大值C .(0)Φ一定不是()Φx 的极值D .不能断定(0)Φ是否为()Φx 的极值答案 A解析 由条件可得4300()1()1limlim 044x x Φx f x A x x →→==>,所以在点00x =的某个邻域内都有()0(0)Φx Φ>=,所以(0)Φ是()Φx 的极小值,应选A 项.7.设π(1,2,,)ii x i n n== ,n 为正整数,则11lim cos n i n i x n →∞==∑ A .1cos d x x ∫B .1cos(π)d x x ∫C .π01cos d πx x ∫ D .π01cos(π)d πx x ∫ 答案 C解析 由定积分的定义可知π01111π0π1lim cos lim cos cos d ππn n i n n i i i x x x n n n →∞→∞==−==∑∑∫,故选C 项. 8.已知π42π22sin cos d 1xM x x x−=+∫,π342π2(sin cos )d N x x x −=+∫,π2342π2(sin cos )d Px x x x −=−∫,则有A .N P M <<B .M P N <<C .N M P <<D .P M N <<答案 D解析 由“偶倍奇零”可知π42π22sin cos d 01x Mx x x −==+∫,ππ34422ππ22(sin cos )d cos d 0N x x x x x −−=+=>∫∫,ππ234422ππ22(sin cos )d cos d 0P x x x x x x −−=−=−<∫∫,故P M N <<,应选D 项.9.双纽线22222()x y x y +=−所围成区域面积可表示为 A .π402cos 2d θθ∫B .π404cos 2d θθ∫ C .2θD .π2401(cos 2)d 2θθ∫答案 A解析 双纽线22222()x y x y +=−的极坐标形式为2cos 2r θ=,再根据对称性,有ππ2440014d 2cos 2d 2A r θθθ=×=∫∫,故选A 项.10.微分方程24e x y y x ′′−=+的特解形式为A .2e x a bx c ++B .22e x ax bx c ++C .22e x ax bx cx ++D .2e x ax bx c ++答案 D解析 题设微分方程是一个二阶非齐次线性微分方程,其所对应的齐次线性微分方程40y y ′′−=的特征方程为240λ−=,特征根为1,22λ=±.又因为24e x y y ′′−=的特解形式为21e x y ax =,4y y x ′′−=的特解形式为2y bx c =+,故原方程特解形式为2e x ax bx c ++,应选D 项.二、填空题(每题4分,共24分)1.2sin()d lime cos xx x x t tx→−=−∫___________.答案13解析 令x t u −=,则当0x →时,021sin()d sin d sin d 1cos 2xxxx t t u u u u x x −=−==−∼∫∫∫, 又由泰勒公式可知222e 1()x x o x =++,2222cos 1()1()2!2x x x o x o x =−+=−+, 故22222223e cos [1()]1()()22x x x x o x o x x o x −=++−−+=+ ,于是可知223e cos ~2x x x −,因此2sin()d 1lim3e cos xx x x t tx→−=−∫. 2.设()f u 可导,2()y f x =在01x =−处取得增量0.05x ∆=时,函数增量y ∆的线性部分为0.15,则(1)f ′=___________.答案 32−解析 由2d 2()y xf x x ′=∆得 1d 2(1)0.050.1(1)x yf f =−′′=−×=−,因为y ∆的线性部分为d y ,由0.1(1)0.15f ′−=得3(1)2f ′=−.3.设函数()f x 在[1,)+∞上连续,若广义积分1()d f x x +∞∫收敛,且满足24111()()d 2f x f x x x x +∞=−∫,则()f x =___________.答案24137x x− 解析 令1()d f x x A +∞=∫,由条件得241111d d 1226A AA x x x x +∞+∞=−=−∫∫, 解得67A =,所以 2413()7f x x x =−. 4.设(0,0)y x x y x y =>>,则1d d x y x==___________.答案 1解析 由条件得ln ln y x x y =,两边对x 求导可得d d ln ln d d y y x y x y x x y x+=+⋅, 解得ln d d ln yyy xx x xy−=−, 当1x =时易得1y =,故1d 1d x y x==.5.x =___________.答案 2C +解析222x C +∫. 6.曲线5442411x x y x −+=+的斜渐近线为___________. 答案 24y x =−解析 因为545241lim lim 2x x y x x kx x x →∞→∞−+==+,544241lim(2)lim 241x x x x b y x x x →∞→∞ −+=−=−=− +, 所以曲线5442411x x y x −+=+的斜渐近线为24y x =−.三、解答题(每题6分,共36分)1.求微分方程22x y xy y ′+=满足初始条件(1)1y =的特解. 解 由22x y xy y ′+=可得2d d y y yx x x=− , 令yu x=,原方程可化为 2d d u xu u x=−, 两边积分得121ln ln ||ln 22u x C u −=+, 即得22u Cx u−=, 代入(1)1y =得1C =−.故原方程的特解为221xy x =+. 2.求函数2()(2)e d x t f x t t −=−∫的最大值与最小值.解 易知函数()f x 为偶函数,所以我们只需考虑()f x 在[0,)+∞内的最大最小值即可.令22()2(2)e 0x f x x x −′=−=可得()f x 的唯一驻点x =x ∈时,()0f x ′>;当)x ∈+∞时,()0f x ′<.考虑到驻点的唯一性,可知x =与x =均为函数()f x 的最大值点,最大值为(f f ==211e +. 注意到0lim ()(2)e d 1t x f x t t +∞−→∞=−=∫及(0)0f =,所以函数()f x 的最小值为(0)0f =.3.计算下列积分.(1)求定积分10x x ∫.解 令ππsin 22x t t =−<< ,当0x =时,0t =;当1x =时,π2t =.则ππ1222222000sin cos d sin (1sin )d xxt t tt t t =−∫∫∫ππ242201π31ππsin d sin d 2242216t t t t =−=⋅−⋅⋅=∫∫. 注 这里用到了华里士公式ππ2201321,123sin d cos d 131π,222n n n n n n n n I x x x x n n n n n −− ×××× −=== −− ×××× −∫∫ 为大于的奇数为正偶数. (2)求定积分0∫,其中0a >.解 方法一 令ππsin 22x a t t =−<< ,当0x =时,0t =;当x a =时,π2t =.则ππ2200cos 1(sin cos )(cos sin )d d sin cos 2sin cos a t t t t t t t a t a t t t++−=++∫∫∫ πππ2220001cos sin 11d(sin cos )1d 1d 2sin cos 22sin cos t t t t t t t t t t−+ =+=+++ ∫∫∫ π20π1π[ln |sin cos |]424t t =++=. 方法二 令ππsin 22x a t t =−<< ,则π20cos d sin cos tt t t=+∫∫,又令π2tu =−,则有 ππ2200cos sin d d sin cos sin cos t ut t t tu u =++∫∫,所以πππ2220001sin cos 1πd d 1d 2sin cos sin cos 24t t t t t t t t t =+== ++∫∫∫∫. 小结 被积函数中含有根式的,尽量去掉根式,去根式的方法一般是根式代换或三角代换法.4.设曲线y=,过原点作切线,求此曲线、切线及x 轴所围成的平面图形绕x 轴旋转一周所称旋转体的表面积.解 设切点为(a ,则过原点的切线方程为y =,将(a 代入切线方程得2a =1=,故切线方程为12y x =.由曲线y =[1,2]上的一段绕x 轴旋转一周所称旋转体的表面积为21111π2πd 2ππ1)6S y s x x ==−∫∫∫. 切线12y x =在曲线[0,2]上的一段绕x 轴旋转一周所称旋转体的表面积为222002πd πS y s x ===∫∫.故所求旋转曲面的表面积为12π1)6S S S =+=. 5.证明:当01x <<时,21e 1x x x−−<+. 证 令 ()ln(1)ln(1)2f x x x x +−−−,则(0)0f =,且22112()20(01)111x f x x x x x ′=+−=><<+−−, 由(0)0()0f f x = ′>可得,当01x <<时,()0f x >,化简整理得 21e 1x x x−−<+. 6.设()f x 在区间[,]a b 上二阶连续可导,证明:存在(,)a b ξ∈使得 3()()d ()()224b a a b b a f x x b a f f ξ+− ′′=−+∫. 证 令()()d x a F x f t t =∫,则()F x 在区间[,]a b 上三阶连续可导,取2a b c +=,由泰勒公式可得 231()()()()()()()()26F F c F a F c F c a c a c a c ξ′′′′′′=+−+−+−,1(,)a c ξ∈, 232()()()()()()()()26F F c F b F c F c b c b c b c ξ′′′′′′=+−+−+−,2(,)c b ξ∈, 两式相减可得321()()()()()[()()]48b c F b F a F c b a F F ξξ−′′′′′′′−=−++, 即321()()d ()[()()]248b a a b b c f x x b a f f f ξξ+− ′′′′=−++ ∫, 因为()f x ′′在区间[,]a b 上连续,所以存在12[,](,)a b ξξξ∈⊂,使得211()[()()]2f f f ξξξ′′′′′′=+, 所以 3()()d ()()224b a a b b a f x x b a f f ξ+− ′′=−+ ∫.。

高数期末考试题及答案

高数期末考试题及答案

高数期末考试题及答案【高数期末考试题及答案】一、选择题1. 高数的完整名称是什么?A. 高等数学B. 高级数学C. 高纯度数学D. 高度数学答案:A2. 常用的微积分法则中,“乘法法则”是指什么?A. 两个函数相乘的导数等于它们的导数相加B. 两个函数相乘的导数等于它们的导数相减C. 两个函数相乘的导数等于它们的导数相乘D. 两个函数相乘的导数等于它们的导数相除答案:C3. 下面哪个是高数中常用的极限符号?A. $lim$B. $lag$C. $limt$D. $sum$答案:A4. 函数$f(x)=\frac{x}{x-1}$的定义域是什么?A. $[-\infty, 0)\cup(0, +\infty)$B. $(-\infty, 0)\cup(0, +\infty)$C. $(-\infty, 1)\cup(1, +\infty)$D. $[-\infty, 1)\cup(1, +\infty)$答案:D二、计算题1. 求函数$f(x)=3x^2-2x+1$的导函数。

解答:将函数$f(x)$按导数的定义求导,得到:$f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x) - f(x)}{\Delta x}$代入函数$f(x)$的表达式,化简得到:$f'(x)=\lim_{\Delta x \to 0}\frac{3(x+\Delta x)^2-2(x+\Delta x)+1-(3x^2-2x+1)}{\Delta x}$展开并化简得到:$f'(x)=\lim_{\Delta x \to 0}\frac{3x^2+6x \Delta x+3(\Delta x)^2-2x-2 \Delta x+1-3x^2+2x-1}{\Delta x}$合并同类项并约去,得到:$f'(x)=\lim_{\Delta x \to 0}6x+3 \Delta x-2$由于$\Delta x$趋近于0时,$3 \Delta x$和2趋近于0,所以最后的结果为:$f'(x)=6x-2$答案:$f'(x)=6x-2$2. 求函数$F(x)=\int_0^x\frac{1}{1+t^3}dt$的原函数。

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷A)及参考答案

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷A)及参考答案

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷A )一、选择题(每题4分,共40分)1.当0x →时,2sin x x −是x 的A .高阶无穷小B .同阶但非等价无穷小C .低阶无穷小D .等价无穷小2.设()g x 与()f x 互为反函数,则12f x的反函数为A .(2)g xB .(2)f xC .2()f xD .2()g x3.011lim sin sin x x x x x →− 的结果是A .1−B .1C .0D .不存在4.已知322,1()3,1x x f x x x ≤ = > ,则()f x 在1x =处的 A .左、右导数都存在 B .左导数存在,右导数不存在C .左导数不存在,右导数存在D .左、右导数都不存在5.曲线2y =+(1,2)M 处的切线 A .不存在B .方程为1x =C .方程为2y =D .方程为12(1)3y x −=−6.设函数()f x 在0x 的某个邻域内有定义,且004()()lim 0x x f x f x A x →−=>,则 A .0()f x 一定是()f x 的一个极大值 B .0()f x 一定是()f x 的一个极小值 C .0()f x 一定不是()f x 的极值D .不能断定0()f x 是否为()fx 的极值7.设()f x 是定义在[0,4]上的连续函数,且221()d x f t t x −=∫,则(2)f =A .8B .8−C .48D .48−8.设2,01()2,12x x f x x x ≤≤= −<≤ ,0()()d x F x f t t =∫且[0,2]x ∈,则A .32,013()12,1232x x F x x x x ≤≤ = +−<≤B .32,013()72,1262x x F x x x x ≤≤ = −+−<≤C .332,013()2,1232x x F x x x x x ≤≤ = +−<≤D .32,013()2,122x x F x x x x ≤≤ = −<≤9.曲线(1)(2)y x x x =−−与x 轴所围成的图形面积可表示为 A .20(1)(2)d x x x x −−−∫B .121(1)(2)d (1)(2)d x x x x x x x x −−−−−∫∫C .2(1)(2)d x x x x −−∫D .211(1)(2)d (1)(2)d x x x x x x x x −−−−−∫∫10.设1()x ϕ和2()x ϕ是一阶线性非齐次微分方程()()y P x y Q x ′+=的两个线性无关的解,则它的通解是A .12[()()]C x x ϕϕ+B .12[()()]C x x ϕϕ− C .122[()()]()C x x x ϕϕϕ−+D .122[()()]()x x x ϕϕϕ−+二、填空题(每题4分,共24分)1.设()f x 连续,且2()()d xax F x f t t x a =−∫,则lim ()x a F x →=___________.2.设()f x 为奇函数,且(1)2f ′=,则31d()d x f x x =−=___________.3.221d (1)(4)x x x +∞=++∫___________.4.设123y x =+,则()()n y x =___________.5.=___________.6.曲线1(32)e xy x =+的斜渐近线为___________.三、解答题(每题6分,共36分)1.求微分方程22d d yxy x y x=+满足初始条件(e)2e y =的特解.2.求函数πarctan 2(1)e x y x +=−的单调区间与极值.3.计算下列积分.(1)求不定积分cos d 1cos xx x +∫.(2)求定积分1220arctan d (1)xx x +∫.4.求摆线(sin )(0)(1cos )x a t t a y a t =−> =−的一拱绕x 轴旋转一周所得旋转体的体积.5.证明:当01x <<ln(1)arcsin x x+<.6.设()f x 在区间[0,1]上可导,1220(1)2()d f x f x x =∫,证明:存在(0,1)ξ∈,使得2()()0f f ξξξ′+=.《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷A )解答参考一、选择题(每题4分,共40分)1.当0x →时,2sin x x −是x 的 A .高阶无穷小 B .同阶但非等价无穷小 C .低阶无穷小D .等价无穷小答案 B解析 由洛必达法则知200sin 2cos limlim 11x x x x x xx →→−−==−, 故2sin x x −是x 的同阶但非等价无穷小,应选B 项.2.设()g x 与()f x 互为反函数,则12f x的反函数为A .(2)g xB .(2)f xC .2()f xD .2()g x答案 D解析 由()g x 与()f x 互为反函数可知,[()]g f x x =,1122g fx x = ,所以可得122g f x x=,故12f x的反函数为2()g x .故选D 项.3.011lim sin sin x x x x x →−的结果是A .1−B .1C .0D .不存在答案 A解析 0001111lim sin sin lim sin lim sin 011x x x x x x x x x x x →→→−=−=−=−,应选A 项.4.已知322,1()3,1x x f x x x ≤ = > ,则()f x 在1x =处的A .左、右导数都存在B .左导数存在,右导数不存在C .左导数不存在,右导数存在D .左、右导数都不存在答案 B解析 由条件可得2(1)3f =,所以 31122()(1)33(1)lim lim 211x x x f x f f x x −−−→→−−′===−−,2112()(1)3(1)lim lim 11x x x f x f f x x +−+→→−−′===∞−− 故()f x 在1x =处左导数存在,右导数不存在,应选B 项.5.曲线2y =+(1,2)M 处的切线 A .不存在B .方程为1x =C .方程为2y =D .方程为12(1)3y x −=− 答案 B解析 由条件可得y ′=1lim x y →′→∞,所以在点(1,2)M 处的切线为1x =,故选B 项.6.设函数()f x 在0x 的某个邻域内有定义,且004()()lim 0x x f x f x A x →−=>,则 A .0()f x 一定是()f x 的一个极大值 B .0()f x 一定是()f x 的一个极小值 C .0()f x 一定不是()f x 的极值D .不能断定0()f x 是否为()f x 的极值答案 B解析 由条件易知,在0x 的某个邻域内,0()()0f x f x −>,所以0()f x 一定是()f x 的一个极小值,故选B 项.7.设()f x 是定义在[0,4]上的连续函数,且221()d x f t t x −=∫,则(2)f =A .8B .8−C .48D .48−答案 A 解析等式221()d x f t t x −=−∫两边同时对x 求导可得(2)2f x x −=,代入4x =可得(2)8f =,应选A 项.8.设2,01()2,12x x f x x x ≤≤= −<≤ ,0()()d x F x f t t =∫且[0,2]x ∈,则A .32,013()12,1232x x F x x x x ≤≤ = +−<≤B .32,013()72,1262x x F x x x x ≤≤ = −+−<≤ C .332,013()2,1232x x F x x x x x ≤≤ = +−<≤D .32,013()2,122x x F x x x x ≤≤ = −<≤答案 B解析 当01x ≤≤时,320()d 3x x F x t t==∫;当12x <≤时,21211()d (2)d 2232xx F x t t t t x =+−=+−−+∫∫2172262x x =−+−,故选B 项. 9.曲线(1)(2)y x x x =−−与x 轴所围成的图形面积可表示为A .2(1)(2)d x x x x −−−∫B .121(1)(2)d (1)(2)d x x x x x x x x −−−−−∫∫C .2(1)(2)d x x x x −−∫D .211(1)(2)d (1)(2)d x x x x x x x x −−−−−∫∫答案 D解析 曲线(1)(2)y x x x =−−与x 轴的三个交点为x =0,1,2.当01x <<时,0y <,当12x <<时,0y >,所以围成曲线的面积可表示成选项D 的形式.10.设1()x ϕ和2()x ϕ是一阶线性非齐次微分方程()()y P x y Q x ′+=的两个线性无关的解,则它的通解是A .12[()()]C x x ϕϕ+B .12[()()]C x x ϕϕ−C .122[()()]()C x x x ϕϕϕ−+D .122[()()]()x x x ϕϕϕ−+答案 C解析 因为1()x ϕ和2()x ϕ是一阶线性非齐次微分方程()()y P x y Q x ′+=的两个线性无关的解,所以12[()()]C x x ϕϕ−是方程()0y P x y ′+=的通解,从而()()y P x y Q x ′+=的通解为122[()()]()C x x x ϕϕϕ−+,故选C 项.二、填空题(每题4分,共24分)1.设()f x 连续,且2()()d xa x F x f t t x a=−∫,则lim ()x a F x →=___________. 答案 2()a f a解析 2222()d lim ()lim ()d lim lim ()()xx a a x a x a x a x a f t t x F x f t t a a f x a f a x a x a→→→→====−−∫∫. 2.设()f x 为奇函数,且(1)2f ′=,则31d()d x f x x =−=___________. 答案 6解析 因为()f x 为奇函数,所以()f x ′为偶函数,由323d()3()d f x x f x x′=可得 31d()3(1)3(1)6d x f x f f x =−′′=−==. 3.2201d (1)(4)x x x +∞=++∫___________.答案π12解析 这是一个反常积分,计算得2222000111111d lim d lim arctan arctan (1)(4)314362tt t t x x x x x x x x +∞→+∞→+∞ =−=− ++++ ∫∫ 11πlim arctan arctan 36212t t t →+∞ =−=. 4.设123y x =+,则()()n y x =___________. 答案 1(1)!2(23)n n n n x +−⋅⋅+解析 由1(23)y x −=+得2(1)(23)2y x −′=−×+×,32(1)(2)(23)2y x −′′=−×−×+×,归纳总结可得()1(1)!(2()23)n n n n n y x x +−⋅⋅=+. 5.=___________.答案C解析 令tan x t =,故2d d(tan )sec d x t t t ==,则23sec d cos d sin sec t t t t t C C t ==+=∫∫.6.曲线1(32)e xy x =+的斜渐近线为___________. 答案 35y x =+ 解析 因为1(32)elim lim 3xx x y x kx x →∞→∞+==,111e 1lim[(32)e 3]lim 32e 51x xx x x bx x x →∞→∞−=+−=⋅+=, 所以曲线1(32)e xy x =+的斜渐近线为35y x =+.三、解答题(每题6分,共36分)1.求微分方程22d d yxy x y x =+满足初始条件(e)2e y =的特解.解 由22d d yxy x y x=+得22d d y x y x xy+=, 令yu x=,原方程可化为 d 1d u u xu x u+=+, 解得22ln u x C =+,代入(e)2e y =可得2C =,故所求方程的特解为2222ln 2y x x x =+.2.求函数πarctan 2(1)e x y x +=−的单调区间与极值.解 由条件易得πππ2arctan arctan arctan 222221e (1)ee11x x x x x y x x x ++++′=+−⋅=⋅++, 令0y ′=,解得1x =−和0x =.当1x <−时,0y ′>;当10x −<<时,0y ′<;当0x >时,0y ′>.所以函数的单调递增区间为(,1]−∞−和(0,)+∞,单调递减区间为[1,0]−.且1x =−为极大值点,极大值为π4(1)2e y −=−;0x =为极小值点,极大值为π2(0)e y =−.3.计算下列积分.(1)求不定积分cos d 1cos xx x+∫.解222cos cos (1cos )1d d d(sin )(csc 1)d csc cot 1cos sin sin x x x x x x x x x x x C x x x −==−−=−++++∫∫∫∫. (2)求定积分1220arctan d (1)xx x +∫.解 令tan x t =,则πππππ224124444224000arctan sec cos 21d d cos d d d(sin 2)(1)sec 244xt tt t t t x t t t tt t t x t+====+ + ∫∫∫∫∫ ππ224400π1cos 2ππ1[sin 2]644264168t t t =++=+− . 4.求摆线(sin )(0)(1cos )x a t t a y a t =−> =−的一拱绕x 轴旋转一周所得旋转体的体积.解 所求体积为2π2π2π2π22233π()d πd πd π(1cos )d a a a V f x x y x y x a t t ====−∫∫∫∫32ππ33636001cos 8πd 32πsin d 32π222t t t a t a a I − ==∫∫ 323531π32π5π6422a a ××××=.注 这里用到了华里士公式ππ2201321,123sin d cos d 131π,222n nn n n n n n I x x x x n n n n n −− ×××× −=== −− ×××× −∫∫ 为大于的奇数为正偶数. 5.证明:当01x <<ln(1)arcsin x x+<. 证明 令()(1)ln(1)f x x x x =++,则(0)0f =,且()ln(1)0(01) f x x x x ′=+><<,由(0)0()0f f x = ′>可得,当01x <<时,()0f x >,化简整理得ln(1)arcsin x x+<. 6.设()f x 在区间[0,1]上可导,1220(1)2()d f x f x x =∫,证明:存在(0,1)ξ∈,使得2()()0f f ξξξ′+=. 证明 令2()()g x x f x =,由积分中值定理,存在10,2c∈,使得12220(1)2()d ()f x f x x c f c ==∫, 即()(1)g c g =.显然2()()g x x f x =在[0,1]上可导,由罗尔中值定理,存在(,1)(0,1)c ξ∈⊂,使得()0g ξ′=.而2()2()()g x xf x x f x ′′=+,故2()()0f f ξξξ′+=.。

高数期末考试题及答案

高数期末考试题及答案

高数期末考试题及答案# 高数期末考试题及答案## 第一部分:选择题(每题4分,共40分)1. 函数 \( f(x) = x^2 - 4x + 4 \) 在区间 \( [2, 6] \) 上的最大值和最小值分别是多少?- A. 最大值 12,最小值 0- B. 最大值 16,最小值 0- C. 最大值 12,最小值 4- D. 最大值 16,最小值 4答案:B2. 已知 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 2x}{x} \) 的值。

- A. 2- B. 1- C. 4- D. 0答案:A3. 以下哪个函数是周期函数?- A. \( f(x) = x^2 \)- B. \( f(x) = e^x \)- C. \( f(x) = \sin x \)- D. \( f(x) = \ln x \)答案:C...(此处省略其他选择题,以满足题目字数要求)## 第二部分:填空题(每题3分,共30分)1. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x dx = \) _______。

答案:\( \frac{1}{2} \)2. 已知 \( \frac{dy}{dx} = 3x^2 + 2x \),当 \( x = 1 \) 时,\( y \) 的值为 2,则 \( y \) 关于 \( x \) 的原函数 \( F(x) \) 是 _______。

答案:\( F(x) = x^3 + x^2 + C \)(其中 \( C \) 为常数)...(此处省略其他填空题)## 第三部分:计算题(每题10分,共30分)1. 计算定积分 \( \int_{1}^{2} (3x^2 - 2x + 1) dx \)。

解:首先,我们需要找到被积函数的原函数。

高数期末考试题及答案

高数期末考试题及答案

高数期末考试题及答案第一部分:选择题1. 下面哪个函数在整个实数域上都是偶函数?A. sin(x)B. x^3C. ln(x)D. cos(x)答案:D. cos(x)2. 函数f(x) = 2x^3 - 5x^2 + 3x - 1,求其极大值点的横坐标。

A. x = -1/3B. x = 1/3C. x = 2/3D. x = 1答案:B. x = 1/33. 已知函数f(x) = ln(x),求f'(e)的值。

A. eB. 1C. 0D. -1答案:B. 14. 函数f(x) = e^x + 2x,求f''(0)的值。

A. 2B. 3C. 4D. 5答案:A. 25. 已知函数f(x) = (x - 1)e^x,在区间[0, 1]上的最大值点为x = a,最小值点为x = b,求a + b的值。

A. 1B. 0C. -1D. e答案:B. 0第二部分:计算题1. 求不定积分∫(2x + 1)dx。

解:∫(2x + 1)dx = x^2 + x + C2. 求定积分∫[0, 1] (3x^2 - 2x + 1)dx。

解:∫[0, 1] (3x^2 - 2x + 1)dx = [x^3 - x^2 + x] |[0, 1] = 13. 求函数y = x^3在点x = 2处的切线方程。

解:首先求导,得到y' = 3x^2。

在x = 2处,斜率k = 3(2)^2 = 12。

切线方程为y - y1 = k(x - x1),代入x = 2,y = 2^3 = 8,得到y - 8 = 12(x - 2)。

4. 求解方程sin(x) + cos(x) = 0的所有解。

解:sin(x) + cos(x) = 0sin(x) = -cos(x)tan(x) = -1x = π/4 + nπ,其中n为整数。

5. 计算θ = arctan(1) + arctan(2)的值。

解:利用反正切的加法公式,有θ = arctan((1 + 2)/(1 - 1*2)) = arctan(3/(-1)) = arctan(-3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012级高数(1)模拟题3
(2010-2011(1))
一、选择题 1.当x0时,与无穷小量 x+1000x3 等价的无穷小量 是( C )
( A) 3 x
( B) x
(C ) x
( D) x 3
2.曲线y =x3-3x与直线L相切,L平行于x轴,L与曲线 y =x3-3x的切点是( A ) (A)(1,-2) (B)(1,2) (C)(-1,-2) (D)(0,0)
a
5.下列函数中,哪一个是2(e2x-e -2x)的原函数( D ) (A) ex+e –x (B) 4(e2x+e –2x) (C) ex-e –x (D) (ex+e –x )2
二、填空题
1. lim x[ln(x 2) ln(x 1)]
x
-3
.
2.由麦克劳林公式,函数(1+x)e-x的x幂展开式的前三 项是 x2 . 1 0 2! 1 2 2 3. x cot(1 x )dx 2 ln sin(1. x ) C
六、设曲线 y 2 x , 1 y x 1 (1)求过曲线上(2, 2)点的切线方程; 2 (2)求此切线与曲线 y 2 x 及直线y=0所围成的 4 平面图形的面积。
七、在抛物线 y2 =2px和截线 x =2a 所围成的区域中作 一个面积最大的内接矩形。( p>0, a>0)
2 4 pa 在x a点处作边长为 a和4 的内接矩形,最大 3 3 3 16a 3 pa 面积为 9

5.与向量 a =(1,1,1), b =(1,0,1)都垂直的单位向量为 . 1 1 ( , 0 , ) 三、计算下列各题 2 2 2
x 4.设 lim x 1 x
ax
aຫໍສະໝຸດ te t dt, 则 常 数 a
2
.
x ax b 1. 若 lim 5, 求a , b的值. a= -7, b=6 x 1 1 x 1 1 x 2. lim 2 x 1 x 1 ln x 2x 1 1 3. 设y arctan x ln x , 求y. y 2 2 2x ( x 1) x 4. 已 知 函 数 y( x )由 方 程 y 6 xy x 2 - 1 0确 定, y e 求y(0). -2
3.
3
( x t )e dt 的单调区间与极 五、求函数 f ( x ) 1 值。 单增区间:1,0], [1,) 单减区间: ,1], [0,1] [ (
2

x2
9 a 1 a2
t 2
1 1 极小值:f ( 1) f (1) 0, 极大值 : f (0) 2 2e
3
八、设 f (x)在[0, a]上连续,在(0, a)内可导,且f (a)=0, 证明:存在一点(0,a),使得 n f ()+ f ()=0。
提示:设辅助函数F(x)=xnf(x),应用罗尔定理即可。
1 (1 x ) x , 3.设 f ( x ) k ,
x 0在x=0处连续,则k=( C ) x0
(C) e -1 (D) -1
(A)
1
(B)
e
4. 若
0 x(2 3 x)dx 2, 则a ( B )
(A) 1 (B) -1 (C) 2 (D) -2
四、计算下列各题 x2 1. dx 2 x 2x 2

2.


2 0
dx 1 tan 2010 x
1 2 ln x 2 x 2 arctan( x 1) C 2 4
0 x si n x dx 4. e a x cos xdx, 其 中a 0 0
相关文档
最新文档