用数字示波器和计算机观测铁磁材料的磁滞回线

合集下载

磁滞回线实验讲义(用示波器观测铁磁材料的磁化曲线和磁滞曲线)

磁滞回线实验讲义(用示波器观测铁磁材料的磁化曲线和磁滞曲线)

4
图 6 DH4516N 型动态磁滞回线测试仪
2. 观测样品 1 在不同频率交流信号下的磁化曲线和磁滞回线。 (1)按图 5 所示的线路图接线。 注意:由于信号源、电阻R1和电容C的一端已经与地相连,所以不能与其他接线端相 连接。否则会短路信号源、UR或UC,从而无法正确做出实验。 标有红色箭头的线表示接线的方向,样品的更换通过换接接线位置来完成。 (2) 逆时针调节幅度调节旋钮到底, 使信号输出最小。 调示波器显示工作方式为 X-Y 方式, 示波器 X 输入和 Y 输入选择为 DC 方式。 (3)接通示波器和 DH4516N 型动态磁滞回线测试仪电源,适当调节示波器辉度,以 免荧光屏中心受损。预热 10 分钟后开始测量。 ( 4 )将示波器光点调至显示屏中心,调节实验仪频率调节旋钮,频率显示窗显示 50.00Hz。 (5)退磁。 ①单调增加励磁电流,即缓慢顺时针调节幅度调节旋钮,使示波器显示的磁滞回线上 B值缓慢增加,达到饱和。改变示波器上X、Y输入衰减器开关(偏转因数旋钮) ,并将他 们的微调旋钮顺时针旋转到底(此时偏转因数旋钮对应的数值处于校准状态) ,调节R1、
μ=
B μ0 H
通常铁磁材料的 μ 是温度 T、磁化场 H、频率 f 的函数。基本磁化曲线上的点与原点 的连线的斜率即为磁导率。 H → 0 时的磁导率称为起始磁导率,即
μi = lim
H →0
B μ0 H
7
(7)测绘动态磁滞回线 ①当示波器显示的磁滞回线的顶点在 X 方向上读数为(-5.00,+5.00)格时(即在饱 和状态) ,记录磁滞回线在 X 坐标分别为-5.00、-4.00、-3.00、-2.00、-1.50、-1.00、 -0.50、0.00、0.50、1.00、1.50、2.00、3.00、4.00、5.00 格时,相对应的 Y 坐标,将 数据填入表 2。 表2 序号 X/格 Y1/格 Y2/格 续表 序号 X/格 Y1/格 Y2/格 9 0.50 10 1.00 11 1.50 12 2.00 13 3.00 14 4.00 15 5.00 1 -5.00 2 -4.00 3 -3.00 4 -2.00 5 -1.50 6 -1.00 7 -0.05 8 0.00

用示波器观察铁磁材料 的磁化曲线和磁滞回线

用示波器观察铁磁材料 的磁化曲线和磁滞回线

3.示波器显示B—H曲线的原理和线路
图3 示波器测量B-H曲线的实验线路
图4 铁芯试样外形
在试样上绕有励磁线圈匝和测量线圈匝。若在线圈中通过磁化电流时,此电流在 试样内产生磁场,根据安培环路定律,磁场强度H的大小为:

H N1I1
(1)
由图3可知示波器LX轴偏转板输入电压为 :

U x I1R1
因交变的磁场H在样品中产生交变的磁感应强度B,则 :
E2

N2
d dt

N2S
dB dt
式中S为环状试样的截面积,则 :

Uy
Uc

Q C

1 C

I2dt

1 CR2

E2dt

N2S CR2
dB

N2S CR2
B
(4)
4 示波器的定标
对具有校正信号的示波器,可根据示波器的使用方法,对X轴和Y轴分别 进行定标,校正X轴和Y轴上每格表示的电压值后即可以进行测量。
(2)

由式(1)和式(2)得
为了测量磁感应强度B,在次级线圈 上串N联2 一个电阻 R2 与电容C构成一
个回路,同时R2与C又构成一个积分电路。使
R2

1 C
,则:

I2
E2
式中,ω为电源的角频[R率22 ,(1C
E2
1
)2 ]2
R2
E为2 次级线圈的感应电动势。
2 磁滞回线
当H从Hs减小时,B也随之减小,但 不沿原曲线返回,而是沿另一曲线ab 下降。当H下降为零时,B不为零。 使磁场反向增加到-Hc时,材料中的 磁感应强B下降为零,继续增加反向

磁滞回线实验讲义(用示波器观测铁磁材料的磁化曲线和磁滞曲线)

磁滞回线实验讲义(用示波器观测铁磁材料的磁化曲线和磁滞曲线)

41 用示波器观测铁磁材料的磁化曲线和磁滞回线铁磁材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存储用的磁带、磁盘等都采用铁磁性材料。

磁滞回线和基本磁化曲线反映了铁磁材料的主要特征。

根据磁滞回线的不同,可将铁磁材料分为硬磁和软磁两大类,其根本区别在于矫顽磁力Hc 的大小不同。

硬磁材料的磁滞回线宽,剩磁和矫顽磁力大(大于102A/m),因而磁化后,其磁感应强度可长久保持,适宜做永久磁铁。

软磁材料的磁滞回线窄,矫顽磁力Hc一般小于102A/m,但其磁导率和饱和磁感强度大,容易磁化和去磁,故广泛用于电机、电器和仪表制造等工业部门。

本实验通过示波器来观测不同磁性材料的磁滞回线和基本磁化曲线,以加深对材料磁特性的认识。

【实验目的】1、掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解。

2、学会用示波器法观测基本磁化曲线和磁滞回线。

3、根据磁滞回线确定磁性材料的饱和磁感应强度B s、剩磁B r和矫顽力H c的数值。

4、研究不同频率下动态磁滞回线的区别。

5、改变不同的磁性材料,比较磁滞回线形状的变化。

【实验仪器】DH4516N型动态磁滞回线测试仪,示波器。

【实验原理】1、磁化曲线如果在由电流产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比单纯由电流产生的磁感应强度增大百倍,甚至在千倍以上。

铁磁物质内部的磁场强度H与磁感应强度B有如下的关系:B=μH对于铁磁物质而言,磁导率μ并非常数,而是随H的变化而改变的物理量,即μ=ƒ(H),为非线性函数。

所以如图1所示,B与H也是非线性关系。

铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H与磁感应强度B也随之变大,其B-H变化曲线如图1所示。

但当H增加到一定值(H s)后,B几乎不再随H的增加而增加,说明磁化已达饱和,从未磁化到饱和磁化的这段磁化曲线称为材料的起始磁化曲线。

用示波器测动态磁滞回线磁场测量实验报告

用示波器测动态磁滞回线磁场测量实验报告

铁磁材料的磁滞回线和基本磁化曲线(动态磁滞回线实验)磁性材料在科研和工业中有着广泛的应用,种类也相当繁多,因此各种材料的磁特性测量,是电磁学实验中一个重要内容。

磁特性测量分为直流磁特性测量和交流磁特性测量。

本实验用交流正弦电流对磁性材料进行磁化,测得的磁感应强度与磁场强度关系曲线称为动态磁滞回线,或者称为交流磁滞回线,它与直流磁滞回线是有区别的。

可以证明:磁滞回线所包围的面积等于使单位体积磁性材料反复磁化一周时所需的功,并且因功转化为热而表现为损耗。

测量动态磁滞回线时,材料中不仅有磁滞损耗,还有涡流损耗,因此,同一材料的动态磁滞回线的面积要比静态磁滞回线的面积稍大些。

本实验重点学习用示波器显示和测量磁性材料动态磁滞回线和基本磁化曲线的方法,了解软磁材料和硬磁材料交流磁滞回线的区别。

一.实验目的1.了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。

2.用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度m B 、剩磁r B 和矫顽力c H 。

3.学习示波器的X 轴和Y 轴用于测量交流电压时,各自分度值的校准。

4.用示波器显示硬铁磁材料(模具钢12Cr )的交流磁滞回线,并与软磁材料进行比较。

二.实验原理(一)铁磁物质的磁滞现象铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。

一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。

如左图所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H B -图中则相当于坐标原点O 。

随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。

当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。

m H 和m B 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。

如果再使H 逐步退到零,则与此同时B 也逐渐减小。

实验十三 用示波器法测量铁磁材料的磁化曲线和磁滞回线范文

实验十三    用示波器法测量铁磁材料的磁化曲线和磁滞回线范文

实验十三用示波器法测量铁磁材料的磁化曲线和磁滞回线本实验中用交流电对铁磁材料样品进行磁化,测得的B H-曲线称为“动态磁滞回线”。

【实验目的】1.利用动态法测量磁性材料的磁化曲线和磁滞回线;2.了解磁性材料的基本特性;3.了解磁性材料的退磁以及磁锻炼的方法。

【实验仪器】TH/KH—MHC型智能磁滞回线实验仪、磁滞回线测试仪、示波器、电源、导线等。

【实验原理】磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。

本实验仪用交流电对铁磁材料样品进行磁化,测绘的B-H曲线称为动态磁滞回线。

测量铁磁材料动态磁滞回线的方法很多,用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测绘的独特优点。

1.铁磁材料的磁滞特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特性之一是在外磁场作用下能被强烈磁化,故磁导率μ=B/H 很高。

另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B 之间关系的特性。

即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。

将一块未被磁化的铁磁材料放在磁场中进行磁化,图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线oa所示,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H增至H S时,B达到饱和值B S,这个过程的oabS曲线称为起始磁化曲线。

如果在达到饱和状态之后使磁场强度H减小,这时磁感应强度B的值也要减小。

图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,对应的B值比原先的值大,说明铁磁材料的磁化过程是不可逆的过程。

比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这种现象称为磁滞。

用示波器测动态磁滞回线、磁场测量实验报告

用示波器测动态磁滞回线、磁场测量实验报告

铁磁材料的磁滞回线和基本磁化曲线(动态磁滞回线实验)磁性材料在科研和工业中有着广泛的应用,种类也相当繁多,因此各种材料的磁特性测量,是电磁学实验中一个重要内容。

磁特性测量分为直流磁特性测量和交流磁特性测量。

本实验用交流正弦电流对磁性材料进行磁化,测得的磁感应强度与磁场强度关系曲线称为动态磁滞回线,或者称为交流磁滞回线,它与直流磁滞回线是有区别的。

可以证明:磁滞回线所包围的面积等于使单位体积磁性材料反复磁化一周时所需的功,并且因功转化为热而表现为损耗。

测量动态磁滞回线时,材料中不仅有磁滞损耗,还有涡流损耗,因此,同一材料的动态磁滞回线的面积要比静态磁滞回线的面积稍大些。

本实验重点学习用示波器显示和测量磁性材料动态磁滞回线和基本磁化曲线的方法,了解软磁材料和硬磁材料交流磁滞回线的区别。

一.实验目的1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。

2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度B、剩磁r B和矫顽力c H。

m3. 学习示波器的X轴和Y轴用于测量交流电压时,各自分度值的校准。

4. 用示波器显示硬铁磁材料(模具钢12Cr)的交流磁滞回线,并与软磁材料进行比较。

二. 实验原理(一)铁磁物质的磁滞现象铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。

一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。

如左图所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H B -图中则相当于坐标原点O 。

随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。

当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。

m H 和m B 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。

如果再使H 逐步退到零,则与此同时B 也逐渐减小。

然而,其轨迹并不沿原曲线AO ,而是沿另一曲线AR 下降到r B ,这说明当H 下降为零时,铁磁物质中仍保留一定的磁性。

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告一、实验目的。

本实验旨在通过实验方法测量铁磁材料的磁滞回线,了解铁磁材料的磁滞特性。

二、实验原理。

磁滞回线是指在磁场的作用下,材料磁化强度随着磁场的变化而发生变化,并且在去除磁场后,材料的磁化强度不完全回到零点,形成一个闭合的回线。

铁磁材料的磁滞回线特性是其重要的磁性能指标之一。

三、实验仪器与设备。

1. 电磁铁。

2. 电源。

3. 示波器。

4. 铁磁材料样品。

四、实验步骤。

1. 将铁磁材料样品放置在电磁铁中间位置。

2. 调节电源输出电压,使电磁铁通电,产生磁场。

3. 用示波器测量铁磁材料的磁感应强度随磁场变化的曲线。

4. 逐渐减小电磁铁的电流,观察示波器上的磁滞回线变化。

五、实验数据记录与分析。

根据实验测得的数据,我们绘制了铁磁材料的磁滞回线曲线图。

从曲线图中可以清晰地看出铁磁材料的磁化特性。

在磁场强度增加时,磁感应强度随之增加,但当磁场强度减小时,磁感应强度并不完全回到零点,而是形成一个闭合的回线。

六、实验结论。

通过本次实验,我们深入了解了铁磁材料的磁滞回线特性。

磁滞回线是铁磁材料在磁化过程中产生的一种特殊现象,对于材料的磁性能有着重要的影响。

通过测量和分析磁滞回线,可以更好地了解铁磁材料的磁化特性,为材料的应用提供重要参考。

七、实验注意事项。

1. 在实验中要注意安全,避免触电和磁场对身体造成的影响。

2. 实验过程中要注意仪器的正确使用和操作方法,保证实验数据的准确性和可靠性。

八、参考文献。

1. 《材料物理学实验指导》。

2. 《磁性材料与器件》。

以上为铁磁材料的磁滞回线实验报告。

用示波器测动态磁滞回线、磁场测量实验报告

用示波器测动态磁滞回线、磁场测量实验报告

铁磁材料的磁滞回线和基本磁化曲线(动态磁滞回线实验)磁性材料在科研和工业中有着广泛的应用,种类也相当繁多,因此各种材料的磁特性测量,是电磁学实验中一个重要内容。

磁特性测量分为直流磁特性测量和交流磁特性测量。

本实验用交流正弦电流对磁性材料进行磁化,测得的磁感应强度与磁场强度关系曲线称为动态磁滞回线,或者称为交流磁滞回线,它与直流磁滞回线是有区别的。

可以证明:磁滞回线所包围的面积等于使单位体积磁性材料反复磁化一周时所需的功,并且因功转化为热而表现为损耗。

测量动态磁滞回线时,材料中不仅有磁滞损耗,还有涡流损耗,因此,同一材料的动态磁滞回线的面积要比静态磁滞回线的面积稍大些。

本实验重点学习用示波器显示和测量磁性材料动态磁滞回线和基本磁化曲线的方法,了解软磁材料和硬磁材料交流磁滞回线的区别。

一.实验目的1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。

2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度B、剩磁r B和矫顽力c H。

m3. 学习示波器的X轴和Y轴用于测量交流电压时,各自分度值的校准。

4. 用示波器显示硬铁磁材料(模具钢12Cr)的交流磁滞回线,并与软磁材料进行比较。

二. 实验原理(一)铁磁物质的磁滞现象铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。

一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。

如左图所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H B -图中则相当于坐标原点O 。

随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。

当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。

m H 和m B 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。

如果再使H 逐步退到零,则与此同时B 也逐渐减小。

然而,其轨迹并不沿原曲线AO ,而是沿另一曲线AR 下降到r B ,这说明当H 下降为零时,铁磁物质中仍保留一定的磁性。

用示波法测量铁磁材料的动态磁滞回线和基本磁化曲线

用示波法测量铁磁材料的动态磁滞回线和基本磁化曲线

用示波法测量铁磁材料的动态磁滞回线和基本磁化曲线磁性材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存储的磁盘等都采用磁性材料。

磁滞回线和基本磁化曲线反映了磁性材料的主要特征。

通过实验不仅能掌握用示波器观察磁滞回线,以及基本磁化曲线的基本测量方法,而且能从理论和实际应用上加深对铁磁材料的认识。

铁磁材料分为硬磁和软磁两大类,其根本区别在于矫顽磁力c H 的大小不同。

硬磁材料的磁滞回线宽,剩磁和矫顽力大(达120~20000A/m 以上),因而磁化后,其磁性可长久保持,适宜做永久磁铁。

软磁材料的磁滞回线窄,矫顽力c H 一般小于120A/m ,但其磁导率和饱和磁感应强度大,容易磁化和去磁,故广泛用于电机、电器和仪表制造等工业部门。

磁化曲线和磁滞回线是铁磁材料的重要特性,是设计电磁机构和仪表的重要依据之一。

磁学量的测量一般比较困难,通常利用一定物理规律,将磁学量转换为易于测量的电学量。

这种转换测量法是物理实验中常用的基本测量方法。

一、实验目的1、认识铁磁物质的磁化规律,比较三种典型的铁磁物质的动态磁化特性2、测定样品的基本磁化曲线,并在坐标纸上作出H -μ曲线。

3、测定样品的C H 、r B 、S B 等参数4、学会用示波器测绘基本磁化曲线和动态磁滞回线。

二、实验原理1、磁化曲线如果在由电流产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比没放入铁磁物质时电流产生的磁感应强度增大百倍,甚至在千倍以上。

铁磁物质内部的磁场强度H 与磁感应强度B 有如下的关系:H B μ=对于铁磁物质而言,磁导率μ并非常数,而是随H 的变化而变化的物理量,即)(H f =μ,为非线性函数。

所以B 与H 也是非线性关系,如图(1)所示:铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一由小到大变化的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大。

但当H 增加到一定值(Hs )后,B 几乎不再随着H 的增加而增加,说明磁化达到饱和,如图(1)中的OS 段曲线所示。

用示波器观察铁磁材料的动态磁滞回线_实验报告

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。

软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。

磁滞回线是反映铁磁材料磁性的重要特征曲线。

矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。

【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。

本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关数据,来分析形象磁滞回线的一些因素,并根据数据的处理得出动态磁滞回线的大致图线。

【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参数。

3. 测绘样品的磁滞回线,估算其磁滞损耗。

【实验仪器】电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。

【实验原理】铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。

图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。

图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。

实验名称用示波器观测铁磁材料的动态磁滞回线

实验名称用示波器观测铁磁材料的动态磁滞回线

实验名称用示波器观测铁磁材料的动态磁滞回线实验目的:1.了解铁磁性材料的特性,理解磁滞回线的概念及其重要性。

实验原理:铁磁性材料在磁场的作用下会发生磁化,当磁场的方向发生改变时,材料内部的磁场也会跟着发生变化,这种对磁场变化的响应就是磁滞回线。

动态磁滞回线测量是通过在交变磁场中对材料进行磁化和去磁化,观察磁能的变化,得到材料的动态磁滞回线。

在实验中,我们需要将铁磁材料放置在电磁铁中,当电磁铁通电时,材料内部会发生磁化,此时可以用示波器观察电磁铁的电流和磁场强度的变化。

通过改变电磁铁的电流方向,可以获得材料的正、反磁化过程中的电流和磁场强度的变化,从而得到材料的动态磁滞回线。

设电流的方向为i,磁场的方向为H,磁化强度的方向为M,则有:H=i*N/L (N为匝数,L为电磁铁长度)M=(N/L)*S*μ0*B (S为铁磁材料的截面积,μ0为真空磁导率,B为磁场强度)磁滞回线的求取需要通过反演法或者差分法进行处理。

实验步骤:1.将电磁铁连接上电源并通电,调节电源电压,使电流在2A左右。

2.打开示波器电源,将示波器的探头连接到电磁铁两端,并调节示波器的时间和节数以及Y轴灵敏度。

3.调整电源的极性,使电磁铁反向磁化。

4.从示波器读取动态磁滞回线的数据,使用反演法或差分法处理数据,得到磁滞回线。

5.调整电源的极性,使电磁铁沿正向磁化,重复步骤4,得到另外一半的磁滞回线。

6.将两部分磁滞回线拼接,得到完整的磁滞回线。

实验注意事项:1.在实验前充分检查电磁铁和示波器的连接,确保安全。

2.在实验时要注意调节电源电压,避免电流过大造成的伤害。

3.在拼接磁滞回线时,要注意两部分的数据点数量和数据点之间距离的一致性。

4.实验结束后要关掉电源和示波器,并注意清理现场。

实验结果分析:通过实验可以得到铁磁材料的动态磁滞回线,由此可以了解到材料在磁场作用下的特性,以及对材料的磁学性质作出相应的改进。

此外,通过磁滞回线的测量,还可以得到一些物理量的参数,如矫顽力、剩磁、饱和磁化强度等等。

用示波器观测铁磁材料的动态磁滞回线(实验报告)

用示波器观测铁磁材料的动态磁滞回线(实验报告)
六、课后题
1、如果示波器上显示的磁滞回线是饱和磁滞回线,当调节X、Y电压灵敏度时,磁滞回线形状是否改变?饱和磁感应强度BS、饱和磁场强度HS、矫顽力、磁化曲线数值是否改变?
如图4,设L为环形样品的平均磁路长度,若在线圈N1中通过励磁电流I1时,此电流在样品内产生磁场,磁场强度H的大小根据安培环路定律:

即: I1
R1两端电压U1为: U1= I1R1= H (1)
由(1)式可知,若将电压U1输入示波器 X偏转板时,示波器上任一时刻电子束在X轴的偏转正比于磁场强度H。
为了追踪测量样品内的磁感应强度B,在截面面积为S的样品中缠绕副线圈N2,B可通过副线圈N2中由于磁通量变化而产生的感应电动势ε来测定。根据电磁感应定律:
2、显示和观察两种样品的交流信号下的磁滞回线图形(先测量样品1)
1)单调增加磁化电流,即缓慢顺时针调节幅度调节旋钮,使示波器显示的磁化曲线上B值增加缓慢,达到饱和。改变示波器上X、Y轴的灵敏度,调节R1、R2的大小,使示波器显示出典型美观的磁滞回线图形。
2)分别观测频率为25.0Hz、50.0Hz、100.0Hz、150.0Hz,不同频率下的磁滞回线形状(注意:由于铁磁材料的磁化状态与磁化历史有关,磁滞回线又与其起始端点的磁化状态有关。观测每一频率下的磁滞回线前,必须使幅度值降为零。否则,观测无意义)。
即:ε=- )
B=-
为了获得与B相关联的电压数值(因示波器只接收电压),在副线圈上串联一个电阻R2与电容C,电阻R2与电容C构成一个积分电路,此时ε=iR2+Uc(i为感生电流,Uc为积分电容两端电压),适当选择R2与电容C,使R2 则电容两端的电压Uc为:
Uc= (2)
由(2)式可知,若将电压Uc输入示波器的Y偏转板,示波器上任一时刻电子束在Y轴的偏转正比于样品中的磁感应强度B。

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。

2测定样品的基本磁化曲线作H 曲线。

3测定样品的Hc、Br、Bm和Hm�6�1Bm等参数。

4测绘样品的磁滞回线。

【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化故磁导率很高。

另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。

图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。

当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。

图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。

在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。

2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。

用示波器测量铁磁材料的磁滞回线

用示波器测量铁磁材料的磁滞回线

2.定出磁滞回线各顶点所代表的和值(即H和B值),画出基本 磁化曲线,测出相应值。
图1
的磁场强度H成正比的电压加到“X轴输入”,把与相应磁感应
强度B成正比的电压 [实验原理]
uy
加到“Y轴输入”。
如图1所示,L为被测样品的平均长度(虚线框),N1、 N2分别为 初、次级匝数, R1、R2为电阻,C为电容。
当 路初定级律端可输算入得交磁流场电强压度Hu为 时就产生交变的磁化电流 i1 ,由安培环
Q 1
uC C C i2dt
当次级回路中所选元件R2和C很大,满足R2 ?
i2
2
R2
N2S R2
dB dt
1 时,可得到 C
i2
dQ dt
C
duc dt
(9)
C duc N2S dB
dt
R2 dt将(Βιβλιοθήκη )式两边积分,整理后可得到B的数值为
B
R2C N2S
uc
uc
N2S R2C
B
(10)
(10)式表明电容器C上的电压uc∝B, uc确能反映B。 式中:N2为次圾线圈匝数,S为环的截面积, R2和C都是固定值。
H N1i1
(1)
又因
i1
u1 R1
L
(2)
所以
H
( N1 ) L
u1 R1
N1 LR1
u1
u1
LR1 N1
H
由上式可知H∝u1,加到示波器X轴的电压u1= ux确能反映H。 交变的H在样品中产生交变的磁感应强度B,在次级线圈中产生感
应电动势:
2
N2S
dB dt
2 i2 R2 uc
式中:为次级电流,为电容C上的电压。

数字示波器测磁滞回线实验操作指导

数字示波器测磁滞回线实验操作指导

磁滞回线实验操作指导(使用DS1062E-EDU型数字示波器)1、接线:磁滞回线实验盒Ux、Uy输出端分别连接示波器的CH1信道、CH2信道。

将实验盒上的元件参数纪录到表1中。

2、开启示波器并检查仪器设置状态:接通示波器电源开关启动示波器,数秒钟后仪器屏幕显示进入工作状态;按下HORIZONGTAL控制区的“MENU”键,查看屏幕右边中部的显示方式信息是否“X-Y”方式,否则按动该信息旁的选择按钮将其设定为“X-Y”方式;按亮CH1按键,查看在屏幕右边上方的输入耦合方式显示信息是否为“直流”,否则按动该信息旁的选择按钮将其设定为“直流”;再查看中部探头信息是否为“×1”,否则将其设定为“×1”状态;按亮CH2键,查看在屏幕右边上方的输入耦合方式显示信息是否为“直流”,否则按动该信息旁的选择按钮将其设定为“直流”;再查看中部探头信息是否为“×1”,否则将其设定为“×1”状态;示波器屏幕出现一“亮点”,若它不在屏幕中央,可利用VERTICAL控制区的“POSITION”旋钮配合“CH1”或“CH2”键将该亮点调示波器屏幕的中心,例如,先点一下“CH1”键再旋动“POSITION”, 就可使亮点沿水平方向移动。

若想在垂直方向移动亮点,需先点一下“CH2”,再调“POSITION”即可。

3、调节观察磁滞回线:把实验盒电源变压器输出档位开关掷向“12”,输出辅助开关掷向“1”,将其接通电源插座;示波器屏幕将出现磁滞回线图形;若图形在水平方向的大小不合适,可先点一下“CH1”键,再调节“VERTICAL”控制区的“SCALE”旋钮使之大小合适。

同理若需要调节图形垂直方向的大小,需先点一下“CH2”键,再调节上述“SCALE”旋钮即可。

4、光标跟踪测量磁滞回线:4.1示波器显示出大小合适的稳定磁滞回线后,将其切换到Y-T模式,操作步骤为:按下HORIZONGTAL 控制区的“MENU”键,再按屏幕右边的显示方式提示信息旁边的设置键切换到Y-T模式,则X和Y信道分别转变为CH1和CH2信道。

用示波器观察铁磁材料的磁化曲线和磁滞回线

用示波器观察铁磁材料的磁化曲线和磁滞回线

实验23 用示波器观察铁磁材料的磁化曲线和磁滞回线磁性材料应用十分广泛,从永久磁铁、变压器铁芯到录音、录像、计算机存储用的磁带、磁盘等材料都采用磁性材料。

基本磁化曲线和磁滞回线反映了磁性材料的主要特征。

通过实验研究这些性质不仅可以掌握用示波器观察、测量磁化曲线和磁滞回线的基本方法,而且还可以从理论和实际应用上加深对磁性材料磁特性的认识。

铁、钴、镍及其众多合金,以及含铁的氧化物(铁氧体)均属铁磁材料。

铁磁材料分为硬磁和软磁两大类,其根本区别在于剩磁B r 和矫顽力H c 的大小不同。

硬磁材料的磁滞回线宽,剩磁、矫顽力大(达120~20000A/m 以上),因而磁化后,其磁感应强度可长久保留,适宜做永久磁铁。

软磁材料的磁滞回线窄,矫顽力H c 一般小于120A/m ,但磁导率和饱和磁感应强度大,容易磁化和去磁,因而广泛用于电机、电器和仪表制造等工业部门。

铁磁材料的磁化曲线和磁滞回线是铁磁材料的重要特性,也是设计电磁机构和仪表的重要依据之一。

本实验采用动态法测量磁滞回线。

需要说明的是,用动态法测量的磁滞回线与静态磁滞回线是不同的,动态测量时除了磁滞损耗还有涡流损耗,因此动态磁滞回线的面积要比静态磁滞回线的面积大一些。

另外涡流损耗还与交变磁场的频率有关,所以测量的电源频率不同,得到的B —H 曲线是不同的,这可以在实验中清楚地从示波器上观察到。

【实验目的】1、 掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量——矫顽力,剩磁和磁导率的理解;2、学会用示波法测绘基本磁化曲线和磁滞回线。

【实验原理】 1、磁化曲线。

如果在由电流产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比单纯由电流产生的磁感应强度增大百倍,甚至千倍以上。

铁磁物质内部的磁场强度H 与磁感应强度B 有如下的关系:H B μ=图23—1 磁化曲线和μ—H 曲线 图23—2 起始磁化曲线与磁滞回线–对于铁磁物质而言,磁导率μ并非常数,而是随H 的变化而变化的物理量,即μ=f (H ),为非线性函数。

用示波器测量铁磁材料的磁化曲线和磁滞回线试验原理

用示波器测量铁磁材料的磁化曲线和磁滞回线试验原理

线圈N1中交变磁场H在铁磁材料中产生交变的磁感应 强度B,因此在线圈N2中产生感应电动势 2 ,其大小 用公式(2)表示
d dB 2 N2S dt dt
(2)
2 是线圈N2中产生的感应电动势
N 2 , S2 分别是线圈N2的匝数和截面积
当 R2
1 时, 2fC
I2
2
H
N1 Ux, LR1
B
的磁场强度H和磁感应强度B的值。有公式:
H0 H B , B0 nx ny
实验内容: 1、熟悉示波器各旋钮的作用,学会用示波器测量电压;
2、按照实验原理图正确连接线路,在确认调压器的输 出为0伏后,接通电源;
3、对被测样品退磁(将输出电压升至80V,再将电压由 80V逐渐降到0V); 4、用80V时的磁滞回线对示波器H轴、B轴进行定标(计 算示波器上每格对应的H0,B0的值)。 5、用列表法计算出不同电压下磁滞回线顶点对应的 B, H值,并在坐标纸上绘出基本磁化曲线和80伏时的磁 滞回线并计算80伏时Hm,Bm,Hc,Br的值。
该式表明了在交变磁场下,任一时刻输入到示波器上的 电压降Ux与磁场强度H 成正比。 输入到示波器y偏转板上的电压Uy: 为了得到和铁磁材料中的瞬时磁感应强度B成正比的Uy 值,采用电阻R2和电容C组成的积分电路。
L N 1 H U x I1R1 H I 1 I1 N1 L LR1 Ux H .....( 1) N1
d
反向减小H到0,则B沿de到-Br。H按原方向增加经ef到Hc; 继续增大H,则B沿fa回到原来饱和状态。
不同的铁磁质具有不同形状的磁滞回线,按矫顽 力的大小,铁磁材料可分为:
软磁材料:矫顽磁力很小 ,适合于做变压器、 电机中的铁芯等。 硬磁材料:矫顽磁力很大,常用做永磁体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由公式 ( ) 2 可 得 : 1 () U =H上 . N.示波器 x轴 输入 u 的电压 值 正 比于磁场 强 度
H 。

为了测 量磁感 应 强度 B ,在次 级线 圈 N 上 串联 ~个 电 阻 R 与电容 C 成 构 个回路 。取 电容 C两端 电压 u c至示 波器 Y轴输 入 ,若适 当选 择 R 和 C使
) ‘
图 1原 理 图
本文 研 究 的铁磁 物 质是 一 个环 状样 品 。在样 品上 绕 有励 磁线 圈 N, 匝和 测 量 线圈 N 。若 在线 圈 N. 匝 中通 过磁 化 电流 i 时 ,此 电流在 样 品 内产 生 . 磁 场 ,根据 安培环 路定 律磁 场 强度 H的 大小 为:肚 加 1 L() 其 中 L为 的环状 式 样 的平 均 磁路 长 度 。 由图 l可知示 波 器 x轴 偏 转板 输入 电压为 :U =i ( ) . 2 .

U U ≯ s 式中 x 、Y分别为测量磁滞 回线曲线与 X 轴和 Y 轴交 点的坐标值 ( 单位 : 。 格)
综 合上 述 分 析 ,本 实 验 定 量 计算 公 式 为 :
片 =N 1 三R t5 ()
B=R CS. / S( ) 、, Ⅳ, 6
4F e w v 软件 使 用介 绍 re a e F e w v 软件 是 由固 纬公司 提供 的数 字示波 器 软件 ,通过 它可 以实现 r ea e P 对数 字示 波器 的控 制,其 界面 如图 2 示。“ c 所 连接 ”页面 用于选 择 与 P 相 c 连 的示波 器设 备 ,“ 图像 ”页 面用 于将数 据 以图像 形式显 示 ,“ 令”页 面则 命 用 于 向示 波 器发 出操 作 命 令 。下面 简 要 介 绍 该软 件 的使 用 步 骤 :
科 学 论 坛
I ■
Caiedcl i h e hoR iSnaTngew nCcneoyv e
用数字 示波器 和计算机观 测铁磁材 料的磁滞 回线
赵 伟 陈伟杰
厦门 3 12 ) 6 0 1
( 美大学 诚毅 学院 福 建 集
[ 摘 要 ] 文先 简要论 述 了铁磁 材料 磁滞 回线测 量 的基本 原理 , 介绍 了如何 利用数 字示 波器 和计 算机软 件对 该 曲线 进行 观测 , 本 再 最后 简单 介绍 了F ew v r ea e 软件 。 [ 关健 词] 滞 回线 磁场 强度 磁感 应强度 磁 中圈分类 号 :L2 2 T 6+ 文献标 识码 : A 文章 编号 :0 9 94 (0 0 1—0 00 10 1X2 1 )20 6 — 1
1前 言 磁性 材料 在 日常生 活中有 着广 泛 的应用 。磁滞 回线 和基 本磁化 曲线 反映 了磁 性材料 的主 要特征 。铁 磁材 料分 为硬磁 和软 磁两 大类 ,其根 本区别 在于 矫顽磁 力 H C的大小 不 同。硬磁 材料 的磁 滞 回线宽 ,剩磁 和矫 顽力大 , 因而 磁 化后 ,其磁 感应 强度 可长久 保 持,适 宜做 永久磁 铁 。软磁材 料 的磁滞 回线 窄, 其磁 导率和 饱和 磁感 应强度 大 , 易磁化 和去磁 , 广泛 用于 电机 、电 但 容 故 器 和仪 表制 造等 工业 部 门。磁滞 回 线是 铁磁 材料 的重 要特 性之 ~ 。 下面 介绍 利用 D 4 1C 磁滞 回线 实验仪 、 D 一 02 B56型 G S 2 6 数字 示波 器及 计算 机 观 测 磁 滞 回线 的 办法 。 2磁 场 强 度H和磁 感 应强 度 B的测 量 由于 磁场 强度 H 和磁 感应 强度 B这 两个 物理量 不 能直接 用仪器 、仪表 来 监 测 ,所 以本 文借 助 物理 定律 把 H和 B转 化 为 电压 ,对 其进 行 间 接 测量 。 具体 的方 法 为:根据 安 培 环路 定 律把 测 量 H转 化 为测 量 电流 ,进而 转 化 为 测 量 电压 U ;根据 法 拉第 电磁 感应 定 律并 利用 积 分 电路把 测量 B转化 为 测 x 量 电压 UY ,如 图 1。

为 了定量 研 究磁 滞 回线 ,必 须对 示 波 器进 行 定标 。即还 须确 定示 波器 的 x 轴 的每 格代 表 多少 H值 ( / ) A m ,Y轴 每格 实 际代表 多 少 B() T。 般 示波 器都有 已知 的 x 轴和 Y 的灵敏 度 , x 轴 设 轴灵 敏度 为 s (/ ) xV 格 , Y 的灵敏 度为 s (/ ) x y 轴 y V 格 。s 、s 均可 从示 波器 的显示 屏上直 接读 出, 则有:
图 2 F e w v 操 作界 面图 r ea e ( 1)通 讯 设置 :先 设 置 好 数 字 示 波 器 的接 口类 型 为 “ ; USB” ( 2)查 找 设 备 : 进 入 “ 接 ”页 面 扫 描 设备 ,选 中所 找 到 的 设备 ; 连 ( 3) 观 测 图像 : 进 入 “图像 ” 页 面 , 点 击 “ 始 ” 按 钮 进 行 P C 开 与示 波器 的通 讯 ,即将 示波 器 的 图像传 到 F e w v r e a e软件 界面 来 。 5操 作步 骤 () 线 :首先按 图 1 1连 连好 D 4 1C型磁 滞 回线实 验仪 ,并连好 数字 示 H 56 波器 与 计算 机 的 U B通 讯线 ; S () 2 设置 参数 :设 置好 实验 仪 、数 字 示波 器的 相应 参数 , 至数字 示波 直 器上 出现 如 图 2所 示 的磁 滞 回线 : () 3 用软 件观 测 图像 :按上面 对 F ew v 软件 的介 绍使用 软件来 监测 数 r ea e
=E ,R 。 / ) ) E / , 【 ,十1 ” R 式 中 , 为 电源 的 角 频 率 ,E。 次 级线 圈 的感 应 电动 势 。 为 在交 变 的电 磁 场 中 ,根 据 法 拉 第 电磁 感 应 定 律 有 :
N2 s
R > l ,则 : > l ( _ l
相关文档
最新文档