开敞式WES曲线泄流能力计算表(变流量系数)
水工隧洞水力计算
![水工隧洞水力计算](https://img.taocdn.com/s3/m/cdd926e2f8c75fbfc77db2d7.png)
水工隧洞水力计算水工隧洞水力计算的内容,一般有:泄流能力计算、水头损失计算、绘制压坡线(有压流)、水面线的计算(无压流)。
1、泄流能力水工隧洞泄流能力计算,分有压流和无压流两种情况。
实际工程中,多半是根据用途先拟定隧洞设置高程及洞身断面和孔口尺寸,然后通过计算校核其泄流量。
若不满足要求,再修改断面或变更高程,重新计算流量,如此反复计算比较,直至满意为止。
(1)有压流的泄流能力有压流的泄流能力按公式(1)计算:02gHAQµ=(1) 式中Q——泄流量;μ——流量系数;A——隧洞出口断面面积;g——重力加速度。
gHH2200υ+= 式中H——出口孔口静水头;g220υ——隧洞进口上游行近流速水头。
流量系数μ随出流条件不同而略有差异,自由出流和淹没出流分别按公式(2)和公式(3)计算:∑∑+ +=222211ijijjjAARCglAAζµ(2) ∑∑+ + =2222221iIIiJjAARCglAAAAζµ(3) 式中A——隧洞出口断面面积;A2——隧洞出口下游渠道过水断面面积;ζj——局部水头损失系数;Aj——与ζj相应流速之断面面积;Li、Ai、Ri、Ci——某均匀洞段之长度、面积、水力半径和谢才系数。
上述泄流能力计算公工适用于有压泄水隧洞,对发电的有压引水隧洞,其过流能力决定于机组设计流量,即流量为已知,要求确定洞径。
(2)无压流的泄流能力无压泄水隧洞的洞身底坡常大于临界坡度,洞内水流呈急流状态,其泄流能力不受洞长影响,而受进口控制,若进口为深孔有压短管,仍可按公式(2)和公式(3)计算,而忽略其沿程水头损失(根号中的最后一项)。
表孔堰流进口的斜井式无压隧洞,其泄流能力由堰流公式计算:2/302HgmBQε= (4) 式中ε——侧收缩系数;m——流量系数;B——堰顶宽度(m);H0——包括行近流速水头g220υ的堰顶水头。
流量系数和侧收缩系数与堰型有关。
为保证曲线堰面与斜井底板有准确的切点,使过水表面平整,建议采用WES标准剖面堰型,其曲线方程和有关计算参数可参见武汉水利电力学院编的《水力计算手册》。
附录一泄水建筑物水力设计计算公式
![附录一泄水建筑物水力设计计算公式](https://img.taocdn.com/s3/m/e06902a270fe910ef12d2af90242a8956becaa73.png)
附录一泄水建筑物水力设计计算公式一、堰面曲线1.开敞式溢流孔的堰面曲线。
采用幂曲线时按下式和附表1计算。
(附1)式中 Hs为定型设计水头,按堰顶最大作用水头Hzmax的75%~95%计算(m),其它符号见附图1,数值见附表1。
附表1上游坝面坡度k n垂直(3∶0) 2.000 1.8503∶1 1.936 1.836 原点上游宜用椭圆曲线,其方程式为式中 aHs和bHs分别为椭圆曲线的长轴和短轴。
若上游面垂直,其长轴aHs和短轴bHs可按以下关系选定:附图1采用倒悬堰顶时(如附图1),应满足。
定型设计水头选择及堰顶可能出现的最大负压值参照附表2。
定型设计水头Hs情况下的流量系数m和其他作用水头Hz情况下的流量系数mz的比值参照附表3。
2.设有胸墙的堰面曲线。
当校核情况下最大作用水头Hzmax (孔口中心线上)与孔口高(D)的比值时;或闸门全开时仍属孔口泄流,即可按下式计算:(附2)式中 Hs——定型设计水头,一般取孔口中心线至水库校核洪水位的水头的75%~95%;——孔口收缩断面上的流速系数,一般取=0.96;若孔前设有检修闸门槽时取=0.95。
其余符号参照附图2。
附图2原点上游可用单圆,复式圆或椭圆曲线,与胸墙底缘通盘考虑。
若时,应通过试验决定。
附表2Hs/Hzmax 0.75 0.775 0.80 0.825最大负压值(m) 0.5Hs 0.45Hs 0.4Hs 0.35HsHs/ Hzmax 0.85 0.875 0.90 0.95 1.0 最大负压值(m) 0.3Hs 0.25Hs 0.2Hs 0.1Hs 0.0Hs附表3Hz/Hs 0.2 0.4 0.6 0.8 1.0 1.2 1.4 mz/m 0.85 0.90 0.95 0.975 1.0 1.025 1.07二、泄水建筑物泄水能力计算公式1.开敞式溢流孔的泄水能力可按下式计算:(附3)式中 Q——流量,m3/s;B——溢流堰净宽,m;Hz——堰顶作用水头,m;g——重力加速度,m/s2;mz——流量系数,初设时在定型设计水头作用的情况下,当(P为堰高,m)时,取mz=m=0.47~0.49;当时,取m=0.44~0.47;——侧收缩系数,根据闸墩厚度及墩头形状而定,初设时可取=0.90~0.95;——淹没系数,视泄流的淹没程度而定,不淹没时=1。
溢洪道
![溢洪道](https://img.taocdn.com/s3/m/4aae841ca76e58fafab0035d.png)
2.4 溢洪道设计和计算根据中华人民共和国行业标准《溢洪道设计规范》(SL253—2000)(该规范适用于大、中型水利水电工程中岩基上的1、2、3级河岸式溢洪道),对溢洪道进行计算和设计。
该工程中,河岸式溢洪道由进水渠、控制段、泄槽、消能防冲段及出水渠组成。
2.4.1 进水渠和控制段的设计2.4.1.1 溢洪道的水力计算由正常、设计、校核洪水位时所对应的下泄流量查坝址(厂址)水位流量关系曲线可得出相应的下游水位,并与上游水位相减得出上下游水头差,并以此列表。
表4、溢洪道水力计算成果表2.4.1.2控制段的设计控制段包括溢流堰及两侧连接建筑物。
堰型可选用开敞式或带胸墙孔口式的实用堰、宽顶堰、驼峰堰等型式。
开敞式溢流堰有较大的超泄能力,宜优先选用。
宽顶堰结构构简单,施工方便,但流量系数低故不选用。
实用堰需要的溢流前缘较短,工程量相对较小,但施工较复杂也不选用,而驼峰堰的堰体低,流量系数较大,设计与施工简便,对地基要求低,所以工程设计中采用驼峰堰,并且在两侧设置边墙。
2.4.1.3 控制段的计算采用的驼峰堰为低堰,且开敞式堰面,根据《溢洪道设计规范》(SL253—2000)中,对于1 1.33d P H <的低堰,堰面曲线定型设计水头max (0.650.85)d H H =,则选用中间值0.75,其中max H 为校核流量下的堰上水头(校核水位与堰顶水头之差)为12.42m ,最后得出设计水头d H 为9.315m 。
根据《溢洪道设计规范》中驼峰堰堰面曲线图((A.1.5)驼峰堰剖面示意图)及表((A.1.5)驼峰堰体型参数),选用a 型,得出了该工程中驼峰堰的剖面尺寸。
表5、驼峰堰的剖面尺寸示意图且得到堰底高程,即堰顶高程与上游堰高之差,为122m —2.24m=119.76m 。
2.4.1.4进水渠的设计图2 驼峰堰剖面示意图根据《溢洪道设计规范》(SL253—2000),进水渠的布置应依照下列原则:选择有利的地形、地质条件;在选择轴线方向时,应使进水顺畅;进水渠较长时,宜在控制段之前设置渐变段,其长度视流速等条件确定,不宜小于2倍堰前水;渠道需转弯时,轴线的转弯半径不宜小于4倍渠底宽度,弯道至控制堰(闸)之间且有长度不小于2倍堰上水头的直线段。
WES溢流堰堰面设计
![WES溢流堰堰面设计](https://img.taocdn.com/s3/m/25902ce2fab069dc51220113.png)
-1.376
7.652
4.013
反弧低点(C)高程Z6= 1622.987 反弧圆心O2点高程= 1628.376
③反弧半径R复核:
堰后泄槽为矩形断面,反弧低点临界水深hk及临界底坡ik按下式求取:
hk 3 q2
Ck
1
R 1/6 k
hk
3
q 2 g
式中:
ik
g
C
2 k
k Bk
Ck
1
1/6
n R k Ak=Bkhk
式中:
q…计算断面单宽流量,m³/s.m
H0…计算断面渠底以上总水头,H0=H+v² /g,本工程行近流速v= θ …泄槽底坡坡角,cosθ= 0.196116135
0 m³/s,H0= 8.562m
φ …计算断面流速系数,取0.95
h1试算表
h1
1.000
1.546
1.556
q/φ√2g(H0-h1cosθ )
R…反弧半径,根据规范3.3.8条,取3~6倍反弧最低点最大水深,流速大时取大值,初取R= 5.500 m
i…与反弧面相接的泄槽纵坡,本工程i= 0.200000
反弧曲面末端端点C及其圆心O2点坐标计算表
m
R
i
Xb
Yb
Xo
Yo
Xc
Yc
1.35
5.500 0.200000 5.478
3.044
8.752
Y 0 0.008 0.029 0.062 0.105 0.158 0.222 0.295 0.378 0.470 0.571 0.681 0.800 0.928 1.064 1.193
3.3 上游堰面三圆弧曲线计算
(完整word版)重力坝
![(完整word版)重力坝](https://img.taocdn.com/s3/m/25b1b61af61fb7360a4c6563.png)
第4章溢流坝坝体设计一、泄水方式的选择溢流重力坝既要挡水又要泄水,不仅要满足稳定和强度要求,还要满足泄水要求。
因此需要有足够的孔口尺寸、较好体型的堰型,以满足泄水的要求;且使水流平顺,不产生空蚀破坏。
重力坝的泄水主要方式有开敞式和孔口式溢流,开敞溢流式的堰除了有较好的调节性能外,还便于设计和施工,同时这种形式的堰在我国应用广泛,有很多的工程实践经验。
故本设计采用开敞溢流式孔口形式,堰顶设置门.二、溢流坝剖面拟定溢流曲线由顶部曲线段、中间直线段和底部反弧段三部分组成。
设计要求:(1)有较高的流量系数,泄流能力大;(2)水流平顺,不产生不利的负压和空蚀破坏;(3)体形简单,造价低,便于施工.本设计采用的溢流坝的基本剖面为三角形.其上游面为直线面,即取上游的坡率为n=0,溢流面由顶部的曲线、中间的直线、底部的反弧三部分组成。
1、定型设计水头的确定:①初步估算H,可假定。
由于收缩系数与上游作用水头有关,则可先假设侧收缩系数,求出H,在核算侧收缩系数值。
因堰顶高程和水头未知,先按自由出流计算,则取,然后再校核。
由题意知Q=32800,取m=0。
502,设=0。
90,则==14。
9m②计算实际水头H。
查图和表得边墩形状系数为0。
7,闸墩形状系数为0.45,因1,=10.2=0。
91用求得的近似值代入上式重新计算=14.82m,则所求的值不变,这说明以上所求的=14。
82m已知上游河道宽为1000m,上游设计水位为225.7m,河床高程为153.5m,近似按矩形断面计算上游过水断面面积=1000=72200=0.45m/s则堰的设计水头=14。
81m2、堰顶高程堰顶高程=上游设计水位=225。
7153。
5=210.89m下游堰高=210。
89153.5=57.39m,=3.872。
0,下游水面比堰顶低,0.15,满足自由出流条件,以上按自由出流计算的结果是正确的。
即=14.82m,=14。
81m,堰顶高程为210。
溢流坝段设计学习资料
![溢流坝段设计学习资料](https://img.taocdn.com/s3/m/4c77b9e45f0e7cd18525365f.png)
溢流坝段设计一、孔口设计1、孔口形式本设计溢流坝段采用开敞式溢流坝,孔口形式采用坝顶溢流式,堰顶不设闸门,所以溢流堰堰顶高程即为正常蓄水位605m。
2、孔口尺寸本设计溢流堰净宽51m,每孔净宽17m二、溢流坝剖面设计溢流坝曲线由顶部曲线段、中间直线段和下部反弧段三部分组成,溢流面曲线采用WES曲线。
1、设计依据《溢洪道设计规范》(SL 253-2002)2、基本资料有上述资料可得出H max=5.97m。
3、溢流曲线设计溢流曲线具体尺寸要求如下图一所示,其中H d为堰面曲线定型设计水头设计水头,规范要求按最大作用水头H max的75%到95%计算,本设计采用80%倍的H max,所以H d=4.78m。
上游堰高P=42m>1.33H d=6.35m,所以本设计为高堰流量系数m d=0.502。
1)0.282Hd0.276Hd -F2=3R3=0.04Hd2)、下游曲线段下游曲线段计算公式为:kH d式中:H d 为堰面曲线定型设计水头;x ,y 为原点下游堰面曲线横纵坐标; n 与上游堰坡有关;k 当P i /H d >1.0时,k 值由规范查取,当P i /H d 三1.0时,k 取2.0到2.2上游堰坡垂直,所以由规范查的 n=1.85; P i /H d =8.8>1.0,所以由规范查的 k=2.0。
综上所述,本设计溢流堰堰面曲线段公式为:1.853)、中间直线段直线段与曲线段的切点计算如下所示:d y 1.85x 0.85 1 0.85 d x2Hd0.7代入数据计算可得:x t 7.97m y t 6.154m4)、下游反弧段本设计采用挑流消能,由规范查的反弧段半径 R=(4~10)h 。
,式中h 0为校核水位闸门全开时挑流鼻坎反弧段最低点处的水深。
挑流鼻坎高程取 579.00m (下游最高水位577.54m )。
反弧段最低点流速:v 2gH °式中:©为堰面流速系数,由长江流域规划办公室提供的公式初步确定为:(1 0.055/k E 0.5)1/3(1 0.055/ 0.2778)1/3 0.93H d经excel 计算可得堰面曲线计算表如下表所示:0.5则v ,.2gH0 0.93 ...2 9.81 (610.97 579) 23.29m/s水深h1836.761.55m vB 23.29 51反弧段半径R=(4~1O)h o,本设计反弧段流速为23.29m/s>16m/s,但流速也不是很大,同时考虑反弧段要与中间直线段相切,所以取R=6.42h0=9.95m综上所述,溢流面初步拟定的剖面如下图所示:堰顶高程605m鼻坎高程579m地基高程563m4、消能防冲设计本设计米用挑流消能,挑流鼻坎米用连续式鼻坎;挑射角规范要求在20? 到35?之间,本设计取挑射角B =30?反弧段半径R规范要求取(4~10)h。
WES堰型泄流曲线
![WES堰型泄流曲线](https://img.taocdn.com/s3/m/8244ac07a300a6c30c229f4d.png)
272.4 269
净宽77m,总宽99m,11m×11m(b×h×孔数)
设计流量 Q 0 161 450 820 1250 1731 2255 2815 3407 3958 4573 5203 5816 6513 7377 7738 8452 溢出流量 7476 溢出流量 6486 溢出流量 4996 溢出流量 4900 堰顶水头 H 0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.40 15.40 16.40 校核洪峰流量 7580 校核洪峰流量 6590 设计洪峰流量 5100 设计洪峰流量 4550 闸门总宽度 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 引出流量 103.8 引出流量 103.8 引出流量 103.8 引出流量 103.8 闸门总宽 99 96.4 257.0 546.5 915.9 1346.7 1827.7 2351.2 2911.3 3503.2 4054.5 4669.0 5299.3 5912.5 6609.6 7473.7 7834.6 8548.0 淹没系数 hs/h0 a1/h0 hs/h0 a1/h0
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
1.78 1.60 1.45 1.33 1.23 1.11 1.04 0.98
盖石洞泄流曲线 9000 8000 7000 6000 堰顶水头H 5000
系列1
4000 3000 2000 1000 0 0 2 4 6 8 10 12 14 16 18 泄流量(m3/s)
Q=σ sσ cmnb(2g)^(1/2)H0^(3/2) 淹没系数 侧收缩系数 σs σc 1 1 1 1 1 1 1 1 1 0.983 0.979 0.975 0.966 0.950 0.923 0.875 0.870 淹没系数 0.875 淹没系数 0.95 淹没系数 0.975 淹没系数 0.979 0 0.99117 0.98234 0.97351 0.96468 0.95584 0.94701 0.93818 0.92935 0.92052 0.91169 0.90286 0.89403 0.90286 0.90286 ቤተ መጻሕፍቲ ባይዱ.90286 0.90286 侧收缩系数 0.903 侧收缩系数 0.903 侧收缩系数 0.902 侧收缩系数 0.9120
溢洪道设计计算说明
![溢洪道设计计算说明](https://img.taocdn.com/s3/m/4c2b019110a6f524cdbf854f.png)
岸边溢洪道设计6.3.1溢洪道说明溢洪道其主要任务是泄洪,土石坝不允许水过坝顶,需要专门修建泄洪建筑物。
根据本工程的地形条件,上游坝址左岸沿河流方向有一道呈现弧形的纵向凹槽,所以选择溢洪道设置在大坝左岸,为带胸墙孔口式岸边溢洪道。
溢洪道由引渠段、堰闸段、泄槽段、挑流鼻坎段组成。
6.3.2 溢洪道引水渠为了使水流平缓,减小或不发生漩涡和翻滚现象,进口采用喇叭口,进口宽度B=50m.设计流速4m/s,横断面在岩基上接近矩形,边坡根据稳定要求确定这里选择边坡坡度为1:0.5;采用梯形断面,进水渠的纵断面做成平底。
在靠近溢流堰前断区,由于流速较大,为了防止冲刷和减少水头损失,可采用混泥土护面厚度为0.5m。
6.3.3 控制段控制段包括溢流堰及两侧连接建筑物,溢流堰通常可以选择宽顶堰、实用堰、驼峰堰。
溢流堰的体形应尽量满足增大流量系数,溢流堰作用是控制泄流能力,本次设计采用实用堰,优点是流量大,在相同的泄流条件下需要的堰流前缘长,工程量小。
采用弧形闸门。
初步拟定堰顶高程H=设计洪水位—堰顶最大泄水位H0堰顶高程H=1838=1858.22—H 0,则H 0=20.22m 胸墙式孔口溢流堰形式的下泄流量Q 公式为:320=Q ε溢式中:ε ——闸墩侧收缩系数,0.9; m ——流量系数,0.48:; g ——重力加速度,9.81 2m/s ; B ——堰宽,12m;水位为设计洪水位1858.22m 时,堰顶高程1838m ,设计Q 溢=4645m3/s.则由上面公式计算得出的B=26.69m,取B=14m.表6.3-1溢洪道宽顶堰堰宽计算(忽略流速)计算取b=28m,孔口数2孔,弧形工作闸门取值14x19m(宽x 高)。
中墩厚3m,边墩宽1m,闸室宽度=14x2+3+2x1=33m.堰面曲线的确定开敞式堰面曲线,幂曲线按式(7-2)计算:1n n d x KH y -= (7-2)式中 Hd ——堰面曲线定型设计水头,对于上游堰高P1≥1.33Hd 的高堰,取Hd=(0.75~0.95)Hmax ,对于P1<1.33Hd 的低堰,取Hd=(0.65~0.85)Hmax ,Hmax 为校核流量下的堰上水头.x 、y ——原点下游堰面曲线横、纵坐标; n ——与上游堰坡有关的指数,见表A.1.1;k ——当p1/Hd>1.0 时,k 值见表A.1.1,当P1/Hd ≤1.0 时,取k=2.0~2.2。
泄水闸2
![泄水闸2](https://img.taocdn.com/s3/m/185ec677a26925c52cc5bfee.png)
4.2.3 泄水闸的布置泄水闸布置在水电站和船闸之间。
泄水闸主要有三部分组成:上游连接段、闸室段和下游连接段。
4.3 主要建筑物(泄水闸)4.3.1闸孔设计水闸闸孔设计主要是确定闸孔型式、尺寸河设置高程,以保证水闸在设计水位组合情况下有足够的过流能力。
一、堰型和堰顶高程确定根据设计任务书提供的资料显示,函江流域水面平缓,含砂量少,本水闸的主要功能为挡水灌溉和泄水,故本次设计采用堰流式闸室,堰型采用无槛宽顶堰。
这种型式闸室对于泄洪较为有利,它能使闸前漂浮物随着水流下泄,而不会阻塞闸孔而影响泄洪。
根据资料提供的地形图,考虑水闸的运行、河道冲刷淤积以及闸孔允许单宽流量和工程造价等因素,本次设计取堰顶高程与河床底高程齐平为13.0m。
二、闸孔净宽计算、泄流能力校核1、水位Q2%=9540m3/s,H上=23.65m,H下=23.40m;Q0.33%=12350m3/s,H上=待算,H下=23.80m;2、闸孔净宽计算闸孔总净宽的确定,主要涉及两个问题:一个是过闸单宽流量的大小;另一个是闸室总宽度与河道总宽度的关系。
如果采用的闸孔总净宽过小,使过闸单宽流量过大,将增加闸下游消能布置的困难,甚至影响水闸工程的安全;反之,如果采用的闸孔总净宽过大,使过闸单宽流量过小,工程量加大,造成浪费。
根据设计任务要求,闸孔允许单宽流量不大于30m3/s,初步拟定闸孔总净宽为0.7倍主河槽宽为350m ,闸孔分成35孔,每孔宽10m ,中墩厚1.6m ,缝墩厚0.8m 。
水闸底板为无槛宽顶堰,闸孔泄流能力计算公式如下:23002H g m B Q σε= (《水闸设计规范》以下简称《规范》附A )式中:Q ——过闸流量(m 3/s );σ——淹没系数,根据上下游的堰上水深查得; ε——侧收缩系数; m ——流量系数;B 0——闸孔总净宽(m ); H 0——堰顶以上上游总水头(m )。
①堰上总水头H 0H 1(上游水头)=23.65-13.00=10.65m H s (下游水头)=23.40-13.00=10.40m行近流速V 0=Q/A=9540/[700×(23.65-13.00)]=1.28m/s H 0=H 1+V 2/2g=10.65+1.282/(2×9.81)=10.73m ②淹没系数σh s /H 0=10.4/10.73=0.969 查《规范》附表A.0.1-2, 得σ=0.556; ③流量系数m按P/H 0=0查表得m =0.385; ④侧收缩系数ε水闸中墩厚度取为1.6m ,缝墩取0.8m ,根据《规范》附录A.0.1-3公式计算得ε=0.860根据以上公式可以试算出闸孔总净宽23002Hg m QB σε==9540/(0.556×0.860×0.385×4.429×10.733/2)=333m一般来说,采用的闸孔总净宽要略大于计算值,本次设计闸孔总净宽取350m ,相应单宽流量为27.26m 3/s/m ,小于闸孔允许单宽流量30 m 3/s/m ,满足要求。
溢流坝段设计(1)
![溢流坝段设计(1)](https://img.taocdn.com/s3/m/5c08ecb1d15abe23482f4df4.png)
溢流坝段设计一、孔口设计1、孔口形式本设计溢流坝段采用开敞式溢流坝,孔口形式采用坝顶溢流式,堰顶不设闸门,所以溢流堰堰顶高程即为正常蓄水位605m。
2、孔口尺寸本设计溢流堰净宽51m,每孔净宽17m。
二、溢流坝剖面设计溢流坝曲线由顶部曲线段、中间直线段和下部反弧段三部分组成,溢流面曲线采用WES曲线。
1、设计依据《溢洪道设计规范》(SL 253-2002)2、基本资料有上述资料可得出H max=5.97m。
3、溢流曲线设计溢流曲线具体尺寸要求如下图一所示,其中H d为堰面曲线定型设计水头设计水头,规范要求按最大作用水头H max的75%到95%计算,本设计采用80%倍的H max,所以H d=4.78m。
上游堰高P1=42m>1.33H d=6.35m,所以本设计为高堰流量系数m d=0.502。
1)、曲线上游圆弧段参数计算如下表所示:曲线参数计算表2)、下游曲线段下游曲线段计算公式为:式中:H d为堰面曲线定型设计水头;x,y为原点下游堰面曲线横纵坐标;n与上游堰坡有关;k当P1/H d>1.0时,k值由规范查取,当P1/H d≦1.0时,k取2.0到2.2。
上游堰坡垂直,所以由规范查的n=1.85;P1/H d=8.8>1.0,所以由规范查的k=2.0。
综上所述,本设计溢流堰堰面曲线段公式为:经excel计算可得堰面曲线计算表如下表所示:3)、中间直线段直线段与曲线段的切点计算如下所示:代入数据计算可得:4)、下游反弧段本设计采用挑流消能,由规范查的反弧段半径R=(4~10)h0,式中h为校核水位闸门全开时挑流鼻坎反弧段最低点处的水深。
挑流鼻坎高程取579.00m(下游最高水位577.54m)。
反弧段最低点流速:式中:φ为堰面流速系数,由长江流域规划办公室提供的公式初步确定为:反弧段半径R=(4~10)h0,本设计反弧段流速为23.29m/s>16m/s,但流速也不是很大,同时考虑反弧段要与中间直线段相切,所以取R=6.42h0=9.95m。
WES溢流堰堰面设计
![WES溢流堰堰面设计](https://img.taocdn.com/s3/m/a9076183cc22bcd126ff0cfc.png)
n…闸孔数目
H0…计入行近流速的堰上总水头,m,H0=H+v² /2g g…重力加速度,m/s²
m…二维水流WES实用堰流量系数,由规范表A2.1.1-1查得
c…上游堰坡影响系数(上游堰坡铅直时c=1.0;上游堰坡倾斜时,由规范表A2.1.1-2查得)
ε…闸墩侧收缩系数
ξ0…中墩形状系数,查规范表A.2.1-3 ξK…边墩形状系数,如图A.2.1-2,对于直角矩形ξK=1.0;折线或圆角形ξK=0.7;流线形ξK=0.4 σs…淹没系数,查规范图A.2.1-3,不淹没时σs=1.0
校核洪水标准(P=0.1%)下泄流量计算表
nb
B
v
H0
ξ0
ξK
ε
c
m
σs
Q
结论
1 35
35
0
4.71
1 0.9731 1 0.495 1 763.32 满足泄流要求
设计洪水标准(P=1%)下泄流量计算表
nb
B
v
H0
ξ0
ξK
ε
c
m
σs
Q
结论
1 35
35
0
3.4
1 0.9806 1 0.475 1 452.70 满足泄流要求
按《水力计算手册》式(3-2-2)计算的反弧半径:
1.624 1.624
试算完成! h1= 1.624
R 10 x 3.28
x 3.28v 21H 16 11.8H 64
式中: H…堰前水头,m
v…堰址处流速,即v1,m³/s
计算得:
x= 1.307
R= 6.186
实取R=6.2m,满足规范要求。
3.2 幂曲线末端端点计算
水力计算案例分析解答
![水力计算案例分析解答](https://img.taocdn.com/s3/m/12b5c32d4b7302768e9951e79b89680203d86b33.png)
水力计算案例分析解答案例一年调节水库兴利调节计算要求:根据已给资料推求兴利库容和正常蓄水位。
资料:(1) 设计代表年(P=75%)径流年内分配、综合用水过程及蒸发损失月分配列于下表1,渗漏损失以相应月库容的1%计。
(2) 水库面积曲线和库容曲线如下表2。
(3) V 死 =300万m 3。
表1 水库来、用水及蒸发资料 (P=75%)表2 水库特性曲线解:(1)在不考虑损失时,计算各时段的蓄水量由上表可知为二次运用,)(646031m V 万=,)(188032m V 万=,)(117933m V 万=,)(351234m V 万=,由逆时序法推出)(42133342m V V V V 万兴=-+=。
采用早蓄方案,水库月末蓄水量分别为:32748m 、34213m 、、34213m 、33409m 、32333m 、32533m 、32704m 、33512m 、31960m 、3714m 、034213m经检验弃水量=余水-缺水,符合题意,水库蓄水量=水库月末蓄水量+死V ,见统计表。
(2)在考虑水量损失时,用列表法进行调节计算: 121()2V V V =+,即各时段初、末蓄水量平均值,121 ()2A A A =+,即各时段初、末水面积平均值。
查表2 水库特性曲线,由V 查出A 填写于表格,蒸发损失标准等于表一中的蒸发量。
蒸发损失水量:蒸W =蒸发标准?月平均水面面积÷1000渗漏损失以相应月库容的1%,渗漏损失水量=月平均蓄水量?渗漏标准损失水量总和=蒸发损失水量+渗漏损失水量考虑水库水量损失后的用水量:损用W W M +=多余水量与不足水量,当M W -来为正和为负时分别填入。
(3)求水库的年调节库容,根据不足水量和多余水量可以看出为两次运用且推算出兴利库容)(44623342m V V V V 万兴=-+=,)(476230044623m V 万总=+=。
(4)求各时段水库蓄水以及弃水,其计算方法与不计损失方法相同。
泄槽水力计算
![泄槽水力计算](https://img.taocdn.com/s3/m/2ab98ffe19e8b8f67c1cb951.png)
《防洪标准》(GB50201-94)特大型工矿企业 一等工程设计:100年一遇校核:200年一遇《堤防工程设计规范》(GB50286-98)堤防工程一级堤防工程的安全超高值:不允许越浪的工程, 1.00m 1、2级的堤顶超高值不应低于2.00m堤顶超高按下式计算:Y=R+e+A其中:Y :堤防超高;R :波浪爬高;e :风雍水面高度;A :安全超高。
波浪爬高计算:最大风壅水面高度按下式计算:式中:K—综合摩阻系数,取3.6×10-6;W—计算风速,(取24m/s )D—风区长度,取1500m ;H m —水域的平均水深0.6m ;β—计算风向与坝轴线法线的夹角(度)。
计算时,假设风向与坝轴线垂直,即cosβ=1。
平均波浪爬高按以下公式计算:式中──累积频率为p 的波浪爬高(m );──斜坡的糙率及渗透性系数;──经验系数,1.30;──爬高累积频率换算系数; m──斜坡坡率,m=ctgα,α为斜坡坡角(度);──堤前波浪的平均波高(m ); L──堤前波浪的波长(m )。
波浪的平均波高和平均波长高按以下公式计算: β=cos gH 2D KW e m 2L H m K K K R p v p 21+=∆pR ∆K VK p K H ⎪⎪⎩⎪⎪⎨⎧⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=0245.027.0227.013.00018.07.013.0V gd th V gF th V gd th v H g 5.0239.1⎪⎪⎭⎫ ⎝⎛=V H g V gT 45.3min 168⎪⎪⎭⎫ ⎝⎛=V T g V gt 式中 H──平均波高(m ); T──平均波周期(s ); V──计算风速,17(m /s ); F──风区长度,400(m ); d──水域的平均水深,5(m ); g──重力加速度,9.81;──风浪达到稳定状态的最小风时(s )。
经计算,风壅高度0.18m ,波浪爬高为0.20m ,合计0.38m 。
泄水槽水面线计算表格
![泄水槽水面线计算表格](https://img.taocdn.com/s3/m/fa13e61edaef5ef7bb0d3c68.png)
泄槽宽度B: 10.000m 泄槽底板与水平面的夹角θ: 53.1300° 校核洪水标准泄槽下泄流量: 112m³/s 设计洪水标准泄槽下泄流量: 62m³/s 消能防冲标准泄槽下泄流量: 53m³/s
泄槽纵坡i: 0.75 计算起始断面水深流速系数φ: 0.95
h1
q
2gH0 h1 cos
(A.13)
H0 水库水位 计算断面渠底高程
式中:
H0…………计算断面渠底以上的总水头,近似取计算断面渠底以上静水头;
计算情况 水库水位 渠底高程
校核标准 703.26
660
起始断面水深h1计算表
H0
q
φ
43.26
11
0.95
θ
假设h1
53.1300° 1
hb
式中:
1
v 100
h
h…………未计入波动及掺气的水深;
hb…………计入波动及掺气的水深;
v…………未计入波动及掺气的计算断面上的平均流速;
计算h1 0.4
0.221 0.185
ik hk 2 Cq k22 R k hk 3 gq 2 (A.10~12)
Ak Bhk
Rk B 2hk
Ck
1 n
R 1/6 k
式中:
q…………泄槽单宽流量,m3/s.m;
α…………动能修正系数,可近似地取为1;
g…………重力加速度,g=9.81;
校核洪水标准泄槽单宽流量: 11m³/s.m 设计洪水标准泄槽单宽流量: 6m³/s.m 校核洪水标准泄槽单宽流量: 5m³/s.m
(2)泄槽临界底坡ik和临界水深hk计算 根据规范5.4.2条,“泄槽纵坡应大于水流的临界坡”,那么要判别设计选用底坡是否大于临界底 坡,就应先计 算泄槽的临界底坡。对于矩形断面泄槽,临界底坡ik及临界水深hk的计算公式如下:
第六章河岸溢洪道
![第六章河岸溢洪道](https://img.taocdn.com/s3/m/47ef2e79fad6195f312ba67a.png)
第六章 河岸溢洪道第一节 概述●水库枢纽三大件:挡水建筑物、泄水建筑物、取水建筑物。
●溢洪道:宣泄水库中容纳不下的多余洪水,保证大坝及工程的安全。
●布置方式:1与大坝相结合,布置在河床中间,成为河床式溢洪道,如重力坝、拱坝的溢流坝段。
2当大坝为土石坝,溢洪道就不能与大坝结合,不能布置在河床中,需要布置在河岸边(水库边),成为河岸式溢洪道。
1、河岸溢洪道的类型●类型:开敞式溢洪道:正槽式、侧槽式。
正常溢洪道:封闭式溢洪道:井式、虹吸式。
非常溢洪道:漫流式、 自溃式、爆破引溃式1. 正槽式溢洪道水流过溢流堰后,水流方向不变,进入泄水槽。
●特点:水流平顺,泄水能力强,结构简单,常用。
●适用:岸边有合适的马鞍形山口时,此时开挖量最小。
正槽溢洪道图2.侧槽式溢洪道水流过堰后,转向约90°,进入泄水槽。
●特点:水流条件复杂,水面极不平稳,结构复杂,对大坝有影响。
●适用:两岸山体陡峭,无法布置正槽式溢洪道,可在坝头一端布置侧槽式溢洪道,此时溢流堰的走向与等高线大体一致,可减少开挖量,但水流就有转向问题。
适用于中、小型工程。
侧槽溢洪道图3.井式溢洪道●特点:是管流,泄水能力低,水流条件复杂,易出现空蚀,应用较少。
井式溢洪道图4.虹吸式溢洪道●原理:溢洪道由曲管组成,曲管最顶部设通气孔,通气孔的出口在水库的正常高水位处,当水库的水位超过正常高水位,淹没了通气孔,曲管内没有空气,泄水时有虹吸作用,可增加泄水能力。
●特点:结构复杂,不便检修,易空蚀,超泄水能力小。
用于中小型工程。
虹吸式溢洪道图二、河床式溢洪道的位置选择1.安全方面修建在坚固的岩石地基上,必须修在挖方上,两侧山体必须保证稳定,水流进出口不宜离大坝太近。
2.经济方面选择高程合适的马鞍形山口,开挖方量少,出水归河,冲毁农田要少。
3.施工运用方面为管理运用方便,不宜离大坝太远,施工中要考虑出渣线路、堆渣场地,最好开挖的土石料能用在修坝中。
要考虑爆破的影响。