物理光学第一章 习题

合集下载

(完整版)物理光学-第一章习题与答案

(完整版)物理光学-第一章习题与答案

物理光学习题 第一章 波动光学通论一、填空题(每空2分)1、.一光波在介电常数为ε,磁导率为μ的介质中传播,则光波的速度v= 。

【εμ1=v 】2、一束自然光以 入射到介质的分界面上,反射光只有S 波方向有振动。

【布儒斯特角】3、一个平面电磁波波振动表示为 E x =E z =0, E y =cos[⎪⎭⎫⎝⎛-⨯t c x 13102π], 则电磁波的传播方向 。

电矢量的振动方向 【x 轴方向 y 轴方向】4、在光的电磁理论中,S 波和P 波的偏振态为 ,S 波的振动方向为 , 【线偏振光波 S 波的振动方向垂直于入射面】5、一束光强为I 0的自然光垂直穿过两个偏振片,两个偏振片的透振方向夹角为45°,则通过两偏振片后的光强为 。

【I 0/4】6、真空中波长为λ0、光速为c 的光波,进入折射率为n 的介质时,光波的时间频率和波长分别为 和 。

【c/λ0 λ0 /n 】7、证明光驻波的存在的维纳实验同时还证明了在感光作用中起主要作用是 。

【电场E 】8、频率相同,振动方向互相垂直两列光波叠加,相位差满足 条件时,合成波为线偏振光波。

【0 或Π】9、会聚球面波的函数表达式 。

【ikre rA r E -)(=】 10、一束光波正入射到折射率为1.5的玻璃的表面,则S 波的反射系数为 ,P 波透射系数: 。

【-0.2 0.2 】11、一束自然光垂直入射到两透光轴夹角为θ的偏振片P 1和P 2上,P 1在前,P 2在后,旋转P 2一周,出现 次消光,且消光位置的θ为 。

【2 Π/2】12、当光波从光疏介质入射到光密介质时,正入射的反射光波 半波损失。

(填有或者无) 【有】13、对于部分偏振光分析时,偏振度计算公式为 。

(利用正交模型表示) 【xy x y I I I I P +-=】二、选择题(每题2分)1.当光波从光密介质入射到光疏介质时,入射角为θ1,布儒斯特角为θB ,临界角为θC ,下列正确的是 ( )A .0<θ1<θB , S 分量的反射系数r S 有π位相突变 B .0<θ1<θB , P 分量的反射系数r P 有π位相突变C .θB <θ1<θC , S 分量的反射系数r S 有π位相突变D .θB <θ1<θC , P 分量的反射系数r P 有π位相突变 【B 】2.下面哪种情况产生驻波 ( ) A .两个频率相同,振动方向相同,传播方向相同的单色光波叠加 B .两个频率相同,振动方向互相垂直,传播方向相反的单色光波叠加 C .两个频率相同,振动方向相同,传播方向相反的单色光波叠加 D .两个频率相同,振动方向互相垂直,传播方向相同的单色光波叠加 【C 】3.平面电磁波的传播方向为k ,电矢量为E ,磁矢量为B, 三者之间的关系下列描述正确的是 ( ) A .k 垂直于E , k 平行于B B .E 垂直于B , E 平行于k C .k 垂直于E , B 垂直于k D .以上描述都不对 【C 】4、由两个正交分量]cos[0wt kz A x E x -= 和]87cos[0π+-=wt kz A y E y表示的光波,其偏振态是( )A 线偏振光B 右旋圆偏振光C 左旋圆偏振光D 右旋椭圆偏振光 【D 】5、一列光波的复振幅表示为ikre rA r E =)(形式,这是一列( )波 A 发散球面波 B 会聚球面波 C 平面波 D 柱面波 【A 】6、两列频率相同、振动方向相同、传播方向相同的光波叠加会出现现象( ) A 驻波现象 B 光学拍现象 C 干涉现象 D 偏振现象 【C 】7、光波的能流密度S 正比于( )A E 或HB E 2或H 2C E 2,和H 无关D H 2,和E 无关 【B 】8、频率相同,振动方向互相垂直两列光波叠加,相位差满足( )条件时,合成波为二、四象限线偏振光波。

物理光学第一章答案

物理光学第一章答案

第一章 波动光学通论 作业1、已知波函数为:⎪⎭⎫ ⎝⎛⨯-⨯=-t x t x E 157105.11022cos 10),(π,试确定其速率、波长和频率。

2、有一张0=t 时波的照片,表示其波形的数学表达式为⎪⎭⎫⎝⎛=25sin 5)0,(x x E π。

如果这列波沿负x 方向以2m/s 速率运动,试写出s t 4=时的扰动的表达式。

3、一列正弦波当0=t 时在0=x 处具有最大值,问其初位相为多少?4、确定平面波:⎪⎭⎫⎝⎛-++=t z ky k x kA t z y x E ω14314214sin ),,,(的传播方向。

5、在空间的任一给定点,正弦波的相位随时间的变化率为s rad /101214⨯π,而在任一给定时刻,相位随距离x 的变化是m rad /1046⨯π。

若初位相是3π,振幅是10且波沿正x 方向前进,写出波函数的表达式。

它的速率是多少?6、两个振动面相同且沿正x 方向传播的单色波可表示为:)](sin[1x x k t a E ∆+-=ω,]sin[2kx t a E -=ω,试证明合成波的表达式可写为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+-⎪⎭⎫ ⎝⎛∆=2sin 2cos 2x x k t x k a E ω。

7、已知光驻波的电场为t kzcoa a t z E x ωsin 2),(=,试导出磁场),(t z B 的表达式,并汇出该驻波的示意图。

8、有一束沿z 方向传播的椭圆偏振光可以表示为)4cos()cos(),(00πωω--+-=kz t A y kz t A x t z E试求出偏椭圆的取向和它的长半轴与短半轴的大小。

9、一束自然光在30o 角下入射到空气—玻璃界面,玻璃的折射率n=,试求出反射光的偏振度。

10、过一理想偏振片观察部分偏振光,当偏振片从最大光强方位转过300时,光强变为原来的5/8,求 (1)此部分偏振光中线偏振光与自然光强度之比; (2)入射光的偏振度;(3)旋转偏振片时最小透射光强与最大透射光强之比; (4)当偏振片从最大光强方位转过300时的透射光强与最大光强之比.11、一个线偏振光束其E 场的垂直于入射面,此光束在空气中以45o 照射到空气玻璃分界面上。

物理光学基础教程第一章答案

物理光学基础教程第一章答案

物理光学基础教程第一章答案1. 人们对光的本性的认识经历了漫长而曲折的过程,很多物理学家为此付出了艰辛的努力。

下面的四个人物,在对光的认识方面分别做出了不同的贡献。

请按照历史发展的顺序将他们依次排列,其中正确的一组是()[单选题] *④①②③③④②①④③①②③④①②(正确答案)2. 在白炽灯的照射下从两块捏紧的玻璃板表面看到彩色条纹,通过狭缝观察发光的白炽灯也会看到彩色条纹,这两种现象() [单选题] *都是光的衍射现象前者是光的衍射现象,后者是光的干涉现象前者是光的干涉现象,后者是光的衍射现象(正确答案)都是光的干涉现象3. 如图,当用激光照射直径小于激光束的不透明圆盘时,在圆盘后屏上的阴影中心出现了一个亮斑。

这是光的()现象,这一实验支持了光的()。

[单选题] *干涉微粒说衍射波动说(正确答案)干涉波动说衍射光子说4. 关于下图中的三个图样分别是将激光照射在怎样的狭缝或孔隙上实现的?[单选题] *单缝衍射双缝干涉圆形小孔衍射单缝衍射双缝干涉圆形障碍物衍射双缝干涉单缝衍射圆形障碍物衍射双缝干涉单缝衍射圆形小孔衍射(正确答案)5. 下列各组电磁波,按波长由长到短正确排列的是() [单选题] *γ射线、红外线、紫外线、可见光红外线、可见光、紫外线、γ射线(正确答案)可见光、红外线、紫外线、γ射线紫外线、可见光、红外线、γ射线6. 下列所说的几种射线中,不属于电磁波的是() [单选题] *紫外线红外线α射线(正确答案)γ射线7. 卢瑟福通过对粒子散射实验结果的分析,提出() [单选题] *原子的核式结构模型(正确答案)原子核内有中子存在电子是原子的组成部分原子核是由质子和中子组成的8. 现已建成的核电站发电的能量来自于() [单选题] *天然放射性元素衰变放出的能量人工放射性同位素放出的能量重核裂变放出的能量(正确答案)化学反应放出的能量9. 如图为双缝干涉的实验示意图,若要使干涉条纹间距变大可改用波长()的单色光;或者使双缝与光屏之间的距离()。

物理光学第四版第一章习题答案

物理光学第四版第一章习题答案

1.28 弯曲的圆柱形光纤,光纤芯和包层的折射率分别为 n1和n2(n1>n2),光纤芯的直径为D,曲率半径为R。
证明入射光的最大孔径角2u满足关系式:
D 2 sin u n1 n2 (1 ) 2R
2 2
c u’
sin c sin( u '90 ) cos u ' D D R R R 2 2
5.已知平面波的法线与单位矢量n(,,)平行,试写 出该单色平面波的方程。
单色平面波波动方程:
E A cos(t k r )


2 k n

E A cos(t k r ) A cos[t (x y z )]
6 利用波矢量的方向余弦cos,cos,cos。写出平面 波的波函数;并证明它是三维波动方程的解。
2E 2 2 k (cos ) E 2 z
2 2
2E 2 E 2 t
2
ky kx kz z
k
Q cos cos cos 1
k E
2
x
2
v2
E
2
2f 2 2 ( ) k v2 f
7 平面光波从A点传播到B点,在AB之间插入透明薄片L=1mm, 折射率n=1.5。假定光波的波长=500nm,试计算插入薄片前 后B点位相的变化。 答: 假设A点的初相为零,因此求插入薄片前B点的变化. 前: 后:
光波以布儒斯特角入射到两介质界面时
1 2


2
且tg1 n
2 cos2 1 2 cos2 1 1 1 tp sin(21 ) 2sin1 cos1 tg1 n
1.21 光束垂直入射到45˚直角棱镜的一个侧面,光束经斜面反 射后从第二个侧面透出。若入射光强度为I0,问从棱镜透出光束 的强度为多少?设棱镜的折射率为1.52,并且不考虑棱镜的吸 收。

物理光学第一章 习题

物理光学第一章 习题

1.9 球面电磁波的电场E是r和t的函数,其中r 是一定点到波源的距离,t是时间。 (1)写出与球面波相应的波动方程的形式; (2)写出波动方程的解。
1. 9 解:球坐标系中:
2 1 2 E 1 E 1 E 2 E 2 r 2 sin 2 2 r r r r sin r sin 2
sinsinsin50sin0511153072sincos2sincos06651335sinsin2sincos2sincos07051414sincossincos14光矢量垂直于入射面和平行于入射面的两束等强度的线偏振光以50度角入射到一块平行平板玻璃上试比较两者透射光的强度
第一章 光的电磁理论 习题
By 0,
Bz 0
由麦克斯韦方程得:
B E t
分量式为:
i E x Ex
j y Ey
k z Ez
Ez E y Ex Ez E y Ex ( )i ( )j ( )k y z z x x y Bx By Bz i j k t t t
由题意球面电磁波的电场E是r和t的函数:
1 2 E 2 E 2 E 1 2 E 2 r rE 2 2 r r r r r r r r
2
则球坐标系下的波动方程为:
1 2 1 2 E rE 2 2 2 r r v t 2 2 1 rE rE 2 2 r v t 2
1.1 一个平面电磁波可以表示为
14 z Ex 0, Ey 2cos 2 10 t , Ex 0 c 2
求: (1)该电磁波的频率、波长、振幅和原点的初 位相为多少? (2)波的传播和电矢量的振动各沿什么方向? (3)写出与电场相联系的磁感应强度的表达式。

物理光学课后习题答案-汇总

物理光学课后习题答案-汇总
解:设能看见 个亮纹。从中心往外数第 个亮纹对透镜中心的倾角 ,成为第N个条纹的角半径。设 为中心条纹级数, 为中心干涉极小数,令 ( , ),从中心往外数,第N个条纹的级数为 ,则

两式相减,可得 ,利用折射定律和小角度近似,得 ,( 为平行平板周围介质的折射率)
对于中心点,上下表面两支反射光线的光程差为 。因此,视场中心是暗点。由上式,得 ,因此,有12条暗环,11条亮环。
解:由题意,得,波列长度 ,
由公式 ,
又由公式 ,所以频率宽度

某种激光的频宽 Hz,问这种激光的波列长度是多少?
解:由相干长度 ,所以波列长度 。
第二章光的干涉及其应用
在与一平行光束垂直的方向上插入一透明薄片,其厚度 ,若光波波长为500nm,试计算插入玻璃片前后光束光程和相位的变化。
解:由时间相干性的附加光程差公式
,所以

杨氏干涉实验中,若波长 =600nm,在观察屏上形成暗条纹的角宽度为 ,(1)试求杨氏干涉中二缝间的距离(2)若其中一个狭缝通过的能量是另一个的4倍,试求干涉条纹的对比度
解:角宽度为 ,
所以条纹间距 。
由题意,得 ,所以干涉对比度
若双狭缝间距为,以单色光平行照射狭缝时,在距双缝远的屏上,第5级暗条纹中心离中央极大中间的间隔为,问所用的光源波长为多少是何种器件的光源
解:由公式 ,所以
= 。
此光源为氦氖激光器。
在杨氏干涉实验中,照明两小孔的光源是一个直径为2mm的圆形光源。光源发光的波长为500nm,它到小孔的距离为。问两小孔可以发生干涉的最大距离是多少?
解:因为是圆形光源,由公式 ,
则 。
月球到地球表面的距离约为 km,月球的直径为3477km,若把月球看作光源,光波长取500nm,试计算地球表面上的相干面积。

《物理光学与应用光学》习题及选解2

《物理光学与应用光学》习题及选解2

《物理光学与应⽤光学》习题及选解2《物理光学与应⽤光学》习题及选解第⼀章习题1-1. ⼀个线偏振光在玻璃中传播时,表⽰为:i E ))65.0(10cos(10152t cz-??=π,试求该光的频率、波长,玻璃的折射率。

1-2. 已知单⾊平⾯光波的频率为z H 1014=ν,在z = 0 平⾯上相位线性增加的情况如图所⽰。

求f x , f y , f z 。

1-3. 试确定下列各组光波表⽰式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。

1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹⾓为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为?。

求证:?αcos 22tan 220000y x y x E E E E -=。

1-5.已知冕牌玻璃对0.3988µm 波长光的折射率为n = 1.52546,11m 1026.1/--?-=µλd dn ,求光在该玻璃中的相速和群速。

1-6. 试计算下⾯两种⾊散规律的群速度(表⽰式中的v 表⽰是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。

(2)充满⾊散介质()(ωεε=,)(ωµµ=)的直波导管中的电磁波,222/a c c v p -=εµωω,其中c 真空中的光速,a 是与波导管截⾯有关的常数。

1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。

⼊射光是⾃然光,⼊射⾓分别为?0,?20,?45,0456'?,? 90。

1-8. 若⼊射光是线偏振的,在全反射的情况下,⼊射⾓应为多⼤⽅能使在⼊射⾯内振动和垂直⼊射⾯振动的两反射光间的相位差为极⼤?这个极⼤值等于多少?=501θ,n 1 = 1,n 2 = 1.5,则反射光的光⽮量与⼊射⾯成多⼤的⾓度?若?=601θ时,该⾓度⼜为多1-2题⽤图⼤?1-10. 若要使光经红宝⽯(n = 1.76)表⾯反射后成为完全偏振光,⼊射⾓应等于多少?求在此⼊射⾓的情况下,折射光的偏振度P t 。

光学第一章习题及答案解析

光学第一章习题及答案解析

物理与机电工程学院 2011级 应用物理班姓名:罗勇 学号:20114052016第一章 习题一、填空题:1001.光的相干条件为 两波频率相等 、相位差始终不变与 传播方向不相互垂直。

1015、迈克尔逊干涉仪的反射镜M 2移动0、25mm 时,瞧到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为_500nm 。

1039,光在媒介中通过一段几何路程相应的光程等于折射率与__路程_的乘积 。

1089、 振幅分别为A 1与A 2的两相干光同时传播到p 点,两振动的相位差为ΔΦ。

则p 点的光强I =2212122cos A A A A ϕ++∆1090、 强度分别为1I 与2I 的两相干光波迭加后的最大光强max I =12+I I 。

1091、 强度分别为I 1与I 2的两相干光波迭加后的最小光强min I =。

12I I -1092、 振幅分别为A 1与A 2的两相干光波迭加后的最大光强max I =12122A A A A ++。

1093、 振幅分别为A 1与A 2的两相干光波迭加后的最小光强min I =12122A A A A +-。

1094、 两束相干光叠加时,光程差为λ/2时,相位差∆Φ=π。

1095、 两相干光波在考察点产生相消干涉的条件就是光程差为半波长的()2j+1倍,相位差为π的()2j+1倍。

1096、 两相干光波在考察点产生相长干涉的条件就是光程差为波长的2j 倍,相位差为π的2j 倍。

1097、 两相干光的振幅分别为A 1与A 2,则干涉条纹的可见度v=1221221A A A A ⎛⎫⎪⎝⎭⎛⎫+ ⎪⎝⎭。

1098、 两相干光的强度分别为I 1与I 2,则干涉条纹的可见度v=1212I I I I -+。

1099、两相干光的振幅分别为A 1与A 2,当它们的振幅都增大一倍时,干涉条纹的可见度为不变。

1100、 两相干光的强度分别为I 1与I 2,当它们的强度都增大一倍时,干涉条纹的可见度 不变。

物理光学与应用光学习题解第一章

物理光学与应用光学习题解第一章

《物理光学与应用光学》习题及选解(部分)第一章习题1-1. 一个线偏振光在玻璃中传播时,表示为:i E ))65.0(10cos(10152t cz-⨯⨯=π,试求该光的频率、波长,玻璃的折射率。

1-2. 已知单色平面光波的频率为z H 1014=ν,在z = 0 平面上相位线性增加的情况如图所示。

求f x , f y , f z 。

1-3. 试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。

1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹角为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为ϕ。

求证:ϕαcos 22tan 220000y x y x E E E E -=。

1-5.已知冕牌玻璃对0.3988μm 波长光的折射率为n = 1.52546,11m 1026.1/--⨯-=μλd dn ,求光在该玻璃中的相速和群速。

1-6. 试计算下面两种色散规律的群速度(表示式中的v 表示是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。

(2)充满色散介质()(ωεε=,)(ωμμ=)的直波导管中的电磁波,222/a c c v p -=εμωω,其中c 真空中的光速,a 是与波导管截面有关的常数。

1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。

入射光是自然光,入射角分别为︒0,︒20,︒45,0456'︒,︒90。

1-8. 若入射光是线偏振的,在全反射的情况下,入射角应为多大方能使在入射面内振动和垂直入射面振动的两反射光间的相位差为极大?这个极大值等于多少?1-9. 电矢量振动方向与入射面成45°的线偏振光,入射到两种透明介质的分界面上,若入射角︒=501θ,n 1 = 1,n 2 = 1.5,则反射光的光矢量与入射面成多大的角度?若︒=601θ时,该角度又为多1-2题用图大?1-10. 若要使光经红宝石(n = 1.76)表面反射后成为完全偏振光,入射角应等于多少?求在此入射角的情况下,折射光的偏振度P t 。

物理光学第1章习题解答

物理光学第1章习题解答

因此,反射光电矢量的振动方向与入射面所成的角度为:
tg 1
0.421 84 18 0.042
14.一个光学系统由两片分离透镜组成,两透镜的折射率分别为1.5和1.7,求此系统的 反射光能损失。如透镜表面镀上增透膜,使表面反射比降为0.01,问此系统的光能损 失又为多少?设光束以接近正入射通过各反射面。 【解】(1)系统包括4个反射面,假设光束是接近正入射情形下通过各反射面,因而各面的反射
(2) 当
n1 1.62, n2 1.52时 sin u 1.62 2 1.52 2 =0.56 u 34
所以最大孔径角为 2u =68
24.利用波的复数表达式求两个波
的合成波。 【解】
E1 =a cos(kx t ) 和 E2 a cos(kx t )
E1和E2的相应的复数表达式为
n1 sin 1 1 sin 50 sin 1.5 n2 sin 1 0.511 30 42
因此 rs rp sin(1 2 ) sin19 18 0.335 sin(1 2 ) sin 80 42
因此, t s t s
2 sin 2 cos 1 2 sin 1 cos 2 sin(1 2 ) sin(1 2 ) sin 1 cos 2 4 sin 2 2 cos 2 1 sin 2 cos 1 sin 2 (1 2 ) s
2 2 2 2
n 1 1.7 1 0.7 R3 3 0.067 n 1 1.7 1 2.7 3 1 1 1 1.7 2 n4 1 1.7 R4 1 0.067 n 1 1 1.7 4 1 1.7

物理光学课后习题答案-汇总

物理光学课后习题答案-汇总


的合成。


=
,(m 为奇
= = =
=

两个振动方向相同的单色波在空间某一点产生的
振动分别为

。若
Hz,
数),

所以
=

试求如图所示的周期性矩形波的傅立叶级数的表
达式。
解:由图可知,

V/m, 8V/m,


求该点的合振动表达式。


=


=
所以

=
=
=

求如图所示的周期性三角波的傅立叶分析表达式。
面上时,
,其中

证明: 儒斯特角,所以
,因为 为布 ,
=
=
=
证明光束在布儒斯特角下入射到平行平面玻璃片
的上表面时,下表面的入射角也是布儒斯特角。
证明:由布儒斯特角定义,θ+i=90º ,
设空气和玻璃的折射率分别为 和 ,先由空气入
射到玻璃中则有
,再由玻璃出射
=


,其中
,又根据折射定
,得

,得证。
利用复数表示式求两个波
的宽度为
又由公式
,得双缝间距

=

设双缝间距为 1mm,双缝离观察屏为 1m,用钠光照
某种激光的频宽 的波列长度是多少
Hz,问这种激光
解:由相干长度
,所以波列长度

第二章 光的干涉及其应用
在与一平行光束垂直的方向上插入一透明薄片,其
明双缝。钠光包含波长为
nm 和
两种单色光,问两种光的第 10 级亮 条纹之间的距离是多少

(完整版)光学第一章习题及答案解析

(完整版)光学第一章习题及答案解析

物理与机电工程学院 2011级 应用物理班姓名:罗勇 学号:20114052016第一章 习题一、填空题:1001.光的相干条件为 两波频率相等 、相位差始终不变和 传播方向不相互垂直。

1015.迈克尔逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为_500nm 。

1039,光在媒介中通过一段几何路程相应的光程等于折射率和__路程_的乘积 。

1089. 振幅分别为A 1和A 2的两相干光同时传播到p 点,两振动的相位差为ΔΦ。

则p 点的光强I =2212122cos A A A A ϕ++∆1090. 强度分别为和的两相干光波迭加后的最大光强=。

1I 2I max I 12+I I 1091. 强度分别为I 1和I 2的两相干光波迭加后的最小光强=。

min I 12I I -1092. 振幅分别为A 1和A 2的两相干光波迭加后的最大光强=。

max I 12122A A A A ++1093. 振幅分别为A 1和A 2的两相干光波迭加后的最小光强=。

min I 12122A A A A +-1094. 两束相干光叠加时,光程差为λ/2时,相位差=。

∆Φπ1095. 两相干光波在考察点产生相消干涉的条件是光程差为半波长的倍,相位差()2j+1为π的倍。

()2j+11096. 两相干光波在考察点产生相长干涉的条件是光程差为波长的倍,相位差为π2j 的倍。

2j 1097. 两相干光的振幅分别为A 1和A 2,则干涉条纹的可见度v=。

1221221A A A A ⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭1098. 两相干光的强度分别为I 1和I 2,则干涉条纹的可见度v=。

1212I I I I -+1099.两相干光的振幅分别为A 1和A 2,当它们的振幅都增大一倍时,干涉条纹的可见度为不变。

1100. 两相干光的强度分别为I 1和I 2,当它们的强度都增大一倍时,干涉条纹的可见度 不变。

物理光学梁铨廷版习题答案

物理光学梁铨廷版习题答案

第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=,(各量均用国际单位),求电磁波的频率、波长、周期和初相位。

解:由Ex=0,Ey=0,Ez=,则频率υ===0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。

1.2.一个平面电磁波可以表示为Ex=0,Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=Hz,波长λ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y 轴;(3)由B=,可得By=Bz=0,Bx=1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。

解:(1)υ===5×1014Hz;(2)λ=;(3)相速度v=0.65c,所以折射率n=1.4写出:(1)在yoz平面内沿与y 轴成θ角的方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。

解:(1)由,可得;(2)同理:发散球面波,汇聚球面波。

1.5一平面简谐电磁波在真空中沿正x方向传播。

其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy平面呈45º,试写出E,B 表达式。

解:,其中===,同理:。

,其中=。

1.6一个沿k方向传播的平面波表示为E=,试求k 方向的单位矢。

解:,又,∴=。

1.9证明当入射角=45º时,光波在任何两种介质分界面上的反射都有。

证明:====1.10证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,下表面的入射角也是布儒斯特角。

物理光学第1章习题

物理光学第1章习题

1. 光自真空进入金刚石(2.4d n =)中,若光在真空中的波长0600nm λ=,试求该光波在金刚石中的波长和传播速度。

2. 有一个一维简谐波沿方向传播,已知其振幅20a mm =,波长30mm λ=,波速20/v mm s =,初位相03πϕ=,(1) 试问该简谐波的振动物理量是什么?(2) 写出该简谐波的波函数。

(3) 试在同一图中画出0t =和0.5t s =两个时刻的波形图(z 的范围自02λ),并指出波的传播方向。

3.已知一个一维简谐波在0t =时刻的波函数为:()02,0cos A z a z πϕλ⎛⎫=+ ⎪⎝⎭设()()()0,0101,02,010A A A ===;--,并有: 00,2,02a λϕπ>><<。

(1) 试求0,,a λϕ,(2) 画出0t =时刻的波形图。

4. 有一频率为0ν的一维简谐波沿z 方向传播(见图),已知OB 段媒质和BC 段媒质性质不同:在OB 段,波速为()1cm s υ,波长为()1cm λ,振幅为10E ;在BC 段,波速为()2cm s υ,振幅为20E 。

假设0t =时,O 点处的位相为零,在B 点处位相连续,试求OB 段和BC 段的波函数表达式。

5. 试证明k 是一常矢量时,由k r c ⋅=(c 是一常数)规定的的矢量r 的端点位在同一平面上,并指出k 和该平面法线方向的关系。

6. 有一个波长为λ的简谐平面波,其波矢k 与y 轴垂直,与z 轴的夹角为α(见图)。

试求这个波的各个空间频率分量及在0z =平面上的复振幅表达式。

7. 一个三维简谐平面波在0z =平面上的波函数为:()()0,cos 2y E r t E f y kvt π=-已知0.15/,4y f mm mm λ==。

(1) 试求空间频率分量z f 及波矢k 的方向;(2) 试画出0t =时刻,位相分别为0,2,4ππ的三维等相面图。

8. 假设两直角坐标系Oxyz 和O x y z ''''的相应坐标轴互相平行,O '在Oxyz 中的坐标为()00,,x y d ,如图所示。

物理光学第一章习题解答

物理光学第一章习题解答
n2 cos 2 4sin 2 2 cos 2 1 s 0.823 2 n1 cos 1 sin (1 2 ) n2 cos 2 4sin 2 2 cos 2 1 p 0.99 2 2 n1 cos 1 sin (1 2 ) cos (1 2 )
物理光学第一章习题解答
8. 太阳光(自然光)以60°角入射到窗玻璃(n=1.5) 上,试求太阳光的透射比。
分析:直接利用折射定律(P302)和透射比公式(P307)
解: 由 1 60, n1 1, n2 1.5, n1 sin 1 n2 sin 2
可得 2 35.26
由弦长计算公式,得 N A 2 R sin 2
A0 2 R sin
因此

2
N sin 2 A A0 sin 2 N sin 2 2 II
0
sin
2

2
35. 试求如图所示的矩形脉冲的傅里叶变换,并绘出其 频谱图。
1 2 90
在下表面反射时,易知 4 1 , 3 2 因此 3 4 90 ,满足全偏振条件,亦发生全 偏振
13. 光束垂直入射到45°直角棱镜的一个侧面,并经斜 面反射后有第二个侧面射出(如图),若入射光强为I0, 求从棱镜透过的出射光强I?设棱镜的折射率为1.52,且 不考虑棱镜的吸收。
对于自然光 n ( s p ) / 2 0.91
12. 光束入射到平行平面玻璃板上,如果在上表面反射 时发生全偏振,试证明折射光在下表面反射时亦会发生 全偏振。
分析:可利用折射定律求出两个表面入射角、折射角, 或由平行平板的性质易知光线只发生轴向位移,再利用 全偏振条件(P308)即可 证明:当上表面发生全偏振时

物理光学第一章习题

物理光学第一章习题

1-1 已知波函数为:⎪⎭⎫⎝⎛⨯-⨯=-t x t x E 157105.11022cos 10),(π,试确定其速率、波长和频率。

1-2 有一张0=t 时波的照片,表示其波形的数学表达式为⎪⎭⎫⎝⎛=25sin 5)0,(x x E π。

如果这列波沿坐标轴负x 方向以2m/s 速率运动,试写出s t 4=时的扰动的表达式。

1-3 一列正弦波当0=t 时在0=x 处具有最大值,问其初相位为多少?1-4 确定平面波⎪⎭⎫ ⎝⎛-++=t z k y kx kA t z y x E ω14314214sin ),,,(的传播方向。

1-5 在空间任一给定点,正弦波的相位随时间的变化率为s rad /101214⨯π,而在任一给定时刻,相位随距离x 的变化是m rad /1046⨯π。

若初相位是3π,振幅是10,且波沿正x 方向前进,写出波函数的表达式。

它的速率是多少?1-6 两个振动面相同,且沿正x 方向传播的单色波可表示为:)](sin[1x x k t a E ∆+-=ω,]sin[2kx t a E -=ω,试证明合成波的表达式可写为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+-⎪⎭⎫ ⎝⎛∆=2sin 2cos 2x x k t x k a E ω。

1-7 已知光驻波的电场为(,)2sin cos x E z t a kz t ω=,试导出磁场),(t z B 的表达式。

1-8 有一束沿z 方向传播的椭圆偏振光可以表示为00(,)cos()cos()4z t A t kz A t kz πωω=-+--E x y ,试求出偏椭圆的取向和它的长半轴与短半轴的大小。

1-9 一束自然光在30o 角下入射到空气—玻璃界面,玻璃的折射率n =1.54,试求出反射光的偏振度。

1-10 过一理想偏振片观察部分偏振光,当偏振片从最大光强方位转过300o 时,光强变为原来的5/8,求(1)此部分偏振光中线偏振光与自然光强度之比;(2)入射光的偏振度;(3)旋转偏振片时最小透射光强与最大透射光强之比;(4)当偏振片从最大光强方位转过45o 时的透射光强与最大光强之比.习题1-11一个线偏振光束其E场的垂直于入射面,此光束在空气中以45o照射到空气玻璃分界面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由S波菲涅耳公式得:
sin 1 2 rs 0.303 sin 1 2 ts 2sin 2 cos 1 0.697 sin 1 2
解:由折射定律得: n1
n1 sin 1 n2 sin 2 sin 45 sin 2 0.491 1.5 2 28.1
由S波菲涅耳公式得:
n2
sin 1 2 rs 0.303 sin 1 2 2sin 2 cos 1 ts 0.697 sin 1 2
By 0,
Bz 0
由麦克斯韦方程得:
B E t
分量式为:
i E x Ex
j y Ey
k z Ez
Ez E y Ex Ez E y Ex ( )i ( )j ( )k y z z x x y Bx By Bz i j k t t t
同理:
n2 cos 2 2 I P1 I 0TP1 I 0 t P1 n1 cos 1 I P 2 I P1TP 2 I P1
2 2
n1 cos 1 2 t P2 n2 cos 2
I 0 t P1 t P 2 0.993I 0

1.33 冕玻璃K9对谱线435.8nm和546.1nm的折射率分别为 1.52626和1.51829,试确定柯西公式中的常数a和b,并计算 玻璃对波长486.1nm的折射率和色散率dn/d。
1. 1 解: 由题意平面电磁波为
14 z Ex 0; E y 2cos 2 10 t , Ez 0 c 2
(1) 频率:
2 1014 1014 (Hz) 2 2
波长:

2 2 6 3 10 (m) 14 2 10 k c
类似平面波解:
rE f r vt f r vt E r
1. 11 一束线偏振光以45度角入射到空气-玻璃界面,线偏 振光的电矢量垂直入射面。假设玻璃的折射率为1.5,试求 反射系数和透射系数。
解:由折射定律得:
n1 sin 1 n2 sin 2 sin 45 sin 2 0.491 1.5 2 28.1
1.9 球面电磁波的电场E是r和t的函数,其中r 是一定点到波源的距离,t是时间。 (1)写出与球面波相应的波动方程的形式; (2)写出波动方程的解。
1. 9 解:球坐标系中:
2 1 2 E 1 E 1 E 2 E 2 r 2 sin 2 2 r r r r sin r sin 2
由题意球面电磁波的电场E是r和t的函数:
1 2 E 2 E 2 E 1 2 E 2 r rE 2 2 r r r r r r r r
2
则球坐标系下的波动方程为:
1 2 1 2 E rE 2 2 2 r r v t 2 2 1 rE rE 2 2 r v t 2
E y Bx Ez E y y z t z By Ex Ez 0 z x t E y Ex B z 0 x y t
Bx E y 2 2 1014 z sin 2 1014 t t z c c 2 2 14 z Bx cos 2 10 t ; By 0, Bz 0 c c 2
第一章 光的电磁理论 习题
1.1 一个平面电磁波可以表示为
14 z Ex 0, Ey 2cos 2 10 t , Ex 0 c 2
求: (1)该电磁波的频率、波长、振幅和原点的初 位相为多少? (2)波的传播和电矢量的振动各沿什么方向? (3)写出与电场相联系的磁感应强度的表达式。
1
IS1
1
IP 1
2
1
IS2
1
IP2
tS 1 t P1
2sin 2 cos 1 2sin 1 cos 2 0.665, tS 2 1.335 sin 1 2 sin 1 2
2sin 2 cos 1 2sin 1 cos 2 0.705, t P 2 1.414 sin 1 2 cos 1 2 sin 1 2 cos 1 2
1.33 解:由柯西公式:
na
b
2
解得:a 1.504314 b 4168.1 nm 2
b 1.52626 a 435.82 1.51829 a b 546.12
b na 1.52195 2 486.1
dn b 2 3 7.258 105 / nm d
振幅:
A 2 (m)
初相位:
0

2
(2)波的传播方向为z;电矢量的振动方向为y。 (3)由电磁场的关系:
B E E 1 v B
x Ey
Bx
y
得:
z
2 z Bx cos 2 1014 t ; c c 2
1. 14 光矢量垂直于入射面和平行于入射面的两束等强度 的线偏振光以50度角入射到一块平行平板玻璃上,试比较 两者透射光的强度。
解:由折射定律得:
I0 I0
n1 sin 1 n2 sin 2 sin 50 sin 2 0.511 1.5 2 30.7
由菲涅耳公式得:
2
A 8.65 102 (V/m)
(2)
B
A 2.9 1010 (T) c
(3)发射功率为
W 4 R 2 I 4 104 105
2
1.26 104 (W)
1. 11 一束线偏振光以45度角入射到空气-玻璃界面,线偏 振光的电矢量垂直入射面。假设玻璃的折射率为1.5,试求 反射系数和透射系数。
1.7 在离无线电发射机10km远处飞行的一架 飞机,收到功率密度为10W/m2的信号。试 计算: (1)在飞机上来自此信号的电场强度大小; (2)相应的磁感应强度大小; (3)发射机的总功率。
1. 7 解: (1) 由电磁波电场强度与光强度关系: I
1 2 A 2
4 107 5 3 A 2I 2 10 7.5 10 8.85 1012
由关系:
n2 cos 2 2 I S 1 I 0TS 1 I 0 tS1 n1 cos 1 I S 2 I S 1TS 2 I S 1
2 2
n1 cos 1 2 t S2 n2 cos 2
I 0 tS 1 tS 2 0.788I 0
相关文档
最新文档