7.备课资料(2.4.2 等比数列的基本性质及其应用)

合集下载

等比数列概念知识点归纳总结

等比数列概念知识点归纳总结

等比数列概念知识点归纳总结等比数列是数学中常见的一个概念,也是数列中的一种特殊类型。

在等比数列中,每一项与前一项的比值都是相等的。

本文将对等比数列的概念、性质和应用进行归纳总结。

一、等比数列的概念等比数列是指一个数列中,从第二项开始,每一项与前一项相除的商都相等。

通常用字母a表示首项,q表示等比数列的公比。

根据这个概念,我们可以得到等比数列的通项公式:an = a * q^(n-1)其中,an为等比数列的第n项。

二、等比数列的性质1. 公比的取值:公比q可以是任意实数,也可以是0,但不能是1。

当q为正数时,等比数列的项随着n的增大而增大;当q为负数时,等比数列的项随着n的增大而交替增大和减小。

2. 比值关系:等比数列中任意两项的比值都是相等的,即相邻项的比值等于公比q。

3. 对数关系:等比数列的对数数列也是等差数列。

如果取对数后的数列为Ar,则有Ar = loga + (n-1)logq,其中,loga为log以a为底的对数。

三、等比数列的应用等比数列在实际中有广泛的应用,以下是一些常见的应用场景:1. 财务领域:等比数列常用于计算复利的问题,例如存款利息计算、债券利息计算等。

2. 自然科学:许多物理、化学等自然科学问题中都可以用等比数列来描述,如放射性元素衰变问题、细胞分裂问题等。

3. 经济学:等比数列常用于描述经济增长、人口增长等问题。

4. 数学应用:等比数列常用于解决等比方程、等比不等式等数学问题。

总结:通过对等比数列的概念、性质和应用的归纳总结,我们了解到等比数列在数学以及实际生活中的重要性。

等比数列是数学中的一种基本概念,在解决实际问题时具有广泛的应用。

熟练掌握等比数列的概念和性质,能够更好地解决与等比数列相关的各种数学问题。

等比数列的性质及其应用

等比数列的性质及其应用

等比数列的性质及其应用等比数列是指一个数列中每一项与前一项的比值相等。

具体地说,如果一个数列的首项为a1,公比为q,那么它的第n个项an应该为an=a1*q^(n-1)。

等比数列常常出现在各种数学问题中,尤其是有关增长和衰减的问题,同时也被广泛地应用在物理、工程、经济和环境等领域。

在本文中,我们将介绍等比数列的一些基本性质,以及它们在实际问题中的应用。

1. 比率在等比数列中,每一项和前一项的比值是相等的。

如果我们设第k 项和第k-1项的比值为r,那么有r=ak/ak-1=q,其中q为等比数列的公比。

这意味着,对于任意两项之间,你都可以用它们的比率r = ak / ak-1 来计算它们之间的关系。

2. 前n项和等比数列的前n项和可以用下面的公式来计算:sn = a1 * (1 - q^n) / (1 - q),其中a1是等比数列的首项,q是等比数列的公比。

3. 通项公式中的a1和q等比数列的通项公式是an=a1*q^(n-1)。

从这里可以发现,当我们知道首项和公比时,我们可以轻松地计算出数列中的任何一项。

另外,如果我们知道数列中的两项,我们也可以计算出公比和首项。

4. 应用等比数列在各种实际问题中都有广泛的应用。

以下是一些例子:成倍增长:如果一个流行病的感染者数量每天都成倍增长,那么这个增长就可以被建模为一个等比数列。

在这种情况下,第n天的感染者数量可以表示为P=Pa^(n-1),其中P是第n天的感染者人数,Pa是第一天的感染者人数,a是增长的倍数(公比)。

污染问题:如果我们知道一个环境污染物的衰减速率和初始浓度,那么等比数列就可以被用来建立这个污染物的浓度随时间变化的模型。

在这种情况下,等比数列的首项是污染物的初始浓度,公比是污染物每一次衰减的比率,数列的第n项则是随着时间推移被衰减后的污染物浓度。

财务问题:等比数列也被用来描述各种财务问题中的增长或衰减。

例如,如果一笔投资的每年增长率是10%(利率固定),那么等比数列就可以被用来计算出投资在未来数年中的总价值。

等比数列的性质与应用教学备课

等比数列的性质与应用教学备课

等比数列的性质与应用教学备课一、引言在数学中,数列是一个非常重要的概念,而等比数列是其中一种特殊的数列。

等比数列具有独特的性质和广泛的应用,因此在教学中备课时,我们需要全面了解等比数列的性质,并掌握其应用方法。

本文将针对等比数列的性质和应用进行教学备课。

二、等比数列的定义与性质1. 等比数列的定义:等比数列是指数列中任意两项的比例都相等的数列。

如果一个数列的任意两项之间的比例都相等,那么这个数列就是等比数列。

2. 等比数列的通项公式:等比数列的通项公式可以表示为:an = a1 * q^(n-1),其中an表示等比数列的第n项,a1表示首项,q表示公比。

3. 等比数列的公比和首项的关系:公比q是等比数列中任意两项之间的比值,即q = an / a(n-1) =a(n+1) / an-1。

通过公式的转换,我们可以得到公比和首项之间的关系:q = (an)^(1/n)。

4. 等比数列的前n项和:等比数列的前n项和可以表示为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和。

三、等比数列的教学应用1. 等比数列在几何图形中的应用:等比数列可以用于描述几何图形中的一些特殊性质。

例如,在正多边形中,每条边的长度可以构成一个等比数列。

在绘制正多边形的过程中,学生可以通过等比数列的概念,计算出每一条边的长度,从而完成几何图形的绘制。

2. 等比数列在利润计算中的应用:在经济学中,等比数列可以用于计算利润的增长情况。

假设某公司的利润年增长率为10%,那么每年的利润可以构成一个等比数列。

通过利用等比数列的性质,我们可以根据首年的利润和公比,计算出未来多年的利润情况,为企业的发展提供参考依据。

3. 等比数列在科学实验中的应用:在科学实验中,等比数列可以用于描述某种物质的增长或变化规律。

例如,在细胞分裂的过程中,每次分裂细胞的数量可以构成一个等比数列。

通过等比数列的性质,我们可以计算出每一次分裂后细胞的数量,从而推断出整个分裂过程的变化趋势。

2.4.2等比数列的基本性质及其应用

2.4.2等比数列的基本性质及其应用

2.4.2 等比数列的基本性质及其应用三维目标一、知识与技能1.了解等比数列更多的性质2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题二、过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程3.当好学生学习的合作者的角色三、情感态度与价值观1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值重难点教学重点1.探究等比数列更多的性质2.解决生活实际中的等比数列的问题教学难点渗透重要的数学思想教具准备多媒体课件、投影胶片、投影仪等教学过程导入新课师教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下生 由学习小组汇报探究结果 师 对各组的汇报给予评价师 出示多媒体幻灯片一:第3题、第4题详细解答: 第3题解答:(1)将数列{a n }的前k 项去掉,剩余的数列为a k+1,a k+2,….令b i =a k+i则数列a k+1,a k+2,…,可视为b 1,b 2,因为q a a b b ik i k i i ==++++11 (i≥1),所以,{b n }是等比数列,即a k+1,a k+2,…是等比数列 (2){a n }中每隔10项取出一项组成的数列是a 1,a 11,a 21,…,则109101101121111......q a a a a a a k k =====-+所以数列a 1,a 11,a 21,…是以a 1为首项,q 10为公比的等比数列猜想:在数列{a n }中每隔m(m 是一个正整数)取出一项,组成一个新数列,这个数列是以a 1为首项、q m为公比的等比数列◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法第4题解答:(1)设{a n }的公比是q ,则a 52=(a 1q 4)2=a 12q 8而a 3·a 7=a 1q 2·a 1q 6=a 12q 8所以a 52=a 3·a 7同理,a 52=a 1·a 9(2)用上面的方法不难证明a n 2=a n -1·a n +1(n >1).由此得出,a n 是a n -1和a n +1的等比中项,同理可证a n 2=a n -k ·a n +k (n >k >0).a n 是a n -k 和a n +k 的等比中项(n >k >师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究推进新课 [合作探究] 师 出示投影胶片1例题1 (教材P 61B 组第3题)就任一等差数列{a n },计算a 7+a 10,a 8+a 9和a 10+a 40,a 20+a 30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师 注意题目中“就任一等差数列{a n }”,你打算用一个什么样的等差数列来计算? 生 用等差数列1,2,3,师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢? 生 在等差数列{a n }中,若k+s=p+q(k,s,p,q∈N *),则a k +a s =a p +a q师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做?生 思考、讨论、交流师 出示多媒体课件一:等差数列与函数之间的联系[教师精讲]师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{a n }的图象,可以看出qs a a p k a a q s p k ==,根据等式的性质,有1=++=++qp sk a a a a q p s k所以a k +a s =a p +a q师 在等比数列中会有怎样的类似结论?生 猜想对于等比数列{a n },类似的性质为:k+s=p+t(k,s,p,t∈N *),则a k ·a s =a p ·a t师 让学生给出上述猜想的证明证明:设等比数列{a n }公比为q ,则有a k ·a s =a 1q k-1·a 1q s-1=a 12·qk+s-2a p ·a t =a 1q p-1·a 1q t-1=a 12·q p+t-2因为所以有a k ·a s =a p ·a t师 指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质即等比数列{a n }中,若k+s=p+t(k,s,p,t∈N *),则有a k ·a s =a p ·a t师 下面有两个结论:(1)与首末两项等距离的两项之积等于首末两项的积; (2)与某一项距离相等的两项之积等于这一项的平方你能将这两个结论与上述性质联系起来吗?生 思考、列式、合作交流,得到:结论(1)就是上述性质中1+n =(1+t)+(n -t)时的情形; 结论(2)就是上述性质中k+k=(k+t)+(k-t)时的情形 师 引导学生思考,得出上述联系,并给予肯定的评价 师 上述性质有着广泛的应用师 出示投影胶片2:例题2例题(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18(2)在等比数列{b n }中,b 4=3,求该数列前七项之积; (3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.例题2 三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程解答:(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18解:∵a 1a 18=a 9a 10,∴a 18=51001109=a a a(2)在等比数列{b n }中,b 4=3,求该数列前七项之积解:b 1b 2b 3b 4b 5b 6b 7=(b 1b 7)(b 2b 6)(b 3b 5)b 4∵b 42=b 1b 7=b 2b 6=b 3b 5,∴前七项之积(32)3×3=37(3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8解:.∵a 5是a 2与a 8的等比中项,∴542=a 8×(-∴a 8=-另解:a 8=a 5q 3=a 5·2545425-⨯=a a =-[合作探究]师 判断一个数列是否成等比数列的方法:1、定义法;2、中项法;3、通项公式法例题3:已知{a n }{b n }是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论师 请同学们自己完成上面的表师 根据这个表格,我们可以得到什么样的结论?如何证明?生 得到:如果{a n }、{b n }是两个项数相同的等比数列,那么{a n ·b n }也是等比数列证明如下:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项与第n +1项分别为a 1pn -1b 1q n -1与a 1p n b 1q n ,因为pq qb p a q b p a b a b a n n nn n n n n ==∙--++11111111它是一个与n 无关的常数,所以{a n ·b n }是一个以pq 为公比的等比数列[教师精讲]除了上面的证法外,我们还可以考虑如下证明思路: 证法二:设数列{a n }的公比是p ,{b n}公比是q ,那么数列{a n ·b n }的第n 项、第n -1项与第n +1项(n >1,n ∈N *)分别为a 1p n -1b 1q n -1、a1pn -2b 1q n -2与a 1p n b 1q n ,因为(a n b n )2=(a 1pn -1b 1q n -1)2=(a 1b 1)2(pq) 2(n -1)(a n -1·b n -1)(a n +1·b n +1)=(a 1p n -2b 1q n -2)(a 1p nb 1q n)=(a 1b 1)2(pq)2(n -1)即有(a n b n )2=(a n -1·b n -1)(a n +1·b n +1)(n >1,n ∈N *所以{a n ·b n }是一个等比数列师 根据对等比数列的认识,我们还可以直接对数列的通项公式考察:证法三:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的通项公式为a nb n =a 1p n -1b 1q n -1=(a 1b 1)(pq) n-1设c n =a n b n ,则c n =(a 1b 1)(p q)n-1所以{a n ·b n }是一个等比数列课堂小结本节学习了如下内容: 1.等比数列的性质的探究2.证明等比数列的常用方法布置作业课本第60页习题2.4 A 组第3题、B 组第1题.板书设计习题详解(课本第60页习题2.4)组1.(1)a 7=a 4·q 3=27×(-3)3=-(2)设等比数列{a n }的公比是⎪⎩⎪⎨⎧=-=-⇔⎩⎨⎧=-=-②①.6)1(,15)1(61521412415q q a q aa a a a ②÷①,整理得6q 2- 解方程得q=2或21=q由a 4-a 2=6,得a 3(q-q -1)=6,所以,当q=2时,由③得,a 3=4当21=q 时,由③得a 3=-2.设n 年后,需退耕a n ,则{a n }是一个等比数列,其中a 1=8,q=0.1.那么2005年需退耕a 5=a 1(1+q)5=8(1+0.1)5=13(万公顷3.若{a n }是各项均为正数的等比数列,则首项a 1和公比q 都是正数, 由a n =a 1qn -1,得121121111)(---===n n n n q a qa qa a ,所以数列{a n }是以a 1为首项,21=q 为公比的等比数列4.这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm,再对折后厚度为0.05×22mm ,再对折后厚度为0.05×23mm ,设a 0=0.05,对折n 次后报纸的厚度为a n ,则{a n }是一个等比数列,公比q=2,对折50次后,报纸的厚度为a50=a 0q 50=0.05×250≈5.63×1013=5.63×1010这时报纸的厚度已经超过地球和月球之间的平均距离(约3.84×108m),所以能够在地球和月球之间建一座桥5.设年平均增长率为q ,a 1=105,n 年后空气质量为良的天数为a n ,则{a n }是一个等比数列,由a 3=240,得a 3=a 1(1+q)2=105(1+q)2=240,解得q=105240-6.由已知条件,知2b a A +=,G=ab,且2)(222b a ab b a ab b a G A -=-+=-+=-≥0, 所以有A ≥G,等号成立的条件是a =b .而a ,b 是互异正数,所以一定有A >7.(1)±2 (2)±ab (a 2+b 28.略组1.证明略2.(1)设生物死亡时,体内每克组织中的碳14的含量为1,每年的衰变率为q ,n 年后的残留量为a n ,则{a n }是一个等比数列,由碳14的半衰期为5 730,则a n =a 1q5 730=q5 730=21,解得57301)21(=q(2)设动物约在距今n 年前死亡,由a n =0.6,得a n =a 1q n=0.999 879n解得n ≈4 221,所以动物约在距今4 221年前死亡3.略备课资料备用例题1.已知无穷数列5010,5110,5210 ,…, 5110-n求证:(1)这个数列成等比数列;(2)这个数列中的任一项是它后面第五项的101; (3)这个数列的任意两项的积仍在这个数列中证明:(1)101101010154511===-+--n n n n a a (常数),∴该数列成等比数列(2)101101010154515===-+-+n n n n a a ,即:5101+=n n aa(3)a p a q =525151101010-+--=q p q p ,∵p,q∈N,∴p+q -1≥1且(p+q-1)∈N .∴5210-+q p ∈⎭⎬⎫⎩⎨⎧-5110n (第p+q-1项2.设a ,b ,c,d 均为非零实数,(a 2+b 2)d 2-2b (a +c)d +b 2+c2求证:a ,b ,c 成等比数列且公比为d证法一:关于d 的二次方程(a 2+b 2)d 2-2b (a +c)d +b 2+c 2=0有实根, ∴Δ=4b 2(a +c)2-4(a 2+b 2)(b 2+c 2)≥0.∴-4(b 2-a c)2≥0.∴-(b 2-a c)2则必有:b 2-a c=0,即b 2=a c ,∴a ,b ,c成等比数列设公比为q ,则b =a q,c=a q 2代入 (a 2+a 2q 2)d 2-2a q(a +a q 2)d +a 2q 2+a 2q4∵(q 2+1)a 2≠0,∴d 2-2q d +q 2=0,即d证法二:∵(a 2+b 2)d 2-2b (a +c)d +b 2+c 2=0, ∴(a 2d 2-2abd +b 2)+(b 2d 2-2b c d +c2∴(ad -b )2+(bd -c)2=0.∴ad =b ,且bd∵a ,b ,c,d 非零,∴d bca b ==d .∴a ,b ,c 成等比数列且公比为d。

初中数学知识归纳等比数列的性质与应用

初中数学知识归纳等比数列的性质与应用

初中数学知识归纳等比数列的性质与应用初中数学知识归纳:等比数列的性质与应用在初中数学学习中,等比数列是一个重要的概念。

它的性质和应用广泛存在于各类数学题目中。

本文将对等比数列的性质与应用进行归纳和阐述。

一、等比数列的基本性质等比数列是指一个数列中,从第二个数开始,每个数与它的前一个数的比等于一个常数。

该公比常被表示为q。

1. 公比的概念公比q是等比数列中相邻两项的比值,可以通过以下公式计算:```q = 第n项 / 第(n-1)项```其中,n表示数列的项数。

在等比数列中,任意两项之间的比值都相等,即相邻两项的比值等于公比q。

2. 通项公式等比数列的通项公式可以根据已知条件得到。

设首项为a₁,公比为q,第n项为aₙ,则通项公式为:```aₙ = a₁ * q^(n-1)```这个公式可以帮助我们直接计算等比数列中任意一项的值。

3. 等差数列与等比数列的区别等比数列与等差数列是两个不同的数列概念。

在等差数列中,两个相邻项之间的差是常数,而在等比数列中,两个相邻项之间的比是常数。

因此,等比数列中的项之间的增长或减小呈倍数关系,而等差数列中的项之间的增长或减小是固定的。

二、等比数列的应用等比数列的性质使得它在各类数学题目中有广泛的应用。

下面介绍几个常见的应用场景。

1. 成绩评定某班级的同学们在一次数学测验中,考试分数符合等比数列的规律。

已知第1位同学得了80分,而第5位同学得了5分。

我们可以利用等比数列的通项公式来求得第n位同学的分数。

设第n位同学的分数为aₙ,则有:```a₁ = 80a₅ = 5q = a₅ / a₁ = 5 / 80```带入通项公式,我们可以得到:```aₙ = 80 * (5 / 80)^(n-1)```这样我们就可以根据题目给出的条件,计算任意一位同学的分数。

2. 几何图形等比数列的概念也与几何图形有关。

例如,在绘制分形图形时,我们经常使用等比数列来确定各个图形的大小比例。

等比数列的性质与应用

等比数列的性质与应用

等比数列的性质与应用等比数列是数学中的一种特殊数列,它的性质和应用十分广泛。

在本文中,我将介绍等比数列的性质及其在实际问题中的应用。

1. 等比数列的定义与性质等比数列是指一个数列中的每一项与它的前一项的比相等的数列。

假设数列的首项为a,公比为r,那么它的第n项可表示为an = ar^(n-1)。

等比数列具有以下性质:a) 公比为零或正数时,数列递增;公比为负数时,数列递减;b) 数列中的任意项可以通过前一项与公比的乘积得到;c) 等比数列的前n项和可以用公式Sn = a(1-r^n)/(1-r)计算。

2. 等比数列的应用等比数列的性质在各个领域中都有着广泛的应用。

以下是其中几个重要的应用:2.1. 财务与投资在财务与投资领域,等比数列的应用尤为突出。

例如,计算利息、年金、股票投资等等,都可以基于等比数列的概念进行计算。

根据等比数列的定义以及性质,可以推导出各种金融公式,为理财人员提供便捷的计算方法。

2.2. 自然科学等比数列在自然科学领域中也有着广泛的应用。

例如,在生物学中,细胞的分裂、种群的增长等往往可以用等比数列来描述。

在物理学中,声音的强度、光的强度等都可以用等比数列来衡量。

2.3. 工程与建筑在工程与建筑领域,等比数列常被用于设计与构建过程中的各种问题。

例如,设计方密切关注物体的尺寸、比例是否满足等比关系;建筑师在设计建筑物的时候,也需要考虑材料的长宽比、高度比等等。

2.4. 统计学在统计学中,等比数列可用于描述人口增长、物品销售情况、市场份额等。

利用等比数列的性质,统计学家可以更准确地预测未来的趋势,做出科学的决策。

3. 等比数列问题的解决方法为了解决等比数列问题,通常可以采用以下几种方法:3.1. 直接计算法对于已知首项和公比的等比数列问题,可以直接使用等比数列的公式进行计算。

通过计算每一项的值或者前n项的和,可以得到问题的答案。

3.2. 求比方式有时候,问题给出的信息不够明确,无法直接使用等比数列的公式。

等比数列的性质与应用

等比数列的性质与应用

等比数列的性质与应用等比数列(geometric progression)是指数列中任意两个相邻项的比等于同一个常数的数列。

在数学中,等比数列具有一些独特的性质和应用,本文将介绍这些性质以及如何应用等比数列解决一些实际问题。

一、等比数列的定义等比数列是指数列中的每一项与它前一项的比例都相等。

具体而言,如果一个数列满足对于任意的正整数 n,都有 an/an-1 = r (r ≠ 0),其中an 表示数列的第 n 项,an-1 表示数列的前一项,r 表示公比,则该数列可以被称为等比数列。

二、等比数列的性质1. 公比的性质等比数列的公比 r 是决定数列特征的重要因素。

当 r 大于 1 时,数列呈现递增的趋势;当 0 < r < 1 时,数列呈现递减的趋势;当 r 等于 1 时,数列的各项相等;当 r 小于 0 时,数列的各项交替变号。

2. 通项公式对于等比数列的通项公式,即 an = a1 * r^(n-1),其中 a1 表示数列的首项,an 表示数列的第 n 项。

3. 等比数列的和等比数列的前 n 项和 Sn 可以通过公式 Sn = a1 * (1 - r^n) / (1 - r) 求得。

三、等比数列的应用等比数列在实际中有广泛的应用,特别是在金融、工程、物理等领域中。

以下将介绍一些等比数列的典型应用。

1. 财务投资在财务投资中,利率往往以等比数列的形式递增或递减。

通过计算等比数列的前 n 项和,可以帮助投资者评估不同时间段内的资金增长情况,从而做出更明智的决策。

2. 网络传输等比数列在网络传输中的应用非常广泛。

例如,下载文件时,下载速度可能以等比数列递增或递减;发送数据包时,包的大小可能以等比数列的形式递增或递减。

3. 器械运动许多器械运动(如弹簧)的行为都可以通过等比数列来描述。

器械的某些性质随着使用次数的增加而发生变化,这种变化往往符合等比数列的规律。

4. 科学实验在科学实验中,等比数列被广泛用于模拟实验数据。

等比数列的性质与应用

等比数列的性质与应用

等比数列的性质与应用等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以同一个常数,这个常数被称为公比。

等比数列的性质与应用在数学中具有重要的地位和应用价值。

一、等比数列的性质1. 公比的性质:在等比数列中,公比不为0。

当公比大于1时,数列呈现递增趋势;当公比介于0和1之间时,数列呈现递减趋势。

2. 通项公式:对于等比数列 a₁, a₂, a₃, ... ,若 a₁是首项,r 是公比,n 是项数,则第 n 项 aₙ = a₁ * r^(n-1)。

3. 特殊性质:若等比数列的首项不等于0,则任意一项都不为0。

若等比数列的首项为a,公比为r,则数列中除了首项以外的其他项的和为 S = a * (r^n - 1) / (r - 1)。

二、等比数列的应用1. 高利贷问题:高利贷问题中的本金和利息往往呈现等比数列的关系。

通过计算等比数列的和,可以帮助我们理解高利贷背后的利息计算原则,并避免陷入高利贷的陷阱。

2. 折半查找算法:在计算机科学中,折半查找算法常常运用等比数列的性质。

该算法通过将查找范围不断折半,缩小查找范围,直到找到目标元素为止。

这种算法的时间复杂度为 O(log n),具有高效的特点。

3. 复利计算:在金融领域中,复利计算常常与等比数列紧密相关。

当存款、贷款或投资的利率按照一定的期限计算时,利息会按照等比数列的方式不断增长。

通过对等比数列的计算,可以帮助我们了解复利计算的规律,指导我们做出科学的理财决策。

总结:等比数列作为一种数学工具,具有重要的性质和广泛的应用。

通过了解等比数列的性质,我们可以在数学问题中灵活运用,提高解题能力;同时,等比数列的应用也渗透到各个领域,为我们解决实际问题提供了理论和方法支持。

因此,熟练掌握等比数列的性质和应用,对于我们的数学学习和实际生活都具有积极的意义和影响。

等比数列的性质与应用

等比数列的性质与应用

等比数列的性质与应用等比数列,又称为几何数列,是指一个数列中,从第二项开始,每一项与它的前一项的比等于一个常数,这个常数被称为公比。

等比数列常用的表示形式为:a,a*r,a*r^2,a*r^3,……等比数列的性质涉及到数列的通项公式、前n项和、无穷项和以及与其他数学概念的关系等方面。

在此,本文将从这些方面介绍等比数列的性质和应用。

一、数列的通项公式对于等比数列来说,其通项公式可以通过以下方式得出:假设第一项为a,公比为r。

首先,我们可以观察到每一项与其前一项之间的关系,即:第二项:a*r第三项:a*r*r = a*r^2第四项:a*r*r*r = a*r^3由此可见,等比数列的第n项可以表示为a*r^(n-1)。

二、前n项和计算等比数列的前n项和可以使用以下公式:前n项和 = a * (1 - r^n) / (1 - r)其中,a为等比数列的首项,r为公比。

这个公式可以通过数学归纳法得到证明。

三、无穷项和无穷项和是指等比数列所有项的和在n趋向于无穷时的极限值。

对于绝对值小于1的公比,等比数列的无穷项和存在并且可以通过以下公式计算得出:无穷项和 = a / (1 - r)这个公式也可以通过数学推导得到。

应用:等比数列在现实生活中有着广泛的应用,以下是几个常见的应用场景:1. 财务问题在财务领域中,利息、折扣和股价等问题往往涉及到等比数列。

例如,在银行存款中,如果某笔存款按照一定的年利率计算利息,并且每年将利息和本金一起再次存入银行,那么存款的金额就构成了一个等比数列。

2. 科学研究等比数列在科学研究中也有着广泛的应用。

例如,在生物学中,细胞的数量经常呈现出等比数列的规律。

通过研究和分析等比数列的性质,可以更好地理解和描述细胞的生长和变化过程。

3. 工程问题在工程问题中,等比数列常常用于计算材料的消耗和成本的增长。

例如,在建筑施工中,某种材料的每层用量都是前一层用量的3倍,那么每层用量就可以表示为一个等比数列。

等比数列的性质与应用

等比数列的性质与应用

等比数列的性质与应用等比数列是数学中一种常见的数列形式,它具有一些独特的性质和广泛的应用。

在本文中,我们将介绍等比数列的性质,并讨论它在实际问题中的应用。

一、等比数列的定义等比数列是指一个数列中的每一个项与它前一项的比值都相等。

这个比值被称为公比,通常用字母q表示。

具体地,如果一个数列满足an = a1 * q^(n-1),其中an表示第n项,a1表示首项,则称该数列为等比数列。

二、等比数列的性质1. 公比的取值:公比q可以为正数、负数或零。

当q>1时,数列呈递增趋势;当0<q<1时,数列呈递减趋势;当q=1时,数列呈恒定趋势;当q<-1时,数列呈震荡趋势。

2. 通项公式:对于等比数列an = a1 * q^(n-1),我们可以推导出通项公式an = a1 * q^(n-1),其中a1为首项,n为项数。

3. 求和公式:等比数列的前n项和可通过求和公式Sn = (a1 * (q^n - 1))/(q - 1) 来计算,其中Sn表示前n项和。

4. 任意项与首项的关系:对于等比数列an = a1 * q^(n-1),我们可以推导出an和a1的关系为an = a(k) * q^(n-k),其中a(k)是该数列的第k 项。

三、等比数列的应用等比数列在实际问题中有广泛的应用,下面我们将介绍其中的几个常见应用。

1. 财务领域:等比数列被广泛应用于财务计算中,特别是复利计算。

当某笔资金按照一定的利率复利计算时,投资者的收益往往呈现等比数列的形式。

2. 几何学:在几何学中,等比数列被用于描述一些几何图形的性质。

例如,等比数列可以用来计算等比比例图中的边长,或者描述螺旋线的形成过程。

3. 自然科学:等比数列在自然科学中也有一些应用。

例如,生物学中的细胞分裂过程和物理学中的波动传播过程都可以使用等比数列来描述。

4. 经济学:在经济学中,等比数列可以用来描述一些经济指标的增长或者下降趋势。

例如,人口增长、GDP增长等都可以看作是等比数列。

等比数列的性质及应用

等比数列的性质及应用

等比数列的性质及应用等比数列是指一个数列中,从第二项起,每一项与前一项的比值均相等的数列。

在数学中,等比数列有许多重要的性质和应用。

本文将详细介绍等比数列的性质,并探讨其在实际问题中的应用。

一、等比数列的基本性质1. 公比在等比数列中,公比表示相邻两项之间的比值。

如果一个等比数列的首项是a,公比是r,那么第n项可以表示为an=a×r^(n-1)。

公比r的绝对值决定了数列的增长或者减小趋势。

2. 通项公式对于一个等比数列,通项公式可以通过首项和公比来表示。

在上述的an=a×r^(n-1)公式中,an表示第n项,a表示首项,r表示公比。

3. 前n项和等比数列的前n项和可以通过以下公式计算:Sn=a×(1-r^n)/(1-r)。

其中,Sn表示前n项的和,a表示首项,r表示公比。

二、等比数列的应用举例等比数列在各个领域都有着广泛的应用。

下面将介绍一些典型的应用。

1. 财务领域在财务领域,等比数列的应用极为常见。

例如,复利是指一笔资金在每个计息期内的增长情况,而复利的计算正好是一个等比数列的求和问题。

另外,企业盈利的增长也可以用等比数列进行建模和预测。

2. 科学研究在科学研究中,等比数列经常被用来描述和解决问题。

例如,放射性衰变的过程可以用等比数列描述,其中公比为衰变常数。

此外,生物群落中物种数量的变化、病毒感染的传播速度等现象也可以用等比数列进行建模。

3. 工程技术工程技术领域也广泛应用了等比数列。

例如,电路中的电阻、电容和电感等元器件的数值序列通常是按等比数列排列的。

此外,工程建设中材料的使用量、工作人员数量的调配等问题也可以通过等比数列来计算和规划。

4. 数学教育等比数列是数学教育中不可或缺的一部分。

通过学习等比数列的性质和应用,可以帮助学生提高数学思维能力和问题解决能力。

等比数列也经常被用作基础数学题目和竞赛数学题目的考察内容。

总结:通过上述的介绍,我们可以看出等比数列具有重要的性质和广泛的应用。

2.4.2等比数列性质

2.4.2等比数列性质
2、(1)若等比数列{an}的公比为-1,则等于()
A.-1 B.1 C.-1或1 D.无法确定
(2)已知等比数列{an}中,a4=7,a6=21,则a8=()
A.35 B.63 C.21D.±21
3、有四个数成等比数列,将这四个数分别减去1,1,4,13,则成等差数列,求这四个数.
评价提升
讨论领悟
1.在等比数列{an}中,公比q>1时,该数列一定是递增数列吗?
2.等比数列的“子数列”是否成等比数列?
展示分享
[例1]在等比数列{an}中,
(1)若 求
(2)若 , ,求 .
(3)若 , ,求 .
[例2](1)在等比数列中,若a2=2,a6=16,则a10=________.
(2)已知各项均为正数的等比数列{an}中,a1a2a3=5,a4a5a6=10,则a7a8a9=
多项关系
通项公式的推广:an=am·qn-m(m,n∈N*)
项的运算性质:若m+n=p+q(m,n,p,q∈N*),则am·an=.
2.等比数列的运算性质
(1)若{an}是公比为q的等比数列,则
①{c·an}(c是非零常数)是公比为的等比数列;
②{|an|}是公比为的等比数列;
(2)若{an},{bn}分别是公比为q1,q2的等比数列,则数列{an·bn}是公比为的等比数列.
年级
高一
学科
数学
课题
2.4.2等比数列性质
编制人
谭金国
审定人
高一数学备课组
知识目标
教学活动
基础知识—重点知
识—重难点知识
自学质疑—讨论领悟—展示分享—检测巩固Байду номын сангаас评价提升

新人教A版必修5高中数学学案教案: (2.4.2 等比数列的基本性质及其应用)

新人教A版必修5高中数学学案教案: (2.4.2 等比数列的基本性质及其应用)

2.4.2 等比数列的基本性质及其应用从容说课这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.如类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等.教学中以师生合作探究为主要形式,充分调动学生的学习积极性.教学重点 1.探究等比数列更多的性质;2.解决生活实际中的等比数列的问题.教学难点 渗透重要的数学思想.教具准备 多媒体课件、投影胶片、投影仪等三维目标 一、知识与技能1.了解等比数列更多的性质;2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中;3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题. 二、过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程;3.当好学生学习的合作者的角色. 三、情感态度与价值观1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.教学过程 导入新课师 教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下.生 由学习小组汇报探究结果.师 对各组的汇报给予评价.师 出示多媒体幻灯片一:第3题、第4题详细解答:第3题解答:(1)将数列{a n }的前k 项去掉,剩余的数列为a k+1,a k+2,….令b i =a k+i ,i=1,2,…, 则数列a k+1,a k+2,…,可视为b 1,b 2,…. 因为q a a b b ik i k i i ==++++11 (i≥1),所以,{b n }是等比数列,即a k+1,a k+2,…是等比数列. (2){a n }中每隔10项取出一项组成的数列是a 1,a 11,a 21,…,则109101101121111......q a a a a a a k k =====-+ (k≥1). 所以数列a 1,a 11,a 21,…是以a 1为首项,q 10为公比的等比数列.猜想:在数列{a n }中每隔m(m 是一个正整数)取出一项,组成一个新数列,这个数列是以a 1为首项、q m 为公比的等比数列.◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法.第4题解答:(1)设{a n }的公比是q ,则a 52=(a 1q 4)2=a 12q 8,而a 3·a 7=a 1q 2·a 1q 6=a 12q 8,所以a 52=a 3·a 7.同理,a 52=a 1·a 9.(2)用上面的方法不难证明a n 2=a n -1·a n +1(n >1).由此得出,a n 是a n -1和a n +1的等比中项,同理可证a n 2=a n -k ·a n +k (n >k >0).a n 是a n -k 和a n +k 的等比中项(n >k >0).师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究.推进新课[合作探究]师 出示投影胶片1例题1 (教材P 61B 组第3题)就任一等差数列{a n },计算a 7+a 10,a 8+a 9和a 10+a 40,a 20+a 30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师 注意题目中“就任一等差数列{a n }”,你打算用一个什么样的等差数列来计算? 生 用等差数列1,2,3,…师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢?生 在等差数列{a n }中,若k+s=p+q(k,s,p,q∈N *),则a k +a s =a p +a q .师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做? 生 思考、讨论、交流.师 出示多媒体课件一:等差数列与函数之间的联系.[教师精讲]师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{a n }的图象,可以看出qs a a p k a a q s p k ==,, 根据等式的性质,有1=++=++q p s k a a a a q p s k .所以a k +a s =a p +a q .师 在等比数列中会有怎样的类似结论?生 猜想对于等比数列{a n },类似的性质为:k+s=p+t(k,s,p,t∈N *),则a k ·a s =a p ·a t .师 让学生给出上述猜想的证明.证明:设等比数列{a n }公比为q ,则有a k ·a s =a 1q k-1·a 1q s-1=a 12·q k+s-2,a p ·a t =a 1q p-1·a 1q t-1=a 12·q p+t-2.因为k+s=p+t,所以有a k ·a s =a p ·a t .师 指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质.即等比数列{a n }中,若k+s=p+t(k,s,p,t∈N *),则有a k ·a s =a p ·a t .师 下面有两个结论:(1)与首末两项等距离的两项之积等于首末两项的积;(2)与某一项距离相等的两项之积等于这一项的平方. 你能将这两个结论与上述性质联系起来吗?生 思考、列式、合作交流,得到:结论(1)就是上述性质中1+n =(1+t)+(n -t)时的情形;结论(2)就是上述性质中k+k=(k+t)+(k-t)时的情形.师 引导学生思考,得出上述联系,并给予肯定的评价.师 上述性质有着广泛的应用.师 出示投影胶片2:例题2例题2(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18;(2)在等比数列{b n }中,b 4=3,求该数列前七项之积;(3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.例题2 三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程. 解答:(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18.解:∵a 1a 18=a 9a 10,∴a 18=51001109=a a a =20. (2)在等比数列{b n }中,b 4=3,求该数列前七项之积.解:b 1b 2b 3b 4b 5b 6b 7=(b 1b 7)(b 2b 6)(b 3b 5)b 4.∵b 42=b 1b 7=b 2b 6=b 3b 5,∴前七项之积(32)3×3=37=2 187.(3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.解:.∵a 5是a 2与a 8的等比中项,∴542=a 8×(-2).∴a 8=-1 458.另解:a 8=a 5q 3=a 5·2545425-⨯=a a =-1 458. [合作探究]师 判断一个数列是否成等比数列的方法:1、定义法;2、中项法;3、通项公式法.例题3:已知{a n }{b n }是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论.a nb n a n ·b n 判断{a n ·b n }是否是等比数列 例 n )32(3⨯ -5×2n -1 1)34(10-⨯-n 是自选1自选2师 请同学们自己完成上面的表.师 根据这个表格,我们可以得到什么样的结论?如何证明? 生 得到:如果{a n }、{b n }是两个项数相同的等比数列,那么{a n ·b n }也是等比数列. 证明如下: 设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项与第n +1项分别为a 1pn -1b 1q n -1与a 1p n b 1q n ,因为pq qb p a q b p a b a b a n n nn n n n n ==•--++11111111, 它是一个与n 无关的常数,所以{a n ·b n }是一个以pq 为公比的等比数列. [教师精讲]除了上面的证法外,我们还可以考虑如下证明思路:证法二:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项、第n -1项与第n +1项(n >1,n ∈N *)分别为a 1p n -1b 1q n -1、a 1p n -2b 1q n -2与a 1p n b 1q n ,因为(a n b n )2=(a 1p n -1b 1q n -1)2=(a 1b 1)2(pq) 2(n -1),(a n -1·b n -1)(a n +1·b n +1)=(a 1p n -2b 1q n -2)(a 1p n b 1q n )=(a 1b 1)2(pq)2(n -1),即有(a n b n )2=(a n -1·b n -1)(a n +1·b n +1)(n >1,n ∈N *),所以{a n ·b n }是一个等比数列.师 根据对等比数列的认识,我们还可以直接对数列的通项公式考察: 证法三:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的通项公式为 a n b n =a 1p n -1b 1q n -1=(a 1b 1)(pq) n -1,设c n =a n b n ,则c n =(a 1b 1)(pq) n -1,所以{a n ·b n }是一个等比数列.课堂小结本节学习了如下内容:1.等比数列的性质的探究.2.证明等比数列的常用方法.布置作业课本第60页习题2.4 A 组第3题、B 组第1题.板书设计等比数列的基本性质及其应用例1 例2 例3。

2.4.2 等比数列的性质及应用

2.4.2 等比数列的性质及应用
(2)是否存在m,使得数列{bn}中存在某项bt满足b1, b4,bt(t∈N*,t≥5)成等差数列?若存在,请指出符 合题意的m的个数;若不存在,请说明理由. 审题指导 (1)由an=Sn-Sn-1(n≥2)求得an→b=b1b8求 得 m. (2)由2b4=b1+bt可得以m为变量,t为函数的关系式→ 由t≥5,t∈N*可得m的取值.
课前探究学习 课堂讲练互动
(2)若存在 m,使 b1,b4,bt 成等差数列, 则 2b4=b1+bt, 2t-1 7 1 ∴ ×2= + , 7+ m 1+m 2t-1+m 7m+1 7m-5+36 36 ∴ t= = = 7+ ,(9 分) m- 5 m- 5 m- 5 由于 m、t∈N*且 t≥5. 令 m-5=36,18,9,6,4,3,2,1, 即 m=41,23,14,11,9,8,7,6 时,t 均为大于 5 的整数. ∴存在符合题意的 m 值,且共有 8 个数.(12 分)
从而错选 D.
课前探究学习 课堂讲练互动
对等差数列1,3,…,2n-1的项数没
数清. [正解] ∵a5· a2n-5=22n=an2,an>0, ∴an=2n,∴log2a1+log2a3+…+log2a2n-1 =log2(a1a3…a2n-1)=log221+3+…+(2n-1) =log22n2=n2.故选B. 答案 B
课前探究学习
课堂讲练互动
【例1】 已知数列{an}为等比数列. (1)若an>0,且a2a4+2a3a5+a4a6=36,求a3+a5的值; (2)若a1+a2+a3=7,a1a2a3=8,求数列{an}的通项公式. 解 (1)法一 ∵an>0,∴a1>0,q>0. 又∵a2a4+2a3a5+a4a6=36, ∴a1q· a1q3+2a1q2· a1q4+a1q3· a1q5=36, 即a12q4+2a12q6+a12q8=36,

等比数列知识点总结和归纳

等比数列知识点总结和归纳

等比数列知识点总结和归纳数列在数学中占据着重要的地位,它们是数学研究的基础。

其中,等比数列作为一种特殊的数列,具有独特的性质和规律。

本文将对等比数列的基本概念、性质、公式和应用进行总结和归纳,以帮助读者更好地理解和应用等比数列。

一、等比数列的基本概念等比数列是指具有公比不为零的数列。

公比是指数列中任意两个相邻项的比值,通常用字母q表示。

根据定义,等比数列中的每一项与它的前一项的比值都是相等的。

二、等比数列的性质1. 公比的性质:等比数列的公比q决定了数列的性质。

当q>1时,数列为递增的;当0<q<1时,数列为递减的;当q=1时,数列为等差数列。

2. 通项公式:等比数列的通项公式是数列中任意一项与首项的比值的幂次方关系。

若首项为a,公比为q,第n项为an,则通项公式为an = a * q^(n-1)。

3. 前n项和公式:等比数列的前n项和公式是数列中前n项的和。

该公式可通过分两种情况讨论得出,即当q≠1时和当q=1时。

当q≠1时,前n项和公式为Sn = a * (q^n - 1) / (q - 1)。

当q=1时,前n项和公式为Sn = n * a。

4. 附加性质:等比数列还具有一些特殊的性质,比如任意三项成比例、倒数等比数列等。

这些特殊性质在问题求解中常常发挥重要作用。

三、等比数列的应用1. 复利计算:等比数列的应用广泛存在于复利计算中。

例如,一个年利率为r的账户,每年利滚利进行复利计算,那么每年的本金就构成了一个等比数列,利息也构成了一个等比数列。

2. 几何图形构造:等比数列的特性可以应用于几何图形的构造中。

例如,通过不断加减边长比值为q的等边三角形,可以构造出一种叫做“谢尔宾斯基三角形”的几何图形。

3. 自然界中的等比数列:等比数列的规律也在自然界中普遍存在,例如菜花的花瓣数、树枝的分支、蜂巢的结构等都呈现出等比数列的性质。

综上所述,等比数列作为一种重要的数列形式,其基本概念、性质、公式和应用都具有重要的研究意义和实际应用价值。

2.4.2等比数列的性质

2.4.2等比数列的性质
2

例2.1)在等比数列a n 中,已知a1 5, a 9a10 12,求a18 .
2
2)等比数列a n 中,a1 ,a 99为方程
x -10x+16=0的两根,求a 20 a50 a80的值.
练习
1、 {an }是等比a3a5 a4 a6 25,
练习:已知四个正数成等比数列,其积为16, 中间两数之和为5,求这四个数。
结论:
a 三个数成等比可设为: , a, aq; q
a a 3 四个数成等比可设为:3 , , aq; aq . q q
小结:
1.等比数列的判定方法:
1)、定义法;
2)、通项公式法;
3)、中项公式法
2.等差、等比数列对照表
名称 等差数列
等比数列
定 义
如果一个数列从第2项 如果一个数列从第 2 起,每一项与前一项 项起,每一项与它前 的差等于同一个常数,一项的比都等于同一 那么这个数列叫做等 个 常 数 , 那 么 这 个 数 差数列.这个常数叫做 列 叫 做 等 比 数 列 . 这 等差数列的公差,用d 个常数叫做等比数列 的公比,用q表示 表示
数学式 子表示 通项公式
an+1-an=d a n = a 1 +( n - 1 ) d
an+1 =q (q≠0) an
an=a1· qn-1(q≠0)
作业:
P54 2.4A组 7,8
5 则a3 a5 ___ 4 (2)a6 6, a9 9, 则a3 ___
(3)an 0, a1 a100 100, 则 lg a1 lg a2
100 lg a100 ______
例3
已知数列an 、 bn 是项数相同的等比数列, 求证:an bn 是等比数列。

高中数学 第二章 数列 2.4.2 等比数列的性质及应用课件 a必修5a高二必修5数学课件

高中数学 第二章 数列 2.4.2 等比数列的性质及应用课件 a必修5a高二必修5数学课件

S 随堂练习
UITANG LIANXI
探究
(tànjiū)

探究三 等差、等比数列的综合问题
1.与等差、等比数列有关的综合问题,其解题过程中应注意以下方法与
技巧的应用.
(1)转化思想:将非等差(比)数列转化,构造出新的等差(比)数列,以便于
利用其公式和性质解题.
(2)等差(比)数列公式和性质的灵活应用.
=8
= 3.
当 q=2,a=8 时,所求四个数为 0,4,8,16;
1
3
当 q= ,a=3 时,所求四个数为 15,9,3,1.
解法三:设四个数依次为 x,y,12-y,16-x.
2 = + (12-),
(12-)2 = y(16-x),
= 0,
= 15,
解得

=4
= 9.

,
(+)

= 16,
由条件得 - +
+ ( + ) = 12,
= 9,
= 4,
解得

=4
= -6.
所以,当 a=4,d=4 时,所求四个数为 0,4,8,16;
当 a=9,d=-6 时,所求四个数为 15,9,3,1.
故所求四个数为:0,4,8,16 或 15,9,3,1.
(tànjiū)


ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究
(tànjiū)

探究二 灵活设项求解等比数列
在等比数列中,灵活地设项是非常重要的.一般来说,当三个数成等比数
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档