2018届高考文科数学押题模拟试卷1
2018届全国数学高考全真模拟卷1(文科)答案
2018年数学(文科)试题参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共12小题,每小题5分,满分60分.6.【解析】∵OA →+13AB →+13AC →=0,∴OA →+13(OB →-OA →)+13(OC →-OA →)=0,∴OA →+OB →+OC →=0,所以O 为△ABC 的重心,又O 为△ABC 的外心,所以△ABC 为正三角形.设△ABC 的边长为a ,则23×32a =4,∴a =4 3.所以CA →在CB →上的投影为43cos π3=23,故答案选A .7.【解析】由已知的三视图可得:该几何体是一个底面为直角边为2的等腰直角三角形,高为1的三棱锥,故该几何体的体积为V =23,故答案为C.8.【解析】方程x 2-px +3p -8=0有两个正根,则有⎪⎩⎪⎨⎧>>+≥∆0002121x x x x即解得p ≥8或83<p ≤4,又p ∈[0,4],则所求概率为p =13,故答案选A .11.【解析】由三角形PF 1F 2三边关系可知⎩⎨⎧>>+cc c 2101022,∴52<c<5,∴e 1e 2+1=2c 10+2c ·2c10-2c+1=c 225-c 2+1=2525-c 2>43,因此e 1e 2+1的取值范围是4(,)3+∞,故答案选B . 12.【解析】设F ()x =f ()x -12x ,F ′(x )=f ′(x )-12,∵f ′(x )>12.∴F ′(x )=f ′(x )-12>0,即函数F (x )在R 上单调递增.∵f (x 2)>x 22+12,∴f (x 2)-x 22>f (1)-12,∴F (x 2)>F (1).而函数F (x )在R 上单调递增,x 2>1,∴x>1或x <-1,故答案选C.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分. 13.521033+ 14.n3n -1 15.5% 16.(4,2017)16.【解析】作出函数f (x )的图象,令直线y =t 与f (x )的图象交于四个点,其横坐标由左到右依次为a ,b ,c ,d ,则由图象可得,b +c =2,log 2015(d -1)=a)21(-1=t ,由于0<t <1,则得到-1<a <0,2<d <2016,则2<a +d <2015,即有4<a +b +c +d <2017,故答案为:(4,2017).三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)解:(Ⅰ)f (x )=32sin2x -12(cos 2x -sin 2x )-1=32sin2x -12cos2x -1=sin ⎝⎛⎭⎫2x -π6-1, ........1分 f (C )=sin ⎝⎛⎭⎫2C -π6-1=0,所以sin ⎝⎛⎭⎫2C -π6=1,因为2C -π6∈⎝⎛⎭⎫-π6,11π6,所以2C -π6=π2,所以C =π3, ....... 3分由余弦定理知:a 2+b 2-2ab cos π3=7,因为sin B =3sin A ,由正弦定理知:b =3a , ......... 5分 解得:a =1,b =3.6分(Ⅱ)由条件知g (x )=sin ⎝⎛⎭⎫2x +π6-1,所以g (B )=sin ⎝⎛⎭⎫2B +π6-1=0,所以sin ⎝⎛⎭⎫2B +π6=1,因为2B +π6∈⎝⎛⎭⎫π6,13π6,所以2B +π6=π2,即B =π6,m =⎝⎛⎭⎫cos A ,32,n =(1,sin A -33cos A ),于是m·n =cos A +32⎝⎛⎭⎫sin A -33cos A =12cos A +32sin A =sin ⎝⎛⎭⎫A +π6, ........ 8分∵B =π6,∴A ∈⎝⎛⎭⎫0,56π,得A +π6∈⎝⎛⎭⎫π6,π, ..........10分 ∴sin ⎝⎛⎭⎫A +π6∈(0,1],即m·n ∈(0,1]. ................. 12分18.(本小题满分12分)解:(Ⅰ)证明:取AD 的中点G ,连接OG ,FG . ∵对角线AC 与BD 的交点为O ,∴OG ∥DC ,OG =12DC ,..............2分∵EF ∥DC ,DC =2EF ,∴OG ∥EF ,OG =EF ,∴OGFE 为平行四边形, ∴OE ∥FG , ..............4分 ∵FG ⊂平面ADF ,OE ⊄平面ADF ,∴OE ∥平面ADF ; ..................5分 (Ⅱ)证明:∵四边形ABCD 为菱形,∴OC ⊥BD ,∵FD =FB ,O 是BD 的中点, ∴OF ⊥BD , ∵OF ∩OC =O ,∴BD ⊥平面AFC ,.................7分 ∵BD ⊂平面ABCD ,∴平面AFC ⊥平面ABCD ;..........................8分 (Ⅲ)解:作FH ⊥AC 于H .∵平面AFC ⊥平面ABCD ,∴FH ⊥平面ABCD ,∴∠F AH 为AF 与平面ABCD 所成角,.........................10分 由题意,△BCD 为正三角形,OA =3,BD =AB =2, ∵FD =FB =2,∴△FBD 为正三角形,∴OF = 3.△AOF 中,由余弦定理可得cos ∠AOF =3+3-92·3·3=-12,∴∠AOF =120°,∴∠F AH =∠F AO =30°,∴AF 与平面ABCD 所成角为30°...............................12分19.(本小题满分12分) 解:(1)由表格数据可知视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生有()10a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==, ………………………………………………4分 解得6a =. …………………………………………………………5分因为3240a b ++=,所以2b =.答:a 的值为6,b 的值为2.……………………………………………7分(2)由表格数据可知,听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生有()11b +人,由(1)知,2b =,即听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生共有13人.…9分记“听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上”为事件B , 则()11134040b P B +==. 答:听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率为1340.…12分20.(本小题满分12分)解:(Ⅰ)依题意,椭圆Γ:x 22+y 2=1中,a 2=2,b 2=1,故c 2=a 2-b 2=1,故F ()1,0,故p2=1,则2p =4,故抛物线C 的方程为y 2=4x ,将M ()x 0,2代入y 2=4x ,解得x 0=1,故||MF =1+p2=2 .........................4分(Ⅱ)(法一)依题意,F ()1,0,设l :x =ty +1,设A ()x 1,y 1,B ()x 2,y 2,联立方程⎩⎪⎨⎪⎧y 2=4x x =ty +1,消去x ,得y 2-4ty -4=0.∴⎩⎪⎨⎪⎧y 1+y 2=4t y 1y 2=-4 ①且⎩⎪⎨⎪⎧x 1=ty 1+1x 2=ty 2+1,又AF →=λFB → 则()1-x 1,-y 1=λ()x 2-1,y 2,即y 1=-λy 2,代入 ① 得⎩⎨⎧()1-λy 2=4t -λy 22=-4, ................6分 消去y 2得4t 2=λ+1λ-2,且H ()-1,0, ................8分则|HA |2+|HB |2=()x 1+12+y 21+()x 2+12+y 22=x 21+x 22+2()x 1+x 2+2+y 21+y 22=()ty 1+12+()ty 2+12+2()ty 1+ty 2+2+2+y 21+y 22=()t 2+1()y 21+y 22+4t ()y 1+y 2+8=()t 2+1()16t 2+8+4t ·4t +8=16t 4+40t 2+16.由16t 4+40t 2+16=854, ...............10分解得t 2=18或t 2=-218(舍),故λ=2或12...............................12分(法二)若设直线斜率为k ,讨论k 存在与不存在,酌情给分21.(本小题满分12分)解:(Ⅰ)当b =1时,f (x )=12ax 2-(1+a 2)x +a ln x ,f ′(x )=ax -(1+a 2)+a x =(ax -1)(x -a )x...................1分讨论:1°当a ≤0时,x -a >0,1x>0,ax -1<0⇒f ′(x )<0,此时函数f (x )的单调递减区间为(0,+∞),无单调递增区间........................2分2°当a >0时,令f ′(x )=0⇒x =1a或a ,①当1a =a (a >0),即a =1时, 此时f ′(x )=(x -1)2x≥0(x >0),此时函数f (x )单调递增区间为(0,+∞),无单调递减区间;...........................3分②当0<1a<a ,即a >1时,此时在⎝⎛⎭⎫0,1a 和(a ,+∞)上函数f ′(x )>0, 在⎝⎛⎭⎫1a ,a 上函数f ′(x )<0,此时函数f (x )单调递增区间为⎝⎛⎭⎫0,1a 和(a ,+∞); 单调递减区间为⎝⎛⎭⎫1a ,a ; .....................4分③当0<a <1a,即0<a <1时,此时函数f (x )单调递增区间为(0,a )和⎝⎛⎭⎫1a ,+∞; 单调递减区间为⎝⎛⎭⎫a ,1a ................................................6分 (Ⅱ)证明:(法一)当a =-1,b =0时,f (x )+e x >-12x 2-x +1,只需证明:e x -ln x -1>0,设g (x )=e x-ln x -1(x >0), 问题转化为证明∀x >0,g (x )>0.令g ′(x )=e x -1x , g ″(x )=e x +1x2>0,∴g ′(x )=e x -1x 为(0,+∞)上的增函数,且g ′)21(=e -2<0,g ′(1)=e -1>0,........8分∴存在惟一的x 0∈⎝⎛⎭⎫12,1,使得g ′(x 0)=0,e x 0=1x 0, ∴g (x )在(0,x 0)上递减,在(x 0,+∞)上递增.......................................10分∴g (x )min =g (x 0)=e x 0-ln x 0-1=1x 0+x 0-1≥2-1=1,∴g (x )min >0∴不等式得证......................................................12分 (法二)先证:x -1≥ln x (x >0)令h (x )=x -1-ln x (x >0),∴h ′(x )=1-1x =x -1x=0⇒x =1,∴h (x )在(0,1)上单调递减,在(1,+∞)上单调递增∴h (x )min =h (1)=0,∴h (x )≥h (1)⇒x -1≥ln x .............................8分 ∴1+ln x ≤1+x -1=x ⇒ln(1+x )≤x ,∴e ln(1+x )≤e x ,10分∴e x ≥x +1>x ≥1+ln x ,∴e x >1+ln x ,故e x -ln x -1>0,证毕.............................12分22.(本小题满分10分)解:(Ⅰ)曲线⎩⎨⎧x =3cos α+sin α,y =3sin α-cos α,可得:⎩⎨⎧x 2=3cos 2α+23sin αcos α+sin 2α,y 2=3sin 2α-23sin αcos α+cos 2α, 曲线C 的普通方程:x 2+y 2=4 ................................3分直线l :ρsin ⎝⎛⎭⎫θ+π6=1=32ρsin θ+12ρcos θ,直线l 的直角坐标方程:x +3y -2=0 ...................................5分(Ⅱ)∵圆C 的圆心(0,0)半径为2,,圆心C 到直线的距离为1,∴这三个点在平行直线l 1与 l 2上,如图:直线l 1与 l 2与l 的距离为1. l 1:x +3y =0,l 2:x +3y -4=0. ⎩⎨⎧x 2+y 2=1,x +3y =0,可得⎩⎨⎧x =3,y =-1,⎩⎨⎧x =-3,y =1 两个交点(-3,1)、(3,-1); ⎩⎨⎧x 2+y 2=1,x +3y -4=0,解得(1,3), ...................8分 这三个点的极坐标分别为:⎝⎛⎭⎫2,11π6、⎝⎛⎭⎫2,5π6、⎝⎛⎭⎫2,π3 ...........................10分23.(本小题满分10分)解:(Ⅰ)当a =0时,g (x )=-||x -1 ∴-||x -1≤||x -2+b ⇒-b ≤||x -1+||x -2∵x -1+x -2≥x -1+2-x =1∴-b ≤1,∴b ≥-1 ..................5分 (Ⅱ)当a =1时,g (x )=⎩⎪⎨⎪⎧2x -1,0<x <11x -x +1,x ≥1 ......................6分可知g (x )在(0,1)上单调递增,在(1,+∞)单调递减8分 ∴g (x )max =g (1)=1 ....................10分。
2018年全国高考数学考前押题文科数学题卷及答案解析
1 2
D. ,
1 2
第Ⅱ卷
本 卷 包 括 必 考 题 和 选 考 题 两 部 分 。 第 (13)~(21) 题 为 必 考 题 , 每 个 试 题 考 生 都 必须作答。第 (22)~(23) 题为选考题,考生根据要求作答。 二、填空题:本大题共 4 小题,每小题 5 分。
… , x10 ,
是抛物线 C 的焦点,若 x1 x2 x10 10 ,则
x y 2≥0 y 15.若 x , y 满足约束条件 x y 4≤0 ,则 的取值范围为__________. x 1 y≥2
16 .在三棱椎 P ABC 中,底面 ABC 是等边三角形,侧面 PAB 是直角三角形,且
F F 2 PF2 ,设 C1 与 C2 的 的焦点 F 1, F 2 ,若点 P 是 C1 与 C2 在第一象限内的交点,且 1 2
离心率分别为 e1 , e2 ,则 e2 e1 的取值范围是( A. , )
1 3
B. ,
1 3
C. ,
B. n 2017 i
C. n 2018 i )
D. n 2017 i
π 2 ,则“ cosx x ”是“ cos x<x ”的( 2
A.充分而不必要条件 C.充分必要条件
B.必要而不充分条件 D.既不充分也不必要条件
9.如图为正方体 ABCD A1B1C1D1 ,动点 M 从 B1 点出发,在正方体表面上沿逆时针方
PA PB 2 , PA AC ,则该三棱椎外接球的表面积为________.
三、解答题:解答应写出文字说明、证明过程或演算步骤。
2018年高考数学模拟试卷(文科)
2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2≤1},B={x|0<x<1},则A∩B=()A.[﹣1,1)B.(0,1) C.[﹣1,1]D.(﹣1,1)2.(5分)若i为虚数单位,则复数z=在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知等差数列{a n}前3项的和为6,a5=8,则a20=()A.40 B.39 C.38 D.374.(5分)若向量,的夹角为,且||=4,||=1,则||=()A.2 B.3 C.4 D.55.(5分)已知双曲线C:(a>0,b>0)的渐近线与圆(x+4)2+y2=8无交点,则双曲线离心率的取值范围是()A.(1,)B.()C.(1,2) D.(2,+∞)6.(5分)已知实数x,y满足约束条件,则z=x+2y的最大值为()A.6 B.7 C.8 D.97.(5分)函数y=log(x2﹣4x+3)的单调递增区间为()A.(3,+∞)B.(﹣∞,1)C.(﹣∞,1)∪(3,+∞)D.(0,+∞)8.(5分)宜宾市组织“歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A,B,C,D对比赛预测如下:A说:“是甲或乙获得特等奖”;B说:“丁作品获得特等奖”;C说:“丙、乙未获得特等奖”;D说:“是甲获得特等奖”.比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()A.甲B.乙C.丙D.丁9.(5分)某几何组合体的三视图如图所示,则该几何组合体的体积为()A.B.C.2 D.10.(5分)若输入S=12,A=4,B=16,n=1,执行如图所示的程序框图,则输出的结果为()A.4 B.5 C.6 D.711.(5分)分别从写标有1,2,3,4,5,6,7的7个小球中随机摸取两个小球,则摸得的两个小球上的数字之和能被3整除的概率为()A.B.C.D.12.(5分)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),给出下列命题:①当x≥0时,f(x)=e﹣x(x+1);②∀x1,x2∈R,都有|f(x1)﹣f(x2)|<2;③f(x)>0的解集为(﹣1,0)∪,(1,+∞);④方程2[f(x)]2﹣f(x)=0有3个根.其中正确命题的序号是()A.①③B.②③C.②④D.③④二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)在等比数列{a n}中,若a2+a4=,a3=,且公比q<1,则该数列的通项公式a n=.14.(5分)已知y=f(x)是偶函数,且f(x)=g(x)﹣2x,g(3)=3,则g(﹣3)=.15.(5分)三棱锥P﹣ABC中,底面△ABC是边长为的等边三角形,PA=PB=PC,PB⊥平面PAC,则三棱锥P﹣ABC外接球的表面积为.16.(5分)在△ABC中,D为AC上一点,若AB=AC,AD=,则△ABC 面积的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须答.第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17.(12分)在△ABC中,a,b,c分别为A,B,C的对边,且sinA=2sinB,(1)若C=,△ABC的面积为,求a的值;(2)求的值.18.(12分)每年4月15至21日是全国肿瘤防治宣传周,全国每天有超1万人确诊为癌症,其中肺癌位列发病首位,吸烟人群是不吸烟人群患肺癌的10倍.某调查小组为了调查中学生吸烟与家庭中有无成人吸烟的关系,发放了500份不记名调查表,据统计中学生吸烟的频率是0.08,家庭中成人吸烟人数的频率分布条形图如图.(1)根据题意,求出a并完善以下2×2列联表;(2)能否据此判断有97.5%的把握认为中学生吸烟与家庭中有成人吸烟有关?附表及公式:K2=,n=a+b+c+d19.(12分)如图,四棱锥P﹣ABCD的底面ABCD是直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥平面ABCD,Q是AD的中点,M是棱PC上的点,PA=PD=2,AD=2BC=2,CD=.(1)求证:平面BMQ⊥平面PAD;(2)当M是PC的中点时,过B,M,Q的平面去截四棱锥P﹣ABCD,求这个截面的面积.20.(12分)已知抛物线C的焦点在x轴上,顶点在原点且过点p(2,1),过点(2,0)的直线l交抛物线C于A,B两点,M是线段AB的中点,过点M作y 轴的垂线交C于点N.(1)求抛物线C的方程;(2)是否存在直线l,使得以AB为直径的圆M经过点N?若存在,求出直线l 的方程;若不存在,说明理由.21.(12分)已知函数f(x)=e x+x﹣2,g(x)=alnx+x.(1)函数y=g(x)有两个零点,求a的取值范围;(2)当a=1时,证明:f(x)>g(x).(二)选做题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C的参数方程为,(参数φ∈R).以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,(I)求圆C的极坐标方程;(II)直线l,射线OM的极坐标方程分别是,,若射线若射线OM分别与圆C分别交于O,P两点,与直线l的交点为Q,求|PQ|的值.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|+2|x+1|.(I)若存在x0∈R,使得,求实数m的取值范围;(II)若m是(I)中的最大值,且a3+b3=m,证明:0<a+b≤2.2018年高考数学模拟试卷(文科)答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x∈R|x2≤1}={x|﹣1≤x≤1},B={x|0<x<1},则A∩B={x|0<x<1}=(0,1).故选:B.2.【解答】解:∵===所对应的点为位于第四象限.故选:D.3.【解答】解:(1)设{a n}的公差为d,由已知得若a1+a2+a3=6,a5=8,⇒3a1+3d=6,a1+4d=8,解得a1=0,d=2故a20=0+(20﹣1)×2=38;故选:C.4.【解答】解:向量,的夹角为,且||=4,||=1,可得•=4×1×cos=4×=2,则||====4,故选:C.5.【解答】解:由圆(x+4)2+y2=8,得到圆心(﹣4,0),半径为:.∵双曲线C:(a>0,b>0)的渐近线与圆(x+4)2+y2=8无交点,可得:,化为2b2>c2.c2>2a2∴e.∴该双曲线的离心率的取值范围是().故选:B.6.【解答】解:画可行域如图,z为目标函数z=x+2y,可看成是直线z=x+2y的纵截距,由可得:A(2,3).画直线0=x+2y,平移直线过A(2,3)点时z有最大值8.故z=x+2y的最大值为:8.故选:C.7.【解答】解:由x2﹣4x+3>0,解得x>3或x<1.∴函数y=log(x2﹣4x+3)的定义域为A={x|x>3或x<1}.求函数y=log(x2﹣4x+3)的单调递增区,即求函数y=x2﹣4x+3=(x﹣2)2﹣1在定义域A内的单调递减区间,而此函数在定义域A内的单调递减区间为(﹣∞,1),∴函数y=log(x2﹣4x+3)的单调递增区为(﹣∞,1),故选:B.8.【解答】解:根据题意,假设甲单位获得特等奖,则A、C、D的说法都对,符合题意;故选:A.9.【解答】解:由题意可知,几何体是组合体,左侧是三棱锥S﹣ACF;右侧是三棱柱ABC﹣DEF,SA=AB=1.AC=AE=,几何体是正四棱柱的一部分,体积为:=2.故选:C.10.【解答】解:模拟程序的运行,可得S=12,A=4,B=16,n=1,满足条件S≤100,执行循环体,S=0,A=8,B=8,n=2满足条件S≤100,执行循环体,S=0,A=16,B=4,n=3满足条件S≤100,执行循环体,S=12,A=32,B=2,n=4满足条件S≤100,执行循环体,S=42,A=64,B=1,n=5满足条件S≤100,执行循环体,S=105,A=128,B=,n=6此时,不满足条件S≤100,退出循环,输出n的值为6.故选:C.11.【解答】解:分别从标有1,2,3,4,5,6,7的7个小球中随机摸取两个小球,基本事件总数n==21,摸得的两个小球上的数字之和能被3整除包含的基本事件有:(1,2),(1,5),(2,4),(2,7),(3,6),(4,5),(5,7),共7个,∴摸得的两个小球上的数字之和能被3整除的概率为p==.故选:D.12.【解答】解:①f(x)为R上的奇函数,设x>0,﹣x<0,则f(﹣x)=e﹣x(﹣x+1)=﹣f(x),∴f(x)=e﹣x(x﹣1),∴故①错误;②当x<0时,f′(x)=e x(x+2);∴x<﹣2时,f′(x)<0,﹣2<x<0时,f′(x)>0;∴f(x)在(﹣∞,0)上单调递减,在(﹣2,0)上单调递增;∴x=﹣2时,f(x)取最小值﹣e﹣2,且x<﹣2时,f(x)<0;∴f(x)<f(0)=1;即﹣e﹣2<f(x)<1;当x>0时,f′(x)=e﹣x(2﹣x);∴f(x)在(0,2)上单调递增,在(2,+∞)上单调递减;x=2时,f(x)取最大值e﹣2,且x>2时,f(x)>0;∴f(x)>f(0)=﹣1;∴﹣1<f(x)≤e﹣2;∴f(x)的值域为(﹣1,e﹣2]∪[﹣e﹣2,1);∴∀x1,x2∈R,都有|f(x1)﹣f(x2)|<2,故②正确;③当x<0时,由f(x)=e x(x+1)<0,得x+1<0;即x<﹣1,当x>0时,由f(x)=e﹣x(x﹣1)<0,得x﹣1<0;得0<x<1,∴f(x)<0的解集为(0,1)∪(﹣∞,﹣1),f(x)>0的解集为(﹣1,0)∪(1,+∞),故③正确;④方程2[f(x)]2﹣f(x)=0,即有f(x)=0或f(x)=,由f(x)=0,可得x=0,1,﹣1;由f(x)=,由f(﹣1)<,f(0)>,可得有一根介于(﹣1,0),故共有4个根,故④错误.故选:B.二、填空题:本大题共4个小题,每小题5分,共20分.13.【解答】解:设等比数列{a n}的首项为a1,公比q,(q<1),可得a1q+a1q3=,a1q2=,解得a1=1,q=,则该数列的通项公式a n=.故答案为:14.【解答】解:∵y=f(x)是偶函数,且f(x)=g(x)﹣2x,∴f(﹣3)=g(﹣3)+6,f(3)=g(3)﹣6又f(﹣3)=f(﹣3),g(3)=3,则g(﹣3)=﹣9.故答案为:﹣9.15.【解答】解:由题意,底面△ABC是边长为的等边三角形,PA=PB=PC,PB ⊥平面PAC,把三棱锥P﹣ABC放到正方体中,可得PA=PB=PC是正方体的三个平面对角线.可得:正方体的边长为1;三棱锥P﹣ABC外接球半径R=.球的表面积为:S=4πR2=3π.故答案为:3π.16.【解答】解:∵等腰三角形ABC中,AB=AC,D是AC上一点,设AB=AC=3x,则:故cosA=.所以:==,△ABC面积S==,故三角形面积的最大值为9.故先答案为:9.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须答.第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17.【解答】解:(1)△ABC中,a,b,c分别为A,B,C的对边,且sinA=2sinB,则:利用正弦定理得:a=2b.∵,所以:,解得:.(2),=﹣4(1﹣cosC),=.18.【解答】解:(1)由条形图可知,0.48+0.25+0.16+0.09+a=1,解得a=0.02;由题意填写2×2列联表,如下;…6分(2)由表中数据,计算K2=≈5.644>5.024;∴有97.5的把握认为中学生吸烟与家庭中有成人吸烟有关…12分19.【解答】解:(1)∵底面ABCD是直角梯形,AD∥BC,DQ=AD=BC,∠ADC=90°,∴四边形BCDQ是矩形,∴BQ⊥AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴BQ⊥平面PAD,又BQ⊂平面BQM,∴平面PAD⊥平面BQM.(2)设平面BQM交PD于N,连接NQ,MN,则四边形BQNM就是截面.由(I)知BQ∥DC,DC⊂平面PCD,∴BQ∥平面PDC,∴BQ∥MN,又BQ∥CD,∴MN∥CD,∵M是PC的中点,DN=PD=1,∴N是PD的中点,∴MN=CD=,∵BQ⊥平面PAD,QN⊂平面PAD,∴BQ⊥QN,∴四边形BQNM是直角梯形,∴截面面积为S=×(+)×1=.20.【解答】解:(1)由题意可设抛物线C的方程为y2=2px,而P(2,1)在抛物线上,∴1=4p,即p=,∴抛物线C的方程为:y2=x.(2)由题意可设l:x=ty+2,代入y2=x,得:2y2﹣ty﹣2=0,设A(x1,y1),B(x2,y2),则y1y2=﹣1,y1+y2=,∴x1x2=(ty1+2)(ty2+2)=t2y1y2+2t(y1+y2)+4=4,x1+x2=(ty1+2)+(ty2+2)=t(y1+y2)+4=+4,∴N(,),=(x1﹣,y1﹣),=(x2﹣,y2﹣),∵若以AB为直径的圆M经过点N,则=(x1﹣)(x2﹣)+(y1﹣)(y2﹣)=0,∴x1x2﹣(x1+x2)++y1y2﹣(y1+y2)+=0,∴t4+12t2﹣64=0,即t2=4,t=±2.∴存在直线l,l的方程:x=±2y+2.21.【解答】解:(1)g(x)=alnx+x,(x>0),当a≥0,g'(x)>0,g(x)单调递增,不满足条件.当a<0,令g'(x)>0,得x>﹣a,g(x)单调递增;令g'(x)<0,得0<x <﹣a,g(x)单调递减;∴g(x)min=g(﹣a)=aln(﹣a)﹣a;又x→0,g(x)→+∞;x→+∞,g(x)→+∞要使函数y=g(x)有两个零点,g(﹣a)<0,a<﹣e故a的取值范围为:(﹣∞,﹣e)…(4分)(2)证明:当a=1时,欲证f(x)>g(x),只需证明e x﹣lnx﹣2>0设h(x)=e x﹣lnx﹣2,则,设,则,所以函数在(0,+∞)上单调递增…(6分)因为,h'(1)=e﹣1>0,所以函数在(0,+∞)上有唯一零点x0,且,使得,即lnx0=﹣x0,当x∈(0,x0)时,h'(x)<0;当x∈(x0,+∞),h'(x)>0.所以h(x)min=h (x0)故.综上可知,f(x)>g(x)…(12分)他法:证e x≥x+1≥lnx+2,得证f(x)>g(x),(等号不同时成立)(二)选做题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵圆C的参数方程为,(参数φ∈R).∴(ρcosθ﹣2)2+(ρsinθ)2=(﹣2cosφ)2+(2sinφ)2=4,∴ρcosθ=4,∴圆C的极坐标方程为ρ=4cosθ.(2)∵直线l的极坐标方程是,射线OM的极坐标方程是,∴ρcos()=3,ρ=6,∵射线OM分别与圆C分别交于O,P两点,与直线l的交点为Q,∴,P(2,),∴|PQ|=6﹣2=4.[选修4-5:不等式选讲]23.【解答】解:(I)f(x)=|2x﹣1|+|2x+2|≥|2x﹣1﹣(2x+2)|=3,∵存在x0∈R,使得,∴3+m2≤m+5,即m2﹣m﹣2≤0,解得﹣1≤m≤2.(II)由(I)知:m=2,即a3+b3=2,∵a3+b3=(a+b)(a2﹣ab+b2)=(a+b)[(a﹣)2+]=2,且(a﹣)2+>0,∴a+b>0.又2=a3+b3=(a+b)(a2﹣ab+b2)=(a+b)[(a+b)2﹣3ab]≥(a+b)[(a+b)2﹣(a+b)2]=(a+b)3,∴(a+b)3≤8,∴0<a+b≤2.。
2018年高等学校招生全国统一考试押题卷文科数学试卷(一)含解析
绝密 ★ 启用前2018年普通高等学校招生全国统一考试押题卷文科数学(一)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){},2M x y x y =+=,,则集合( )A .B .C .D .【答案】D【解析】解方程组,得.故.选D .2.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为( ) A . B . C . D .【答案】A【解析】,所以复数对应的点为,故选A .3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多(){},2N x y x y =-=M N ={}0,2()2,0(){}0,2(){}2,022x y x y +=-=⎧⎨⎩20x y =⎧⎨=⎩(){}2,0MN =12i z =+i 2z ()3,4-()5,4()3,2-()3,4()2212i 12i 144i 34i z z =+⇒=+=-+=-+2z()3,4-班级 姓名 准考证号 考场号 座位号此卷只装订不密封少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的的值为( )A .B .C .D .【答案】C【解析】, (1),(2), (3), (4), 所以输出,得,故选C . 4)A .B .C .D .【答案】C【解析】,C . 5.已知双曲线的一个焦点为,一条渐近线的斜率0x =x 3478151631321i =21,2x x i =-=()221143,3x x x i =--=-=()243187,4x x x i =--=-=()28711615,5x x x i =--=-=16150x -=1516x =4-413-13sin 2cos tan 2ααα-=-⇒=22221x y a b-=()0,0a b >>()2,0F -,则该双曲线的方程为( )A .B .C .D . 【答案】B【解析】令,解得,故双曲线的渐近线方程为. ,解得,∴该双曲线的方程为.选B . 6.某家具厂的原材料费支出与销售量(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为( )A . 5B .15C .12D .20【答案】C【解析】由题意可得:,,回归方程过样本中心点,则:,.本题选择C 选项. 7.已知,下列程序框图设计的是求的值,在“ ”中应填的执行语句是( )2213x y -=2213y x -=2213y x -=2213x y -=22220x y a b-=b y x a =±b y x a =±221 3a b ==⎧⎨⎩2213y x -=x y y x ˆ8ˆy x b =+ˆb2456855x ++++==2535605575525y ++++==ˆ5285b =⨯+1ˆ2b ∴=()201720162018201721f x x x x =++++()0f x 开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A .B .C .D .【答案】A【解析】不妨设,要计算,首先,下一个应该加,再接着是加,故应填. 8.设,则“”是“”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】作图,,,,可得A .9.如图为正方体,动点从点出发,在正方体表面上沿逆时针方向运动一周后,再回到的运动过程中,点与平面的距离保持不变,运动的路程与之间满足函数关系,则此函数图象大致是( )A .B .2018n i =-2017n i =-2018n i =+2017n i =+01x =()120182017201621f =+++++201812018S =⨯=201720162018n i =-π02x <<2cos x x <cos x x <cos y x =2y x =y x =0,2x π⎛⎫∈ ⎪⎝⎭2cos x x <cos x x <1111ABCD A BC D -M 1B 1B M 11A DC x 11l MA MC MD =++()l f x =C .D .【答案】C【解析】取线段中点为,计算得:为线段或的C 项的图象特征.故选C .10.已知双曲线:的右顶点为,右焦点为,为双曲线在第二象限上的一点,关于坐标原点的对称点为,直线与直线的交点恰好为线段的中点,则双曲线的离心率为( )A .B .C .2D .3【答案】D【解析】不妨设,由此可得,,,,由于,,三点共线,故,化简得,故离心率.11.已知点和点,点() A .B .5C .3D 【答案】D【解析】由题意可得:,,则:结合二次函数的性质可得,当本题选择D 选项.1B A N N AC 1CB E 22221x y a b-=(0,0)a b >>A F B B O C CA BF M BF 12152,b B c a ⎛⎫- ⎪⎝⎭(),0A a 2,b C c a ⎛⎫- ⎪⎝⎭(),0F c 20,2b M a ⎛⎫ ⎪⎝⎭A C M 222b b a a a a c =--3c a =3e =()4,3A ()1,2B O (OA tOB t +∈R ()4,3OA =()1,2OB =(4,3OA tOB +=2t =-OA tOB +=12同的焦点,若点是与在第一象限内的交点,且,设与的离心率分别为,,则的取值范围是( ) A . B .C .D .【答案】D【解析】设,令,由题意可得:,, 据此可得:,由则:,即的取值范围是.本题选择D 选项. 第Ⅱ卷本卷包括必考题和选考题两部分。
2018届全国统一招生高考押题卷文科数学(一)试卷(含答案)
绝密 ★ 启用前2018年普通高等学校招生全国统一考试文 科 数 学(一)注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数132i z =+,121i z z +=+,则复数12z z ⋅=( ) A .47i -- B .2i --C .1+iD .14+5i【答案】A【解析】根据题意可得,21i 32i 2i z =+--=--,所以()()1232i 2i 47i z z ⋅=+⋅--=--. 2.集合{}|A x x a =<,{}3log 1B x x =<,若{}3A B x x =<U ,则a 的取值范围是( )A .[]0,3B .(]0,3C .(],3-∞D .(),3-∞【答案】B【解析】根据题意可得{}{}3log 103x B x x x <=<<=,因为{}3A B x x =<U ,所以03a <≤. 3.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”(如下图),四个全等的直角三角形(朱实),可以围成一个大的正方形,中空部分为一个小正方形(黄实).若直角三角形中一条较长的直角边为8,直角三角形的面积为24,若在上面扔一颗玻璃小球,则小球落在“黄实”区域的概率为( )A .14B .13C .125D .2573【答案】C【解析】根据题意可得,另外一条直角边长为6,所以“黄实”区域的面积为()286=4-,大正方形的面积是228+6=100,所以小球落在“黄实”区域的概率是4110025=. 4.若双曲线C :()222210,0x y a b a b-=>>的焦点到渐近线的距离等于其实轴长,则双曲线C 的离心率为( ) A .2 B .3C .5D .22【答案】C【解析】由题意可知:2b a =,224ba =,2224c a a -=,5e =.5.将函数215log cos π262x y ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭=对应的曲线沿着x 轴水平方向向左平移2π3个单位,得到曲线为( )A .1πcos 26y x ⎛⎫ ⎪⎝⎭=- B .1πsin 26y x ⎛⎫ ⎪⎝⎭=- C .1sin 2y x =-D .1sin2y x = 【答案】D【解析】因为215log cos π26152cos π26x y x ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭==-,所以沿着x 轴水平方向向左平移2π3个单位,得到曲线为1251151π1cos ππcos ππcos sin 236236222y x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.6.如图的程序框图,则输出y 的最大值是( ) A .3B .0C .15D .8此卷只装订不密封班级 姓名 准考证号 考场号 座位号【答案】C【解析】当3x =-时,3y =;当2x =-时,0y =;当1x =-时,1y =-;当0x =时,0y =;当1x =时,3y=;当2x =时,8y =;当3x =时,15y =,所以y 的最大值为15.7.一个几何体的三视图如图所示,则该几何体的体积为( )正视图侧视图A .2π+B .1+πC .2+2πD .12π+【答案】A【解析】根据三视图可得该几何体为一个长方体和半个圆柱组合所成,21112π122π2V =⨯⨯+⨯⨯⨯=+.8.已知某函数图象如图所示,则图象所对应的函数可能是( )A .2x x y =B .22xy =-C .e xy x =-D .|2|2x y x =﹣【答案】D【解析】对于A ,函数()2x x xf =,当0x >时,0y >,0x <时,0y <,不满足题意;对于B ,当0x ≥时,()f x 递增,不满足题意;对于C ,当0x ≥时,()0f x >,不满足题意.故选D .9.在平面直角坐标系中,已知直线l的方程为:20x y -=,圆C 的方程为()222423100x y ax y a a +--++=>,动点P 在圆C 上运动,且动点P 到直线l 的最大距离为2,则圆C 的面积为( ) A .π或(201π- B .πC.(201π+D .π或(201π+【答案】B【解析】因为()()2222224231210x y ax y a x a y a +--++=-+--=,所以()()22221x a y a -+-=,圆C 的圆心为(2,1)a ,半径为a .因为点P 在圆C 上的动点,所以P 到直线l的最大距离为2a +=,当a ≥时,解得11a =-2112-当0a <<1a =,符合题意,所以1a =,2S a =π=π圆. 10.已知函数()y f x =为定义域R 上的奇函数,且在R 上是单调函数,函数()()5g x f x =-;数列{}n a 为等差数列,且公差不为0,若()()190g a g a +=,则129a a a +++=L ( )A .45B .15C .10D .0【答案】A【解析】由函数()y f x =为定义域R 上的奇函数,且在R 上是单调函数,可知()()5g x f x =-关于()5,0对称,且在R 上是单调函数, 由()()190g a g a +=,所以1910a a +=,即55a =, 根据等差数列的性质,1295945a a a a +++==L .11.若x =()()22e x f x x ax =-的极值点,则函数()y f x =的最小值为( )A.(2e +B .0C.(2-D .e -【答案】C【解析】()()22e x f x x ax =-,∴()()()()2222e 2e 212e x x xf x x a x ax x a x a '⎡⎤=-+=+--⎣⎦-,由已知得,0f '=,∴220a +-=,解得1a =.∴()()22e x f x x x =-,∴()()22e x f x x '-=,所以函数的极值点为,当(x ∈时,()0f x '<,所以函数()y f x =是减函数,当(,x ∈-∞或)x ∈+∞时,()0f x '>,函数()y f x =是增函数.又当()(),02,+x ∈-∞∞U 时,220x x ->,()0f x >,当()0,2x ∈时,220x x -<,()0f x <,∴()min f x 在()0,2x ∈上,又当(x ∈时,函数()y f x =递减,当)x ∈时,函数()y f x =递增,∴()(min 2f x f==-.12.已知0b a >>,函数()2log 21log 2xf x x ⎛⎫=- ⎪⎝⎭在[],a b 上的值域为132⎡⎤-⎢⎥⎣⎦,,则ab =( ) A .14B .12C .2D【答案】D【解析】()2log 2211log log 2xf x x x x ⎛⎫=-=- ⎪⎝⎭()a x b ≤≤,又()2110ln2f x x x '=--<,所以()y f x =在[],a b 上递减,∴()()312f a f b ⎧=⎪⎨=-⎪⎩,即2213log 11log 2a a b b ⎧-=⎪⎪⎨⎪+=⎪⎩①,由1y t x =+与2log y x =的图象只有唯一交点可知方程21log t x x +=只有唯一解,经检验122a b ⎧=⎪⎨⎪=⎩是方程组①的唯一解,所以ab =第Ⅱ卷本卷包括必考题和选考题两部分。
2018年高考文科数学模拟卷(word版含答案)
[ ]x | x 2 - 3x ≥ 02018 年高考模拟检测数学(文科)本试题卷共 6 页,23 题(含选考题)。
全卷满分 150 分。
考试用时 120 分钟。
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 A = {x |1 < x ≤ 3}, B = {}则如图所示表示阴影部分表示的集合为A. [0,1)B.(0,3]C. (1,3)D. 1,32.设复数 z 满足 (1 + i ) z = 1 - 2i 3(i 为虚数单位),则复数 z 对应的点位于复平面内()A .第一象限B .第二象限C .第三象限D .第四象限3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5 步和12 步,问其内切圆的直径为多少步?” 现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是A . 2π 3π 2π 3πB .C .1 -D .1 -15 20 15 204. 在如图所示的框图中,若输出 S = 360 ,那么判断框中应填入的关于 k 的判断条件是A . k > 2?B . k < 2?C . k > 3?D . k < 3?开始k = 6, S = 15.若函数 f ( x ) = sin( x + α -π12) 为偶函数,否是则 cos 2α 的值为 1 1 3 3 A. -B.C. -D.2222S = S ⨯ kk = k - 1输出 S结束1 / 117.若 x , y 满足约束条件 ⎨ x - y ≤ 0 ,则 z = x + 3 y 的取值范围是 ⎪ x + y - 1 ≥ 0 再将所得图像向左平移个单位得到函数 g (x ) 的图像,在 g ( x ) 图像的所有对称轴中,24B . x =4C . x = ⎪⎪ 2⎩6.已知函数 f ( x ) 是偶函数,当 x > 0 时, f ( x ) = (2 x - 1)ln x ,则曲线 y = f ( x ) 在点(-1, f (-1)) 处的切线斜率为A. -2B. -1C. 1D. 2⎧ x ≥ 0 ⎪⎩A. (-∞, 2]B. [2,3]C. [3, +∞)D. [2, +∞)8.将函数 f ( x )=2sin(2 x +π3) 图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,π12离原点最近的对称轴方程为A . x = -π9.某几何体的三视图如图所示,则该几何体的体积为A . 4B . 2π2正视图5π π D . x =24 1211侧视图C .4 2 D .3 321俯视图10.已知直线 x - 2 y + a = 0 与圆 O : x 2 + y 2 = 2 相交于 A , B 两点( O 为坐标原点),则“ a = 5 ”是“ OA ⋅ O B = 0 ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件⎧3 - log (7 - 2 x ),0 < x ≤ 2 11.已知定义域为 R 的奇函数 f ( x ) ,当 x > 0 时,满足 f ( x ) = ⎨, ⎪ f ( x - 3), x > 3 ⎪ 2则 f (1)+ f (2) + f (3) +⋅⋅⋅+ f (2020) =2 / 11TA . log 5B . -log 5C . -2D . 02212.已知函数 f ( x ) = ( x - m )2 + (ln x - 2m )2 ,当 f ( x ) 取最小值时,则 m =A . 1 1 1 2B . - - ln 2C . - ln 2D . -2ln 22 2 10 5二、填空题:本大题共 4 个小题,每小题 5 分.13.已知点 a = (2, m ), b = (1,1) ,若 a ⋅ b =| a - b | ,则实数 m 等于14.在 ∆ABC 中, a 、b 、c 分别为内角 A 、B 、C 的对边,若 2sin B = sin A + sin C ,cos B = 3且 S 5∆ABC= 4 ,则 b的值为 ;15.已知三棱锥 A - BCD 中, BC ⊥ 面 ABD , AB = 3, AD = 1, BD = 2 2, BC = 4 ,则三棱锥 A - BCD 外接球的体积为;16.已知过抛物线 y 2 = 2 px ( p > 0) 的焦点 F 的直线与抛物线交于 A , B 两点,且AF = 3FB ,抛物线的准线 l 与 x 轴交于点 C , AA ⊥ l 于点 A ,若四边形 AACF111的面积为12 3 ,则 p 的值为.三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第17 题 ~ 21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求解答. (一)必考题:共 60 分.17.(12 分)已知各项均为正数的等比数列{a } 的前 n 项和为 S ,若 S = 120 ,且 3a 是n n 4 4a , -a 的等差中项.65(1)求数列{a } 的通项公式;n(2)若数列{b } 满足 b = log ann32n +1,且{b } 的前 n 项和为 T ,求1n n11 1 + + + . T T2 n3 / 11(1)请利用所给数据求违章人数y与月份x之间的回归直线方程yˆ=bx+aˆ;2212参考公式:b=∑x y-nx y∑(x-x)(y-y)∑x∑(x-x)-nx2,aˆ=y-bx.18.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:月份12345违章驾驶员人数1201051009085ˆ(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2⨯2列联表:不礼让斑马线礼让斑马线合计驾龄不超过1年830驾龄1年以上820合计302050能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?ˆn ni i i ii=1=i=1n n22i ii=1i=1ˆK2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d)P(K2≥k)0.1500.1000.0500.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828 19.(12分)如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB//DC,AB⊥AD,AB=3,C D=2,PD=AD=5.E是PD上一点.(1)若PB//平面ACE,求PEED的值;4/11((2)若 E 是 PD 中点,过点 E 作平面 α / / 平面 PBC ,平面 α 与棱 PA 交于 F ,求三棱锥 P - CEF的体积20. 12 分)在平面直角坐标系中,点 F 、F 分别为双曲线 C : 1 2 x 2 y 2 - a 2 b 2= 1(a > 0, b > 0) 的3左、右焦点,双曲线 C 的离心率为 2 ,点 (1, ) 在双曲线 C 上.不在 x 轴上的动点 P 与2动点 Q 关于原点 O 对称,且四边形 PFQF 的周长为 4 2 .12(1)求动点 P 的轨迹方程;(2)已知动直线 l : y = kx + m 与轨迹 P 交于不同的两点 M 、N , 且与圆W : x 2+ y 2= 3 | MN |交于不同的两点 G 、 H ,当 m 变化时, 恒为定值,2 | GH |求常数 k 的值.21.(12 分)已知函数 f ( x ) = ae x - x - a , e = 2.71828 ⋅⋅⋅ 是 对数的底数.(1)讨论函数 f ( x ) 的单调性;(2)若 f ( x ) 恰有 2 个零点,求实数 a 的取值范围.自然5 / 11⎩y=2sinϕ⎪x=+t (2)已知点P(,0),直线l的参数方程为⎨⎪y=2t 相交于M,N两点,求1(2)在(1)的结论下,若正实数a,b满足1(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程(10分)以直角坐标系的原点O为极点,x轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线C的极坐标方程为ρsin2θ-4cosθ=0,曲线C的参数方程是12⎧x=-1+2cosϕ⎨(ϕ为参数).(1)求曲线C的直角坐标方程及C的普通方程;12⎧121⎪222⎪⎩21+的值.|PM||PN|23.选修4-5:不等式选讲(10分)已知函数f(x)=|x+1|+|x-2|.(1)求函数f(x)的最小值k;(t为参数),设直线l与曲线C1112+=k,求证:+a b a2b2≥2.2018年高考模拟检测数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分.C A CD C B D A D A B C二、填空题:本大题共4小题,每小题5分,共20分.6/11∴ S = = 40a = 120 ,∴ a = 31 - q + + +⋅⋅⋅+ = [( - ) + ( - ) + ( - ) ⋅⋅⋅ + ( 1 1 1 1 1 - 1 ) + ( - 1 )]n 2 1 3 ∴ 1 + + + ⋅⋅⋅+ = ( - -) ………………………………………12 分 ∑ x y - nx y∑ x- nx 2a ˆ = y - bx = 125.5 , ˆ13. -134 614. 15.3125 6 π 16. 2 2三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17 题~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求解答. (一)必考题:共 60 分.17. (本小题满分 12 分)解:(1) 3a 是 a , -a 的等差中项,∴ 6a = a - a ,465465设数列{a } 的公比为 q ,则 6a q 3 = a q 5 - a q 4n111∴ q 2 - q - 6 = 0 ,解得 q = 3 或 q = -2 (舍);…………………………………………3 分a (1- q 4 )1 4 1 1所以 a = 3n …………………………………………………………………………………6 分n(2)由已知得 b = log 32n +1 = 2n + 1 ;n 3所以 T = 3 + 5 +⋅⋅⋅⋅⋅⋅+ 2n + 1 = n (n + 2) ,………………………………………………8 分n11 1 1 1= = ( - ) T n (n + 2) 2 n n + 2 n1 1 1 1 1 1 1 1 T T T T2 43 5 n - 1 n + 1 n n + 2 1 2 3 1 1 1 1 3 1 1 T T T T 2 2 n + 1 n + 21 23n18.(本小题满分 12 分)解:(1)由表中数据知, x = 3, y = 100 ,…………………………………………………1 分∴ b= ni =1n i i2 i= 1415 - 1500 = -8.5 ,……………………………………………4 分55 - 45i =1∴所求回归直线方程为 y= -8.5 x + 125.5 ………………………………………………6 分7 / 1150 ⨯ (22 ⨯12 - 8 ⨯ 8)2 50 ≈ 5.556 > 5.024∴ PB // OE , ==∴ PE ∴ ∴ ∴ NB = CM = 1,∴ PE ∴ F 到平面PCE 的距离h = AD =(2)由(1)知,令 x = 7 ,则 y = -8.5 ⨯ 7 + 125.5 = 66 人. …………………………8 分(3)由表中数据得 K 2 = , 30 ⨯ 20 ⨯ 30 ⨯ 20 9根据统计有 97.5% 的把握认为“礼让斑马线”行为与驾龄有关.………………12 分19. 【解析】(1)连接 BD 交 AC 于 O ,连接 OE ,PB // 平面ACE , PB ⊂ 平面PBD , 平面ACE 平面PBD = OEPE OB ED OD又∆AOB ~ ∆COD ,∴ OB AB 3= =OD CD 23 =ED 2(2)过 E 作 EM//PC 交 CD 于 M ,过 M 作 MN//BC 交 AB 于 N ,过 N 作 NF//PB 交 PA 于 F ,连接EF则平面 EFNM 为平面 αE 为PD 的中点, M 为CD 的中点, CM = 1 2CD = 1BN 3= = ’PA AB 2PD ⊥ 平面ABCD , AD ⊂ 平面ABCD ,∴ PD ⊥ AD , 又AD ⊥ CD , PD ⊂ 平面PCD , C D ⊂ 平面PCD , PD CD = D∴ AD ⊥ 平面PCD ,PD = AD = 5, PD ⊥ AD ,∴ P A = 5 21 53 3 ∴V P -CEF= V F -PCE 1 25= S ∆PCE ⋅ h =3 18【考查方向】本题主要考查了线面平行的性质,棱锥的体积计算。
2018年高考模拟卷数学(文)试题Word版含答案
2018年高考模拟卷数学(文)试题Word版含答案2018年高中毕业班教学质量检测高考模拟数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z满足(1-i)z=1+3i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U=Z,A={x∈Z|x^2-x-2≥0},B={-1,0,1,2},则(C∩A)∩B=()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}3.若-1<sinα+cosα<1,则()A.sinα<cosαB.cosα<sinαC.tanα<cosαD.cos2α<14.已知点(2,3)在双曲线x^2/a^2-y^2/b^2=1(a>0)的一条渐近线上,则a=()A.3B.4C.2D.235.“a^2=1”是“函数f(x)=lg((2+x)/(1-x))+(a^2-1)/2为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.执行以下程序框架,则输出A的值是()int A=0;for(int i=1;i<=6;i++){A=A*10+i;XXX<<A<<endl;A.B.xxxxxxxxC.D.xxxxxxx7.边长为4的正三角形ABC中,点D在边AB上,AD=DB,M是BC的中点,则AM×CD=()A.16B.12√3C.-8/3D.-88.等比数列{a_n}共有2n+1项,其中a_1=1,偶数项和为170,奇数项和为341,则n=()A.3B.4C.7D.99.函数f(x)=x^2cos(x)在(-π/2,π/2)的图象大致是()A。
B。
C。
D。
10.抛物线x^2=4y的焦点为F,过F作斜率为-3的直线l 与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是()A.4B.3/3C.4/3D.811.将函数f(x)=sin(ωx)(ω>0)的图象向左平移π/4个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为()A.3π/2B.2π/3C.3π/4D.π/212.若函数f(x)={-x-e^(x+1),x≤a。
2018年高考数学模拟试卷(文科)[1]
2018年高考数学模拟试卷(文科)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学模拟试卷(文科)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学模拟试卷(文科)(word版可编辑修改)的全部内容。
2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2≤1},B={x|0<x<1},则A∩B=()A.[﹣1,1) B.(0,1)C.[﹣1,1]D.(﹣1,1)2.(5分)若i为虚数单位,则复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(5分)已知等差数列{a n}前3项的和为6,a5=8,则a20=( )A.40 B.39 C.38 D.374.(5分)若向量,的夹角为,且||=4,||=1,则||=()A.2 B.3 C.4 D.55.(5分)已知双曲线C:(a>0,b>0)的渐近线与圆(x+4)2+y2=8无交点,则双曲线离心率的取值范围是()A.(1,) B.() C.(1,2) D.(2,+∞)6.(5分)已知实数x,y满足约束条件,则z=x+2y的最大值为( ) A.6 B.7 C.8 D.97.(5分)函数y=log(x2﹣4x+3)的单调递增区间为()A.(3,+∞)B.(﹣∞,1)C.(﹣∞,1)∪(3,+∞) D.(0,+∞)8.(5分)宜宾市组织“歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A,B,C,D对比赛预测如下:A说:“是甲或乙获得特等奖"; B说:“丁作品获得特等奖”;C说:“丙、乙未获得特等奖”; D说:“是甲获得特等奖".比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()A.甲 B.乙 C.丙 D.丁9.(5分)某几何组合体的三视图如图所示,则该几何组合体的体积为()A. B.C.2 D.10.(5分)若输入S=12,A=4,B=16,n=1,执行如图所示的程序框图,则输出的结果为()A.4 B.5 C.6 D.711.(5分)分别从写标有1,2,3,4,5,6,7的7个小球中随机摸取两个小球,则摸得的两个小球上的数字之和能被3整除的概率为( )A.B.C.D.12.(5分)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),给出下列命题:①当x≥0时,f(x)=e﹣x(x+1);②∀x1,x2∈R,都有|f(x1)﹣f(x2)|<2;③f(x)>0的解集为(﹣1,0)∪,(1,+∞);④方程2[f(x)]2﹣f(x)=0有3个根.其中正确命题的序号是()A.①③B.②③C.②④D.③④二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)在等比数列{a n}中,若a2+a4=,a3=,且公比q<1,则该数列的通项公式a n= .14.(5分)已知y=f(x)是偶函数,且f(x)=g(x)﹣2x,g(3)=3,则g(﹣3)= .15.(5分)三棱锥P﹣ABC中,底面△ABC是边长为的等边三角形,PA=PB=PC,PB ⊥平面PAC,则三棱锥P﹣ABC外接球的表面积为.16.(5分)在△ABC中,D为AC上一点,若AB=AC,AD=,则△ABC面积的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2018届高考模拟考试试题(一)数学(文科)
2018 届高考模拟考试一试题(一)数学(文科)第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题 ,每题 5 分 ,共 60 分 .在每题给出的四个选项中,只有一项是切合题目要求的 .1.已知会合 M x x 2 x 12 0 , Ny y 3x , x1 ,则会合 x x M , 且x N为A . 0,3B. 4,3C . 4,0 D.4,02. 已知向量 AB 1,1 , AC2,3 ,则以下向量中与 BC 垂直的是A . a 3,6B . b 8, 6C . c6,8D. d6,33.在四周体 S ABC 中, AB BC,ABBC2 SA SC SB2 ,则该四周体外接球的表面积是A .4B . 1633C .10D.8334.已知 sin3( , sin 2的值等于,且), 则A .352cos 2 .3B24C .— 3D .—3245.某几何体的三视图以下图,则此几何体的体积为8 A .3B .3C .6 22 6D .6 226.以下命题中正确的选项是A .若 a , , c 是等差数列,则 log 2 , log 2 , log 2 是等比数列b a b cB .若 a, , c 是等比数列,则 log 2 , log 2 , log 2 是等差数列ba b cC .若 a , b ,c 是等差数列,则 2a , 2b , 2 c 是等比数列D .若 a , b ,c 是等比数列,则 2a , 2b , 2c 是等差数列7.为了有效管理学生迟到问题, 某校专对各班迟到现象拟订了相应的等级标准, 此中 D 级标准为 “连续 10 天,每日迟到不超出7 人”,依据过去 10 天 1、 2、3、 4 班的迟到数据,必定切合D 级标准的是A . 1 班:整体均匀值为 3,中位数为 4B . 2 班:整体均匀值为 1,整体方差大于C . .3 班:中位数为 2,众数为 3D . 4 班:整体均匀值为 2,整体方差为 38f x2sin 2 x的图象向右平移个单位, 所得图象对于 y 轴对称, 则.若将函数3的最小正当是A .5B . 12 3C .2D .5369.履行以下图的程序框图,若输入 m 1, n 3 ,输出的 ,则空白判断框内应填的条件为A . C .mn 1m nB .D . mnmn10.若 a > 0, b >0,且函数 f( x)= 4x 3- ax 2 - 2bx - 2 在 x = 1 处有极值,则 a b 的最大值是A .2B . 3C .6D. 911. 设函数 f ( x ) =( x - a ) 2+ (ln x 2- 2a ) 2,此中 x >0, a ∈ R ,存在 x 0 使得 f ( x 0) ≤ b 成立,则实数 b 的最小值为12A. 5B.54C. 512 已知定义在 R 的函数f x 是偶函数,且知足 f x 2 f x 2 ,在 0,2 上的分析1 x2 ,0 x 1 3,0 作斜率为 k 的直线 l ,若直线 l 与函数 fx 的式为 f x1,1 x,过点x 2图象起码有 4 个公共点,则实数 k 的取值范围是1,1B .A. 3 3C .1,6 42D .31,6 4236 4 2,13第Ⅱ卷(共 90 分)本卷包含必考题和选考题两部分.第 (13)~ (21)题为必考题, 每个试题考生都一定作答. 第(22)~ (23)题为选考题,考生依据要求作答.二、填空题:本大题共4 小题,每题5 分,共 20 分.16.13. 已知点 A 1,1 ,B 1,2 ,C2, 1, D 2,2,则向量 AB 在 CD 方向上的投影为________.14. 已知底面边长为4 2 ,侧棱长为 25 的正四棱锥 S ABCD 内接于球 O 1 . 若球 O 2 在球 O 1内且与平面 ABCD 相切,则球 O 2 的直径的最大值为.15. 已知f (x)是定义域为 R 的偶函数, 当 x 0时,f (x) x 22x ,那么,不等式 f ( x) 3的解集是 .16.已知函数 f x4sin2x0≤ x ≤91,若函数 Fx f x3 的全部零点依6 6次记为 x 1, x 2 , x 3 ,... x n , x 1 x 2 x 3x n ,则 x 1 2 x 2 2x 32 x n 1x n__________.三、解答题 (本大题共 6 小题,共 70 分 .解答应写出文字说明、证明过程或演算步骤 .)17. 已知平面向量 a = (3,- 1) ,b = 1,3.22(1) 证明: a ⊥b ;(2) 若存在不一样时为零的实数 k 和 t ,使 c = a + ( t 2-3) b , d =- ka + t b ,且 c ⊥ d ,试求函数关系式 k = f ( t ).18. 为了认识某学校高三年级学生的数学成绩, 从中抽取 n 名学生的数学成绩 (百分制) 作为样本,按成绩分红 5 组: [50 ,60) , [60 ,70) , [70 ,80) , [80 ,90) , [90 ,100] ,频次散布直方图以下图.成绩落在[70 ,80) 中的人数为20 .(Ⅰ)求 a 和 n 的值;(Ⅱ)依据样本预计整体的思想,预计该校高三年级学生数学成绩的均匀数x 和中位数 m ;(Ⅲ)成绩在 80 分以上(含80 分)为优异,样本中成绩落在[50 ,80) 中的男、女生人数比为1: 2 ,成绩落在[80,100]中的男、女生人数比为3:2,达成2 2 列联表,并判断能否有95%的掌握以为数学成绩优异与性别相关.参照公式和数据:K 2 n(ad bc)2 .(a b)(c d )(a c)( b d )P(K 2 ≥ k0 )k0男生女生共计优异不优异共计19.如图 ,在直三棱柱ABC-A1B1C1中 ,平面 A1BC 丄侧面 A1ABB1,且 AA1=AB= 2.(1)求证 :AB 丄 BC;(2) 若直线 AC 与面 A1BC 所成的角为,求四棱锥A1-BB1 C1C 的体积 .20. 已知椭圆C:x2y2 1( a b 0 )的左右焦点分别为F1,F2 ,离心率为1,点A在a2 b2 2椭圆 C 上,|AF1| 2 ,F1 AF2 60 ,过 F 与坐标轴不垂直的直线l 与椭圆 C 交于P, Q2两点, N 为P, Q的中点.(Ⅰ)求椭圆 C 的方程;(Ⅱ)已知点 M (0, 1PQ ,求直线 MN 所在的直线方程.),且 MN821.(本小题满分 12 分)已知函数 f x x2 2 x a ln x a R .( 1)当a 2 时,求函数 f x 在 1, f 1 处的切线方程;( 2)当a 0 时,若函数 f x 有两个极值点 x1 , x2 x1 x2,不等式 f x1 mx2恒成立,务实数 m 取值范围.请考生在第22、 23 两题中任选一题作答,假如多做,则按所做的第一题计分,作答时请写清题号.22.(此题满分 10 分)选修 4 —4:坐标与参数方程在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴成立极坐标系,圆 C 的极坐标方程为ρ= 2 2cosx= t,(t 为参数 ),直线 l 和圆 C 交于 A , B θ+π,直线 l 的参数方程为4 y=- 1+ 2 2t两点, P 是圆 C上不一样于 A, B 的随意一点.(1)求圆心的极坐标;(2)求△ PAB面积的最大值.23.(此题满分 10 分)选修 4-5 :不等式选讲已知函数 f ( x) ln(| 2x 1| | 2x 3|) .( 1)求不等死 f ( x)0 的解集;( 2)当m取何值时, f ( x)m 恒成立.成都龙泉中学2018 届高考模拟考试一试题(一)数学(文科)参照答案1— 5 DDBCB 6—10 CDABD 11— 12 CB1113.13. 5 14. 8 15. ( 3,3) 16. 44517.(1) 证明∵a ·b=1- 1×3= 0,3×22∴a ⊥b .(2)解∵ c= a+ (t2- 3)b, d =- ka + tb ,且 c ⊥d ,∴ c ·d= [a+ (t 2-3)b ] ·(- ka+ tb )=- ka2+ t(t2- 3)b 2+ [t- k(t2- 3)] a·b = 0. 又 a 2= |a|2= 4, b 2=| b|2= 1 ,a ·b= 0 ,∴ c ·d=- 4k+t 3- 3t3-3t= 0 ,∴ k= f(t)=t4 (t≠ 0).18.分析:(Ⅰ)由题意可得10a 1 0.02) 10 ,∴,∴ n20.1040(Ⅱ)由题意,各组的频次分别为0.05 , 0.2 , 0.5 ,,,∴ x 55 75 85 .设中位数为 m ,则 ( m 70) 0.2) ,∴m 75 .(Ⅲ)由题意,优异的男生为 6 人,女生为4 人,不优异的男生为10 人,女生为20人,2 2 列联表男生女生共计优异 6 4 10不优异10 20 30共计16 2410)2 40由表可得K 240 (6 20 4 ,16 24 10 30∴没有 95% 的掌握以为数学成绩优异与性别相关.19. 解: (1) 取 A1 B 的中点为 D ,连结 AD,面面,,面(2) ∠ ACD 即 AC 与面 A 1BC 所成线面角 ,等于;直角 △ ABC 中 A 1A =AB =2,D 为AB的中点,∵,【分析】此题主要考察的是线面垂直的性质以及棱锥体积的计算,意在考察考生的逻辑推理能力和运算求解能力 .(1) 依据线面垂直的判断定理证明,而后依据线面垂直的性质证得 ;(2) 由 (1) 可得∠ ACD 即 AC 与面 A 1 BC 所成线面角 ,解三角形求得 依据棱锥的体积公式即可获得答案 .20. 解:(Ⅰ)由 e12c ,,得 a2由于 | AF 1 | 2 , | AF 2 | 2a 2 ,由余弦定理得 | AF 1 |2 |AF 2| 2| AF 1 | | AF 2 | cos A | F 1F 2 |2 , 解得 c 1 , a 2 , ∴ b 2a 2 c 23 ,∴椭圆 C 的方程为x 2y 21.43(Ⅱ)由于直线 PQ 的斜率存在,设直线方程为y k( x 1) , P( x 1 , y 1 ) , Q( x 2 , y 2 ) ,y k (x 1), 联立 x2y 2 整理得 (3 4k 2 ) x 2 8k 2 x 4k 2 12 0 , 4 3 1,由韦达定理知 x 1x 28k 2, y 1y 2 k( x 1 x 2 ) 2k6k 2 ,3 4k4k234k23k 11 3k24k 34k 2此时 N(,) ,则 k MN 8 3 4k 2 4k 2 4k 2 ),又M(0,4k 2 32k 2 ,3 3 83 4k2113 .∵ MNPQ ,∴ k MN,获得 k 或k22 则 k MN 2 或 k MN2, 3MN 的直线方程为 16 x 8 y 1 0 或 16x 24 y 3 0 .21. 解:( 1)当时,;,则,因此切线方程为,即为. 4 分(2 )令,则当时,,函数在上单一递加,无极值点;当且,即时,由,得当变化时,与的变化状况以下表:00单一递加极大值单一递减极小值单一递加当时,函数有两个极值点,则,.由可得..令.由于,因此,,即在递减,即有,因此实数的取值范围为.22. 解 (1) 圆 C 的一般方程为x2+ y2- 2x+ 2y= 0,即 (x- 1) 2+ (y+1) 2= 2.因此圆心坐标为 (1 ,- 1) ,圆心极坐标为2,5π;4(2)直线 l 的一般方程: 2 2x- y- 1= 0,圆心到直线 l 的距离d=|22+1-1|=22,因此 |AB |= 2 2-8=210 ,点 P 到直线 AB 距离的最大值为r+ d3 3 9 3= 2+232=532,S max=1 2 10 5 2=10 5 2 ×3 ×3 9 .23 .解:( 1 )由 f (x) ≤ 0 有: ln(| 2 x 1| | 2 x 3|) ≤ ln1 ,因此 0 | 2x 1| | 2x 3|≤1 ,即x≤1,或1 x 3 ,或x≥3,2 2 2 20 2 x 1 2x 3 ≤ 1 0 2 x 1 2 x 3 ≤ 1 0 2 x 1 2 x 3 ≤ 1,解得不等式的解集为x 1 x≤3.2 4( 2 )由 f (x) m 恒成立得 f (x)max m 即可 .由(1)0 | 2 x 1| | 2 x 3| 得函数 f ( x) 的定义域为 1 ,,2ln(4 x 2) 1 x 3 ,因此有f ( x)2 2因此 f ( x)max ln 4 ,≥3ln 4,x 2即 m ln 4 .。
2018届高三年级文科数学押题猜题试卷解析版
2018届高三年级文科数学押题猜题试卷解析版文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·太原期末]已知a ,b 都是实数,那么“22ab>”是“22a b>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.[2018·豫南九校]抛物线22(0)xp y p =>的焦点坐标为( )A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫⎪⎝⎭3.[2018·南山中学]下列4个图从左到右位次是四位同学甲、乙、丙、丁的五能评价雷达图:甲乙丙丁在从他们四人中选一位发展较全面的学生,则应该选择( ) A .甲B .乙C .丙D .丁 4.[2018·行知中学]设x ,y 满足约束条件360200,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2zx y=-+的最小值为( ) A .4-B .2-C .0D .25.[2018·三门峡期末]《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5B.CD.6.[2018·龙岩质检)())0,π大致的图象是( )A .B .C .D .7.[2018·深圳一模]函数()()sin f x x ωϕ=+(ω,ϕ是常数,0ω>的部分图象如图所示,为得到函数co s yx ω=,只需将函数()()sin fx x ωϕ=+的图象()ABCD8.[2018·三门峡期末]运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ayx=,()0,x ∈+∞是增函数的概率为( )A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.[2018·集宁一中]已知函数()321132f x a x b x x =+-(0a >,0b>)在1x =处取得极小值,则14a b+的最小值为( )A .4B .5C .9D .1010.[2018·天一大联考]在四面体A B C D中,若A B C D ==,2A CB D ==,A DBC ==A B C D 的外接球的表面积为( )A .2πB .4πC .6πD .8π11.[2018·凯里一中]已知{}n a 的前n 项和为12n nS m+=+,且1a ,4a ,52a -成等差数列,{}n b 的前n 项和为n T ,则满足20172018nT >的最小正整数n 的值为( ) A .8B .9C .10D .1112.[2018·晋中调研]已知不等式12x m x-<-在[]0,2上恒成立,且函数()e xf x m x=-在()3,+∞上单调递增,则实数m 的取值范围为( ) A .()(),25,-∞+∞ B .()(3,25,e ⎤-∞⎦C .()(2,25,e ⎤-∞⎦D .()(3,15,e ⎤-∞⎦第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.[2018·天津期末]已知i 为虚数单位,则.14.[2018·菏泽期末]已知等比数列{}n a 中,21a =,58a =-,则{}n a 的前6项和为_______.15.[2018·湖师附中]在矩形A B C D 中,2A B=,1B C =,E为B C 的中点,若F 为该矩形内(含边界)任意一点,则A EA F⋅的最大值为__________.16.[2018·江西联考]设双曲线C 1F ,过1F 的左焦点作x 轴的垂线交双曲线C 于M ,N 两点,其中M 位于第二象限,0,Bb (),若BM N ∠是锐角,则双曲线C 的离心率的取值范围是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.[2018·宜昌一中](1)求()f x 的最大值、最小值; (2)C D 为A B C △的内角平分线,已知()m ax A C fx =,()m in B Cfx =,=C D 求C ∠.18.[2018·宿州一模]2016年10月9日,教育部考试中心下发了《关于2017年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.宿州市教育部门积极回应,编辑传统文化教材,在全市范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占75%,在抽取的男性市民120人中持支持态度的为80人.(1)完成22⨯列联表,并判断是否有99.9%的把握认为性别与支持与否有关? (2)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率. 附:()()()()()22n a d b c Ka b c d a c b d -=++++.19.[2018·宁德质检]在多面体C A B D E -中,A B C △为等边三角形,四边形A B D E 为菱形,平面A B C⊥平面A B D E ,2A B=(1)求证:A B C D⊥;(2)求点B 到平面C D E 距离.20.[2018·凯里一中]过圆O :224xy+=上的点)1M-作圆O 的切线,过点)2作切线的垂线l ,若直线l 过抛物线E :22(0)x p y p =>的焦点F .(1)求直线l 与抛物线E 的方程;(2)若直线l 与抛物线E 交于点A ,B ,点P 在抛物线E的准线上,且3P A P B⋅=,求P A B△的面积.21.[2018·龙岩质检]已知()()()21e 1x f x x a x =--+,[)1,x ∈+∞.(1)讨论()f x 的单调性;(2)若()2ln f x a x -+≥,求实数a 的取值范围.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.[2018·赤峰期末]选修4-4:极坐标系与参数方程(10分) 在直角坐标系x O y 中,曲线1Cα为参数),将曲线1C 上各点的横坐标都缩短为原来的12倍,,得到曲线2C ,在极坐标系(与直角坐标系x O y 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l(1)求直线l 和曲线2C 的直角坐标方程;(2)设点Q 是曲线2C 上的一个动点,求它到直线l 的距离的最大值.23.[2018·太原期末]选修4-5:不等式选讲 设函数()12f x x x =++-,()254g x x x =-+-.(1)求不等式()5f x ≤的解集M ; (2)设不等式()0g x ≥的解集为N ,当x M N∈时,证明:()()3f x g x +≤.文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】p:22a b a b>⇔>,qa b>与a b>没有包含关系,故为“既不充分也不必要条件”.故选D.2.【答案】B【解析】1,08p⎛⎫⎪⎝⎭.故选B.3.【答案】B【解析】通过雷达图不难发现乙同学没有偏弱,发展比较全面,其余同学都有不足的地方,故选B.4.【答案】A【解析】如图,过()2,0时,2z x y=-+取最小值,为4-.故选A.5.【答案】D【解析】由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,如图:其中P A⊥平面A B C D,∴3P A=,4A B C D==,5A DB C==该几何体最长棱的棱长为故选D.6.【答案】D【解析】)())0,π是偶函数,故它的图象关于y轴对称,再由当x趋于π时,函数值趋于零,故答案为:D.7.【答案】A【解析】2ω=,则()()sin2f x xϕ=+,712x=π时,时,可得,,将()f x向左平移个单位,可得,所以为得到函数co sy xω=,只需将函数()()sinf x xωϕ=+A.8.【答案】A【解析】由框图可知{}3,0,1,8,15A=-,其中基本事件的总数为5,设集合中满足“函数ay x=,[)0,x∈+∞是增函数”为事件E,当函数ay x=,[)0,x∈+∞是增函数时,0a>,事件E包含基本事件的个数为3A.开始输出y结束是否3x=-3x≤22y x x=+1x x=+9.【答案】C【解析】由()321132f x a x bx x=+-,得()21f x ax bx'=+-,则()110f a b=+-=',所以1a b+=4b aa b=,23b=时等号成立,故选C.10.【答案】C【解析】如图所示,该四面体的四个顶点为长方体的四个顶点,设长、宽、高分别为a ,b ,c ,则222222543a b a c b c +=+=+=⎧⎪⎨⎪⎩,三式相加得:2226a b c++=,所以该四面体的外接球直径为长方体的体对角线长,故外接球体积为:246R π=π.11.【答案】C 【解析】114a S m==+,当2n ≥时,12nnn n a S S -=-=,由1a ,4a ,52a -成等差数列可得41522a a a =+-,即4522422m ⨯+++-,解得2m=-,故2nn a =,则()()1111112121nnnn n n a b a a ++==-----,故2231111111111212121212121nn n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,由20172018nT >得1120171212018n +->-,即122019n +>,则111n +≥,即10n ≥,故n 的最小值为10.12.【答案】B 【解析】x)1-不等式12x m x -<-⇔[]0,2x ∈上恒成立,令()2m gx x =-,12m <或522m >,即()(),25,m ∈-∞+∞;又()e xf x mx=-在()3,+∞上单调递增,故()e 0xf x m ='-≥在()3,+∞上恒成立,3e m ∴≤,综上,()(3,25,e m ⎤∈-∞⎦.故选:B . 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.14.【答案】212【解析】3528a qa ==-,2q=-,则2112a a q==-,()()()661611212121122a q S q⎡⎤----⎣⎦===---.15.【答案】92【解析】如图所示:设A E 与A F 的夹角为θ,则221c os c os AEAFAE AFθθ⎛⎫⋅==,由投影的定义知,只有点F 取点C取得最大值.1⎛故填92.16.【答案】)+∞【解析】2,b N c a ⎛⎫-- ⎪⎝⎭,∴⎛220,b M N a ⎛⎫=- ⎪⎝⎭.∵B M N ∠是锐角,∴2b ba>.C 的离心率的取值范围是)+∞.答案:)+∞三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.【答案】(1)()m ax 6f x =,()m in3f x =;(2【解析】(1······3分∵()fx ↑↓,∴()m ax6f x =,()m in3f x =·······6分(2)A D C △中,,B D C △中,∵sin sin A D C B D C∠=∠,6A C=,3B C =,∵2A DB D=·······9分B C D △中,A C D△中,2442o s684o s22C C AD =-=-,∴c o s22C =······12分18.【答案】(1)见解析;(2)25.【解析】(1)抽取的男性市民为120人,持支持态度的为20075%150⨯=人,男性公民中持支持态度的为80人,列出22⨯列联表如下:·······3分所以()222008010407010011.1110.82815050120809κ⨯⨯-⨯==≈>⨯⨯⨯,所以在犯错误的概率不超过0.1%的前提下,可以认为性别与支持与否有关.·····6分 (2)抽取的5人中抽到的男性的人数为:405450⨯=,女性的人数为:105150⨯=····8分记被抽取4名男性市民为A ,B ,C ,D ,1名女性市民为e ,从5人中抽取的2人的所有抽法有:A B ,A C ,A D,A e ,B C ,B D ,B e ,C D ,C e ,D e,共有10种,·······10分恰有1名女性的抽法有:A e ,B e ,C e ,D e ,共有4种, 由于每人被抽到是等可能的,所以由古典概型得42105m pn===·······12分19.【答案】(1)见解析;(2)2h=.【解析】(1)证明:取A B 中点O ,连接C O ,D O ,D A . ∵A B C △为等边三角形,∴C O A B⊥,·······1分∵四边形A B C D 为菱形,60D B A ∠=,∴D A B △为等边三角形,∴D OA B⊥,·······2分又∵C OD O O=,∴A B⊥面D O C ,·······4分 ∵D C ⊂面D O C , ∴A BC D⊥.·······6分(2)∵面A B D E⊥面A B C ,C OA B⊥,面A B D E 面A B CA B=,C O⊂面A B C ,∴C O⊥面A B D E , ∵O D ⊂面A B D E ,∴C OO D⊥.∵O DO C == (7)分在R t C O D △中,C D ==,由(1)得A BC D⊥,因为E D A B ∥,E D D C⊥,·······9分·10分设点B 到面CDE 的距离为h .∵B C D E C B D EV V --=即1133h ⨯=⨯,∴2h=·······12分20.【答案】(1)0x +-=.212x y=;(2)见解析.【解析】(1)过点M 且与圆O4y -=,·······1分l的斜率为3-l的方程为:23yx -=--,即0x +-=.·······3分令0x =,可得3y=,故F 的坐标为()0,3, ∴6p=,抛物线E的方程为212x y=;·······5分(221090y y -+=,设()11,A x y ,()22,B x y ,则11y =,29y =,1210y y +=,点A ,B的坐标分别为(),()9-.·······7分 设点P 的坐标为(),3t -,则(),4P A t =,(),12P B t =-,则(),解之得t=或-·······9分⎛·······10分则点P 到直线l的距离为2d=,故2d=2,当2d=时,P A B△的面积为当2d=时,P A B △的面积为·······12分21.【答案】(1)详见解析;(2【解析】(1)()e 2xf x x a x '=-()e 2xx a =-,·······1分[)1,x ∈+∞,()0f x '≥.∴()f x 在[)1,+∞上单调递增;·······3分时,由()0f x '=,得()ln 2x a =.当()()1,ln 2x a ∈时,()0f x '<;当()()ln 2,x a ∈+∞时,()0f x '>.所以()f x 在()()1,ln 2a 单调递减;在()()ln 2,a +∞单调递增.·······5分(2)令()()()21e 1ln xg x x a x x=----,问题转化为()0g x ≥在[)1,x ∈+∞上恒成立,0.·······6分因为21e a +>,所以()ln 211a +>,()()ln 210g a '+>, 所以存在()()01,ln 21x a ∈+,使()00g x '=, 当()01,x x ∈时,()0g x '<,()g x 递减,所以()()10g x g <=,不满足题意.·······9分因为1x>,()e e 11xx ⎡⎤-->⎣⎦,101x<<,所以()0g x '>,()g x 在[)1,+∞上单调递增;所以()()10g x g =≥,满足题意.·······12分(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【答案】(1)40x y -+=,221x y+=;(2)1+.【解析】(1)因为直线l所以有co s sin 40ρθρθ-+=,即直线l 的直角坐标方程为:40x y -+=·······2分因为曲线1C α为参数),经过变换后为c o s s in x y αα==⎧⎨⎩(α为参数)所以化为直角坐标方程为:221x y+=·······5分(2)因为点Q 在曲线2C 上,故可设点Q 的坐标为()co s ,sin αα,从而点Q 到直线l······8分由此得,,d 取得最大值,且最大值为1+·······10分23.【答案】(1){|23}M x x =-≤≤(2)见解析【解析】(1则有1240x x -+⎧⎨⎩≤≥①或1220x -<<-⎧⎨⎩≤②或2260x x -⎧⎨⎩≥≤③·······3分解①得21x --≤≤,解②得12x -<<,解③得23x ≤≤,则不等式的解集为{|23}M x x =-≤≤.·······5分(2)()20540g x x x ≥⇔-+≤,解得14x ≤≤,则{}|14N x x =≤≤,所以{}|13MN x x =≤≤.当12x ≤≤时,()3f x =,()()225935424f x g x x x x ⎛⎫--=-+=--⎪⎝⎭,,则()()3fx g x +≤成立.当23x <≤时,()26fx x =-,,则()()3f x g x <+.综上,()()3f x g x +≤成立.·······10分。
2018年高考数学文科二轮专题闯关导练 :押题模拟(一)(解析版)
2018年高考数学文科二轮专题闯关导练:押题模拟(一)时间:120分钟满分:150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x2-2x>0},B={-1,1,2,3},则A∩B=( )A. {-1,1}B. {1,2}C. {1,3}D. {-1,3}【答案】D【解析】【详解】A=, B={-1,1,2,3}∴A∩B={-1,3}故选:D2.已知i是虚数单位,z=,则复数z的实部为( )A. -B.C. -D.【答案】A【解析】z==.∴复数z的实部为-故选:A3.函数f(x),g(x)都是定义域为R的奇函数,若f(-1)+g(-2)=-3,f(-1)-g(-2)=1,则( )A. f(1)=1,g(2)=-2B. f(1)=-2,g(2)=1C. f(1)=1,g(2)=2D. f(1)=2,g(2)=1【答案】C【解析】∵函数f(x),g(x)都是定义域为R的奇函数,f(-1)+g(-2)=-3,f(-1)-g(-2)=1,∴-f(1) -g(2)=-3,-f(1)+g(2)=1,∴f(1)=1,g(2)=2故选:C4.如图,正方形ABCD中,AC,BD交于点O,E,G是线段AC上的点,F,H是线段BD上的点,且AE=CG=EG,BF=FH=DH,连接EF,FG,GH,EH,现往正方形ABCD中投掷1200个点,则可以估计,落在阴影区域内点的个数为( )A. 100B. 200C. 300D. 400【答案】B【解析】设AC=BD=6,则正方形ABCD的面积为6×6=36,而菱形EFGH的面积为×6××6=6,故落在阴影区域内点的个数为1200×=200.故选:B5.将函数y=sin的图象向右平移个单位,得到函数f(x)的图象,则函数f(x)图象的一个对称中心为( )A. B. C. D.【答案】B【解析】f(x)=sin=sin.且f()=sin.故选:B6.已知抛物线C:y2=8x的焦点为F,若点N(4,1),P为抛物线C上的点,则|NP|+|PF|的最小值为( )A. 9B. 8C. 7D. 6【答案】D【解析】记点P到抛物线C的准线l的距离为d,点N到抛物线C的准线l的距离为d′,故|NP|+|PF|=|NP|+d≥d′=6,故|NP|+|PF|的最小值为6.故选:D7.已知实数x,y满足,则z=log2(x+y)的最大值为( )A. log229-2B. log214C. 4D. 5【答案】C【解析】作出不等式组所表示的平面区域如下图阴影区域所示,要想z=log2(x+y)取得最大值,只需z′=x+y取得最大值即可;观察可知,当直线z′=x+y过点B(9,7)时,z′有最大值16,故z=log2(x+y)的最大值为4.故选:C8.《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十三里;驽马初日行九十七里,日减半里.” 为了计算每天良马和驽马所走的路程之和,设计框图如下. 若输出的S的值为365,则判断框中可以填( )A. i>4?B. i>5?C. i>6?D. i>7?【答案】D【解析】运行该程序,第一次,S=290,i=2,第二次,S=302.5,i=3,…,第七次,S=365,i=8,此时,要输出S的值,故判断框中可以填“i>7”.故选:D点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.已知等比数列{a n}的前n项和为S n,且S6=a7-a1,则{a n}的公比q为( )A. -1B. 2C. -1或2D. -2或3【答案】C【解析】当q=1时,显然不成立当q时,,解得:q=-1或210.将一个正方体切去两个三棱锥,得到一个几何体,若该几何体的三视图如图,则该几何体的表面积为( )A. 6+B. 3+C. 6+2D. 3+【答案】D【解析】在正方体中截去了三棱锥与三棱锥∴其表面积为:3+故选:D点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.11.已知双曲线E: (a>0,b>0)的渐近线方程为3x±4y=0,且过焦点垂直x轴的直线与双曲线E相交弦长为,过双曲线E中心的直线与双曲线E交于A,B两点,在双曲线E上取一点C(与A,B不重合),直线AC,BC的斜率分别为k1,k2,则k1k2等于( )A. B. C. D.【答案】C【解析】双曲线E的两条渐近线方程为3x±4y=0,可设双曲线的方程(λ>0),c2=16λ+9λ=25λ,∴F(5,0).将x=5代入方程(λ>0)得y=±,则2×=,解得λ=1,故双曲线的方程为.设点A(x1,y1),则根据对称性可知B(-x1,-y1),点C(x0,y0),k1=,k2=,∴k1k2=,且,,两式相减可得,=.故选:C12.已知函数f(x)=e x sin x(0≤x≤π),若函数y=f(x)-m有两个零点,则实数m的取值范围是( )A. B. C. [0,1) D. [1,e)【答案】A【解析】f′(x)=e x(sin x+cos x)≥0⇒0≤x≤,f′(x)<0⇒<x<π,f(0)=f(π)=0,f=,由题意,利用图象得0≤m<.故选:A点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题,每小题5分,共20分.13.已知tan θ=5,则=________.【答案】3【解析】∵tan θ=5∴故答案为:314.已知向量a,b的夹角为,|a|=3,|a-2b|=,则|b|=________.【答案】2【解析】∵向量,的夹角为,=3,=∴即,解得:或(舍)故答案为:215.若三棱锥P-ABC的体积为,PA⊥平面ABC,AB⊥BC,AB=2,AC=2,则三棱锥P-ABC的外接球的表面积为________.【答案】12π【解析】∵在三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC且AB=2,AC=2,,又三棱锥P-ABC的体积为,∴PA=2∴画出几何图形,可以构造补充图形为正方体,棱长为2,2,2.∵对角线长.∴三棱锥P﹣ABC的外接球的半径为,三棱锥P-ABC的外接球的表面积为12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心. 三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为: .16.已知数列{a n}的前n项和为S n,且a3=5,a6=11,若数列{}是等差数列,则a n=________.【答案】2n-1【解析】设=kn+b,则∴∴S n=n2,a n=2n-1.故答案为:2n-1三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.已知△ABC中,角A,B,C所对的边分别为a,b,c,且3a2+ab-2b2=0.(Ⅰ)若B=,求sin C的值;(Ⅱ)若sin A+3sin C=3sin B,求sin C的值.【答案】(1)(2)【解析】试题分析:(1)由3a2+ab-2b2=0,3a=2b,即3sin A=2sin B,又B=,从而求出sin C的值;(2)设a=2t,b =3t,又sin A+3sin C=3sin B,从而可得c=t,利用余弦定理先求cos C,进而得到sin C的值.试题解析:(Ⅰ)因为3a2+ab-2b2=0,故(3a-2b)(a+b)=0,故3a2+ab-2b2=0,故3sin A=2sin B,故sin A=,因为3a=2b,故a<b,故A为锐角,故sin C=sin(A+B)=sin A cos B+cos A sin B=.(Ⅱ)由(Ⅰ)可设,a=2t,b=3t,因为sin A+3sin C=3sin B,故a+3c=3b,故c=t,故cos C==,故sin C==.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.18.如图所示的多面体中,底面ABCD为正方形,△GAD为等边三角形,BF⊥平面ABCD,∠GDC=90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.(Ⅰ)求证:AP⊥平面GCD;(Ⅱ)求证:平面ADG∥平面FBC;(Ⅲ)若AP∥平面BDE,求的值.【答案】(1)见解析(2)见解析(3)2【解析】试题分析:(1)因为△GAD是等边三角形,点P为线段GD的中点,故AP⊥GD,又CD⊥平面GAD,所以CD⊥AP,从而AP⊥平面GCD.;(2)∵BF⊥平面ABCD,∴BF⊥CD,又CD∩GD=D,∴CD⊥平面FBC,结合(1)可证明结果;(3)连接PC交DE于点M,连接AC交BD于点O,连接OM,∵AP∥平面BDE,AP∥OM,从而M是PC中点,过P作PN∥DE,交CG于点N,则N是GE中点,E是CN中点.试题解析:(Ⅰ)证明:因为△GAD是等边三角形,点P为线段GD的中点,故AP⊥GD,因为AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD⊂平面GAD,故CD⊥平面GAD,又AP⊂平面GAD,故CD⊥AP,又CD∩GD=D,CD,GD⊂平面GCD,故AP⊥平面GCD.(Ⅱ)证明:∵BF⊥平面ABCD,∴BF⊥CD,∵BC⊥CD,BF∩BC=B,BF,BC⊂平面FBC,∴CD⊥平面FBC,由(Ⅰ)知CD⊥平面GAD,∴平面ADG∥平面FBC.(Ⅲ)解:连接PC交DE于点M,连接AC交BD于点O,连接OM,∵AP∥平面BDE,AP∥OM,∵O是AC中点,∴M是PC中点过P作PN∥DE,交CG于点N,则N是GE中点,E是CN中点,∴=2.19.近年来,随着双十一、双十二等网络活动的风靡,各大网商都想出了一系列的降价方案,以此来提高自己的产品利润. 已知在2016年双十一某网商的活动中,某店家采取了两种优惠方案以供选择:方案一:购物满400元以上的,超出400元的部分只需支出超出部分的x%;方案二:购物满400元以上的,可以参加电子抽奖活动,即从1,2,3,4,5,6这6张卡牌中任取2张,将得到的数字相加,所得结果与享受优惠如下:(Ⅰ)若某顾客消费了800元,且选择方案二,求该顾客只需支付640元的概率;(Ⅱ)若某顾客购物金额为500元,她选择了方案二后,得到的数字之和为6,此时她发现使用方案一、二最后支付的金额相同,求x的值.【答案】(1)(2)50【解析】试题分析:(1)该顾客花了640元,说明所取数字之和在[8,9]之间,故满足条件的为(3,5),(3,6),(4,5),(2,6),总的事件个数为15,从而得到所求概率;(2)依题意,该顾客需要支付450元,故400+x%×100=450,解得x=50. 试题解析:依题意,所有的情况为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6).(Ⅰ)若该顾客花了640元,说明所取数字之和在[8,9]之间,故满足条件的为(3,5),(3,6),(4,5),(2,6),所求概率为.(Ⅱ)依题意,该顾客需要支付450元,故400+x%×100=450,解得x=50.20.已知椭圆C: (a>b>0)的左、右焦点分别为F1,F2,离心率为,直线y=x+b截得椭圆C的弦长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(m,0)作圆x2+y2=1的切线,交椭圆C于点A,B,求|AB|的最大值,并求取得最大值时m的值.【答案】(1)(2) |AB|最大为,m=±1.【解析】试题分析:(1)利用条件布列关于a,b方程组,即可得到椭圆C的方程;(2)讨论直线的斜率,进而联立方程,(1+2k2)x2-4k2mx+2k2m2-2=0,表示弦长,进而得到|AB|的最大值.试题解析:(Ⅰ)由e==,a2=b2+c2得a2=2c2,b2=c2,由得∵=b=,∴b=1,∴a=,∴椭圆C的方程为+y2=1.(Ⅱ)当AB与x轴垂直时,+y2=1,|y|=,|AB|=,当AB与x轴不垂直时,设AB方程为y=k(x-m),由得(1+2k2)x2-4k2mx+2k2m2-2=0,Δ>0时,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,由=1得k2m2=k2+1,∴|AB|==≤=,当且仅当|m|=1时取“=”,∴|AB|<,∴当AB⊥x轴时,|AB|最大为,m=±1.21.已知函数f(x)=x ln x-x.(Ⅰ)求函数f(x)的极值;(Ⅱ)若∀x>0,f(x)+ax2≤0成立,求实数a的取值范围.【答案】(1)当x=1时,函数f(x)有极小值,极小值为f(1)=-1,无极大值. (2)【解析】试题分析:(1)x∈(0,+∞),f′(x)=ln x,讨论f′(x)的符号,求出f(x)的单调区间,从而求出函数的极值;(2)∀x>0,f(x)+ax2≤0成立通过变量分离转化为a≤在(0,+∞)上恒成立问题即可.试题解析:(Ⅰ)依题意,x∈(0,+∞),f′(x)=ln x,令f′(x)=0,得x=1,当x∈(0,1)时,f′(x)<0,函数f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增,∴当x=1时,函数f(x)有极小值,极小值为f(1)=-1,无极大值.(Ⅱ)∀x>0,f(x)+ax2≤0,a≤-,令g(x)=-,g′(x)=--=,当0<x<e2时,g′(x)<0,当x>e2时,g′(x)>0,∴g(x)在(0,e2]上是减函数,在[e2,+∞)上是增函数,∴g(x)min=g(e2)=-=-,∴a≤-,∴a的取值范围是.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.22.[选修4-4:坐标系与参数方程]平面直角坐标系xOy中,射线l:y=x(x≥0),曲线C1的参数方程为 (α为参数),曲线C2的方程为x2+(y-2)2=4;以原点为极点,x轴的非负半轴为极轴建立极坐标系. 曲线C3的极坐标方程为ρ=8sin θ.(Ⅰ)写出射线l的极坐标方程以及曲线C1的普通方程;(Ⅱ)已知射线l与C2交于O,M,与C3交于O,N,求|MN|的值.【答案】(1) (2)【解析】试题分析:(1)因为射线l:y=x(x≥0),故射线l:θ= (ρ≥0),把曲线C1的参数方程化为普通方程;(2)曲线C2的极坐标方程为ρ=4sinθ,设点M,N对应的极径分别为ρ1,ρ2,进而表示|MN|的值即可.试题解析:(Ⅰ)依题意,因为射线l:y=x(x≥0),故射线l:θ= (ρ≥0);因为曲线C1:故曲线C1:+=1.(Ⅱ)曲线C2的方程为x2+(y-2)2=4,故x2+y2-4y=0,故曲线C2的极坐标方程为ρ=4sinθ,设点M,N对应的极径分别为ρ1,ρ2,故|MN|=|ρ1-ρ2|==2.23.[选修4-5:不等式选讲](10分)已知函数f(x)=2|x-2|+3|x+3|.(Ⅰ)解不等式:f(x)>15;(Ⅱ)若函数f(x)的最小值为m,正实数a,b满足4a+25b=m,求+的最小值,并求出此时a,b的大小.【答案】(1) (-∞,-4)∪(2,+∞) (2)【解析】试题分析:(1)通过讨论x的范围,求出不等式的解集即可;(2)求出f(x)的最小值m,得到4a+25b=10,利用均值不等式求出+的最小值.试题解析:(Ⅰ)依题意,2|x-2|+3|x+3|>15;当x<-3时,原式化为2(2-x)-3(x+3)>15,解得x<-4;当-3≤x≤2时,原式化为2(2-x)+3(x+3)>15,解得x>2,故不等式无解;当x>2时,原式化为2(x-2)+3(x+3)>15,解得x>2;综上所述,不等式的解集为(-∞,-4)∪(2,+∞).(Ⅱ)由(Ⅰ)可知,当x=-3时,函数f(x)有最小值10,故4a+25b=10,故+= (4a+25b)=≥,当且仅当=时等号成立,此时a=,b=.。
2018年高考原创押题卷(一)数学 (文)试题
或m<--1.若△ABC为正三角形,则|AE|=2r=2,故d≤2,即≤2,即-2 -1≤m≤2-1.综上可得实数m的取值范围是 f=sin4ωx-cos4ωx=(sin2ωx +cos2ωx)(sin2ωx-cos2ωx)=sin2ωx-cos2ωx=-cos 2ωx,其最小正周 期T==.若对任意a∈R,{y|y=f(x),a≤x≤a+2}=A,则T≤(a+2)-a= 2,即≤2,所以ω≥.由=A,可得x1,x2分别是f 的极小值点与极大值点, 所以x2-x1的最小值g==,由ω≥,可得g的值域为. 17.解:(1)设数列的公差为d,则S1=a1=5,S2=2a1+a2=10+a2= 18,所以a2=8,d=a2-a1=3,an=5+3=3n+2.4分 (2)设数列的公比为q,则S1=a1=3,S2=2a1+a2=6+a2=15, 所以a2=9,q==3,an=3×3n-1=3n,8分 所以Sn=n×3+×32+…+2×3n-1+3n①, 3Sn=n×32+×33+…+2×3n+3n+1②, ②-①,得2Sn=-3n+(32+33+…+3n)+3n+1=-3n++3n+1=-3n -++3n+1=,所以Sn=.12分 18.解:(1)这15天中PM2.5的最大值为112,PM10的最大值为199.2分 (2)从这15天中连续取2天的取法有(1,2),(2,3),(3,4),(4,5),(5, 6),(6,7),(7,8),(8,9),(9,10),(10,11),(11,12),(12,13), (13,14),(14,15),共14种.5分 这2天空气质量均为优、良的取法有(1,2),(7,8), (10,11),(11, 12), (12,13),共5种.所以从这15天中连续取2天,这2天空气质量均 为优、良的概率为.8分 (3)由前8个月空气质量优、良的天数约占55%,可得空气质量优、良的 天数为55%×240=132,10分 9月份这15天空气优、良的天数有8天,空气质量优、良的频率为,2016 年后4个月该市空气质量优、良的天数约为120×=64,132+64= 196>190, 所以估计该市到2016年底,能完成全年优、良天数达到190天的目标.12 分
2018年高考押题猜题试卷文科数学(有答案)
2018年高考押题猜题试卷文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,3,5,6,9U =,{}3,6,9A =,则图中阴影部分表示的集合是( )A .{1,3,5}B .{1,5,6}C .{6,9}D .{1,5}2z 的共轭复数z =( )ABC D3.已知焦点在y轴上的双曲线的渐近线方程为2y x =±,则该双曲线的离心率为( )AB .32 C或32 D .24.已知空间几何体的三视图如图所示,则该几何体的体积是() A .43 B .83 C .4 D .8 5.已知函数()()sin f x x ωϕ=+,x ∈R (其中0ω>,ππω-<<)的部分图象,如图所示,那么()f x 的解析式为() ABCD6.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里 C .此人第三天走的路程占全程的18 D .此人后三天共走了42里路 7.已知x ,y 满足约束条件010 220x y x y x y -+--⎧⎪⎨⎪+⎩≤≥≥,则2z x y =++的最大值是( ) A .3 B .5 C .6 D .7此卷只装订不密封班级姓名准考证号考场号座位号82a b ==,()()22a b a b +⋅-=-,则a b 与的夹角为( )A .30︒B .45︒C .60︒D .120︒9.已知定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时,()f x x =,则函数()()4log g x f x x =-的零点个数是( )A .0B .2C .4D .610.在锐角ABC △中,角A ,B ,C 对应的边分别是a ,b ,c ,向量()sin ,tan a C A =,()tan ,sin b A A =,且cos cos a b A C ⋅=+,则)A .)1B .(12,2+C .(1++D .11.若直线y x b =+与曲线3y =b 的取值范围是()A .1⎡-+⎣ BC .1,1⎡-+⎣ D .1⎡⎤-⎣⎦12.在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就坐,且相邻座位(如1与2,2与3)上的人要有共同的体育兴趣爱好.现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是( )A .小方B .小张C .小周D .小马第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.函数()1sin f x x x +-=在()0,2π上的单调情况是_______________.14.如图是某算法的程序框图,则程序运行后输出的结果是__________. 15.已知函数()()sin π01f x x x =<<,若a b ≠,且()()f a f b =,则41a b +的最小值为_____________. 16.如图,在四面体ABCD 中,点1B ,1C ,1D 分别在棱AB ,AC ,AD 上,且平面111B C D ∥平面BCD ,1A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD =,对于函数()V f x =,则下列结论正确的是__________. ①当23x =时,函数()f x 取到最大值; ②函数()f x 在2,13⎛⎫ ⎪⎝⎭上是减函数; ③函数()f x 的图像关于直线12x =对称; ④不存在0x ,使得()014A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积). 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.各项均为正数的等比数列{}n a ,前n 项和为n S ,且满足322a a -=,37S =. (1)求数列{}n a 的通项公式; (2)若()2111log n n b n a +=+⋅,求数列{}n b 的前n 项和n T .18.据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)若销售金额(单位:万元)不低于平均值x 的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.19.已知三棱锥A BCD -中,ABC △是等腰直角三角形,且AC BC ⊥,2BC =,AD ⊥平面BCD ,1AD =.(1)求证:平面ABC ⊥平面ACD ;(2)若E 为AB 中点,求点A 到平面CED 的距离.20.已知椭圆E 的中心在原点,焦点在x 轴,焦距为2倍.(1)求椭圆E 的标准方程;(2)设()2,0P ,过椭圆E 左焦点F 的直线l 交E 于A 、B 两点,若对满足条件的任意直线l ,不等式PA PB λ⋅≤(λ∈R )恒成立,求λ的最小值.21.已知二次函数()f x 的最小值为4-,且关于x 的不等式()0f x ≤的解集为{}13x x x ∈R -≤≤,. (1)求函数()f x 的解析式; (2(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分) 22.已知直线l 的参数方程为cos 1sin x t y t αα==+⎧⎨⎩(0πα<≤,t 为参数),曲线C 的极坐标方 (1)将曲线C 的极坐标方程化为直坐标方程,并说明曲线C 的形状; (2)若直线l 经过点()1,0,求直线l 被曲线C 截得的线段AB 的长. 23.已知0a >,0b >,函数()f x x a x b =++-的最小值为4. (1)求a b +的值; (2)求221149a b +的最小值.2018年高考押题猜题试卷文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】∵{}1,3,5,6,9U =,{}3,6,9A =,∴{}1,5U A =ð,∴图中阴影部分表示的集合是{}1,5U A =ð,故选D .2.【答案】C 【解析】(11i z --=+z故选C .3.【答案】A【解析】因为焦点在y轴上的双曲线的渐近线方程为y x =22225455b a c a ==-,2295a c =,295e =,5e =,故选A .4.【答案】B【解析】几何体为四棱锥,高为2,底面为正方形面积为22=4⨯,1824=33V ∴=⨯⨯,选B .5.【答案】A【解析】周期2ππ42π2T ω==⨯=,∴1ω=,()()sin f x x ϕ=+,∵()0sin 1f ϕ==,π2ϕ=,A .6.【答案】C【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由6378S =求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.7.【答案】C【解析】绘制不等式组表达的平面区域如图所示,则目标函数22z x y x y =++=++,结合目标函数的几何意义可知目标函数在点()2,2C 处取得最大值:max 2226z =++=. 本题选择C 选项. 8.【答案】C 【解析】由()()22a b a b +⋅-=-2222a a b b +⋅-=-, 22cos ,22a a b a b b +<>-=-,又2a b ==,∴44cos ,82a b +<>-=-, 1cos ,2a b <>=,∵两向量夹角的范围为[]0180︒︒,,∴a 与b 的夹角为60︒.故选:C . 9.【答案】D 【解析】由题意,偶函数()f x 的周期为2,作出函数()f x 象,如图所示,观察图象可知,两个函数的交点个数为6个,所以函数()()4log g x f x x =-的零点个数是6. 10.【答案】B 【解析】cos cos a b A C ⋅=+,()()cos cos cos sin sin sin A C A A A C ∴+=⋅+, 22cos sin cos cos sin sin A A A C A C ∴-=-+,()cos2cos cos A A C B ∴=-+=,2B A ∴=, 因为ABC △是锐角三角形,所以π02C <<,π022B A <=<,πππ32B A A ∴--=-<,π6A ∴>,ππ64A ∴<<,由正弦定理,可得:ππ64A <<,cos A <<,此卷只装订不密封班级姓名准考证号考场号座位号sin sin sin 3sin 2sin cos 2cos sin 22sin cos sin sin sin c bC BA AA A A A A Aa A A A+++++===24cos 2cos 1A A =+-,214cos 2cos 12A A ∴+<+-<+.本题选择B 选项.11.【答案】D【解析】将曲线的方程3y =()()22234x y -+-=()13,04y x ≤≤≤≤,即表示以()2,3A 为圆心,以2为半径的一个半圆,如图所示:由圆心到直线y x b =+的距离等于半径2,可∴1b =+或1b =-D .12.【答案】A【解析】重新整理:篮球:小林,小马; 网球:小林,小张;羽毛球:小林,小李; 足球:小方,小张;排球:小方,小李; 跆拳道:小方,小周;棒球:小马,小李; 击剑:小周,小张乒乓球:小马; 自行车:小周由于小周的自行车与小马的乒乓球没有共同兴趣爱好者,所以小周两边一事实上是跆拳道与击剑的,小马两边只能是棒球与篮球的.即小马与小林一定相邻,所以1号位是小林,2号位一定是小马,3号位就是棒球的小李.小周与小张及小方一定相邻,所以小周坐5号位.从3号位角度,4号位只能是排球和羽毛球(小林,不可能),所以是排球小方.6号位小张.选A .第Ⅱ卷 二、填空题:本大题共4小题,每小题5分. 13.【答案】单调递增 【解析】在()0,2π上有()1cos 0f x x ='->,所以()f x 在()0,2π单调递增,故答案为单调递增. 14.【答案】10 【解析】当0s =,1n =时,()01109s =+-+=<,则112n =+=;当0s =,2n =时,()201239s =+-+=<,则213n =+=;当3s =,3n =时,()331359s =+-+=<,则314n =+=;当5s=,4n =时,()4514109s =+-+=>,此时运算程序结束,输出10s =,应填答案10. 15.【答案】9 【解析】画出了函数图象,()()f a f b =,故得到a 和b 是关于轴对称的,1a b +=;45549b a a b +++=≥.等号成立的条件为2a b =.故答案为9. 16.【答案】①②④ 【解析】令1A BCD V -=,1AD x AD =11A A h x h =-,所以()()21f x x x =-,()01x <<,()()()()221123f x x x x x x '=-+-=-,则()f x 在20,3⎛⎫ ⎪⎝⎭单调递增,2,13⎛⎫ ⎪⎝⎭单②④. 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.【答案】(1)12n n a -=;(2)1n nT n =+.【解析】(1)设等比数列{}n a 的公比为q ,由3232 7a a S ==⎧⎨⎩-得()21121217a q a q a q q -=+=⎧⎪⎨⎪⎩+,解得2q =或15q =-,∵数列{}n a 为正项数列,∴2q =,代入2112a q a q -=,得11a =,∴12n n a -=.(2)()2111log n nn a b +=+⋅()()21log 21n n n n =+=+,此时()11111n b n n n n ==-++, ∴121111112231n n T b b b n n =++⋯+=-+-+⋯+-+1111nn n =-=++.18.【答案】(1)推断该地区110家微商中有55家优秀;(2)35.【解析】(1)6家微商一周的销售金额分别为8,14,17,23,26,35, 故销售金额的平均值为1814172326352056x =+++++=()..由题意知优秀微商有3家,故优秀的概率为12,由此可推断该地区110家微商中有55家优秀.(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,有15种, 设“恰有1家是优秀微商”为事件A ,则事件A 包含的基本事件个数为9种,所以()93155P A ==.即恰有1家是优秀微商的概率为35.19.【答案】(1)见解析; (2)5d =.【解析】(1)证明:因为AD ⊥平面BCD ,BC ⊂平面BCD ,所以AD BC ⊥,又因为AC BC ⊥,AC AD A =,所以BC ⊥平面ACD ,BC ⊂平面ABC ,所以平面ABC ⊥平面ACD .(2)由已知可得CD =,取CD 中点为F ,连结EF,由于12ED EC AB ===以ECD △为等腰三角形,从而2EF =1)知BC ⊥平面ACD ,所以E 到平面ACD 的距离为1令A 到平面CED 的距离为d ,有5d =. 20.【答案】(1(2)172. 【解析】(1)依题意,a =,1c =, 解得22a =,21b =,∴椭圆E 的标准方程为2212x y +=. (2)设11,A x y (),22,B x y (), 则()()()()112212122,2,22x y x y x x P PB y y A ⋅⋅=--=-+-, 当直线l 垂直于x 轴时,121x x ==-,12y y =-且2112y =, 此时()13,PA y =-,()()213,3,PB y y =-=--, 所以()2211732PA PB y ⋅=--=; 当直线l 不垂直于x 轴时,设直线():1l y k x =+, 由()22122y k x x y ⎧=+⎪⎨+=⎪⎩,整理得()2222124220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k -=+, 所以()()()2121212241+1PA PB x x x x k x x ⋅=-++++()()()2221212=124k x x k x x k ++-+++()()2222222224=1241212k k k k k k k -+⋅--⋅++++()2221721713172122221k k k +==-<++, 要使不等式PA PB λ⋅≤(λ∈R )恒成立,只需()max 172PA PB λ⋅=≥,即λ的最小值为172. 21.【答案】(1)()223f x x x =--; (2)1个. 【解析】(1)∵()f x 是二次函数,且关于x 的不等式()0f x ≤的解集为()()()21323f x a x x ax ax a =+-=--,且0a >. ∴()()min 144f x f a ==-=-,1a =.故函数()f x 的解析式为()223f x x x =--.(2)∵()()22334ln 4ln 20x x g x x x x x x x --=-=--->, ∴()()()2213341x x g x x x x --=+='-,令()0g x '=,得11x =,23x =. 当x 变化时,()g x ',()g x 的取值变化情况如下:又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点,故()g x 在()3,+∞上仅有1个零点.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【答案】(1)详见解析; (2)8.【解析】(1可得22sin 4cos ρθρθ=,即24y x =, ∴曲线C 表示的是焦点为()1,0,准线为1x =-的抛物线.(2)将()1,0代入cos 1sin x t y t αα==+⎧⎨⎩,得1cos 01sin t t αα==+⎧⎨⎩,∴tan 1α=-,∵0πα<≤,∴lt 为参数).将直线l 的参数方程代入24y x =得220t ++=,由直线参数方程的几何意义可知,128AB t t =-===.23.【答案】(1)4a b +=;(2)最小值为1613.【解析】(1()()0x a x b +-<时等号成立, 又0a >,0b >,所以a b a b +=+, 所以()f x 的最小值为a b +,所以4a b +=.(2)由(1)知4a b +=,4b a =-,所以()2222111144949a b a a +=+-2138163699a a =-+=2131616361313a ⎛⎫-+ ⎪⎝⎭, 故当1613a =,3613b =时,221149a b +的最小值为1613.。
最新2018年高等学校招生全国统一考试文科数学押题试卷有答案和解释一套
最新2018年高等学校招生全国统一考试文科数学押题试卷有答案和解释一套本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设是虚数单位,若复数,则的共轭复数为()A.B.C.D.【答案】D【解析】复数,根据共轭复数的概念得到,的共轭复数为:.故答案为:D.2.设,,则()A.B.C.D.【答案】A【解析】,,,故选A.3.已知函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】已知函数,若,则,由函数为增函数,故:,故选C.4.函数,的值域为,在区间上随机取一个数,则的概率是()A.B.C.D.1【答案】B【解析】,,即值域,若在区间上随机取一个数,的事件记为,则,故选B.5.执行如图所示的程序框图,如果输入的,则输出的()A.5 B.6 C.7 D.8【答案】A【解析】,故输出.6.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”.就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为()A.B.C.D.【答案】A【解析】设圆柱体的底面半径为,高为,由圆柱的体积公式得体积为:.由题意知.所以,解得.故选A.7.已知向量,,若,则向量与的夹角为()A.B.C.D.【答案】D【解析】由题可知:,所以向量与的夹角为.8.已知点在圆:上运动,则点到直线:的距离的最小值是()A.B.C.D.【答案】D【解析】圆:化为,圆心半径为1,先求圆心到直线的距离,则圆上一点P到直线:的距离的最小值是.选D.9.设,满足约束条件,若目标函数的最大值为18,则的值为()A.B.C.D.【答案】A【解析】根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为,当直线过点时,有最大值,将点代入得到,故答案为:A.10.双曲线的左、右焦点分别为,,过作倾斜角为的直线与轴和双曲线的右支分别交于,两点,若点平分线段,则该双曲线的离心率是()A.B.C.2 D.【答案】B【解析】双曲线的左焦点为,直线的方程为,令,则,即,因为平分线段,根据中点坐标公式可得,代入双曲线方程可得,由于,则,化简可得,解得,由,解得,故选B.11.已知函数在区间有最小值,则实数的取值范围是()A.B.C.D.【答案】D【解析】由可得,,函数在区间上有最小值,函数在区间上有极小值,而在区间上单调递增,在区间上必有唯一解,由零点存在定理可得,解得,实数的取值范围是,故选D.12.若关于的不等式在上恒成立,则实数的取值范围为()A.B.C.D.【答案】A【解析】依题意,或,令,则,所以当时,,当时,,当时,,当时,,所以或,即或,故选A.第Ⅱ卷本卷包括必考题和选考题两部分。
2018高考文科数学押题及解析
山东省2018届高三高考押题数学试题(文)2018.5一、选择题:本大题共10个小题,每小题5分,共50分. ★★★★★1.设复数()(),2,1zz a bi a b R i P a b i=+∈=-+,若成立,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限复数的考察主要分为以下几点:希望同学们好好掌握,以不变应万变!考试方向: ①复数的概念及化简:例:复数2 ()1miz m R i+=∈+是纯虚数,则m =( ) A .2- B . 1- C .1 D .2②复数的模长:例.复数)()2(2为虚数单位i ii z -=,则=||z(A)5 (B) 41 (C)6 (D) 5③共轭复数:设z 的共轭复数是z ,若z+z =4,z ·z =8,则zz等于 (A)i(B)-i(C)±1(D)±i④复数相等:已知2a ib i i+=+(,)a b R ∈,其中i 为虚数单位,则a b +=( ) (A )-1 (B )1 (C )2 (D )3⑤复平面:复数z=(为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限 易错点:没看到题目要求1、A ;①A ②A ③D ④B ⑤B★★★★★2.已知集合{}{}R x y y N x x x M x ∈==≥=,2,2,则MN = ( )A .)(1,0 B .]1,0[ C .)1,0[ D .]1,0( 集合的考察主要是分两大类:①集合的概念:设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于②集合的运算:设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C ABA .[-1,0]B .[-1,0]∪[)4,+∞ C .[-1,0]∪()4,+∞ D .()(,0)0,-∞⋃+∞ 易错点:不注意集合中的元素2、D ①()0,1②D ★★★★★3.下列命题中,真命题是A .00,||0x R x ∃∈≤B .2,2xx R x ∀∈> C .a -b =0的充要条件是1ab= D .若p ∧q 为假,则p ∨q 为假(p ,q 是两个命题) 逻辑结构用语主要考察以下几个方面: ①充要条件的判定: 给定两个命题,的必要而不充分条件,则( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 ②四种命题:下列命题中,正确的是( )A .命题“”的否定是“”B .命题“为真”是命题“为真”的必要不充分条件C .“若,则”的否命题为真D .若实数,则满足的概率为③特称命题:命题“∀x ∈[0,+∞),30x x +≥”的否定是( )A .∀x ∈(-∞,0),30x x +<B .∀x ∈(-∞,0),30x x +≥22ii-+i 2,0x x x ∀∈-≤R 2,0x x x ∃∈-≥R q p ∧p q ∨22am bm ≤a b ≤[],1,1x y ∈-221x y +≥4πC .∃0x ∈[0,+∞),30x x +<D .∃0x ∈[0,+∞),30x x +≥ ④真假命题的判定:.已知命题:p x R ∃∈,使5sin ;2x =命题:q x R ∀∈,都有210.x x ++> 给出下列结论:① 命题“q p ∧”是真命题 ② 命题“q p ⌝∧”是假命题 ③ 命题“q p ∨⌝”是真命题 ④ 命题“q p ⌝∨⌝”是假命题其中正确的是 A .① ② ③ B .③ ④ C .② ④ D .② ③ 易错点:否命题与命题的否定区别;3、A ;①A ②C ③C ④D★★★★4.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如表: 由附表:()()()()()22n ad bc K a b c d a c b d -=++++算得,()2250040270301609.96720030070430K ⨯⨯-⨯=≈⨯⨯⨯ 参照附表,得到的正确结论是A.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”C.有99%以上的把握认为“需要志愿者提供帮助与性别有关”D.有99%以上的把握认为“需要志愿者提供帮助与性别无关”此题主要考察独立性检验:对付此类问题主要明白2K 的计算方式,并会根据计算结果在附表中读取信息即可!★★★★★5.若变量x ,y 满足约束条件0,0,4312,x y x y ≥⎧⎪≥⎨⎪+≤⎩则31y z x +=+的取值范围是( )A. (34,7)B. [23,5 ]C. [23,7]D. [34,7]此类题目主要考察不等式的线性规划,主要分三类题目:①简单的三个不等式的组合,并且所求均为一次函数形式,可用方程组进行求解若变量y x ,满足约束条件13215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则3log (2)w x y =+的最大值是②对于三个以上的不等式的组合,一定先作图在进行求解:一般来说斜率正上小下大,斜率负上大下小.若实数满足,且的最小值为,则实数的值为③对于所求为二次函数的形式(一般为圆),考虑点到直线的距离,0022Ax By Cd A B++=+已知,x y 满足不等式组242y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则22222z x y x y =++-+的最小值为A.95B.2C.3D.2 易错点:①计算失误②直线非一般式③找点不准确;5、D ①2②94③B ,x y 20x y y x y x b-≥≥≥-+2z x y =+3b★★★★★6.执行右面的程序框图,如果输入a=3,那么输出的n 的值为 A.2 B.3 C.4 D.5程序框图的考察,主要是会读程序框图,对于循环结构的条件,以及输出结果要有准确的运算: 主要注意以下两点:①无限覆盖性②“=”为赋值号,从左向右赋值★★★★7.∆ABC 中内角A ,B ,C 的对边分别是a ,b ,c.若223sin 23sin a b bc C B -==,,则A=( )A .56πB .23πC .3πD .6π本题主要考察解三角形的知识:关于解三角形主要有以下几点:①正弦定理的应用:主要是两角一边,两边及一边对角,角边统一,外接圆 ②余弦定理的应用:主要是三边、两边及一边对角,两边及夹角③三角形面积公式:111sin sin sin 222s ac B bc A ab C === ④常用结论:sin()sin A B C +=,cos()cos A B C +=-⑤面积最值:均值不等式⑥求边长(周长)范围:化边为角,利用三角函数求值域 ★★★★8.将函数()3sin 2cos2f x x x =-的图像向左平移6π个单位得()g x ,则关于函数()g x 下列说法正确的是( )A.3π-是()g x 的一条对称轴B.(,0)6π-是()g x 的一个对称中心C. (,)26ππ-是()g x 的一个递增区间D.当12x π=时,()g x 取得最值本题主要考察三角函数的基本概念:对于上述四个选项一般采用带入法①三角函数的最值 ②三角函数的周期 ③三角函数的单调区间 ④三角函数的对称中心 ⑤三角函数的对称轴 ⑥图像的平移变换 ⑦在区间上求最值 ⑧在区间上求单调区间注意遇到三角函数一定先考虑三个统一:统一1次幂;统一角度;统一名称; ★★★★★8.在区间[-1,1]上随机取一个数k ,使直线52y kx =+与圆221x y +=相交的概率为 (A)34(B)23 (C) 12(D) 13本题主要是考察几何概率:几何概率主要是长度、面积、体积的比值,注意作图①.从集合区间[]1,4中随机抽取一个数为a ,从集合[]2,3中随机抽取一个数为b ,则b a >的概率是 A .12 B .13 C .25D .15②.在区间[0,]π上随机取一个数x ,sin x 的值介于0到21之间的概率为( ). A.31 B.π2C.21D.32 ③.在区间[2,2]-上随机地取两个实数a ,b ,则事件“直线1x y +=与圆()22()2x a y b -+-=相交”发生的概率为①A ②A ③11/20★★★9. 函数ln ||||x x y x =的图象大致是主要考察函数的图像及其辨别:方法:①奇偶性:奇函数:sinx ,tanx ,nx ,n 为奇数; 偶函数:cosx ,nx ,n 为偶数;x②带特殊点:注意观察图像的不同 本题选B定义运算,则函数的图像大致为( A )★★★10.对具有线性相关关系的变量x ,y ,测得一组数据如下表:X 2 4 5 6 8 y 20 40 60 70 80根据上表,利用最小二乘法得它们的回归直线方程为,据此模型来预测当x=20时,y 的估计值为A .210B .210.5C .211.5D .212.5 ★★★回归直线方程一定过(,)x y★★★10.已知直线m ,n 不重合,平面α,β不重合,下列命题正确的是 A.若m β⊂,n β⊂,m//α,n//α,则//αβ B.若m α⊂,m β⊂,//αβ,则m//n C.若αβ⊥,m α⊂,n β⊂,则m n ⊥D.若m α⊥,n α⊂,则m n ⊥本题主要考察空间点线面之间的关系及其判断:利用手中的笔,桌面、地面等进行判断。
2018年高考原创押题卷01文科数学
2018年高考原创押题卷01【新课标Ⅰ卷】文科数学(考试时间:120分钟 试卷满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知R 是实数集,集合{}2|ln(43) A x y x x ==+-,{|3}B y y ==,则B A =R ()ð A .()1,4-B .[]1,4C .()1,3-D .(1,3]- 2.已知i 是虚数单位,则2017i 2i i i 12i12z +++=-所对应的点位于复平面内的 A .第一象限3.2017A .5 4.已知命题a -列命题为真命题的是A .p q ∧ 5司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”, 在这个问题中,若每人所得按10%缴税,则前10天缴税 A .286.5升 B .276.5升C .296.5升 D .2865升 6.已知定义域为R 的奇函数()f x 在(0,)+∞则()1f +()(3)2018f f +=A .2log 5-B .0C .2-D .2log 57.如图为某几何体的三视图,且其体积为4π3+,则该几何体的高x 为A .3B .5C .4D .28.在下面的框图中,若输入6sin 3906cos 420a =︒+︒,且输出360S =,那么判断框中应填入的关于k 的判断条件是A .3>k ?B .3<k ?C .2>k ?D .2<k ?9.已知双曲线C : 22221(0,0)x y a b a b-=>>的右顶点和右焦点分别为,A F ,过F 作x 轴的2235A'E D CBA俯视图侧视图正视图211垂线交双曲线C 的上半部分于Q 点,OF 的垂直平分线交双曲线C 的上半部分于P 点,若PAF QOA S S =△△,则双曲线C 的离心率为 A.12 B.12 C .52 D.1210.如图所示,梯形'ABCA 沿高,BE CD 折起,得四棱锥A BCDE -,则该四棱锥的外接球的体积为π122-π12视图B .6π C .136π Dc .已知a =b =()sin cos 0b a C C +-=,则π812.已知函数()()ln 1f x x x a x =--.若()0f x ≥恒成立,则a 的值为 A .1 B .3 C .12 D .13第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知平面向量()()21,2,2,32m m =-=--a b ,且||||+=-a b a b ,则53-=a b __________. 14.已知函数()()()sin 20,0f x A x A ϕϕ=+><<π的部分图象如图所示,当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()2f x a =a 的取值范围是___________.15.若实数,x y 满足约束条件210330 10x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则的取值范围为 .16.已知抛物线C 的方程为24y x =,若O 为坐标原点,F 是C 的焦点,过点F 且倾斜角为45的直线l 交C 于A ,B 两点,则AOB △的面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,点(),n n S 在曲线{}n b 的前n 项和为n T ,且满足(1)求数列{}n a 和{}n b 的通项公式;(2)若不等式()()22log 3414nn n n S b k a ++>-+对所有的正整数n 都成立,求实数k 的取值范围. 18.(本小题满分12分)如图,在多面体ABCDEF 中,ABCD 是正方形,2AB =,4DE BF ==,//BF DE ,点M 为棱AE 的中点.z My 122R FEDCBAP(1)求证:平面//BMD 平面EFC ;(2)若DE ⊥平面ABCD ,求多面体ABCDEF 的体积. 19.(本小题满分12分)2017年6月18日,印军270余人携武器进入我国洞朗地区,并开了2台挖掘机在我国工地搞破坏和挖筑工事,8月28日下午,在中印边界锡金段越界的印度边防人员及装备已经全部撤回边界印方一侧,印军越界事件已得到解决,中印在洞朗的对峙终于以和平的方式解决.这是继2016年7月12日,美日导演的南海仲裁闹剧后,中国在新时期经历的又一次考验.某校决定对学生加强国防教育,培养爱国热情,为了解学生情况,先调查该校学生对中印对峙的关注情况,随机调查了该校200名学生,并将这200名学生分为对中印对峙“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对中印对峙“比较关注”的学生中男生人数与女生人数之比为4:3,对中印对峙“不太关注”的学生中男生比女生少5人.(1)完成下面的22⨯列联表,并判断能否在犯错误的概率不超过1%的前提下认为男生与女生对中印对峙的关注有差异?(2,从中抽取7人,再从这7人中随机选出2. 附:2KP k 20.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为()1,0F c -和()2,0F c ,椭圆交y 轴于S ,2OSF S =△l 过点()0,P c -交椭圆于A , B 两点,当直线l 过点2F 时,1F AB △的周长为8.(1)求椭圆C 的标准方程;(2)对于椭圆()222210x y a b a b +=>>的切线有如下性质:若点()00,x y 是椭圆上的点,则椭圆在该点处的切线方程为00221x x y ya b+=.若动点P 在直线3x y +=上,经过点P 的直线,m n 与椭圆C 相切,切点分别为,M N .求证:直线MN 必经过一定点.21.(本小题满分12分)已知函数()e x f x =.(1)若()()1x f x a x ϕ=--(a 为常数),曲线()y x ϕ=在与y 轴的交点A 处的切线斜率为1-.证明:当0x >时,()21f x x >+;(2)证明:当*n ∈N 时,3111(1)1ln23(3e)nn n +++++>. 请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程 已知直角坐标系中动点()2cos 2sin P m αα+,,参数[)02πα∈,,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线E 的极坐标方程为(1)求动点P 的轨迹C 的普通方程和曲线(2)若曲线C 和曲线E 有三个公共点,求以这三个公共点为顶点的三角形的面积.23.(本小题满分10分)选修4-5:不等式选讲(1)若()()2244f x f x +-=,求x 的取值范围;(2a 恒成立,求实数m 的取值范围.。
2018年高考冲刺模拟试卷_文科数学
第I 卷(选择题 共60分)一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(原创,容易)(1)已知集合}1)4(log |{22>-+=x x x A ,集合}1,)21(|{>==x y y B x,则=)(B C A R IA.)2,21[ .B.]21,1(-C.)2,21[]0,1(Y - D.),2()1,(+∞--∞Y 【答案】C【解析】)21(}24|{2,-=>-+=x x x A ,)21,0(=B ,则),21[]0,(+∞-∞=Y B C R ,所以=)(B C A R I )2,21[]0,1(Y -【考点】集合的运算,不等式(原创,容易)(2)已知复数21z z 、在复平面内对应的点关于实轴对称,若2018321)2(i i i i z i ++++=⋅-Λ(其中i 是虚数单位),则复数2z 的虚部等于A.51-B.51C.53-D.i 51- 【答案】A【解析】因为n i (*∈N n )的取值呈现周期性,周期为4,011432=+--=+++i i i i i i , 所以i i i ii i i z i +-=+=++++=⋅-1)2(22018321Λ,所以53211ii i z +-=-+-=,所以 532i z --=,所以2z 的虚部等于51- 【考点】复数的概念和运算(原创,容易)(3)下列命题中,真命题的是 A “R x ∈∃0,00≤x e”的否定是“R x ∈∀,0≥x e ”B.已知0>a ,则“1≥a ”是“21≥+aa ”的充分不必要条件 C.已知平面γβα、、满足γβγα⊥⊥,,则βα//D.若1)()()(=+=B P A P B A P Y ,则事件A 与B 是对立事件 【答案】B【解析】“R x ∈∃0,00≤x e”的否定是“R x ∈∀,0>x e ”,故A 错误;21≥+aa 恒成立的充要条件是0>a ,所以“1≥a ”是“21≥+aa ”的充分不必要条件,故B 正确;当γβγα⊥⊥,时,α与β可以相交,故C 错误;几何概型不满足,故D 错误. 【考点】命题、简易逻辑(原创,容易)(4)已知直线01sin :1=-+⋅y x l α,直线01cos 3:2=+⋅-αy x l ,若21l l ⊥,则=α2sin A.32 B.53± C.53- D.53【答案】D【解析】因为21l l ⊥,所以0cos 3sin =-αα,所以3tan =α,所以53tan 1tan 2cos sin cos sin 2cos sin 22sin 222=+=+==ααααααααα. 【考点】直线的位置关系、三角恒等变换(改编,容易)(5)已知双曲线C 的中心在原点,焦点在坐标轴上,其中一条渐近线的倾斜角为3π,则双曲线C 的离心率为 A.2或3 B.2或332 C.332 D.2 【答案】B【解析】若焦点在x 轴上,则方程为12222=-b y a x (0,>b a ),所以3=ab,则2122=+==ab ac e ;若焦点在y 轴上,则方程为12222=-b x a y (0,>b a ),所以3=b a,则332122=+==a b a c e 。
2018年高考数学押题预测试卷一(文科数学)
2018年高考数学押题预测试卷一(文科数学)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则集合为( ){|23,}A x x x Z =-<<∈{2,1,0,1,2,3}B =--A B A . B . C . D .{2,1,0,1,2}--{1,0,1,2}-{1,0,1,2,3}-{2,1,0,1,2,3}--2.若复数满足,则的值为( )(,)z x yi x y R =+∈()13z i i +=-x y +A . B . C . D .3-4-5-6-3.若,,则的值为( )1cos(43πα+=(0,)2πα∈sin αA C . D 7184.抛掷一枚质地均匀的骰子两次,记事件两次的点数均为偶数且点数之差的绝对值为,则{A =2}( )()P A =A . B . C . D .191349595.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:90 E,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()22221(0,0)x y a b a b -=>>2]e ∈A . B . C . D .[0,6π[,63ππ[,]43ππ[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为,则它的表面积是( )32π+A . B.3)2π++322π++CD+7.函数在区间的图象大致为()sinln y xx =+[3,3]-A .B .C .D .8.已知函数,若,则为( )()()1312,222,2,02x x x f x a x a R a x +-⎧+≤⎪⎪=⎨⎪->∈≠⎪-⎩()()()635f f f =-a A .B . D19.执行如图的程序框图,若输入的,,的值分别为,,,则输出的的值为( )x y n 011p A . B . C . D .8181281481810.已知数列是首项为,公差为的等差数列,数列满足关系,数{}n a 12{}n b 31212312n n n a a a a b b b b +++⋅⋅⋅+=列的前项和为,则的值为( ){}n b n n S 5S A . B . C . D .454-450-446-442-11.若函数在区间内单调递增,则实数的取值范围为( )()2ln f x m x x mx =+-()0,+∞m A . B . C . D .[]0,8(]0,8(][),08,-∞+∞ ()(),08,-∞+∞12.已知函数的图象如图所示,令()sin()f x A x ωϕ=+(0,0,,)2A x R πωϕ>><∈,则下列关于函数的说法中不正确的是( )()()'()g x f x f x =+()gx A .函数图象的对称轴方程为()g x ()12x k k Z ππ=-∈B .函数的最大值为()gx C .函数的图象上存在点,使得在点处的切线与直线:平行()g x P P l 31y x =-D .方程的两个不同的解分别为,,则最小值为()2g x =1x 2x 12x x -2π第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.向量,,若向量,共线,且,则的值为 .(,)a m n = (1,2)b =- a b 2a b = mn 14.已知点,,若圆上存在点使,则的()1,0A -()1,0B 2286250x y x y m +--+-=P 0PA PB ⋅= m 最小值为 .15.设,满足约束条件,则的最大值为 .x y 2402010x y x y y +-≤⎧⎪-+≥⎨⎪-≥⎩32x y +16.在平面五边形中,已知,,,,,ABCDE 120A ∠= 90B ∠=120C ∠=90E ∠= 3AB =,当五边形的面积时,则的取值范围为 .3AE =ABCDE S ∈BC 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角,,所对的边分别为,,,且ABC ∆A B C a b c 222cos cos sin sin B C A A B -=.(1)求角;C(2)若,的面积为,为的中点,求的长.6A π∠=ABC ∆M AB CM18.如图所示的几何体中,四边形为菱形,,,,P ABCD -ABCD 120ABC ∠= AB a =PB =,平面平面,,为的中点,为平面内任一点.PB AB ⊥ABCD ⊥PAB AC BD O = E PD G PAB(1)在平面内,过点是否存在直线使?如果不存在,请说明理由,如果存在,请说明作PAB G l //OE l 法;(2)过,,三点的平面将几何体截去三棱锥,求剩余几何体的体A C E P ABCD -D AEC -AECBP 积.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级名学生中随机抽取名学生进行测试,并将其成绩分为、、、、五个等级,800100A B C D E 统计数据如图所示(视频率为概率),根据图中抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为的人数;B (2)若等级、、、、分别对应分、分、分、分、分,学校要求当学生获得A BCDE 10090807060的等级成绩的平均分大于分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考90前心理稳定情况是否整体过关?(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为的名学生(其中男生E 164人,女生人)进行特殊的一对一帮扶培训,从按分层抽样抽取的人中任意抽取名,求恰好抽到名12421男生的概率.20.已知椭圆:,且过点,动直线:交C 22221(0)x y a b a b +=>>P l y kx m -+椭圆于不同的两点,,且(为坐标原点).C A B 0OA OB ⋅= O (1)求椭圆的方程.C (2)讨论是否为定值?若为定值,求出该定值,若不是请说明理由.2232m k -21.设函数.22()ln ()f x a x x ax a R =-+-∈(1)试讨论函数的单调性;()f x (2)如果且关于的方程有两解,,证明.0a >x ()f x m =1x 212()x x x <122x x a +>请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,曲线:(为参数,),在以坐标原点为极点,轴的非xOy 1C 3cos 2sin x t y tαα=+⎧⎨=+⎩t 0a >x 负半轴为极轴的极坐标系中,曲线:.2C 4sin ρθ=(1)试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;1C 2C xOy a (2)当时,两曲线相交于,两点,求.3a =A B AB 23.选修4-5:不等式选讲已知函数.()211f x x x =-++(1)在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集;()y f x =()3f x ≤(2)若函数的最小值记为,设,且有,试证明:.()y f x =m ,a b R ∈22a b m +=221418117a b +≥++文数(二)试卷答案一、选择题1-5: BCAAD 6-10: AADCB 11、12:AC二、填空题13. 14. 15. 16. 8-16223三、解答题17.解:(1)由,222cos cos sin sin B C A A B -=-得.222sin sin sin sin C B A A B -=由正弦定理,得,222c b a -=-即.222c a b =+又由余弦定理,得222cos 2a b c C ab +-===因为,所以.0C π<∠<6C π∠=(2)因为,6A C π∠=∠=所以为等腰三角形,且顶角.ABC ∆23B π∠=故,所以.221sin 2ABC S a B ∆===4a =在中,由余弦定理,得MBC ∆.2222cos CM MB BC MB BC B =+-⋅1416224282=++⨯⨯⨯=解得.CM =18.解:(1)过点存在直线使,理由如下:G l //OE l 由题可知为的中点,又为的中点,O BD E PD 所以在中,有.PBD ∆//OE PB 若点在直线上,则直线即为所求作直线,G PB PB l 所以有;//OE l 若点不在直线上,在平面内,G PB PAB过点作直线,使,G l //l PB 又,所以,//OE PB //OE l 即过点存在直线使.G l //OE l (2)连接,,则平面将几何体分成两部分:EA EC ACE 三棱锥与几何体(如图所示).D AEC -AECBP因为平面平面,且交线为,ABCD ⊥PAB AB 又,所以平面.PB AB ⊥PB ⊥ABCD 故为几何体的高.PB P ABCD -又四边形为菱形,,,,ABCD 120ABC ∠= AB a =PB =所以,222ABCD S a ==四边形所以.13P ABCD ABCD V S PB -=⋅四边形231132a ==又,所以平面,1//2OE PB OE ⊥ACD 所以,D AEC E ACD V V --=三棱锥三棱锥3111348ACD P ABCD S EO V a ∆-=⋅==所以几何体的体积.AECBP P ABCD D EAC V V V --=-三棱锥333113288a a a =-=19.解:(1)从条形图中可知这人中,有名学生成绩等级为,10056B 故可以估计该校学生获得成绩等级为的概率为,B 561410025=则该校高三年级学生获得成绩为的人数约有.B 1480044825⨯=(2)这名学生成绩的平均分为(分),1001(321005690780100⨯+⨯+⨯370260)91.3+⨯+⨯=因为,所以该校高三年级目前学生的“考前心理稳定整体”已过关.91.390>(3)按分层抽样抽取的人中有名男生,名女生,记男生为,名女生分别为,,.从中抽413a 31b 2b 3b取人的所有情况为,,,,,,共种情况,其中恰好抽取名男生的有,21ab 2ab 3ab 12b b 13b b 23b b 611ab ,,共种情况,故所求概率.2ab 3ab 312P =20.解:(1)由题意可知c a =所以,整理,得,①222222()a c a b ==-222a b =又点在椭圆上,所以有,②P 2223144a b+=由①②联立,解得,,21b =22a =故所求的椭圆方程为.2212x y +=(2)为定值,理由如下:2232m k -设,,由,11(,)A x y 22(,)B x y 0OA OB ⋅= 可知.12120x x y y +=联立方程组,2212y kx m x y =+⎧⎪⎨+=⎪⎩消去,化简得,y 222(12)4220k x kmx m +++-=由,2222168(1)(12)0k m m k ∆=--+>得,2212k m +>由根与系数的关系,得,,③122412km x x k+=-+21222212m x x k -=+由,,12120x x y y +=y kx m =+得,1212()()0x x kx m kx m +++=整理,得.221212(1)()0k x x km x x m ++++=将③代入上式,得.22222224(1)01212m km k km m k k -+-⋅+=++化简整理,得,即.222322012m k k--=+22322m k -=21.解:(1)由,可知22()ln f x a x x ax =-+-2'()2a f x x a x =-+-222(2)()x ax a x a x a x x --+-==.因为函数的定义域为,所以,()f x (0,)+∞①若时,当时,,函数单调递减,当时,,函数0a >(0,)x a ∈'()0f x <()f x (,)x a ∈+∞'()0f x >单调递增;()f x ②若时,当在内恒成立,函数单调递增;0a ='()20f x x =>(0,)x ∈+∞()f x ③若时,当时,,函数单调递减,当时,,函0a <(0,2a x ∈-'()0f x <()f x (,)2a x ∈-+∞'()0f x >数单调递增.()f x (2)要证,只需证.122x x a +>122x x a +>设,()()2'2a g x f x x a x==-+-因为,()22'20a g x x=+>所以为单调递增函数.()()'g x f x =所以只需证,()12''02x x f f a +⎛⎫>= ⎪⎝⎭即证, 2121220a x x a x x -++->+只需证. ()12212210x x a x x a-++->+(*)又,,22111ln a x x ax m -+-=22222ln a x x ax m -+-=所以两式相减,并整理,得.()1212212ln ln 10x x x x a x x a --++-=-把代入式,()1212212ln ln 1x x x x a a x x -+-=-(*)得只需证,121212ln ln 20x x x x x x --+>+-可化为.12112221ln 01x x x x x x ⎛⎫- ⎪⎝⎭-+<+令,得只需证.12x t x =()21ln 01t t t --+<+令,()()21ln (01)1t t t t t ϕ-=-+<<+则,()()()()222141'011t t t t t t ϕ-=-+=>++所以在其定义域上为增函数,()t ϕ所以.()()10t ϕϕ<=综上得原不等式成立.22.解:(1)曲线:,消去参数可得普通方程为.1C 3cos 2sin x t y tαα=+⎧⎨=+⎩t 222(3)(2)x y a -+-=由,得.故曲线:化为平面直角坐标系中的普通方程为4sin ρθ=24sin ρρθ=2C 4sin ρθ=.22(2)4x y +-=当两曲线有公共点时的取值范围为.a [1,5](2)当时,曲线:,即,3a =1C 3cos 2sin x t y tαα=+⎧⎨=+⎩22(3)(2)9x y -+-=联立方程,消去,得两曲线交点,所在直线方程为.()()()222232924x y x y ⎧-+-=⎪⎨+-=⎪⎩y A B 23x =曲线的圆心到直线的距离为,22(2)4x y +-=23x =23d =所以.AB ==23.解:(1)因为,()211f x x x =-++3,112,1213,2x x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩所以作出函数的图象如图所示.()f x 从图中可知满足不等式的解集为.()3f x ≤[1,1]-(2)证明:由图可知函数的最小值为,即.()y f x =3232m =所以,从而,2232a b +=227112a b +++=从而2222142[(1)(1)]117a b a b +=+++++22222214214(1)([5()]1711b a a a b a b +++=++≥++++.218[577=+=当且仅当时,等号成立,222214(1)11b a a b ++=++即,时,有最小值,216a =243b =所以得证.221418117a b +≥++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届高三核心突破压轴仿真试题(二)数学试题(文科)本试卷分第I 卷(选择题60分)和第Ⅱ卷(非选择题90分)两部分。
共24题。
本试卷共150分,考试时间120分钟.一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上) 1.集合{}Z x x x A ∈≤+=,21,{}11,3≤≤-==x x y y B ,则=B A ( ) A .(]1,∞- B .[]1,1-C .φD .{}1,0,1-2.若z 是复数,且()13=+i z (i 为虚数单位),则z 的值为 ( )A .i +-3B .i --3C .i +3D .i -33.已知甲、乙两名篮球运动员某十场比赛得分的茎叶图如右上图所示,则甲、乙两人在这十场比赛中得分的平均数与方差的大小关系为( ) A . 乙甲x x < 22S S <乙甲,乙甲B . 乙甲x x < 22x x S S <>乙甲,乙甲C . 乙甲x x >22x x S S >>乙甲,乙甲D . 乙甲x x > 22x x S S ><乙甲,乙甲4. 一个几何体的三视图如右图所示,则该几何体的体积为( )A .2B .1C .23D .135.设x ,y 满足36020,3x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩若目标函数z=ax+y (a>0)的最大值为14,则a=( )A .1B .2C .23D .5396.等差数列{n a }前n 项和为n s ,满足4020s s =,则下列结论中正确的是 ( ) A .30s 是n s 中的最大值 B .30s 是n s 中的最小值C .30s =0D .60s =07.已知流程图如右图所示,该程序运行后,为使输出b 的值为16,则循环体的判断框内① 处应填的是 ( )乙 甲8 6 4 3 1 5 8 6 3 2 4 5 8 3 49 45 01 3 1 6 7 9A . 3B . 2C . 4D . 168.函数22cos ()14y x π=--是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数9.已知双曲线221916x y -=,其右焦点为F ,P 为其上一点,点M =1,0=⋅,的最小值为( )A 3BC 2D 10. 已知条件1|:|>x p ,条件2:-<x q ,则p ⌝是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件11.已知点(,)P x y 在直线23x y +=上移动,当24xy+取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .212.已知函数()f x 的定义域为[]15-,,部分对应值如右表。
()f x 的导函数()y f x '=的图象如右图所示。
下列关于函数()f x 的命题: ① 函数()y f x =是周期函数;② 函数()f x 在[]02,是减函数;③ 如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最大值为4;④ 当12a <<时,函数()y f x a =-有4个零点。
其中真命题的个数是 ( )A 、4个B 、3个C 、2个D 、1个第Ⅱ卷( 90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 从2008名学生中选取100名组成合唱团,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法进行,则每人被剔除的概率为 .14.设246,0()2 4 0x x x f x x x ⎧-+≥=⎨+<⎩若存在互异的三个实数123,,,x x x 使123()()()f x f x f x ==,则123x x x ++的取值范围是 .15. 若=-⎩⎨⎧>≤-=)]2([,)0(log )0(|1|)(3f f x xx x x f 则 。
161的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为 三、解答题(共6个小题,共70分)17. ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,向量(1,1)m =-,(cos cos ,sin sin n B C B C = ,且m n ⊥ .(1)求A 的大小;(2)现在给出下列三个条件:①1a =;②21)0c b -=;③45B =,试从中选择两个条件以确定ABC ∆,求出所确定的ABC ∆的面积.(注:只需要选择一种方案答题,如果用多种方案答题,则按第一方案给分).18.设函数a x x xax x f 若),1(1)(--+=是从1,2,3三个数中任取一个数,b 是从2,3,4,5四个数中任取一个数,求b x f >)(恒成立的概率。
19. 如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形.(1)求证:DM //平面APC ;(2)求 证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D —BCM 的体积. 20.设椭圆E: 22221x y a b+=(a,b>0)过M (2,N,1)两点,O 为坐标原点,(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。
21.已知函数x b x x b a x f )3(21)3ln()93()(2-++++-=.(参考:31))3(ln(/+=+x x ) (1)当0>a 且0)1('1=≠f a ,,时,试用含a 的式子表示b ,并讨论)(x f 的单调区间;(2)若)('x f 有零点,61)3('≤f ,且对函数定义域内一切满足|x |≥2的实数x 有)('x f ≥0. ①求)(x f 的表达式;②当)2,3(-∈x 时,求函数)(x f y =的图象与函数)('x f y =的图象的交点坐标.请考生在(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中, O 为极点, 半径为2的圆C 的圆心的极坐标为(2,)3π.⑴求圆C 的极坐标方程;⑵P 是圆C 上一动点,点Q 满足3O P O Q=,以极点O 为原点,以极轴为x 轴正半轴建立直角坐标系,求点Q 的轨迹的直角坐标方程.(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.参考答案1—5:DBDCB,6—10:DCABA,11—12:AD13:1251 14:(3,4)15:1 1617、答案:解析:(I )因为m n ⊥ ,所以cos cos sin sin 02B C B C -+-=……………2分即:cos cos sin sin 2B C B C -=-,所以cos()2B C +=…………4分 因为A B C π++=,所以cos()cos B C A +=-所以cos 302A A == ……………………………………6分 (Ⅱ)方案一:选择①②,可确定ABC ∆,因为30,1,21)0A a c b ==-=由余弦定理,得:2221)2b b =+-整理得:22,b b c ===10分所以1111sin 22224ABC S bc A ∆===……………………12分 方案二:选择①③,可确定ABC ∆, 因为30,1,45,105A a B C ====又sin105sin(4560)sin 45cos60cos 45sin 60=+=+=由正弦定理sin 1sin105sin sin 30a C c A ⋅===10分所以11sin 122ABC S ac B ∆==⋅=12分 (注意;选择②③不能确定三角形)18解: ,0,1>>a x111)(-+-+=x x ax x f 111+-+=x ax …………………………2分 a x x a ++-+-=111)1(,)1(122+=++≥a a a …………………………4分,)1(min )(2+=∴a x f于是b a b x f >+>2)1()(恒成立就转化为成立。
……………………6分 设事件A :“b x f >)(恒成立”,则基本事件总数为12个,即 (1,2),(1,3),(1,3),(1,5); (2,2),(2,3),(2,4),(2,5); (3,2),(3,3),(3,4),(3,5);…………………………8分 事件A 包含事件:(1,2),(1,3); (2,2),(2,3),(2,4),(2,5); (3,2),(3,3),(3,4),(3,5)共10个……………………10分 由古典概型得.651210)(==A P ……………………12分19. 解:(Ⅰ)∵M 为AB 中点,D 为PB 中点,∴MD//AP , 又∴MD ⊄平面ABC ∴DM//平面APC ……………3分(Ⅱ)∵△PMB 为正三角形,且D 为PB 中点。
∴MD ⊥PB又由(Ⅰ)∴知MD//AP , ∴AP ⊥PB 又已知AP ⊥PC ∴AP ⊥平面PBC , ∴AP ⊥BC , 又∵AC ⊥BC∴BC ⊥平面APC , ∴平面ABC ⊥平面PAC ……………8分 (Ⅲ)∵AB=20∴MB=10 ∴PB=10又BC=4,.2128416100==-=PC ∴.2122124414121=⨯⨯=⋅==∆∆BC PC S S PBC BDC又MD .351020212122=-==AP ∴V D-BCM =V M-BCD =710352123131=⨯⨯=⋅∆DM S BDC ………………12分20. 解:(1)因为椭圆E: 22221x y a b +=(a,b>0)过M (2,两点,所以2222421611a b a b +=+=⎧⎪⎪⎨⎪⎪⎩解得22118114a b ⎧=⎪⎪⎨⎪=⎪⎩所以2284a b ⎧=⎨=⎩椭圆E 的方程为22184x y += (2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,OA OB ⊥ ,设该圆的切线方程为y kx m =+解方程组22184x y y kx m +==+⎧⎪⎨⎪⎩得222()8x kx m ++=,即222(12)4280k x kmx m +++-=,则△=222222164(12)(28)8(84)0k m k m k m -+-=-+>,即22840k m -+>12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,22222222212121212222(28)48()()()121212k m k m m k y y kx m kx m k x x km x x m m k k k --=++=+++=-+=+++要使OA OB ⊥ ,需使12120x x y y +=,即2222228801212m m k k k--+=++,所以223880m k --=,所以223808m k -=≥又22840k m -+>,所以22238m m ⎧>⎨≥⎩,所以283m ≥,即m ≥或m ≤,因为直线y k x m =+为圆心在原点的圆的一条切线,所以圆的半径为r =,222228381318m m r m k ===-++,r =,所求的圆为2283x y +=,此时圆的切线y kx m =+都满足m ≥或m ≤,而当切线的斜率不存在时切线为x =与椭圆22184x y +=的两个交点为(33±或(33-±满足OA OB ⊥ ,综上, 存在圆心在原点的圆2283x y +=,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥ .因为12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 所以22222212121222224288(84)()()4()41212(12)km m k m x x x x x x k k k --+-=+-=--⨯=+++,||AB ==== ①当0k ≠时||AB =,因为221448k k ++≥所以221101844k k<≤++,所以2232321[1]1213344k k<+≤++,||AB <≤k =”=”. ② 当0k =时,||AB =③ 当AB的斜率不存在时,两个交点为(33±或()33-±,所以此时||3AB =, 综上, |AB |||AB ≤≤: ||AB ∈ 21.解:(1)………………1分由,故时 由 得的单调增区间是, 由得单调减区间是同理时,的单调增区间,,单调减区间为…4分(2)①由(1)及 (i)又由有知的零点在内,设,则,结合(i )解得, …7分∴ ………………8分 ②又设,先求与轴在的交点∵, 由 得故,在单调递增又,故与轴有唯一交点即与的图象在区间上的唯一交点坐标为为所求 ………12分22.解:解:(I )连接DE ,根据题意在△ADE 和△ACB 中,AD×AB=mn=AE×AC ,即AB AEACAD =.又∠DAE=∠CAB ,从而△ADE ∽△ACB 因此∠ADE=∠ACB所以C ,B ,D ,E 四点共圆. (Ⅱ)m=4, n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12. 故 AD=2,AB=12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH.因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH.由于∠A=900,故GH ∥AB , HF ∥AC. HF=AG=5,DF= 21(12-2)=5.故C ,B ,D ,E 四点所在圆的半径为52(23)(本小题满分10分)解:(1)设M ),(θρ是圆C 上任一点,过C 作C H O M ⊥于H 点,则在R t △CO H 中,c o s O H O C C O H =⋅∠,而3C O H C O M πθ∠=∠=-,1122OH O M ρ==,2O C =, 所以12c o s 23πρθ=-,即4co s ()3πρθ=- 为所求的圆C 的极坐标方程. ( 5分) (2)设(,)Q ρθ点的极坐标为,由于3O P O Q =,所以1(,)P ρθ点的极坐标为代入⑴中方程得14c o s ()33πρθ=-,即6c o s i n ρθθ=,∴26c o s s i n ρ=,226x y x +=,∴点Q 的轨迹的直角坐标方程为2260x y x =. (10分) (24)(本小题满分10分)11 解:(Ⅰ)当1a =时,()32f x x ≥+可化为 |1|2x -≥.由此可得 3x ≥或1x ≤-. 故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ) 由()0f x ≤得30x a x -+≤ 此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩ 或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩ 或2x a a a ≤⎧⎪⎨≤-⎪⎩ 因为0a >,所以不等式组的解集为{}|2a x x ≤- 由题设可得2a -= 1-,故2a =。