第2章--时域离散信号的产生
第二章 信号与系统的时域分析
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t
x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,
数字信号处理第三版第2章.ppt
| z | 2
试利用部分分式展开法求其Z反变换。
解:
X (z)
A1 1 2z 1
1
A2 0.5
z
1
4 1 1 1 3 1 2z1 3 1 0.5z1
x(n)
4 3
2n
1 3
(0.5)n
u(n)
第2章 时域离散信号和系统的频域分析
例: 设
X (z)
7)终值定理:设x(n)为因果序列,且X(z)=Z[x(n)]的全部
极点,除有一个一阶极点可以在z=1 处外,其余都在单位
圆内,则 : lim x(n) lim[(z 1)X (z)]
n
z1
第2章 时域离散信号和系统的频域分析
8)序列卷积(卷积定理)
若: y(n) x(n) h(n) x(m)h(n m) m
3z (z 3)2
z2
3z , 6z 9
试利用长除法求其Z反变换。
解:
| z | 3
第2章 时域离散信号和系统的频域分析
2.5.4 Z 变换的性质和定理
1)线性性质
Z[ax(n)+by(n)]=aX(z)+bY(z)
2)序列的移位 Z[x(n m)] zm X (z) Rx | z | Rx
2 j c
c (Rx , Rx )
直接利用围线积分的方法计算逆Z变换比较麻烦。 下面介绍几种常用的逆Z变换计算方法: 1)用留数定理求逆Z变换(了解) 2)部分分式展开法(掌握) 3)幂级数展开法(长除法)
第2章 时域离散信号和系统的频域分析
例: 设
1
时域离散信号的产生与基本运算
实验一 时域离散信号的产生与基本运算一、实验目的1、了解常用的时域离散信号及其特点。
2、掌握MATLAB 产生常用时域离散信号的方法。
3、掌握时域离散信号简单的基本运算方法。
二、实验内容1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。
2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。
3、已知信号(1) 描绘)(n x 序列的波形。
(2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。
(3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-=三、实现步骤1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。
(1)单位抽样序列程序:x=zeros(1,10);x(2)=1;stem(x,'filled')axis([0,10,-0.2,1]);title('µ¥Î»³éÑùÐòÁÐ');-0.200.20.40.60.8图1 (2)单位阶跃序列程序:N=10;u=ones(1,N);stem(u,'filled')axis([-10,10,0,1]);title('µ¥Î»½×Ô¾ÐòÁÐ');00.10.20.30.40.50.60.70.80.91单位阶跃序列图2 (3)正弦序列程序:x=-20:1:20;y=sin(0.2*pi.*x+0.5*pi);stem(x,y,'filled');axis([-20,20,-2,2]);title('ÕýÏÒÐòÁÐ');正弦序列-20-15-10-505101520图3 (4)实指数序列a=1/2程序:n=0:10;a1=1/2;y1=a1.^n;stem(n,y1,'filled');axis([0,10,0,1]);title('ʵָÊýÐòÁУ¬a=1/2');实指数序列,a=1/2图4 5实指数序列a=2程序:n=0:10;a2=2;y2=a2.^n;stem(n,y2,'filled');title('ʵָÊýÐòÁÐ,a=2');实指数序列,a=2图5 6 随机序列程序:y=rand(1,20);stem(y,'filled');title('Ëæ»úÐòÁÐ');0246810121416182000.10.20.30.40.50.60.70.80.91随机序列图62、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。
第二章 时域离散信号和系统(数字信号处理)
第二章 时域离散信号和系统
6. 复指数序列
x(n)=e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式: x(n)=e jω0n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
第二章 时域离散信号和系统
图1.2.5 正弦序列
第二章 时域离散信号和系统
则要求N=(2π/ω0)k,式中k与N均取整数,且k的取
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。
正弦序列有以下三种情况:
(1)当2π/ ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
例 设x(n)=R4(n),h(n)=R4(n),求y(n)=x(n)*h(n)。
解 按照公式,
y (n )
m
R ( m) R ( n m)
4 4
上式中矩形序列长度为4,求解上式主要是根据矩
形序列的非零值区间确定求和的上、下限,R4(m)的非
令n-k=m,代入上式得到
u( n )
n
( m)
n
第二章 时域离散信号和系统
u(n) 1 „ n 0 1 2 3
单位阶跃序列
第二章 时域离散信号和系统
3. 矩形序列RN(n) 1, RN(n)= 0, 0≤n≤N-1 其它n
上式中N称为矩形序列的长度。当N=4时,R4(n)的
第二章 时域离散信号和系统
第2章 时域离散信号和系统
离散时间信号与系统.ppt
稳定系统
❖ 系统是稳定的,当有界的输入产生有界的输出时 ❖ BIBO:有界输入产生有界输出 ❖ 即:
当对于所有的n,有|x[n]|<Bx, 则对于所有的n,有|y[n]|<By ❖ P61 例2.18 例2.19
无源和无损系统
❖ 无源离散系统:输出序列的能量不能超过输入序列 的能量
线性内插器
❖ 用于估计离散序列中相邻的一对样本值之间的样 本值得大小
❖ 做法:
上抽样 将上抽样的零值处填入线性内插值
❖ 双线性内插
y[n]
x [n]
x [n
1]
2
x [n
1]
❖ 应用:图像放大
中值滤波器
❖ 中值的定义: 在大小为2k+1的数据集合中,存在这样一个 数据,有k个数据大于该数,剩下k个数据小 于该数。
❖ 即:
y[n] 2 xn2
n
n
❖ 无损系统:上式等号成立 ❖ P62 例2.20
冲激和阶跃响应
❖ 单位抽样响应:输入单位抽样序列时数字滤 波器的输出,简称冲激响应——{ h[n] }
❖ 单位阶跃响应:输入单位阶跃序列时数字滤 波器的输出,简称阶跃响应——{ s[n] }
❖ LTI(线性时不变系统)数字滤波器在时域中 可以通过冲激响应或阶跃响应完全描述
第n个样本
冲激响应
❖ 在时域中,用冲激响应{h[n]}可以完全描述LTI 离散时间系统的特性
❖ 可以利用卷积公式计算任何给定输入产生的 输出
❖ 输入序列和冲激响应一般是有限长的 ❖ 当冲激响应是无限序列时,利用等效系统来
分析 ❖ P64 例2.26 例2.27
用matlab计算卷积
《数字信号的处理》课后上机的题目
0.1702
B =
0.0028 0.0111 0.0166 0.0111 0.0028
A =
1.0000 -2.6103 2.7188 -1.3066 0.2425
实验报告
第一章:时域离散信号和时域离散系统
*16.已知两个系统的差分方程分别为
(1) y(n)=0.6y(n-1)-0.08y(n-2)+x(n)
(2) y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)
分别求出所描述的系统的单位脉冲响应和单位阶跃响应.
解:(可附程序)
(1)系统差分方程的系数向量为
yn=conv(x1n,x2n)
%用DFT计算卷积ycn:
M1=length(x1n);
M2=length(x2n);
N=M1+M2-1;
X1k=fft(x1n,N); %计算x1n的N点DFT
X2k=fft(x2n,N); %计算x2n的N点DFT
Yck=X1k.*X2k;
ycn=ifft(Yck,N)
subplot(2,2,1);stem(n,hn1,'.')
title('(a)系统1的系统单位脉冲响应');
xlabel('n');ylabel('h(n)')
xn=ones(1,30);
%xn=单位阶跃序列,长度N=31
sn1=filter(B1,A1,xn,xi);
%调用filter解差分方程,求系统输出信号sn1
解:(可附程序)
hn=[5,5,5,3,3,3];
r=0.95;
Hk=fft(hn,6);
第2章 连续时间信号和离散时间信号的时域分析
第2章 连续时间信号和离散时间信号的时域分析
2.单位冲激信号 1) 单位冲激信号(Delta函数)的定义
∞ δ (t )dt = 1 ∫ ∞ (2-14) δ (t ) = 0 t ≠ 0 冲激信号用箭头表示,如图2.8(a)所示。冲激信号具有强度,其
强度就是冲激信号对时间的定积分值。在图中以括号注明,以与信 号的幅值相区分。 冲激信号可以延时至任意时刻 t0 ,以符号 δ (t t 0 ) 表示,定义 为
Ae st = Ae(σ + jω
0 )t
= Aeσ t cos(ω0 t ) + jAeσ t sin(ω0 t )
(2-8)
式(2-8)表明,一个复指数信号可以分解为实部﹑虚部两部分。 实部﹑虚部分别为幅度按指数规律变化的正弦信号。若 σ < 0 ,复指 数信号的实部﹑虚部为减幅正弦信号,波形如图2.4(a)﹑(b)所示。 若 σ > 0 ,其实部﹑虚部为增幅正弦信号,波形如图2.4(c)﹑(d)所 示。
第2章 连续时间信号和离散时间信号的时域分析
4.抽样函数 抽样函数是指 sin t 与 t 之比构成的函数,其定义如下:
sin t Sa(t ) = t
抽样函数的波形如图2.5所示。
(2-10)
图2.5 抽样函数的波形 抽样函数具有以下性质:
Sa(0) = 1, Sa(kπ) = 0 ,k
= ±1, ±2,L ∫∞ Sa(t )dt = π
第2章 连续时间信号和离散时间信号的时域分析
应用阶跃信号与延时阶跃信号,可以表示任意的矩形波脉冲信号。 例如,图2.7(a)所示的矩形波信号可由图2.7(b)表示,即 :
f (t ) = u (t T ) u (t 3T )
数字信号处理习题答案
n
2π [ ( 0 2kπ) δ( 0 2kπ)]
式中
k
ω0=Ω0T=0.5π rad 上式推导过程中, 指数序列的傅里叶变换仍然不存在, 只有引入奇异函
数δ函数才能写出它的傅里叶变换表示式。
解: (1) x(n)序列的波形如题2解图(一)所示。 (2) x(n)=-3δ(n+4)-δ(n+3)+δ(n+2)+3δ(n+1)+6δ(n) +6δ(n-1)+6δ(n-2)+6δ(n-3)+6δ(n-4)
第1章 时域离散信号与时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位,再乘以2, 画出图形如题2解图 (二)所示。
n
1=n+1
m0
3
1=8-n
mn4
④ n>7时, y(n)=0
题8解图(1)
最后结果为 0 n<0或n>7
y(n)= n+1 0≤n≤3 8-n 4≤n≤7
y(n)的波形如题8解图(1)所示。 (2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2) = 2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5)
y(n)=(2-0.5n)R5(n)+31×0.5nu(n-5)
第1章 时域离散信号与时域离散系统
13. 有一连续信号xa(t)=cos(2πft+j), 式中, f=20 Hz, j=π/2
(1) 求出xa(t)
(2) 用采样间隔T=0.02 s对xa(t)进行采样, 试写出采样信号xˆa (t)
第2章 时域离散信号和系统的频域分析
3、 非周期离散信号的傅里叶变换:频率函数是周期的连续函数 4、 离散周期序列的傅里叶变换:具有既是周期又是离散的频谱,即
时域和频域都是离散的、周期的 规律:一个域的离散就必然造成另一个域的周期延拓。 1、如果信号频域是离散的,则该信号在时域就表现为周期性的时间函 数。 2、在时域上是离散的,则该信号在频域必然表现为周期性的频率函 数。 3、如果时域信号离散且是周期的,由于它时域离散,其频谱必是周期 的,又由于时域是周期的,相应的频谱必是离散的, 4、离散周期序列一定具有既是周期又是离散的频谱,即时域和频域都 是离散周期的。
对于,将以为周期进行周期延拓,得到所示的周期序列, 周期为16, 求的DFS。 可以看出,在时,处频谱的幅度和处是一样的。也就是说,点数越多, 频谱越精确。
..2 离散周期序列的傅里叶变换 各种形式的傅里叶变换 1、 非周期实连续时间信号的傅里叶变换: 频谱是一个非周期的连续
函数 2、 周期性连续时间信号的傅里叶变换: 频谱是非周期性的离散频率
例:设, f0=50 Hz,以采样频率对进行采样, 得到采样信号和时域离 散信号, 求)、和的傅里叶变换的FT。
2.5 序列的Z变换 双边Z变换的定义:序列x(n)的Z变换定义为: 式中:z是一个复变量,它所在的复平面称为z平面。 注意在定义中,对 n求和是在±∞之间求和,可以称为双边Z变换。
为单边Z变换: 适用于因果序列,如果不特别强调,均用双边Z变换对信号进行分析和 变换。 Z变换成立条件: Z变量取值的域称为收敛域。 一般收敛域用环状域表示
在模拟系统中, 的傅里叶变换为 对于时域离散系统中, ,它的傅立叶变换 对于
(
例:求对进行的周期延拓后的周期序列的傅立叶变换FT 注意:对于同一个周期信号, 其DFS和FT分别取模的形状是一样的, 不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。 因此周期序列 的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数 的画法。 例:设 ,为有理数,求其FT 物理含义:的FT是在处的单位冲激函数,强度为π,且以2π为周期进行 延拓。
数字信号处理(第三版)第2章习题答案
第2章 时域离散信号和系统的频域分析
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
X e (e j ) FT[xr (n)]
Hale Waihona Puke 1 1 ej2 1 e j2 1 (1 cos 2)
24
4
2
因为 所以
Xe
(e j
)
1 2
[X
(e j
)
X
(e j
)]
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0 0≤ω≤π
第2章 时域离散信号和系统的频域分析
当0≤ω≤π时,
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
例如, 已知序列x(n)的傅里叶变换为
X
(e
j
)
1
1 ae
j
a 1
1 求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到 X (z) 1 az 1
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
第2章 时域离散信号和系统的频域分析
《数字信号处理》第二章 离散信号和抽样定理
信息。
重要结论
第三节 抽样定理
*带限信号抽样定理:
要想连续信号抽样后能够不失真的还原 出原信号,则抽样频率必须大于或等于两 倍原信号频谱的最高频率(2fm≤ fs),这就是 奈奎斯特抽样定理。
第三节 抽样定理
二、如何从抽样信号恢复出带限信号x(t)
n
其中
1 g (t)
0
t
2
t
2
Ts
第二节 连续信号的离散化
xa (t)
抽样器
(电子开关) P(t)
T
xa (t)
xˆs (t)
fs
1 T
xˆs (t)
第二节 连续信号的离散化
理想抽样:当τ 趋于零的极限情况时,抽样脉冲
方波p(t)变成了冲激函数序列δT(t),这些冲击函数 的强度准确地为采样瞬间的xa(t)幅值,这样的抽 样称为理想抽样。
余弦与正弦序列示意图如下:
第一节 离散时间信号
5、 用单位脉冲序列表示任意序列
任意序列x(n)都可用单位脉冲序列δ(n)表示成 加权和的形式,即
x(n) x(m) (n m) m
如:
a n x(n)
可表示为 0
10 n 10 其他
10
x(n) am (n m)
样品集合可以是本来就存在的,也可以是由模拟 信号通过采样得来的或者是用计算机产生的。
第一节 离散时间信号
离散时间信号的时域表示 1) 表示离散时间信号可采用枚举的方式。例如
{x(n)}={…,-1.5,-8.7,2.53,0.0,6,7.2, …}
数字信号处理第2章 时域离散信号和系统的频率分析实验报告
成绩:《数字信号处理》作业与上机实验(第二章)班级:学号:姓名:任课老师:完成时间:信息与通信工程学院2014—2015学年第1 学期第2章 时域离散信号和系统的频率分析1、设计两个数学信号处理系统:系统初始状态为零。
分别用这两个系统对数字信号:1.020.5cos(2/8/4)0140()0n n n x n ππ++≤≤⎧=⎨⎩其它 进行处理。
该信号为缓慢变化的指数信号(1.02n )上叠加了一个正弦干扰噪声序列,我们希望通过该系统对()x n 进行处理来消除这个正弦干扰噪声。
1).应用dtft 子程序分析信号()x n 的频谱,并用MATLAB 工具画出0π频率范围的频谱图,并在图中标记噪声的频谱。
(1)matlab 代码如下: %dtft 函数function [ X,w ] = dtft( x,n,dw,k )X=x*(exp(-1j*dw)).^(n'*k); w=dw*k; end%应用dtft 子程序分析信号x(n)的频谱 n=0:140;x=1.02.^n+0.5*cos(2*pi*n/8+pi/4); dw=pi/500; k=-1500:1500;[ X,w ] = dtft( x,n,dw,k ); %调用dtft 函数 magX=abs(X); %信号x(n)的幅度谱 angX=angle(X); %信号x(n)的相位谱701()()8() 1.3576(1)0.9216(2)() 1.4142(-1)(2)i y n x n i y n y n y n x n x n x n ==---+-=-+-∑系统一:系统二:subplot(2,1,1); plot(w/pi,magX); axis([0,1,0,800]); title('信号x(n)幅频特性'); xlabel('w'); ylabel('幅度'); subplot(2,1,2); plot(w/pi,angX); axis([0,1,-4,4]);title('信号x(n)相频特性'); xlabel('w'); ylabel('相位');(2)信号()x n 的频谱图见图一:图一 信号()x n 的频谱图2). 应用Hmp 子程序分析系统一与系统二的频谱特性,画出频谱图(0ωπ=)。
信号与系统第2章 信号的时域分析(5学时)
一、典型普通信号
3. 指数类信号 — 复指数信号
x(t ) A e s j 0, t R
st
x(t ) Aet e j0t Aet cos0 t jAet sin 0 t
et cos 0t
0
et sin 0t
0
t
实部
t
虚部
一、典型普通信号
x (t ) ' (t t )dt x ' (t )
0 0
二、奇异信号
(4)、卷积特性
x( t ) '( t ) x '( t)
(5)、与冲激信号的关系
d (t ) ' (t ) dt
(t ) ' ( )d
t
总结:四种奇异信号具有微积分关
e
t
1 1 (t 1) dt 2 2e
(4)( t3 2 t 2 3) (t 2)
解: (t 2t 3) (t 2) (2 2 2 3) (t 2) 19 (t 2) (筛选特性)
3 2 3 2
注 意
0 / 2 p 3 / 8
1)x1[k] = cos(kp/6)
x1[k] k
0
2)x2[k] = cos(k/6)
x2[k] k
0
3)对x3(t) = cos6pt,以fs= 8 Hz抽样所得序列
x3(t), x3[k]
1
0 1
1
t
二、基本离散时间序列
3.复指数序列 x[k ] Ae( j0 ) k Aek e j0k Ar k e j0k
3. 斜坡信号
2019-北京邮电大学《数字信号处理》门爱东-dsp02-离散时间系统和离散信号的变换-PPT文档资料-文档资料
北 京
过取样(Oversampling)
邮 电 大
过取样就是用远高于奈奎斯特频率的频率去采样,K×fs/2 好处:
学
简化了抗混叠滤波器设计;
信 息 与
过采样、噪声成形(Noise Shaping) 、数字滤波和抽取(丢点 Decimator)是 ADC 降低噪声,并产生高分辨率输出的重要方法。
11
2. 1.1 取样和取样定理:频域分析
北
京 邮 电 大
p (t)1ejn st T n
且 ej st 2( s)
学
信
息 与 通 信
P()2Tn (ns)
其中
2 s T
工 程 学 院
X ˆa()21Xa()P()T 1Xa()n (ns)
北
京 邮
取样函数定义为:
电 大 学 信 息
p(t)1com b(t)(tnT)
T
T n ------ T :取样间隔
与 通 信
则:
xˆa(t) xa(t)p(t) xa(t)(t nT)
工
n
程
学 院
xa(nT)(t nT)
多
n
媒
体 中 心 门 爱
若 xa(t) 是一带限函数
邮 电 大 学 信 息 与
Xa()
Xa(),
0,
s
2
s
2
通 信
只要取样频率足够高,当满足以下条件时
工 程 学 院
s
max 2
---------(奈奎斯特定理)
多
媒 体 中 心
第2章 时域离散信号和系统的频域分析
1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。
频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。
3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。
周期是2π。
由于DTFT 的周期,一般只分析0-2π之间的DTFT 。
2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。
信号与系统复习资料 第2章 z变换与离散时间傅里叶变换(DTFT
Z变换与DTFT
以下假设
n1<n2
•如果n2 ≤0 ,则收敛域不包括∞点
• 如果n1≥0 ,则收敛域不包括0点
• 如果n1<0<n2,收敛域不包括0 、∞点
1) n2 0( n1 0), 0 z
2) n1 0( n2 0), 0 z
3) n1 0, n2 0, 0 z
Rx
当Rx Rx 时,Roc :
-10-
0
当Rx Rx 时,Roc : Rx z Rx
Z变换与DTFT
例1
[n]1, 0 z
ZT
[n]z
n
n
[0]z 1
0
收敛域应是整个z 的闭平面
-11-
Z变换与DTFT
Z变换与DTFT
第二章 z变换和DTFT
-1-
Z变换与DTFT
本章主要内容:
1. z变换:定义及收敛域,z变换的反变换
z变换的基本性质和定理 2. ZT 与连续信号LT、FT的关系
(信号)
3. 离散时间信号的DTFT(序列的傅立叶变换)
4. z变换与DTFT的关系 5. DTFT的一些性质 6. 周期性序列的DTFT 7. DTFT变换的对称性质
例2:求x(n)=RN(n)的z变换及其收敛域
解:X(z)= x(n ) z = RN (n ) z
n n n
N Z=1处零 z 1 极对消 z N 1 ( z 1)
1 z = z 1 z 1 n 0
N 1 n
n N
q n1 q n2 1 n q 1 q n n1
精品课件-数字信号处理(第四版)-第2章 时域离散信号和系统的频域分析-3
【例2.6.3】 设一阶系统的差分方程为y(n)=by(n-1)+x(n)
解
由系统差分方程得到系统函H数(为z)
1 1 bz1
z
z b
| z || b |
式中,0<b<1。系统极点z=b,零点z=0,当B点从ω=0逆时针 旋转时,在ω=0点,由于极点向量长度最短,形成波峰;在 ω=π点形成波谷;z=0处零点不影响幅频响应。极零点分布 及幅度特性如图所示。
如果-1<b<0,则峰值点出现在ω=π处,形成高通滤波 器。
20
【例2.6.4】已知H(z)=1-z-N,试定性画出系统的幅频特性。
H(z) 1 zN z N 1 zN
H(z)的极点为z=0,这是一个N阶极点,它不影响系统的幅频响 应。零点有N个,由分子多项式的根决定
z N 1 0 即 z N e j2πk
小结 单位圆附近的零点位置对幅度响应波谷的位置和深度有明
显的影响,零点可在单位圆外。 在单位圆内且靠近单位圆附近的极点对幅度响应的波峰的
位置和高度则有明显的影响,极点在单位圆上,则不稳定。 利用直观的几何确定法,适当地控制零、极点的分布,就
能改变系统频率响应的特性,达到预期的要求,因此它是 一种非常有用的分析系统的方法。
根据其形状,称之为梳状滤波器。
例2.6.4的梳状滤波器的极零点分布及幅频、相频特性
22
2.6.4 几种特殊系统的系统函数及其特点 全通滤波器 梳状滤波器 最小相位系统
23
1 全通系统(全通网络,全通滤波器)
定义:如果滤波器的幅频特性对所有频率均等于常数或1.
| H (ej ) | 1 0 2π
第2章-习题解答
用图形表达如下:
第2章 时域离散信号和系统的频域分析
3
2.5
2
1.5
1
0.5
0
-0.5
-1
-8
-6
-4
-2
0
2
4
6
8
第2章 时域离散信号和系统的频域分析
5. 解:(5) π | X (ej ) |2 d π
根据帕斯维尔定理
2
x(n)
1
X (e j ) 2 d
n
2
所以
X (e j ) 2 d 2
2 nx(n) 2 (9 11 9 64 25 49) 316
n3
第2章 时域离散信号和系统的频域分析
6. 试求如下序列旳傅里叶变换:
(1) x1(n) (n 3)
(2)
x2
(n)
1 2
(n
1)
(n)
1 2
(n
1)
(3) x3(n) anu(n) 0 a 1
(4) x4 (n) u(n 3) u(n 4)
2
2
1 2
所以
ho (n) 0
1
2
n 1 n0 n 1
第2章 时域离散信号和系统的频域分析
对于实因果序列,能够根据ho(n)及h(0)恢复h(n),即
2 n 0
h(n) ho (n)u (n) h(0) (n)
u (n) 1 0
n0 n0
所以
h(n)
ho
2ho (n)
(n) h(0)
2
7
x(n) 2
2
x(n)
n
n3
2 (11 4 11 4 11) 28
(6)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
3.常用的时域离散信号及其程序 常用的时域离散信号及其程序
常用的时域离散信号主要有单位抽样序列、单位阶跃 序列、实指数序列、复指数序列、正(余)弦序列、锯齿波 序列、矩形波序列以及随机序列等典型信号。 有些信号的生成方法不止一种,下面对常用的时域离 散信号进行介绍。
19 1)单位抽样序列 单位抽样序列的表示式为
u(n)。
解 MATLAB程序如下:
n1=-2;n2=8;n0=0; n=n1:n2; x=[n>=n0]; stem(n,x,′filled′); axis([n1,n2,0,1.1*max(x)]); title(′单位阶跃序列′); xlabel(′时间(n)′);ylabel(′幅度x(n)′); 运行结果如图2-3所示。 %生成离散信号的时间序列 %生成离散信号x(n)
n1=-5;n2=5;n0=0;%在起点为n1、终点为n2的 范围内,于n0处产生冲激 n=n1) stem(n,x,′filled′);%绘制脉冲杆图,且圆点处用实 心圆表示
21 axis([n1,n2,0,1.1*max(x)]); %确定横坐标和纵 坐标的取值范围 title(′单位脉冲序列′); xlabel(′时间(n)′);ylabel(′幅度x(n)′); 运行结果如图2-2所示。
15 这表示了一个含9个采样点的矢量。n为一组时间矢量,对 应x有:x(-3)=1,x(-2)=-1,x(-1)=3,…,x(5)=1, 如图2-1所示。
16
图2-1 基本的离散时间序列
17 2)信号的图形绘制 从本质上讲,MATLAB及其任何计算机语言处理的信 号都是离散信号。当我们把信号的样点值取得足够密,作 图时采用特殊的指令,就可以把信号处理成连续信号。 在MATLAB中,离散信号与连续信号有时在程序编写 上是一致的,只是在作图时选用不同的绘图函数。 连续信号作图使用plot函数,绘制线性图;离散信号作 图则使用stem函数,绘制脉冲杆图。
30 subplot(2,2,2),plot(na2,x2); title(′实指数原信号(a>1)′); subplot(2,2,4),stem(na2,x2,′filled′); title(′实指数序列(a>1)′); 运行结果如图2-4所示。
31
图2-4 例2-5生成|a|<1和|a|>1的实指数连续信号与离散序列
13 在MATLAB语言中,时域的离散信号可以通过编写程 序直接生成,也可以通过对连续信号等间隔抽样获得。 另外,抽样得到的离散信号只有在一定的抽样条件下, 才能反映原连续时间信号的基本特征。这个问题留待实验 15再进行详细的研究。本实验均选用满足抽样条件的样点 数值。
14
2.用MATLAB生成离散信号须注意的问题 用 生成离散信号须注意的问题
1 n = 0 δ(n) = 0 n ≠ 0
或
1 n = k δ(n − k) = 0 n ≠ k
下面的例2-1、例2-2介绍了两种不同的产生δ(n)信号的 方法。δ(n-k)的求解在实验3中讨论。
20
例2-1 用MATLAB的关系运算式来产生单位抽样序列
δ(n)。
解 MATLAB程序如下:
26
图2-3 例2-3、例2-4生成的u(n)
27
例2-4 用zeros和ones函数来产生单位阶跃序列u(n)。 解 MATLAB程序如下(运行结果同图2-3):
n1=-2;n2=8;k=0; n=n1:n2; nt=length(n); %求样点n的个数 nk=abs(k-n1)+1;%确定k在n序列中的位置 %生成离散信号x(n)。对前nk-1点置0,从nk点至n2点 置1 x=[zeros(1,nk-1),ones(1,nt-nk+1)]; 下面作图部分的程序同例2-3。
n=0:nt*N-1;%建立离散信号的时间序列
39 subplot(2,1,2);stem(tn,x);%显示经采样的信号 axis([0nt*T1.1*min(x)1.1*max(x)]); ylabel(′x(n)′); 结果如图2-6所示。
40
图2-6 时域连续的正弦信号与经采样获得的离散序列
1)有关数组与下标 MATLAB中处理的数组,将下标放在变量后面的小扩 号内,且约定从1开始递增。例如x=[5,4,3,2,1, 0],表示x(1)=5,x(2)=4,x(3)=3,x(4)=2,x(5)=1, x(6)=0。 要表示一个下标不由1开始的数组x(n),一般应采用两 个矢量,如: n=[-3:5]; x=[1,-1,3,2,0,-2,-1,2,1];
24 2)单位阶跃序列 单位阶跃序列的表示式为
1 n ≥ 0 u(n) = 0 n < 0
或
1 n ≥ k u(n − k) = 0 n < k
下面用两种不同的方法产生单位阶跃序列u(n)。u(n-k) 的求解在实验3中讨论。
25
例2-3 用MATLAB的关系运算式来产生单位阶跃序列
x=sawtooth(t);类似于sin(t),产生周期为2π,幅值从 -1到+1的锯齿波。 x=sawtooth(t,width);产生三角波,其中 width(0<width≤1,为标量)用于确定最大值的位置。当width =0.5时,可产生一对称的标准三角波;当width=1时,将 产生锯齿波。
x=sinc(t);可用于计算下列函数:
1 sin( πin sinc(t) = πt
t =0 t ≠ 0
这个函数是宽度为2π,幅度为1的矩形脉冲的连续逆傅 里叶变换,即
1 sinc(t) = 2π
∫− π
π
e jω t dω
10
8.diric 功能: 功能:产生dirichlet或周期sinc函数。 调用格式: 调用格式:
8
6.square 功能: 功能:产生矩形波。 调用格式: 调用格式:
x=square(t);类似于sin(t),产生周期为2π,幅值为 ±1的方波。 x=square(t,duty);产生指定周期的矩形波,其中duty 用于指定脉冲宽度与整个周期的比例。
9
7.sinc 功能: 功能:产生sinc函数波形。 调用格式: 调用格式:
axis([x1,x2,y1,y2]);在横坐标起点为x1、终点 为x2,纵坐标起点为y1、终点为y2的范围内作图。
4
2.length 功能: 功能:取某一变量的长度(采样点数)。 调用格式: 调用格式:
N=length(n);取变量n的采样点个数,赋给变量N。
5
3.real 功能: 功能:取某一复数的实部。 调用格式: 调用格式:
解 MATLAB程序如下:
f=1;Um=1;nt=2;; %输入信号频率、振幅和 显示周期数 N=32;T=1/f; %N为信号一个周期的采样 点数,T为信号周期
38 dt=T/N; tn=n*dt; %采样时间间隔 %确定时间序列样点在时间轴上的位 置 x=Um*sin(2*f*pi*tn); subplot(2,1,1);plot(tn,x); %显示原连续信号 axis([0nt*T1.1*min(x)1.1*max(x)]);%限定横坐标和 纵坐标的显示范围 ylabel(′x(t)′);
real(h);取复数h的实部。 x=real(h);取复数h的实部,赋给变量x。
6
4.imag 功能: 功能:取某一复数的虚部。 调用格式: 调用格式:
imag(h);取复数h的虚部。 y=imag(h);取复数h的虚部,赋给变量y。
7
5.sawtooth 功能: 功能:产生锯齿波或三角波。 调用格式: 调用格式:
11
9.rand 功能: 功能:产生rand随机信号。 调用格式: 调用格式:
x=rand(n,m);用于产生一组具有n行m列的随机信号。
12
三、实验原理 1.时域离散信号的概念 时域离散信号的概念
在时间轴的离散点上取值的信号,称为离散时间信号。 通常,离散时间信号用x(n)表示,其幅度可以在某一范围 内连续取值。 由于信号处理所使用的设备和装置主要是计算机或专 用的信号处理芯片,均以有限的位数来表示信号的幅度, 因此,信号的幅度也必须“量化”,即取离散值。我们把 时间和幅度上均取离散值的信号称为时域离散信号或数字 信号。
28 3)实指数序列 实指数序列的表示式为
x(n)=an
其中a为实数
当|a|<1时,x(n)的幅度随n的增大而减小,序列逐渐收 敛;当|a|>1时,x(n)的幅度随n的增大而增大,序列逐渐发 散。
29
例2-5 编写产生a=1/2和a=2实指数连续信号和离散
序列的程序。
解 MATLAB程序如下:
n1=-10;n2=10;a1=0.5;a2=2; na1=n1:0;x1=a1.^na1; na2=0:n2;x2=a2.^na2; subplot(2,2,1),plot(na1,x1); title(′实指数原信号(a<1)′); subplot(2,2,3),stem(na1,x1,′filled′); title(′实指数序列(a<1)′);
22
图2-2 例2-1、例2-2生成的δ(n)
23
例2-2 用zeros函数和抽样点直接赋值来产生单位抽样
序列δ(n)。
解 MATLAB程序如下(运行结果同图2-2):
n1=-5;n2=5;k=0; n=n1:n2; nt=length(n);%求样点n的个数 nk=abs(k-n1)+1;%确定k在n序列中的位置 x=zeros(1,nt);%对所有样点置0 x(nk)=1;%对抽样点置1 下面作图部分的程序同例2-1。 %位移为k
离散序列的程序。
解 MATLAB程序如下:
n1=30;a=-0.1;w=0.6; n=0:n1; x=exp((a+j*w)*n); subplot(2,2,1),plot(n,real(x)); title(′复指数原信号的实部′); subplot(2,2,3),stem(n,real(x),′filled′); title(′复指数序列的实部′);