新课标2014-2015学年度(上)概率初步测试题(精典好题)

合集下载

2014--2015学年第一学期教学质量检测试题卷九年级数学

2014--2015学年第一学期教学质量检测试题卷九年级数学

2014—2015学年第一学期教学质量检测试题卷九年级数学注意事项:满分100分,时间是100分钟一、选择题(每小题3分,共24分)下列标志既是轴对称图形又是中心对称图形的是( )2.下列说法中正确的是 ( )A.“明天降雨的概率是90%”表示明天有90%的时间降雨B.某次抽奖活动中奖的概率为1100,说明每买100张奖券,一定有一次中奖 C.“打开电视,正在播放《新闻联播》”是必然事件D.口袋中装有2个红球和1个白球,从中摸出2个球其中必有红球3.已知关于x 的一元二次方程2(m 1)210x x -+-=有两个不相等的实数根,则m 的取值范围是( )A. m>0B. m<0C. m>0且m ≠1D. m ≥0,且m ≠1 4.关于反比例函数6y x=,下列说法错误的是( ) A.(-2,-3)在函数图象上 B.当x >0时,y 随x 的增大而减小 C.图象位于二四象限 D.P (-1,a ),Q (2,b )在函数图象上,则a<b5.将二次函数22(1)1y x =--的图象向左平移2个单位,再向下平移3个单位,平移后的二次函数解析式为( )A. 22(3)4y x =--B. 22(1)4y x =+-C. 22(3)2y x =-+D. 22(2)3y x =--6.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,若∠ABD=58°,则∠BCD 的度数是( )A. 40°B. 58°C. 32°D. 42°7.如图在平行四边形ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F,AB=3,BC=5, AE EC 的值为 ( ) A . 3:5 B. 2:3 C. 5:8 D. 3:88.二次函数()20y ax bx c a =++≠的图象如图所示,则下列说法:①a>0 ;②2a+b=0;③ a+b+c>0;④当-1<x<3时,y>0;⑤240b ac ->,q 其中正确的个数是( ).A. 1B. 2C. 3D. 4二、填空题(每小题2分,共14分)9.方程20x x +=的根是 .10.如图,以点O 为圆心的两个同心圆,大圆的弦AB 是小圆的切线,点P 为切点,小圆的半径为3cm,AB=8cm ,则大圆的半径为 (cm).11.如图,把一个圆形转盘按1:2:3:4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后 落在B 区域(指针落在分界线时重转)的概率为 . 12.已知A (-2,1y ),B (1,2y ),C (2,3y )是抛物线()m x y ++-=21上的三点,则321,y y y ,的大小关系为 .13.如图,在平面直角坐标系中,Rt △OAB 中,∠ABO=90°,点A 的坐标为(3,1),若将△OAB 绕点O 逆时针旋转90°后,A 点到达/A 点,则/A 的坐标是 .14.如图,菱形OABC 中,点C 的坐标为(3,4),点A 在x 轴的正半轴上,反比例函数xk y =()0>x 的图象经过点B ,则k 的值为 . 15.Rt △AOB 在平面直角坐标系内的位置如图所示,点O 为原点,点A (0,8),点B (6,0),点P 在线段AB 上,且AP=6.在x 轴上存在点Q ,使得以B 、P 、Q 为顶点的三角形与△AOB 相似,则点Q 的坐标为 .三、解答题(本大题共8个题目,满分62分)16.(6分)解方程:01322=--x x17.(6分)一个不透明的袋子里装有分别标注2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样,正面分别写有数字6、7、8的卡片,先从袋子中任意摸出一个球,再从这3张背面朝上的卡片中任意摸出一张,记录两次得到的数字.(1)请你用列表或画树状图的方法,表示出所有可能出现的结果.(2)小红和小莉做游戏,制定了两个游戏规则:规则1:若两次摸出的数字,至少有一个是“6”,小红赢;否则,小莉赢.规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢.18. (7分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列问题:(1)画出将△ABC 绕点B 按逆时针方向选择90°后所得到的△11BC A ;(2)求线段BC 旋转到B 1C 的过程中,点C 所经过的路径长.(结果保留π)19. (8分)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求学校这两年绿化面积的年平均增长率.20. (8分)如图,直线MN 交⊙O 于A 、B 两点,AD 平分∠OAM交⊙O 于D ,过D 作DE ⊥MN 于点E.求证:DE 是⊙O 的切线.21. (8分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,点A 、C 分别在坐标轴上,点B 的坐标为(8,4),反比例函数()016>=x xy 的图象分别与AB 、BC 相交于点M 、N.若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.22. (9分)如图,在平行四边形ABCD 中,DE 交BC 于F ,交AB 的延长线于E ,且∠EDB=∠C.(1)求证:△ADE ∽△DBE ;(2)若DE=9cm,AE=12cm,求DC 的长.23. (10分)如图,一次函数221+-=x y 分别交y 轴、x 轴于A 、B 两点,抛物线c bx x y ++-=2过A 、B 两点.(1)求这条抛物线的解析式;(2)作垂直于x 轴的直线x=t ,在第一象限内交直线AB 于点M ,交这条抛物线于点N.当t 取何值时,MN 有最大值.(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,直接写出第四个顶点D 的坐标.。

概率统计初步试卷(附答案)

概率统计初步试卷(附答案)

《概率论与数理统计初步》试卷试卷共 6 页,请先查看试卷有无缺页,然后答题。

一.选择题(53⨯分)1.设离散型随机变量则(A). 0.2 (B). 0.3 (C). 0.1 (D). 0.52.设总体X 服从正态分布)6,1(N ,125,,,X X X 为X 的样本,记5115i i X X ==∑,则X ~______________(A). )41,1(N (B). )6,1(N (C). 6(1,)5N (D). (0,6)N3.已知总体X ~N(μ,σ2),其中μ未知, σ2已知,n X X X ,,,21 是X 的样本,下列哪个函数不是统计量_____________(A). min(X 1,X 2,…,X n ) (B). ∑=--ni i X X n 12)(11 (C).121n X i i n()-=∑μ (D). Xii n212=∑σ4.某人射击击中的概率为14。

如射击直到击中为止,则射击次数为3的概率为( ) (A ) 343⎪⎭⎫ ⎝⎛ (B )41432⨯⎪⎭⎫ ⎝⎛ (C ) 43412⨯⎪⎭⎫ ⎝⎛(D ) 341⎪⎭⎫⎝⎛5. 21,X X 是总体(,4)N μ的一个样本,,下面四个估计量中,未知参数μ的无偏估计是_________________________(A).121433X X + (B). 121344X X + (C). 214143X X - (D). 215352X X +二. 填空题(53⨯分)1. 若随机变量ξ与η相互独立,且方差D(ξ)=0.5,D(η)=1,则D(2ξ-3η)=______________________.2.设事件A ,B 相互独立,且4.0)(=A P ,0)(=AB P ,则=)(B P _________________________3. 设(X ,Y) ~ N(1, 2, 3, 4, 0),则=XY ρ____________4. 设随机变量X ~)21,4(B ,则=2)]([)(X E X D _________________________5. 设B A ,互不相容,且q B P p A P ==)(,)(,则)(B A P =___________ 二.计算题1. 已知某厂生产的灯泡寿命在1万小时以上的概率为0.8,寿命在2万小时以上的概率为0.2,求已使用1万小时的灯泡能用2万小时的概率。

《概率初步》测试题(含答案))

《概率初步》测试题(含答案))
2
果选得男生的概率为2,求男女生数各多少?
21. (5分)口袋里有红、绿、黄三种颜色的球,其中有红球
1
1个绿球的概率是-,求摸出一个黄球的概率?
3
22.(5分)从数学、语文、英语、计算机这四门课程中选出两门排在星期一上午第一、二
两节课,数学和计算机不能排在一起,语文不能排在第一节,两节可以排同一门课程,
11.天气台预报明天下雨的概率为70%,
A.明天30%的地区会下雨
C.明天出行不带雨伞一定会被淋湿
则下列理解正确的是()
B.明天30%的时间会下雨
D.明天出行不带雨伞被淋湿的可能性很大
12.下列成语所描述的事件是必然事件的是()
A.水中捞月B.拔苗助长C.守株待兔D.
13.如图,等腰梯形ABCD中,AB//CD,E、F、M、N分别 是AB、CD、DE、CE中点,AB=2CD.如果向这个梯形 区域内随意投掷绿豆, 区域内(不包含边界)
人1
x5,令x一、
2
5
(2)
(4)2008年奥运会在北京举行.其中不确定事件有(
C.3个D.4个 (骰子每一面的点数分别是从

B.掷出两个骰子的点数和为
D.掷出两个骰子的点数和为
3253749
2 2 2 2
随机掷一枚均匀的硬币,正面朝上;
(3)12名同学

1到6这六个数字
6是必然事件
14是随机事件
1、
18.(5分)一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出 红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?
19.(5分)将一枚硬币连掷3次,出现“两正,一反”的概率是多少?

概率测试题及答案

概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。

答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。

答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。

答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。

四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。

2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。

求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。

五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。

答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。

2013-2015概率统计试题及解答

2013-2015概率统计试题及解答

(2) 设 Y 为 150h 内烧坏的电子管数,则 Y ~ B(3, p) , p = P{X < 150} = F (150) = 1 。(3 分)
3
所求为 P{Y ≥ 2} = C32 (1 3)2 (2 3) + (1 3)3 = 7 27 。(2 分)
∫ ∫ ∫ ∫ ∫ 三、1. (1) 由
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
题号
一 二 三 四 总分
标准分 24 16 30 30
得分
注 请填写清楚左侧装订线内的所有信息,并在交卷时保持三页试卷装订完好。
A 一、填空题和选择题 (每题 3 分,共 24 分)
1. 已知 P(A) = 0.5 , P(B) = 0.6 , P ( B A) = 0.8 ,则 P ( A ∪ B) =
⎪⎩ 0,
其它.
cov( X ,Y ), ρXY , D( X − Y ) 。
姓名:
学号: 线
专业班级: 订
专业班级: 全校工科、经管、理科各专业 [该项由出卷人填写]

第( 2 )页共( 3 )页
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
A 四、计算下列各题 (共 30 分) 1. (7 分) 某单位设置一电话总机,共有 100 架电话分机。设每个电话分机是否使用外线通话 是相互独立的,且每时刻每个分机有 10%的概率要使用外线通话。问总机需要多少外线才能
36
6
36
∫ ∫ ∫ ∫ E(XY ) =
+∞
+∞
xyf (x, y)dxdy =

新课标2014---2015学年度六年级数学整理与复习(统计与概率)测试题(三)

新课标2014---2015学年度六年级数学整理与复习(统计与概率)测试题(三)

新课标六年级数学整理与复习 测 试 题统计与概率部分(三)温馨提示:认真书写,运用规范的修改符号,作图请用铅笔,严禁使用涂改液,做到卷面清洁、字迹工整。

一、认真判断 1、在一组数据中,众数只有一个。

( ) 2、中位数=总数÷(总份数÷2)。

( ) 3、一组数据的平均数和中位数不可能相等。

( )4、在世界人口扇形统计图(如图),关于中国部分的圆心角的度数为720。

( ) 5、从标有1、2、3、4的四张卡片中,任何两张和是双数的可能性与和单数的可能性一样大 ( ) 二、精挑细选1、六(3)和六(4)两个班级男女生人数统计图:如图下列说法正确的是( )。

A .六(4)班的男生比六(3)班的男生少。

女生46% 女生48%B .六(4)班的女生比六(3)班的女生多。

C .六(4)班的学生比六(3)班的学生多。

男生54% 男生52%D .按现在数据不同班级间无法比较。

2、盒子里有红、白两小球,闭上眼睛随意摸一个,结果连续6次都摸到红球,请问他第七次摸到红球的可能性是( )。

A .71B .21C .76D .13、甲转动指针、乙猜指针会停在哪一个数上,如果乙猜对了,乙获胜。

如果乙猜错了,甲获胜。

现有以下四种不同的猜法,乙猜哪一种获胜的可能性最大( )。

A .不是2的整数倍。

B .不是3的整数倍。

C .大于6的数 。

D .不大于6的数。

4、已知一组数据为241,2.5,3,4.3,421,5,5,5.7,743。

其中平均数、六(4) 六(3)印度18% 中国 20%其他国家62%中位数和众数的大小关系是( )。

A .平均数>中位数>众数 B.众数=中位数=平均数 C .平均数<中位数<众数5、在下面的信息资料中,适合用折线统计图表示的是( )。

A .学校教师的人数。

B .8月份气温变化情况。

C .学校各年级的人数。

D .2004~2008每年招收一年级新生人数变化情况。

三、知识乐园1、数学试卷上有一道选择题,四个选项中只有一个正确,小玲不会做,任意选了一个,她答对的可能性是( )。

概率初步试题及答案

概率初步试题及答案

概率初步试题及答案一、选择题(每题4分,共20分)1. 某事件的概率为0.5,那么它的对立事件的概率是()。

A. 0.5B. 0C. 1D. 0.3答案:C2. 抛掷一枚硬币,正面朝上的概率是()。

A. 0.5B. 0.25C. 0.75D. 1答案:A3. 随机变量X服从二项分布B(n,p),其中n=10,p=0.3,那么P(X=3)是()。

A. 0.3B. 0.03C. 0.09D. 0.33答案:C4. 某次考试,甲、乙、丙三人的成绩独立,甲通过的概率为0.7,乙通过的概率为0.6,丙通过的概率为0.5,那么三人都通过的概率是()。

A. 0.21B. 0.35C. 0.105D. 0.05答案:C5. 已知随机变量X服从正态分布N(μ,σ^2),其中μ=0,σ^2=1,那么P(-1<X<1)是()。

A. 0.6826B. 0.95C. 0.8413D. 0.9772答案:C二、填空题(每题5分,共20分)1. 概率的取值范围是()。

答案:[0,1]2. 随机变量X服从泊松分布,其参数λ=4,则P(X=2)=()。

答案:0.33. 某次实验中,事件A和事件B是互斥的,且P(A)=0.4,P(B)=0.3,则P(A∪B)=()。

答案:0.44. 已知随机变量X服从均匀分布U(0,3),则E(X)=()。

答案:1.5三、计算题(每题10分,共20分)1. 已知随机变量X服从二项分布B(5,0.2),求P(X≥3)。

答案:P(X≥3)=P(X=3)+P(X=4)+P(X=5)=C_5^3*0.2^3*0.8^2+C_5^4*0.2^4*0.8+0.2^5=0.0512+0.0128+0.00032=0.064322. 已知随机变量X服从正态分布N(2,4),求P(1<X<3)。

答案:P(1<X<3)=Φ((3-2)/2)-Φ((1-2)/2)=Φ(0.5)-Φ(-0.5)=0.6915-0.3585=0.333四、解答题(共40分)1. 某班有50名学生,其中有20名女生,30名男生。

概率基础测试题及答案解析

概率基础测试题及答案解析

概率基础测试题及答案解析一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,那么P(X>0)等于多少?A. 0.5B. 0.6826C. 0.8413D. 0.5000答案:A解析:标准正态分布的均值为0,标准差为1,对称轴为X=0,因此P(X>0)等于0.5。

2. 已知随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 1.5B. 3C. 2.7D. 0.3答案:B解析:二项分布的期望值E(X)=np,所以E(X)=10*0.3=3。

3. 一组数据的平均数是5,方差是4,那么这组数据的中位数是多少?A. 4B. 5C. 6D. 无法确定答案:B解析:平均数是所有数据的总和除以数据的个数,而中位数是将数据按大小顺序排列后位于中间的数。

在没有具体数据的情况下,无法确定中位数,但根据平均数的定义,可以推断中位数为5。

4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,那么P(X=1且Y=1)等于多少?A. 0.15B. 0.5C. 0.3D. 0.6答案:A解析:由于X和Y相互独立,所以P(X=1且Y=1)=P(X=1)*P(Y=1)=0.5*0.3=0.15。

5. 一组数据的样本容量为100,样本均值为50,样本方差为25,那么这组数据的标准差是多少?A. 5B. 10C. 20D. 25答案:A解析:标准差是方差的平方根,所以标准差=√25=5。

6. 已知随机变量X服从泊松分布,其参数λ=4,那么P(X=3)等于多少?A. 0.182B. 0.273C. 0.409D. 0.546答案:B解析:泊松分布的概率质量函数为P(X=k)=e^(-λ)λ^k/k!,代入λ=4和k=3,计算得到P(X=3)=e^(-4)4^3/3!=0.273。

7. 已知随机变量X服从均匀分布U(0,1),那么P(0.5<X<0.6)等于多少?A. 0.1B. 0.05C. 0.15D. 0.2答案:B解析:均匀分布的概率等于区间长度,所以P(0.5<X<0.6)=0.6-0.5=0.1,但因为题目中区间长度为0.1,所以答案为0.05。

2014—2015学年度九年级上期质量检测数学试题(试题卷)

2014—2015学年度九年级上期质量检测数学试题(试题卷)

2014—2015学年度九年级上期质量检测数学试题(试题卷) 姓名 成绩(全卷共25题,满分150分,考试时间120分钟)一、选择题:(本大题共10个小题,每小题4分,共40分) 1.从1到9这九个自然数中任取一个,是偶数的概率是( )A .B .C .D .2.线段d c b a 、、、是成比例线段,224===c b a 、、,则d 的长为( ) A .1 B .2 C .3 D. 4 3.一元二次方程092=-x 的根是( )A .3B .3±C .9D .9± 4.下列函数中,图象经过点)2 1(-,的是( ) A .x y 1=B .x y 1-=C .xy 2= D. x y 2-=5.(2013•包头)3tan30°的值等于( )A .B . 3C .D .6.用配方法解方程122=-x x 时,配方后所得的方程为( )A .0)1(2=+xB .0)1(2=-xC .2)1(2=+xD .2)1(2=-x 7.已知点) 2(1y A ,-,) 1(2y B ,-和) 3(3y C ,都在反比例函数xy 3=的图象上,则321y y y 、、的大小关系是( ) A .321y y y << B .123y y y << C .312y y y << D .231y y y <<8. 如图,小强自制了一个小孔成像装置,其中纸筒的长度为cm 15,他准备了一支长为cm 20的蜡烛,想要得到高度为cm 4的像,蜡烛与纸筒的距离应该为( )A .cm 60B . cm 65C .cm 70D . cm 759. 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB OE ⊥,垂足为E ,若︒=∠130ADC ,则A OE ∠的大小是( )A .︒75B .︒65C .︒55D .︒5010如图,正方形ABCD 位于第一象限,22=AC ,顶点C A 、在直线x y =上,且A 的横坐标为1,若双曲线)0(≠=k xky 与正方形ABCD 有交点,则k 的取值范围是( ) A .10≤<k 或6≥k B .61≤≤k C .91≤≤k D .10≤<k 或9≥k二、填空题:(本大题共6个小题,每小题4分,共24分)11.如图,已知在Rt△ACB 中,∠C=90°,AB=13,AC=12,则cosB 的值为 . 12.如图,点B 在反比例函数xy 2=()0>x 的图象上,过点B 向x 轴作垂线,垂足为A ,连接OB ,则OAB ∆的面积为__________;13.如图,在矩形ABCD 中,点F E 、分别是CD AB 、的中点,连接DE 和BF ,分别取BF DE 、的中点N M 、,连接MN CN AM 、、.若3=AB ,52=BC ,则图中阴影部分的面积为___________;14.如图,将DEF △缩小为原来的一半,操作方法如下:任意取一点P ,连接DP ,取DP 的中点A ,再连接EP FP 、,取它们的中点B C 、,得到ABC △,则下列说法正确的有___________ ①ABC △与DEF △是位似图形; ②ABC △与DEF △是相似图形;③ABC △与DEF △的周长比是1:2; ④ABC △与DEF △的面积比是1:2.15.从3211 3---、、、、这五个数中,取一个数作为函数xk y 2-=和关于x 的方程 012)1(2=+++kx x k 中k 的值,恰好使所得函数的图象经过第二、四象限,且方程有实根,满足要求的k 的值共有__________个; 16. 如图,正方形OABC 的顶点O 是坐标原点,顶点A 在x 轴的正半轴上,3=OA ,点D 是BC 边的中点,连接OD ,点E 在OC 上且1:2:=OE CE ,过点E 作EF ∥OA 交OD 于点G ,交AB 于点F ,连接DF ,过点G 作DF GH ⊥,垂足为H ,若BC 边上有一点P 与点H 在同一反比例函数的图象上,则点P 的坐标为_____________;三、解答题:(共86分)解答时每小题必须给出必要的演算过程或推理步骤.17.(7分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张。

2014-2015《概率论与数理统计》试卷答案

2014-2015《概率论与数理统计》试卷答案

12014学年第一学期《概率率与数理统计》(A 卷)标准答案和评分标准 一、选择题1. D2. C3. A4. D5. D6. C7. B8. B9. D 10. B 二、填空题1. 0.12. 0.73. 2e -,,0()0,0x e x f x x -⎧≥=⎨<⎩ 4. 4/5或0.85. 2(2)1Φ-或(2)(2)Φ-Φ-6. 4,127. 7, 8三、1.解:设123,,A A A 分别表示被保险人为“谨慎型”、“一般型”和“冒失型”,B 表示被保险人在一年内出了事故。

(1分)依题意,有 123()0.2,()0.5,()0.3P A P A P A ===, 111(|)0.05,(|)0.1,(|)0.3P B A P B A P B A ===, (2分)所以,由贝叶斯公式可得 (1分)1111112233()()(|)(|)()()(|)()(|)()(|)P A B P A P B A P A B P B P A P B A P A P B A P A P B A ==++ (4分) 0.20.0510.06670.20.050.50.10.30.315⨯===⨯+⨯+⨯ (2分) 2.解:根据题意,X 可能的取值有1,2,3, (1分)取值的概率分别为13241(1)2C P X C ===,12241(2)3C P X C ===,2411(3)6P X C ===故X (6分)11113(21)(211)(221)(231) 4.332363E X +=⨯+⨯+⨯+⨯+⨯+⨯== (3分)3.解:(1)由120()d d 13cf x x cx x +∞-∞===⎰⎰ 知3c =; (2分)(2)当0x ≤ 时,()()d 0d 0x xF x f x x x -∞-∞===⎰⎰;当01x <≤ 时,230()()d 3d xxF x f x x x x x -∞===⎰⎰;当1x > 时,120()()d 3d 1x F x f x x x x -∞===⎰⎰;所以30,0,(),0 1.1, 1.x F x x x x ≤⎧⎪=<≤⎨⎪>⎩(4分)2(3)1203()()30.754E X xf x dx x x dx +∞-∞==⋅==⎰⎰ (2分)1222203()()30.65E X x f x d x x x d x +∞-∞==⋅==⎰⎰ (2分) 223()()[()]0.37580D XE X E X =-== (2分)(4)解法一:因为1Y X =-是严格单调的函数,所以 当01y <<时,即,01x <<时,2()(1)(1)3(1)Y X f y f y y y '=--=- 当Y 为其他值时, ()(1)(1)0Y X f y f y y '=--= 所以,1Y X =-的密度函数为:⎩⎨⎧<<-=其他,010,)1(3)(2y y y f Y (4分)解法二:1Y X =-的分布函数()Y F y 为()()(1)(1)Y F y P Y y P X y P X y =<=-<=>-1(1)1(1),X P X y F y =-≤-=--而其它100)1(3)1()]1(1[)()(2<<⎪⎩⎪⎨⎧-=-=--==y y y f y F dy d dy y dF y f X X Y Y (4分)四、1. 解:矩法估计,因为1()xxxxE X xe dx xdexee dx θθθθμθ+∞+∞+∞----+∞===-=-+⎰⎰⎰0xeθθθ-+∞=-=或因为1XE θ⎛⎫⎪⎝⎭,所以()E X μθ== (4分) 由矩法估计ˆX μ= ,所以ˆX θ=。

概率初步测试卷-含答案

概率初步测试卷-含答案

概率初步测试卷-含答案第26章检测卷(120分钟150分)⼀、选择题(本⼤题共1.下列事件中不是随机事件的是A.打开电视机正好在播《新闻联播》B.从书包中任意拿⼀本书正好是英语书C.掷两次骰⼦,骰⼦向上的⼀⾯的点数之积为14D.射击运动员射击⼀次,命中靶⼼2.已知抛⼀枚均匀硬币正⾯朝上的概率为,下列说法错误的是A.连续抛⼀枚均匀硬币2次必有1次正⾯朝上B.连续抛⼀枚均匀硬币10次都可能正⾯朝上C.⼤量反复抛⼀枚均匀硬币,平均每100次有50次正⾯朝上D.通过抛⼀枚均匀硬币确定谁先发球的⽐赛规则是公平的3.现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三⾓形的概率是A. B. C. D.4.定义⼀种“⼗位上的数字⽐个位、百位上的数字都要⼩的三位数”叫做“V数”,如“947”就是⼀个“V数”.若⼗位上的数字为2,则从1,3,4,5中任选两个数,能与2组成“V数”的概率是A. B. C. D.5.如图,⼀个游戏转盘中,红、黄、蓝三个扇形的圆⼼⾓度数分别为60°,90°,210°.让转盘⾃由转动,指针停⽌后落在黄⾊区域的概率是A. B. C. D.6.在⼀个不透明的⼝袋⾥,装了只有颜⾊不同的黄球、⽩球若⼲只.某⼩组做摸球实验:将球搅匀后从中随机摸出⼀个,记下颜⾊,再放回袋中,不断重复.下表是活动中的⼀组数据,则摸到黄球的概率约是A.0.4B.0.5C.0.6D.0.77.从n张互不相同的普通扑克牌中任意抽取⼀张,抽到⿊桃K的概率为,则n=A.54B.52C.10D.58.实验中学本学期组织开展课外兴趣活动,各活动⼩班根据实际情况确定了计划组班⼈数,并发动学⽣⾃愿报名,若⽤同⼀⼩班的报名⼈数与计划⼈数的⽐值⼤⼩来衡量进⼊该班的难易程度,则由表中数据,可预测A.奥数⽐书法容易B.合唱⽐篮球容易C.写作⽐舞蹈容易D.航模⽐书法容易9.⼀个不透明的⼝袋中有四个完全相同的⼩球,把它们分别标号为1,2,3,4,随机摸出⼀个⼩球,不放回,再随机摸出⼀个⼩球,两次摸出的⼩球标号的积⼩于4的概率是A. B. C. D.10.现有A,B两枚均匀的⼩⽴⽅体(⽴⽅体的每个⾯上分别标有数字1,2,3,4,5,6),⼩莉掷A⽴⽅体,朝上的数字记为x,⼩明掷B⽴⽅体,朝上的数字记为y,由此确定点P(x,y),那么他们各掷⼀次所确定的点P落在已知抛物线y=-x2+4x上的概率为A. B. C. D.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.在⼀个不透明的⼝袋中装有8个红球和若⼲个⽩球,它们除颜⾊外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在40%附近,则⼝袋中⽩球可能有12个.12.⼩明在做掷⼀枚普通的正⽅体骰⼦的实验,请写出这个实验中⼀个可能发⽣的事件:正⾯朝上的数字为3(答案不唯⼀).13.若从-1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第⼆象限的概率是.14.如图,从A地到B地有两条路线可⾛,从B地到F地可经C⼤桥、D⼤桥或E⼤桥到达,现让你随机选择⼀条从A地出发经过B地到达F地的⾏⾛路线,那么恰好选到经过D⼤桥的路线的概率是.三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.掷⼀个骰⼦,观察向上⼀⾯的点数,求下列事件的概率:(1)点数为偶数;(2)点数⼤于2且⼩于5.解:掷⼀个骰⼦,向上⼀⾯的点数可能为1,2,3,4,5,6,共6种,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6,∴P(点数为偶数)=.(2)点数⼤于2且⼩于5的有2种可能,即点数为3,4,∴P(点数⼤于2且⼩于5)=.16.在⼀个不透明的袋⼦⾥装有3个⽩⾊乒乓球和若⼲个黄⾊乒乓球,若从这个袋⼦⾥随机摸岀⼀个乒乓球,恰好是黄球的概率为,求袋⼦内乒乓球的总个数.解:设袋⼦内有黄⾊乒乓球x个.根据题意,得,解得x=7.经检验x=7是原分式⽅程的解.则x+3=7+3=10(个).故袋⼦内乒乓球的总个数为10.四、(本⼤题共2⼩题,每⼩题8分,满分16分)17.把⼀个⽊制正⽅体的表⾯涂上红⾊,然后将其分割成64个⼤⼩相同的⼩正⽅体,如图所⽰.若将这些⼩正⽅体均匀地混在⼀起,则任意取出⼀个正⽅体,其两⾯涂有红⾊的概率是多少?各⾯都没有红⾊的概率是多少?解:两⾯涂有红⾊的正⽅体共有24个,概率为.⼀⾯涂有红⾊的正⽅体有24个,各⾯都没有红⾊的正⽅体有64-24-24-8=8个,概率为.18.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的⽅式享受折扣优惠,本次活动共有两种⽅式,⽅式⼀:转动转盘甲,指针指向A区域时,所购物品享受9折优惠,指针指向其他区域⽆优惠;⽅式⼆:同时转动转盘甲和转盘⼄,若两个转盘的指针指向区域的字母相同,所购物品享受8折优惠,其他情况⽆优惠,在每个转盘中,指针指向每个区域的可能性相同(若指针指向分界线,则重新转动转盘).(1)若顾客选择⽅式⼀,则享受9折优惠的概率为;(2)若顾客选择⽅式⼆,请⽤树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.解:(2)转动两个转盘,转动两个转盘,所有可能的结果有12种,每种结果出现的可能性相同,其中转到的两个字母相同,可享受8折优惠,这种结果有2种,所以P(享受8折优惠)=.五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.⼩明、⼩林是三河中学九年级的同班同学,在四⽉份举⾏的⾃主招⽣考试中,他俩都被同⼀所⾼中提前录取,并将被编⼊A,B,C 三个班,他俩希望能再次成为同班同学.(1)请你⽤画树状图法或列表法,列出所有可能的结果;(2)求两⼈再次成为同班同学的概率.解:(1)画树状图如下:由树状图可知所有可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC.(2)由(1)可知两⼈再次成为同班同学的概率为.20.汤姆斯杯世界男⼦⽻⽑球团体赛⼩组赛⽐赛规则为:两队之间进⾏五局⽐赛,其中三局单打,两局双打,五局⽐赛必须全部打完,赢得三局及以上的队获胜.假如甲、⼄两队每局获胜的机会相同.(1)若前四局双⽅战成2∶2,那么甲队最终获胜的概率是;(2)若甲队在前两局⽐赛中已取得2∶0的领先,那么甲队最终获胜的概率是多少?解:(2)树状图如图所⽰:由图可知,剩下的三局⽐赛共有8种等可能的结果,其中甲⾄少胜⼀局的有7种,所以P(甲队最终获胜)=.六、(本题满分12分)21.如图,在正⽅形⽅格中,阴影部分是涂⿊3个⼩正⽅形所形成的图案.(1)如果将1粒⽶随机地抛在这个正⽅形⽅格中,那么⽶粒落在阴影部分的概率是多少?(2)现将⽅格内空⽩的⼩正⽅形(A,B,C,D,E,F)任取两个涂⿊,得到新图案,请⽤列表或画树状图的⽅法求新图案是轴对称图案的概率.解:(1)∵阴影部分有3个⼩正⽅形,⽽正⽅形⽅格中共有9个⼩正⽅形,∴P(⽶粒落在阴影部分的概率)=.(2)共有30种情况,⽽能够构成轴对称图案的有10种,所以P(任取2个涂⿊能构成轴对称图案)=.七、(本题满分12分)22.“五⼀”假期期间,梅河公司组织部分员⼯到A,B,C三地旅游,公司购买前往各地的车票数量绘制成条形统计图如图.根据统计图回答下列问题:(1)前往A地的车票有30张,前往C地的车票占全部车票的20%.(2)若公司决定采⽤随机抽取的⽅式把车票分配给100名员⼯,在看不到车票的条件下,每⼈抽取⼀张(所有车票的形状、⼤⼩、质地完全相同且充分洗匀),那么员⼯⼩王抽到去B地车票的概率为.(3)若最后剩下⼀张车票时,员⼯⼩张、⼩李都想要,决定采⽤抛掷⼀枚各⾯分别标有数字1,2,3,4的正四⾯体骰⼦(抛掷时,出现每个数字的可能性相同)的⽅法来确定,具体规则是:“每⼈各抛掷⼀次,若⼩张掷得着地⼀⾯的数字⽐⼩李掷得着地⼀⾯的数字⼤,车票给⼩张,否则给⼩李.”试⽤列表法或画树状图的⽅法分析,这个规则对双⽅是否公平?解:(3)共有16种可能的结果,且每种的可能性相同,其中⼩张获得车票的结果有6种,∴⼩张获得车票的概率为,⼩李获得车票的概率为1-.∴这个规则对双⽅不公平.⼋、(本题满分14分)23.为提升学⽣的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学⽣对四门课程的喜爱情况,在全校范围内随机抽取若⼲名学⽣进⾏问卷调查(每个被调查的学⽣必须选择⽽且只能选择其中⼀门),将数据进⾏整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学⽣共有多少⼈?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园⽂化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中的两项组成⼀个新的节⽬形式,请⽤列表法或画树状图的⽅法求出选中书法与乐器组合在⼀起的概率.解:(1)4÷10%=40(⼈),即本次调查的学⽣共有40⼈.选乐器学⽣占总⼈数的百分⽐为1-(10%+20%+40%)=30%,所以∠α=360°×30%=108°.(2)图略.(3)根据题意,画树状图如下:由树状图可知,共出现12种等可能的结果,其中A与C组合的情况共有2种,因此P(书法与乐器组合)=.。

2014~2015学年度 最新人教版数学九年级上第25章概率初步检测题含答案

2014~2015学年度 最新人教版数学九年级上第25章概率初步检测题含答案

第25章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.以下事件中,必然发生的是( C )A.打开电视机,正在播放体育节目B.正五边形的外角和为180°C.通常情况下,水加热到100℃沸腾D.掷一次骰子,向上一面是5点2.(2014·宜宾)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是( B )A.19B.13C.12D.233.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球,是红球的概率为13,则a等于( A)A.1 B.2 C.3 D.44.下列说法正确的是( C )A.若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B.某篮球运动员2次罚球,投中一个,则可断定他罚球命中的概率为50% C.明天我市会下雨是随机事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖5.一只小鸟自由地在空中飞行,然后随意地落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是( B )A.12B.13C.14D.15,第5题图) ,第7题图),第8题图) ,第10题图) 6.在四张背面完全相同的卡片上分别印着等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率( D )A.34B.14C.13D.127.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( C )A.15B.25C.35D.458.如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( C )A .12B .29C .49D .139.(2014·陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A .110B .19C .16D .1510.(2014·河北)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( D )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D .掷一个质地均匀的正六面体骰子,向上一面的点数是4二、填空题(每小题3分,共24分)11.某中学九(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,则组长是男生的概率为__47___.12.小芳同学有两根长度为4 cm ,10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是__25___. 13.某电视台综艺节目接到热线电话500个,现从中抽取“幸运观众”10名,小明的打通了一次热线电话,他成为“幸运观众”的概率是__150___. 14.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__13___.15.平行四边形中,AC ,BD 是两条对角线,现从以下四个关系式:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中,任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为__12___. 16.从-3,1,-2这三个数中任取两个不同的数,积为正数的概率是__13___. 17.(2014·兰州)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀.从口袋内任取一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P 的纵坐标y ,则点P(x ,y)落在直线y =-x +5上的概率是__14___. 18.一个不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球__28___个.三、解答题(共66分)19.(8分)掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为偶数;(2)点数大于2且小于5.解:(1)12 (2)1320.(8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13,求从袋中取出黑球的个数. 解:(1)14 (2)设取出x 个黑球,由题意得8-x 20-x =13,解得x =2.经检验x =2是方程的解且符合题意,即从袋中取出黑球个数为221.(8分)(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者.求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.解:(1)13 (2)2322.(10分)现有20名志愿者准备参加某次博览会的服务工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.解:(1)35(2)画树状图(略),牌面数字之和的所有可能结果为:5,6,7,5,7,8,6,7,9,7,8,9,共12种,其中和为偶数的有:6,8,6,8,故甲参加的概率为P(和为偶数)=412=13,而乙参加的概率为P(和为奇数)=23.因为13≠23,所以游戏不公平23.(10分)中秋节期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”“20元”“30元”“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券.某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得__20___元购物券,最多可得__80___元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.解:画树状图(略),∵共有16种等可能结果,该顾客所获奖券金额不低于50元的有10种,∴该顾客所获购物券金额不低于50元的概率为P =1016=5824.(10分)下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?解:(1)0.5 (2)622×0.5=311,故估计投中的次数约是311次25.(12分)小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a 层出电梯,乙在b 层出电梯.(1)小明想知道甲、乙二人在同一层出电梯的概率,你能帮他求出吗?(2)小亮和小芳打赌:若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.解:(1)列表(略),一共出现16种等可能结果,其中在同一层出电梯的有4种结果,则P(甲、乙在同一层出电梯)=416=14(2)甲、乙在同一层或相邻楼层出电梯的有10种结果,故P(小亮胜)=1016=58,P(小芳胜)=1-58=38,∵58>38,∴游戏不公平.修改规则:若甲、乙在同一层或相隔两层出电梯,则小亮胜;若甲、乙相隔一层或三层出电梯,则小芳胜。

2014-2015-1概率试卷

2014-2015-1概率试卷

的 概 率 近 似 值 ;( 附





五.(满分 10 分)随机变量
的联合概.计算期望
3.计算边缘概率密度
,条件
概率密度
;4 计算概率

六.(满分 12 分)相互独立随机变量
的联合分布律(见下表)
1. 计算 a, b 的值;2.计算

3. 计算
;4. 计算

(X,Y) (1,1) (1,2) (1,3) (2,1)
生的概率为 , 则
, 而四次独立的试验中 至少发生两次
的概率为:

4. 随即变量
(正态), 概率密度函数
, 随机变

的概率为

5. 独立的随机变量
满足
(正态分布),
(均匀分布),Z 服从参数为 ,
的指数分布, ,


6. (满分 6 分)独立的随机变量 01 2 0.5 0.25 0.25
分别服从分布: -1 0 1 0.4 0.2 0.4

的分布律。 Z
P
7. 设
是来自总体
的样本, 统计量
,
, 则 服从
, 服从

二.(满分 10 分)名单上共有 4 名男生和 6 名女生,从中任选一人回答某问题, 已知男女生解答正确的概率分别为 0.65,0.85,计算下面问题: 1. 该问题被正确解答的概率; 2. 若解答错误,求答题人是女生的概率。
三.(满分 10 分)设
(泊松分布),且
,
1. 求 ; 2. 计算

四.(满分 10 分)某系有 250 名学生,每生在一年中参加志愿者(相互独立) 的时间 服从均值为 10(小时)的泊松分布,以 1 人做 1 小时志愿者为 1 个志愿活动单位,求该系一年中志愿活动的总量在 2400 与 2550 个单位之间

(完整版)概率初步测试题含答案

(完整版)概率初步测试题含答案

第二十五章 概率初步一、填空题(每题4分,共24分)1.一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是________.2.从1~9这9个自然数中任取一个,是4的倍数的概率是________.3.在一个不透明的口袋中,有若干个红球和白球,它们除颜色外无其他差别,从中任意摸出一个球,摸到红球的概率是0.75,若白球有3个,则红球有________个.4.田大伯为了与客户签订销售合同,需了解自己鱼塘里鱼的数量,为此,他从鱼塘里先捞出200条鱼,做上标记后再放入鱼塘,经过一段时间后他又捞出300条,发现有标记的鱼有20条,则估计田大伯的鱼塘里有________条鱼.5.如图25-Z -1所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在阴影区域的概率是________.二、选择题(每题4分,共32分)7.下列事件中,是必然事件的为( )A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩8.气象台预测“本市明天降雨的概率是80%”,对预测理解正确的是( )A .本市明天有80%的地区降雨B .本市明天将有80%的时间降雨C .明天出行不带雨具可能会淋雨D .明天出行不带雨具肯定会淋雨9.下列图形: 任取一个是中心对称图形的概率是( )A.14B.12C.34D .1 10.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外没有其他区别.若从这个盒子中随机摸出1个球,是黄球的概率是35,则盒子中黄球的个数是( )A .2B .4C .6D .811.在一个不透明的袋子里有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出1个球记下颜色后放回,再随机摸出1个球,则两次都摸到白球的概率为( )A.116B.18C.14D.1212.若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465,则由1,2,3这三个数字构成的数字不重复的三位数是“凸数”的概率是( )A.13B.12C.23D.5613.某火车站的显示屏每隔4分钟显示一次火车班次的信息,显示时间持续1分钟.某人到达该车站时,显示屏上正好显示火车班次信息的概率是( )A.16B.15C.14D.1314.小杰和爸爸妈妈一起去奥体中心看球赛,他们买了3张连号的票,小杰挨着爸爸坐的概率是( )A.12B.13C.23D.34三、解答题(共44分)15.(10分)有四张背面完全相同的纸牌A ,B ,C ,D ,其中正面分别画有四个不同的几何图形(如图25-Z -3),小华将这4张纸牌背面朝上洗匀后摸出1张,放回洗匀后再摸出1张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示);(2)求摸出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.图25-Z -316.(10分)九年级学生在毕业晚会中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树状图的方法(只选其中一种),表示两次摸出的小球上标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.17.(12分)将正面分别标有数字2,3,4的三张形状、大小一样的卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张卡片,求抽到奇数的概率;(2)随机地抽取一张卡片,将卡片上标有的数字作为十位上的数字(不放回),再随机地抽取一张卡片,将卡片上标有的数字作为个位上的数字,组成的两位数恰好是“23”的概率是多少?18.(12分)中央电视台的《中国诗词大会》节目文化品位高,内容丰富,某校八年级模拟开展“中国诗词大会”比赛,对全年级同学成绩进行统计后分为“优秀”“良好”“一般”“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:图25-Z-5(1)扇形统计图中“优秀”所对应的扇形的圆心角为________度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大会”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.9、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条10、有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( ) A . 23 B .12C .15D .1312、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( )A .15个B .20个C .30个D .35个23、甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,(1)请用树状图法或列表法,求恰好选中甲、乙两同学的概率;(2) 若已确定甲打第一场,再从其余三位同学中随机选出一位,求恰好选中乙同学的概率.教师详解详析1.162.29 3.9 4.3000 5.126.0.5 10 7.C 8.C 9.C 10.C 11.C 12.A 13.B 14.C15.解:(1)画树状图得:则共有16种等可能的结果,即(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ).(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴摸出的2张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的有4种结果,∴摸出的2张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率为416=14. 16.解:(1)列表如下:(2)∴P(中奖)=39=13. 17.解:(1)P(抽到奇数)=13. (2)∴P(组成的两位数恰好是“23”)=16. 18.解:(1)360°×(1-40%-25%-15%)=72°.全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人).将条形统计图补充完整,如图所示:(2)画树状图,共有12种等可能的结果,选中的两名同学恰好是甲、丁的结果有2种,∴P(选中的两名同学恰好是甲、丁)=212=16.。

新课标2014-2015学年度(上)概率初步测试题(飙升版)

新课标2014-2015学年度(上)概率初步测试题(飙升版)

新课标2014-2015学年度(上)九年级数学 第二十五章概率初步测试题(飙升版)一 用心选一选(每题3分,共30分) 1.下列事件中是必然事件的是( )A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( ) A .20种 B.8种 C. 5种 D.13种3.一只小狗在如图1的方砖上走来走去,最终停在阴影方砖上的概率是( ) A .154 B.31 C.51 D.1524.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

5.下列事件属于必然事件的个数为( )①今天下雨的可能性为99% ②太阳从东方升起 ③某种彩票的获奖概率为101,小红买了10张这种彩票,肯定有一张获奖 ④南沙群岛的某一天下了一场大雨 A.1 B.2 C.3 D.46.某班有50名学生,老师制作了1~50号数字的标签,通过抽签确定学号,小明第一个从中任意抽取一个,其数字号大于25的概率为( ) A.501 B.251C.21 D.327.下列成语所描述的事件是随机事件的是( )A 瓮中捉鳖B 拔苗助长C 守株待兔D 水中捞月8.袋中有红球4个,白球若干个,它们只有颜色上的区别。

从袋中随机地取出一个球,如果取到白球的可能性大,那么袋中白球的个数可能是( ) A 3个 B 不足3个 C 4个 D 5个或5个以上8.在抛一个瓶盖的试验中,某小组做了1000次试验,最后出现盖口向下的频率为69.5%,此时出现盖口向下的频数为( ) A 695 B 700 C 305 D 不能确定9.欢欢将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,然后他从这些正方体中任取一个,那么恰有3个面都涂有颜色的概率是 ( )图1A2719 B2712 C 32 D27810.如图,一圆盘上画有三个同心圆,由里向外半径依次是5cm ,10cm ,15cm ,将圆盘分成三部分,飞镖可落在任何一部分内,则飞镖落在最里面的概率是( ) A13 B 19 C 16 D 14二 填空题(每题3分,共21分 )11.夏雪同学每次数学测验成绩都是优秀,则在这次中考中他的数学成绩 (填“可能” “不可能”或“必然”)是优秀。

《概率初步》单元检测题A

《概率初步》单元检测题A

汴岗三中2014-2015学年度九年级数学第二十五章检测题(A )一、选择题(每小题3分,共24分) 1.下列事件是必然事件的是( )A.某运动员投篮时连续3次全中B.太阳从西方升起C.打开电视正在播放动画片《喜羊羊与灰太狼》D.若,则2. 随机掷两枚硬币,落地后全部正面朝上的概率是( ) A.1 B.12 C.13 D.143.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ) A .1 B .12C .13D .04.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是,摸到红球的概率是,则( )A. B. C. D.5.将一颗骰子(正方体)连掷两次,它们的点数都是4的概率是( ) A.61 B.41 C.161D.361 6.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( ) A.甲 B.乙 C.丙 D.不能确定 7.在一张边长为的正方形纸上做扎针随机试验,纸上有一个半径为的圆形阴影区域,则针头扎在阴影区域内的概率为( ) A .B . C.D .8.做重复试验:抛掷同一枚啤酒瓶盖次.经过统计得“凸面向上”的频率约为,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )二、填空题(每小题3分,共24分)1.一个质地均匀的小正方体的六个面上分别标有数字:.如果任意抛掷小正方体两次,那么得到的数字和是1的概率为_______.2.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”) 3.小芳掷一枚硬币次,有次正面向上,当她掷第次时,正面向上的概率为______.4.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡 片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.5.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是________. 名居民的年龄60 60~707.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.8. 一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球约有_____个. 三、解答题(共72分)1.(6分)下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件? (1)太阳从西边落山;(2)某人的体温是;(3)221a b +=-(其中a ,b 都是实数);(4)水往低处流; (5)三个人性别各不相同;(6)一元二次方程2230x x ++=无实数解;(7)经过有信号灯的十字路口,遇见红灯. (8)2013-2014学年度汴岗三中九年级学生都能考上理想的高中。

【精品】《概率初步》测试题(及答案)

【精品】《概率初步》测试题(及答案)

七年级数学概率初步测试一、选择题(每小题3分,共30分)1.下列事件中是必然事件的是()A .小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有() A.20种 B.8种 C. 5种 D.13种3.一只小狗在如图1的方砖上走来走去,最终停在阴影方砖上的概率是()A .154 B.31 C.51 D.1524.下列事件发生的概率为0的是()A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是()A.1001 B.10001 C.100001 D.100001116、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是()A.61 B.31 C.21 D.327.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()A .15B .29C .14D .5188.如图3,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( ) A.21 B.83 C.41 D.319.如图4,一小鸟受伤后,落在阴影部分的概率为()A .21 B.31 C.41 D.110.连掷两次骰子,它们的点数都是4的概率是()图1图2图4A.61 B.41 C.161 D.361二、填空题(每小题3分,共30分)11.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是____________12.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是.14.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为;抽到黑桃的概率为;抽到红心3的概率为15.任意翻一下2007年日历,翻出1月6日的概率为;翻出4月31日的概率为。

2014-2015(1)答案概率测验卷

2014-2015(1)答案概率测验卷

《概率论与数理统计》2013-2014(1)测验卷一、 填空题(每题2分,共10题,共20分)1. 1.袋中有3个白球2个红球,从中无放回地取3次,每次取1个球,则恰有两次取得白球的概率为213235C C C 。

2. 设随机变量X 的概率分布为1()(1)k P X k θθ-==-,1,2,k =L ,其中01θ<<,若5(2)9P X ≤=,则{}3P X ==___4/27______。

3.设事件A,B 为两随机事件,且,61)|(,31)|(,21)(===A B P B A P A P 则=)(B A P ___1/3______。

4.设随机变量X 服从正态分布2(,)N μσ( 0σ>),且关于y 的二次方程2420y y X ++=无实根的概率为12,则μ=____2________。

5.设随机变量X 服从参数为λ的Poisson 分布,且已知[(+1)(2)]0E X X -=,则 λ2= .6. 掷硬币n 次,正面出现次数的数学期望为 n /2 .7. 设D(ξ)=4, D(η)=1, 相关系数0.6ξηρ=,则D(-ξη)= 2.6 . 8.设随机变量X 和Y 的期望分别为2-和2,方差分别为1和4,0.5XY ρ=-, 由切比雪夫不等式,(6)P X Y +≥≤ 1/12 . 9. 设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤≤=其它10,0,6),(y x x y x f 则=≤+)1(Y X P _____1/4___________.10. 某人向同一目标独立重复射击,每次击中目标的概率为(01)p p <<,则此人第4次射击恰好是第2次命中目标的概率为___223(1)p p -__________.二 、选择题(每题3分,共8题,共24分)1设A 和B 任意两个概率不为零的不相容事件,则下列结论中肯定正确的是( D )A ()()()P AB P A P B = B A B 与相容C ()()()P AB P A P B =+D ()()P A B P A -=2. 设随机变量X 的密度函数为⎩⎨⎧<<=其它10,0,2)(x x x f ,设Y 表示对X 的3次独立观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则)2(=Y P =( A )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标2014-2015学年度(上)九年级数学
第25章概率初步测试题(精典好题)
一、精心选一选(每小题3分,共30分)
1.下列事件中是必然事件的是 ( )
(A)我国夏季的平均气温比冬季高; (B)我市2008年7月6日的最高气温是30℃;
(C)我市夏季的平均气温比冬季低; (D)2008年12月1日一定下雪.
2.用长为4cm,5cm,6cm的三条线段围成三角形的事件是 ( )
(A)随机事件; (B)必然事件; (C)不可能事件; (D)以上都不是.
3.下列说法中,正确的是 ( )
(A)买一张电影票,座位号一定是偶数;
(B)投掷一枚均匀硬币,正面一定朝上;
(C)三条任意长的线段可以组成一个三角形;
(D)从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大.
4.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为( )
(A)
1
12
(B)
1
3
(C)
5
12
(D)
1
2
5.目前手机的号码一般是11位数,某人的手机号码位于中间的数字是6的概率为 ( )
(A)1
5
(B)
1
6
(C)
1
8
(D)
1
10
6.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中任意抽取一张,卡片上画的恰好是中心对称图形的概率为
( )
(A) 1
4
(B)
1
2
(C)
3
4
(D)1.
7.下列事件中,P=1的是 ( )
(A)电脑要用电; (B)汽车出现事故;
(C)农历十五的月亮就像一个弯弯的细钩; (D)打开电视,电视里面正在播广告.
8.有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是( )
(A) 1
2
(B)
1
4
(C)
1
3
(D)
1
5
9.某一小组的12名同学的血型分类如下:A型3人、B型3人、AB型4人、O型2人,若从该小组随机抽出2人,这两人的血型均为O型的概率为 ( )
(A)1
66
(B)
1
33
(C)
15
22
(D)
7
22
10.从标有1,2,3…,20的20张卡片中任意抽取一张,可能性最大的是( )
(A)卡片上的数字是4的倍数;(B)卡片上的数字是2的倍数.
(C)卡片上的数字是5的倍数;(D)卡片上的数字是3的倍数.
二、耐心填一填(每小题3分,共30分)
11.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是____________
12.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则
小明被选中的概率为______,小明未被选中的概率为______
13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 .
14.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为 ;抽到黑桃的概率为 ;抽到红心3的概率为
15.任意翻一下2007年日历,翻出1月6日的概率为 ;翻出4月31日的概率为 。

16.单项选择题是数学试题的重要组成部分,当你遇到不会做的题目时,如果你随便选一个答案(假设每个题目有4个选项),那么你答对的概率为 。

17.某班的联欢会上,设有一个摇奖节目,奖品为圆珠笔、软皮本和水果,
标在一个转盘的相应区域上(转盘被均匀等分为四个区域,如图5)。

转盘可以自由转动。

参与者转动转盘,当转盘停止时,指针落在哪 一区域,就获得哪种奖品,则获得圆珠笔的概率为 。

18.6,
停车场分A 、B 两区,停车场内一个停车位置正好占一个方格且一个方格除颜色外完全一样,则汽车停在A
区白色区域的概率
是 ,停在B 区白色
区域的概率是
19.如图7表示某班21位同学衣服上口袋的数目。

若任选一位同学,则其衣服上口袋数目为5的概率是 .
20.一个小妹妹将10盒蔬菜的标签全部撕掉了。

现在每个盒子看上去都一样,但是她知道有三盒玉米、两盒菠菜、四盒豆角、一盒
土豆。

她随机地拿出一盒并打开它。

则盒子
里面是玉米的概率是
,盒子里面不是
菠菜的概率是 。

三、用心想一想(每题8分,共40分)
21. 将下面事件的字母写在最能代表它的概率的点上。

A .投掷一枚硬币时,得到一个正面。

B .在一小时内,你步行可以走80千米。

C .给你一个骰子中,你掷出一个3。

D .明天太阳会升起来。

22. 一个桶里有60个弹珠,一些是红色的,一些是蓝色的,一些是白色的。

拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%。

桶里每种颜色的弹珠各有多少?
图5
A 区
B 区 图6 8543
2
1

口袋数图7
23.一只小老鼠想吃到房间里的食物,如图共有二个房间,每个房间内有两个橱柜,其中只有一个房间内的一个橱柜内有食物.
(1)用树状图表示可能得到食物的情况.
(2)求出成功获得食物的概率.
24.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.
请你:⑴列举(用列表或画树状图)所有可能得到的数字之积
⑵求出数字之积为奇数的概率.
25.某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.
(1) 写出所有选购方案(利用树状图或列表方法表示);
(2) 如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
(3) 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,
其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.。

相关文档
最新文档