高二数学易错题精选2

合集下载

高二数学易错题精选2

高二数学易错题精选2

实验中学2012-2013学年度高二数学易错精选50题2一、选择题1.经过抛物线y 2 = 4x 的焦点弦的中点轨迹方程是( )A .y 2=x -1B .y 2=2(x -1)C .y 2=x -21 D.y 2=2x -12.如图,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使λ==FDCF EBAE (0<λ<+∞),设λλβαλ+=)(f ,其中λα表示EF 与AC 所成的角,λβ表示EF 与BD 所成的角,则( ) A .)(λf 在(0, +∞)上单调递增B .)(λf 在(0, +∞)上单调递减C .)(λf 在(0, 1)上单调递增,在(1, +∞)上单调递减D .)(λf 在(0, +∞)上为常数函数3.如图,在正三棱锥BCD A -中,F E ,分别是BC AB ,的中点,DE EF ⊥且1=BC ,则正三棱锥BCD A -体积是( )A.122. B..242C.123 D.2434.设c b a ,,是空间三条不同的直线,βα,是空间两个不重合的平面,则下列命题中,逆命题不成立的是 ( ) A.当α⊂b 时,且c 是a 在α内的射影时,若c b ⊥,则b a ⊥. B.当α⊂b ,且α⊄c 时,若α//c ,则c b //. C.当α⊂b 时,若β⊥b ,则βα⊥. D.当α⊥c时,若β⊥c,则βα//.5.若m 、n 是不大于6的非负整数,则2626yC x C nm + = 1表示不同的椭圆个数为( )A .27AB .26C C .24AD .24C6.在北纬45°圈上有A 、B 两地,A 地在东经120°,B 地在西经150°,设地球半径为R ,则A 、B 两地的球面距离是( ) A .R π35B .R π21 C .R π42 D .R π317.直线531+=x y 与曲线1259||2=+yx x 的交点个数为( )A .3个B .2个C .1个D .0个8.已知双曲线12222=-by ax (a >0, b >0)的离心率为e ∈]2,2[,则它的两条渐近线所成的角中以实轴为平分线的角的大小为( ) A .]2,6[ππB .]2,3[ππC .]32,2[ππD .],32[ππ9.下列四个命题中,正确命题有( )①直线方程的一般式为Ax + By + C = 0 ②k 1·k 2 = –1为两直线垂直的充要条件③k 1 = k 2为两直线平行的必要非充分条件 ④l :A 1x + B 1y + C 1 = 0和l 2:A 2x + B 2y + C 2 = 0,(B 1≠0,B 2≠0,A 1A 2 + B 1B 2≠0),则直线l 1到l 2的角θ的正切值为21211221tan B B A A B A B A +-=θA .0个B .1个C .2个D .3个E A DBFC10.已知()lg()(10),x x f x a b a b =->>>则不等式()0f x >的解集为(1,)+∞的充要条件是 ( ) A .1a b =+ B .1a b <+ C .1a b >+ D .1b a =+11.正五边形的边与对角线所在的直线能围成的三角形的个数是( )A .40个B .60个C .80个D .120个12.P A B C -的四个顶点都在同一球面上,则此球的表面积为 ( )A .3πB .2πC .43π D .4π13.点P 是双曲线15422=-yx右支上一点,F 是该双曲线的右焦点,点M 为线段PF 的中点。

高中数学必修2易错题精选(含部分答案)

高中数学必修2易错题精选(含部分答案)

必修2易错填空题集锦2011-10-261. 下列四个命题:① 两条直线和第三条直线成等角,则这两条直线平行;② 和两条异面直线都垂直的直线是这两条异面直线的公垂线;③ 平行移动两条异面直线中的任一条,它们所成的角不变;④ 四条边相等且四个角也相等的四边形是正方形。

其中错误的说法有 ①、② 、④。

2. 有下列四个命题:① 平行于同一条直线的两个平面平行; ② 平行于同一个平面的两个平面平行;③ 垂直于同一条直线的两个平面平行; ④ 与同一条直线成等角的两个平面平行。

其中正确的命题是 ②、③ 。

(写出所有正确命题的序号)3. 以下四个命题:① PA 、PB 是平面α的两条相等的斜线段,则它们在平面α内的射影必相等;② 平面α内的两条直线l 1、l 2,若l 1、l 2均与平面β平行,则α//β;③ 若平面α内有无数个点到平面β的距离相等,则α//β;④ α、β为两斜相交平面,面α内有一定直线a ,则在平面β内有无数条直线与a 垂直.其中正确命题的序号是 ④4. 两条异面直线在同一平面内的射影可能是:①两条平行线;②两条相交直线;③一条直线;④两个点;⑤一条直线和一个点。

上述五个结论正确的是 ①②⑤ 。

(写出所有正确结论的序号)5. 直线,l m 与平面,αβ满足,l m αβ⊥⊂,有下列命题:①//l m αβ⇒⊥ ;②//;l m αβ⊥⇒; ③//.l m αβ⇒⊥其中正确的命题是 ① ③ 。

(写出所有正确命题的序号)6. 已知m n 、是不重合的直线,αβ、是不重合的平面,有下列命题:(1)若,//n m n αβ=,则//,//m m αβ; (2)若,m m αβ⊥⊥,则//αβ;(3)若//,m m n α⊥,则n α⊥; (4)若,m n αα⊥⊂,则.m n ⊥其中所有正确命题的序号是 (2)(4)7. 已知直线a 、b 、c ,平面α、β、γ,并给出以下命题:①若α∥β,β∥γ,则α∥γ,②若a ∥b ∥c ,且α⊥a ,β⊥b ,γ⊥c ,则α∥β∥γ,③若a ∥b ∥c ,且a ∥α,b ∥β,c ∥γ,则α∥β∥γ;④若a ⊥α,b ⊥β,c ⊥γ,且α∥β∥γ,则a ∥b ∥c .其中正确的命题有 . ①②④8. 已知βα,,γ是三个互不重合的平面,l 是一条直线,给出下列四个命题:①若ββα⊥⊥l ,,则α//l ; ②若βα//,l l ⊥,则βα⊥;③若l 上有两个点到α的距离相等,则α//l ; ④若γαβα//,⊥,则βγ⊥。

高二数学选修2-1_《抛物线的简单几何性质》易错易混题组

高二数学选修2-1_《抛物线的简单几何性质》易错易混题组

《拋物线的简单几何性质》易错易混题组
易错点1 忽视讨论焦点的位置而致错
16.顶点在原点,且通径长为6的抛物线的标准方程为_.
易错点本题容易只考虑焦点在x轴上的情况,而忽略了焦点也可能在y轴上的情况,导致漏解.
易错点2 忽视斜率不存在的情况而致错
P,且与抛物线22
17.求过定点()
0,1
=只有一个公共点的直线的方程.
y x
易错点解决直线与抛物线位置关系的问题时,最容易丢掉斜率不存在和斜率为零的情况,所以在解决这类问题时,应考虑全面.
标准答案
16.
答案:2266y x x y =±=±或 解析:通径长为6,26,3p p ∴=∴=±.
若拋物线的焦点在x 轴上,可设方程为()220y px p =≠,∴抛物线方程为26y x =±.
若抛物线的焦点在y 轴上,可设方程为()220,x py p =≠∴拋物线方程为26.x y =± 17.
答案:见解析
解析:若直线的斜率不存在,则过点()0,1P 的直线方程为0x =, 由20,2,x y x =⎧⎨=⎩得0,0,
x y =⎧⎨=⎩即直线0x =与拋物线22y x =只有一个公共点. 若直线的斜率存在,设直线的方程为1y kx =+,由21,2,
y kx y x =+⎧⎨=⎩得()222210k x k x +-+=,当0k =时,符合题意,此时直线方程为1y =. 当0k ≠时,()221224840,2k k k k ∆=--=-+==.此时直线方程为112y x =+. 故所求的直线方程为0x =或1y =或112y x =+.。

高二数学易错题型集锦【学生版】

高二数学易错题型集锦【学生版】

高二数学易错题型集锦【题型一】导数的计算1.用导数的定义求:(1)y=2x2在x=1处的导数;(2)y=x2+ax+b(a,b为常数)在x=﹣1处的导数.2.求函数y=e sinxln(tanx)的导数.3.若函数f(x)满足f'(x)−f(x)e x=2x,f(0)=1,则当x>0时,f'(x)f(x)的取值范围是.【题型二】利用导数研究函数单调性4.已知函数f(x)=e x+e−x−1|x|+1,则关于x的不等式f(2x﹣1)<f(x)解集为()A.(13,1)B.(−∞,13)∪(1,+∞)C.(1,+∞)D.(﹣∞,1)5.已知函数f(x)=2x2﹣lnx在区间(k﹣1,k+1)上不单调,则k的取值范围为()A.(1,32)B.[1,32)C.(32,+∞)D.[1,+∞)6.已知f(x)=xe x,g(x)=﹣(x+1)2+a,若存在x1,x2∈R,使得f(x2)≤g(x1)成立,则实数a的取值范围为()A.[1e,+∞)B.[−1e,+∞)C.(0,e)D.[−1e,0)7.已知函数f(x)=kx−k x−2lnx,若函数f(x)的图象在点(1,f(1))处的切线方程为2x+5y﹣2=0,则k=45;若f(x)在(0,+∞)上为增函数,则k 的取值范围为.8.已知a≥0,函数f(x)=(x2﹣2ax)e x,若f(x)在[﹣1,1]上是单调减函数,则a的取值范围是.【题型三】利用导数研究函数的极值9.若函数f(x)=e x(x﹣3)−13kx3+kx2只有一个极值点,则k的取值范围为()A.(﹣∞,e)B.[0,e]C.(﹣∞,2)D.(0,2]10.函数f(x)=x3+ax2+bx+a2+a在x=1处有极值为7,则a=()A.﹣3或3B.3或﹣9C.3D.﹣311.已知函数f(x)=x(x﹣c)2在x=2处取得极大值,求f(x)的极小值12.已知函数(x)=alnx﹣x+1x,a>0.(1)当a=2时,比较f(x)与0的大小关系,并证明;(2)若f(x)存在两个极值点x1,x2,证明:f(x1)•f(x2)<0.【题型四】利用导数研究函数的最值13.已知函数f(x)=cos(2x−π2)+x x2+1+1,则f(x)的最大值与最小值的和为()A.0B.1C.2D.414.函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的最大值是.15.函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2,都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是.16.已知a∈R,求函数f(x)=a x+ln x﹣1在区间(0,e]上的最小值.【题型五】利用导数研究函数的切点17.已知曲线f(x)=alnx−2x在x=1处的切线与x,y轴分别交于A,B两点,若△OAB的面积为256,则正数a的值为()A.1B.2C.2D.418.已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex 垂直的切线,则实数m的取值范围是()A.(﹣∞,1e)B.(1e,+∞)C.(1e,e)D.(e,+∞)19.若曲线y=x3﹣ax2存在平行于直线y=﹣3x+1的切线,则a的取值范围为.20.已知函数f(x)=ax2+bx+14与直线y=x相切于点A(1,1),若对任意x∈[1,9],不等式f(x﹣t)≤x恒成立,则所有满足条件的实数t组成的集合为.21.已知曲线f(x)=13x3−ax+2a.(Ⅰ)当a=1时,求曲线在x=2处的切线方程;(Ⅱ)过点(2,0)作曲线的切线,若所有切线的斜率之和为1,求a的值.【题型六】微积分基本原理22.若函数f(x)=Asin(ωx−π6)(A>0,ω>0)的图象如图所示,则图中的阴影部分的面积为()A.12B.14C23.已知等比数列{a n},且a4+a6=03 9−x2dx,则a6(a2+2a4+a6)的值为()A.9π24B.9π2C.81π216D.81π224.定积分04 (16−x2−12x)dx=.25.由曲线y=x与直线y=x所围成的图形的面积是.【题型七】定积分的简单应用26.由曲线y=e﹣x,直线x=0,x=1与x轴所围成的平面图形绕x轴旋转一周所得旋转体的体积().A.π2(1﹣e﹣2)B.π2C.π2(1﹣e)D.π2e﹣227.已知y=f(x)是二次函数,方程f(0)=1,且f′(x)=2x+2(1)求f(x)的解析式.(2)求函数y=f(x)与y=﹣x2﹣4x+1所围成的图形的面积.28.计算由直线y=6﹣x,曲线y=(8x)以及x轴所围图形的面积.29.已知函数f(x)=x3﹣x2+x+1,(1)求函数在点(1,2)处的切线(2)求函数在点(1,2)处的切线与函数g(x)=x2围成的图形的面积.【题型八】合情推理与演绎推理30.已知数列{a n}:11,21,12,41,22,14,81,42,24,18⋯⋯其中第一项是2020,2120,2021,再接下来的三项是2220,2121,2022,依此类推,则a97+a98+a99+a100=.31.观察下列等式:23﹣13=3×2×1+1,33﹣23=3×3×2+1,43﹣33=3×4×3+1,…照此规律,第n(n∈N*)个等式可为.32.有下列各式:1+12+13>1,1+12+⋯+17>32,1+12+13+⋯+115>2,…则按此规律可猜想此类不等式的一般形式为:.33.设f(n)=1+12+13+⋯+1n,那么f(2k+1)﹣f(2k)=.【题型九】直接证明与间接证明34.设a,b,c都是正数,求证:bc a+ca b+ab c≥a+b+c.35.设a、b∈R+且a+b=3,求证1+a+1+b≤10.36.设0<x1<x2<x3<π,证明:sinx1−sinx2x2−x3.x1−x2>sinx2−sinx3【题型十】数学归纳法37.用数学归纳法证明1−12+13−14+⋯+12n−1−12n=1n+1+1n+2+⋯+12n,则当n =k+1时,左端应在n=k的基础上加上()A.12k+2B.−12k+2C.12k+1−12k+2D.12k+1+12k+238.用数学归纳法证明不等式1+12+14+⋯+12n−1>12764成立,起始值至少应取为()A.7B.8C.9D.1040.用数学归纳法证明12+22+32+…+n2=n(n+1)(2n+1)6,(n∈N*)41.在数列{an}中,a1=13,且前n项的算术平均数等于第n项的2n﹣1倍(n∈N*).(1)写出此数列的前5项;(2)归纳猜想{a n}的通项公式,并用数学归纳法证明.。

高中数学易错题整理

高中数学易错题整理

高中数学错题集1、“直线ax+y +1=0和直线4x+ay -2=0”平行的充要条件为”a = “.22、.已知函数f(x)是R 上的减函数,A(0,-2),B(-3,2)是其图像上的两点,那么不等式|f(x -2)|>2的解集为 .请将错误的一个改正为 .3、已知正数x,y 满足x+ty =1,其中t 是给定的正实数,若1/x +1/y 的最小值为16,则实数t 的值为 .4、已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 .34、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围 。

(5,7).5、已知正数x,y 满足4x-y=xy 则,x-y 的做小值为 .6、偶函数f(x)在[0,+∞]上是增函数,若f(ax+1)>f(x-3)在[1,2]上恒成立,则实数的取值范围为 .(a>1ora<-3)7、若数列{a n }的通项公式⋅⋅2n-2n-1n 22a =5()-4()55,数列{a n }的最大项为第x 项,最小项为第y 项,则x+y=_______________. 12. 38、已知a ,b 是两个互相垂直的单位向量, 且1=⋅=⋅b c a c 2=,则对0>t a t ++的最小值是 。

9、定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 10.154函数f(x)=sin(ωx+π/3)(ω>0)在[0,2]上恰有一个最大值和最小值,则ω的取值范围是 .10.设D 、P 为△ABC 内的两点,且满足,51),(41+=+=则ABCAPDS S ∆∆= .0.1 11、设D 为ABC ∆的边AB 上的点,P 为ABC ∆内一点,且满足52,43+==,则=∆∆ABCAPD S S .10312、若函数2()x f x x a =+(0a >)在[)1,+∞上的最大值为3,则a 的值为113、 已知函数M,最小值为m,则mM的值为 ___________。

(完整版)高中数学易错题

(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。

高二数学易错题集中

高二数学易错题集中

共27题 一、解析几何1、若直线(1)y k x =-与抛物线243y x x =++的两个交点都在第二象限,则k 的取值范围是______________.错解:容易遗忘k=0的情况。

找不到确当的解答方法,很可能在联立方程之后,就利用二次方程有两个根来解题了,忘记题目中所说两交点在第二象限,造成错误。

正解:①当k=0时,直线y=0与抛物线两个交点都在x 负半轴上,不符合题意;②当k 0≠时,联立直线与抛物线方程组2y=k(x-1)43y x x ⎧⎨=++⎩,得2(4)30x k x k +-++=,根据题意两个交点都在第二象限,以及韦达定理有1212(4)4030x x k k x x k +=--=-<⎧⎨=+>⎩且121221212(1)(1)(6)0(1)(1)80y y k x k x k k y y k x k x k +=-+-=->⎧⎨=-⨯-=>⎩,求交集得k ∈(-3,0). 综合知:k ∈(-3,0)分析:找不到确当的解答方法。

本题最好用数形结合法。

2、椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是A错解:认为b=2,a=4.正解:短半轴长为1,长半轴长为2,即b=1,a=2,c =x =,所以中D 。

分析:椭圆的短轴长是2b ,而不是b ,短半轴长才是b 。

3、过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是 A k>2 B -3<k<2 C k<-3或k>2 D 以上皆不对 错解:2222150x y kx y k ++++-=变形为2223()(1)1624k x y k +++=-,得圆心为(2k -,-1).由题意知,圆心与定点间距必须大于半径,即223(1)91624k k ++>-,解得k<-3或k>2。

正解:2222150x y kx y k ++++-=变形为22223()(1)1624k x y k R +++=-=,得圆心为(2k -,-1),且231604k ->,解得33k ∈(-,.由题意知,圆心与定点间距必须大于半径,即223(1)91624kk ++>-,解得k<-3或k>2。

(推荐)高二数学错题集锦

(推荐)高二数学错题集锦

高二数学错题集锦1、写出直线3X-4Y+20=0的所有单位法向量()2、直线方程X+√3y+3=0绕它与X轴交点顺时针转30°得到直线方程为()3、已知P(2,3)到ax+(a-1)y+3的距离不小于3,则a的范围()4、3x+4y-6=0的倾斜角角平分线所在的直线方程()5、过点P(-1,-2)且在2个坐标轴上截距相等的直线方程为()6、已知直线L被两条直线L1:4x+y+6=0与L2:3x-5y-6=0截得的线段中点为坐标原点,则L的方程为:()7、已知L过M(0,2)且与A(1,4)B(3,1)为端点的AB有公共点,则L的斜率K的取值范围是()8、点P在5x-3y+15=0上,点P到X轴距离是到Y轴距离的2/3,点P( )9、过(1,2)且与原点距离max直线方程为()10、△ABC顶点A(-5,6)B(-8,-2)C(-2,0),求BC点斜式方程与AD 方程(AD⊥BC)11、已知过点(2,3)的直线L被L1:3x+4y-7=0与L2:3x+4y+8=0所截线段长为15/4,求L的方程。

12、已知△ABC中,A(1,0) B(2,0) C(3,4)边BC上高AH所在的直线方程()BC边上中垂线的方程()13、方程的方向向量a= 的方程14、过P(1-a,1+a)与Q(3,2a)的直线倾斜角为钝角,a的范围()15、2x+(1-2m)y+6=0与5x+y-(3n+2)=0垂直,垂足(2,P),m+n-p=16、已知L1,L2方程tx+2y+1=0 7x-3ty-5=0(1)求t取何值时相交(2)t取什么整数值,交点在第四象限1、点(2,3)在L上射影为(-1,2),则L方程()2、直线y=3x绕原点逆时针旋转90°,再向右平移1单位,所得直线方程为()3、已知直线L过(1,2)与(m,3),求L的倾斜角4、已知△ABC三个顶点分别为A(1,1) B(9,3) C(2,5),∠BAC的角平分线与BC交于D,求AD所在直线。

高二理数易错题

高二理数易错题

高二理数易错题一、选择题。

1.xy >1的一个充分不必要条件是 ( )A .x >yB .x >y >0C .x <yD .y <x <0 2、若111:0L A x B y C ++=与222:0L A x B y C ++=只有一个公共点则( )A 1122AB -A B =0 B 1221A B +A B =0C 1212A A B B ≠D 1122A B A B ≠ 3、(如图所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为( )4、将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )5、若平面α外的直线a 与平面α所成的角为θ,则θ的取值范围是 ( )(A ))2,0(π (B ))2,0[π (C )]2,0(π (D )]2,0[π 6、α和β是两个不重合的平面,在下列条件中可判定平面α和β平行的是( )。

A. α和β都垂直于平面B. α内不共线的三点到β的距离相等C. m l ,是α平面内的直线且ββ//,//m lD. m l ,是两条异面直线且ββαα//,//,//,//l m m l7、半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程为( )第3题图第4题图A 2224)4()622(=++--y xB 2224)4()622(=+++-y xC 2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y xD 2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x 或2224)4()622(=++--y x ,或2224)4()622(=+++-y x .()12 12 12 12822222222-=++=++-=++-=++py q p x D q y q p x C p y p q x B q y p q x A 、、、双曲线共焦点的是,那么椭圆中,与这个、如果方程表示双曲线 二、填空题.9、命题“ x ∈R ,x ≤1或x2>4”的否定为 __________________________________________.11、已知圆422=+y x O :,过点()42,P 与圆O 相切的切线方程为_______________.12、一个几何体的三视图如图所示,则这个几何体的体积为____________.13、一个几何体的三视图如图所示,则这个几何体的体积为________。

(易错题)高中数学选修二第一单元《数列》测试题(含答案解析)

(易错题)高中数学选修二第一单元《数列》测试题(含答案解析)

一、选择题1.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .222.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T3.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-4.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( ) A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭5.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:36.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>07.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .128.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201829.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭10.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<12.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .0,1B .[]1,0-C .1,12⎡⎤⎢⎥⎣⎦D .11,2⎡⎤-⎢⎥⎣⎦二、填空题13.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.14.计算:111113355720192021++++=⨯⨯⨯⨯__________.15.朱载堉(1536-1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制作了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”,即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f =______. 16.已知正项数列{}n a 和{}n b 满足:①11a =,23a =;②12n n n a a b ++=,211n n n b b a ++=.则数列{}n a 的通项公式为na =___________. 17.对于数列{}n a ,定义11222n nn a a a A n-+++=为数列{}n a 的“好数”,已知某数列{}n a 的“好数”12n n A +=,记数列{}-n a kn 的前n 项和为n S ,若6n S S ≤对任意的*n ∈N恒成立,则实数k 的取值范围为________.18.已知数列{}n a 为等差数列,其前n 项和为n S ,且675S S S >>,给出以下结论:①0d <;②110S >;③120S >;④数列{}n S 中的最大项为11S ;⑤67a a >其中正确的有______.(写出所有正确结论的序号)19.已知数列{}n a 的前n 项和为11,1,2n n n S a S a +==,则n S =__________. 20.数列{}n a 中,n S 为{}n a 的前n 项和,()()*1n n n n a a a n N+-=∈,且3aπ=,则4tan S 等于______.三、解答题21.记等差数列{}n a 的前n 项和为n S ,已知520S =,23a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 的通项公式2nn b =,将数列{}n a 中与{}n b 的相同项去掉,剩下的项依次构成新数列{}n c ,设数列{}n c 的前n 项和为n T ,求2020T .22.已知数列{}n a 的前n 项和为n S ,且2n S n n =+,数列{}n b 的通项公式为1n n b x -=.(1)求数列{}n a 的通项公式;(2)设n n n c a b =,数列{}n c 的前n 项和为n T ,求n T ; (3)设()44n n d n a =+,12n n H d d d =+++()*n N ∈,求使得对任意*n N ∈,均有9n mH >成立的最大整数m 23.已知定义在R 上的函数()f x ,对任意实数1x ,2x 都有()()()12121f x x f x f x +=++,且()11f =.(1)若对任意正整数n ,有112n n a f ⎛⎫=+⎪⎝⎭,求{}n a 的通项公式; (2)若31n b n =+,求数列{}n n a b 前n 项和n S .24.设{}n a 是公比为正数的等比数列, 12a =,324a a =+. (1)求{}n a 的通项公式;(2)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n S .25.在①4516a a +=;②39S =;③2n S n r =+(r 为常数)这3个条件中选择1个条件,补全下列试题后完成解答.设等差数列{}n a 的前n 项和为n S ,若数列{}n a 的各项均为正整数,且满足公差1d >,______.(1)求数列{}n a 的通项公式; (2)令12n n n b a a +=,前n 项和是n T .若2221n T m m <--恒成立,求实数m 的取值范围.26.在①35a =,2526a a b +=;②22b =,3433a a b +=;③39S =,4528a a b +=三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =,___________;求数列{}n a 、{}n b 的通项公式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1nn a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d ,由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=, 所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用.2.B解析:B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确;因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.3.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n na a a ++=-,可得其周期性,进而得出结论.【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-,21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.4.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-, 66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 5.A解析:A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =, 所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论.6.A解析:A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.7.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=- ⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.8.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.9.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.C解析:C 【分析】 数列{a n }满足()*12nn n a a n N a +=∈+,两边取倒数可得1121n na a +=+,从而得到11=2n n a +,于是b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,由于数列{b n }是单调递增数列,可得b n +1>b n ,解出即可. 【详解】∵数列{a n }满足:a 1=1,()*12nn n a a n N a +=∈+, ∴1121n n a a +=+,化为111121n n a a +⎛⎫+=+ ⎪⎝⎭, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为11a +1=2,公比为2的等比数列,∴11=2nn a +,∴b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n , ∵数列{b n }是单调递增数列,∴b n +1>b n ,∴n ≥2时,(n ﹣λ)•2n >(n ﹣1﹣λ)•2n ﹣1,化为λ<n +1, ∵数列{n +1}为单调递增数列,∴λ<3.当n =1时,b 2=(1﹣λ)×2>﹣λ=b 1,解得λ<2. 综上可得:实数λ的取值范围为λ<2. 故选:C . 【点睛】本题考查由数列的递推关系式求数列的通项公式、考查由数列的单调性求解参数问题,考查等比数列的通项公式,考查推理能力与计算能力,属于中档题.12.D解析:D 【分析】设等比数列{}n a 的公比为q ,由1220a a +=,334S =,列方程求出1,a q ,进而可求出n S ,列不等式组可求出a 的取值范围【详解】解:设等比数列{}n a 的公比为q , 因为1220a a +=,334S =, 所以121(12)03(1)4a q a q q +=⎧⎪⎨++=⎪⎩,解得111,2a q ==-, 所以11()212[1()]1321()2nn n S --==----, 所以当1n =时,n S 取得最大值,当2n =时,n S 取得最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,解得112a -≤≤, 故选:D 【点睛】此题考查等比数列的通项公式与求和公式及其性质,考查推理能力与计算能力,属于中档题二、填空题13.【分析】首先判断出数列与项的特征从而判断出两个数列公共项所构成新数列的首项以及公差利用等差数列的求和公式求得结果【详解】因为数列是以2为首项以2为公差的等差数列数列是以1首项以3为公差的等差数列所以 解析:23n n +【分析】首先判断出数列{2}n 与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{2}n 是以2为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以4为首项,以6为公差的等差数列, 所以{}n a 的前n 项和2(1)4632n n n S n n n -=⋅+⋅=+, 故答案为:23n n +. 【点睛】关键点点睛:该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于中档题.14.【分析】用裂项相消法求和【详解】故答案为:【点睛】本题考查裂项相消法求和数列求和的常用方法:设数列是等差数列是等比数列(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的 解析:10102021【分析】用裂项相消法求和. 【详解】111111111111(1)()()1335572019202123235220192021++++=-+-++-⨯⨯⨯⨯111010(1)220212021=-=. 故答案为:10102021.【点睛】本题考查裂项相消法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.15.【分析】将每个音的频率看作等比数列利用等比数列知识可求得结果【详解】由题知:一个八度13个音且相邻两个音之间的频率之比相等可以将每个音的频率看作等比数列一共13项且最后一个音是最初那个音的频率的2倍解析:132【分析】将每个音的频率看作等比数列{}n a ,利用等比数列知识可求得结果. 【详解】由题知:一个八度13个音,且相邻两个音之间的频率之比相等,∴可以将每个音的频率看作等比数列{}n a ,一共13项,且1nn a q a -=, 最后一个音是最初那个音的频率的2倍,1312a a ∴=,12121122a q a q =⇒=,()1164122113321312f a a q q q f a a q ∴=====,12312ff ∴=. 故答案为:132【点睛】关键点点睛:构造等比数列求解是解题关键.16.【分析】根据条件②联立化简得数列是等差数列再根据条件①可得的通项再代入②即可得数列的通项公式【详解】则时时即数列是等差数列又首项公差其中适合此式故答案为:【点睛】本题考查数列的通项公式考查对数列相关解析:()112n n +【分析】根据条件②12n n n a a b ++=,211n n n b b a ++=联立化简得数列是等差数列,再根据条件①可得的通项,再代入②即可得数列{}na 的通项公式.【详解】0n a >,0n b >,211n n n b b a ++=,1n a +∴=则2n ≥2n b =,2n ∴≥==∴数列是等差数列.又1212a a b +=,12b ∴=,222192a b b ==,=2d ==,()()1122n n =-=+. ()2112n b n ∴=+, ()()11122n a n n +∴==++. ()112n a n n ∴=+,其中11a =适合此式, ()112n a n n ∴=+. 故答案为:()112n n +. 【点睛】本题考查数列的通项公式,考查对数列相关知识的理解与运用,解题关键是对题目条件的转化,属于中等题.17.【分析】计算再结合已知条件得到根据题意计算得到答案【详解】由题意当时由可得两式相减可得整理得由于则数列的通项公式为则由于对任意的恒成立则且解得故答案为:【点睛】本题考查了数列的新定义求数列的通项公式解析:167,73⎡⎤⎢⎥⎣⎦【分析】计算14a =,再结合已知条件得到22n a n =+,()22n a kn k n -=-+,根据题意660a k -≥,770a k -≤,计算得到答案.【详解】由题意,当1n =时,21124a A ===,由11222n n n nA a a a -=+++,可得()()121212221n n n a a n A a n ---++⋅⋅⋅+-=≥,两式相减可得()1112n n n n nA n A a ----=,整理得()()1111121222n nn n n n n nA n A n n a +-----⋅--⋅==()42122n n n =--=+, 由于12124a =⨯+=,则数列{}n a 的通项公式为22n a n =+, 则()22n a kn k n -=-+,由于6n S S ≤对任意的*n N ∈恒成立,则2k >且660a k -≥,770a k -≤, 解得16773k ≤≤.故答案为:167,73⎡⎤⎢⎥⎣⎦. 【点睛】本题考查了数列的新定义,求数列的通项公式,求和公式,意在考查学生对于数列公式方法的综合应用.18.①②③⑤【分析】由可得即可判断①⑤;可判断②;可判断③;由可判断④【详解】由可得故公差且①⑤正确;故②正确;故③正确;因所以数列中的最大项为故④错误故答案为:①②③⑤【点睛】本题考查等差数列的性质涉解析:①②③⑤ 【分析】由675S S S >>可得70a <,60a >,670a a +>即可判断①⑤;11611S a =可判断②;61276()a S a =+可判断③;由12670a a a a >>>>>>可判断④.【详解】由675S S S >>可得70a <,60a >,670a a +>,故公差0d <,且67a a >,①⑤正确;11116111()1102a a S a =+=>,故②正确;112261712()6()02a S a a a =+=+>,故③正确;因12670a a a a >>>>>>,所以数列{}n S 中的最大项为6S ,故④错误.故答案为:①②③⑤.【点睛】本题考查等差数列的性质,涉及到等差数列的和等知识,考查学生推理及运算能力,是一道中档题.19.【分析】由与的关系得出进而得出数列为等比数列由等比数列的通项公式即可得出【详解】即数列是以1为首项为公比的等比数列故答案为:【点睛】本题主要考查了等比数列前项和与通项的关系属于中档题解析:132n -⎛⎫ ⎪⎝⎭【分析】由n S 与n a 的关系得出12()n n n S S S +=-,进而得出数列{}n S 为等比数列,由等比数列的通项公式即可得出n S . 【详解】1122()n n n n S a S S ++==-132n n S S +∴=即数列{}n S 是以1为首项,32为公比的等比数列 132n n S -⎛⎫∴ ⎪⎝⎭=故答案为:132n -⎛⎫ ⎪⎝⎭【点睛】本题主要考查了等比数列前n 项和与通项的关系,属于中档题.20.【分析】将变形为利用累乘法求出数列的通项公式求出的值再利用诱导公式可求出的值【详解】则所以因此故答案为:【点睛】本题考查利用累乘法求数列通项同时也考查了数列求和以及正切值的计算考查计算能力属于中等题【分析】将()1n n n n a a a +-=变形为11n n a n a n++=,利用累乘法求出数列{}n a 的通项公式,求出4S 的值,再利用诱导公式可求出4tan S 的值. 【详解】()()*1n n n n a a a n N +-=∈,()11n n na n a +∴=+,11n n a n a n++∴=, 3211112123121n n n a a a na a a na a a a n -∴=⋅⋅⋅⋅=⨯⨯⨯⨯=-,313a a π==,13a π∴=, 则3n a nπ=,所以,424103333S πππππ=+++=,因此,410tan tan tan 3tan 333S ππππ⎛⎫==+== ⎪⎝⎭, 【点睛】本题考查利用累乘法求数列通项,同时也考查了数列求和以及正切值的计算,考查计算能力,属于中等题.三、解答题21.(Ⅰ)1n a n =+;(Ⅱ)20202061449T =. 【分析】(Ⅰ)根据条件求等差数列的首项和公差,再求通项公式;(Ⅱ)首先求两个数列中的相同项,设数列{}n a 的前n 项和为n A ,数列{}n b 的前n 项和为n B ,根据公式2020203010T A B =-,求解.【详解】(Ⅰ)依题意,()155355202a a S a+⨯===,解得:34a =,又23a =,故1d =,12a =, 所以1(1)1n a a n d n =+-⋅=+.(Ⅱ)令数列{}n a 的前n 项和为n A ,数列{}n b 的前n 项和为n B ,由(Ⅰ)可知11a b =,32a b =,73a b =,154a b =,…,102310a b =,204711a b =, 所以2020203010T A B =-,2030(22031)203020634952A +⨯==,()1010212204612B -==-,故20202061449T =. 【点睛】关键点点睛:本题考查等差数列和等比数列的综合应用,本题的第二问的关键是找到有多少项相同,以及相同项是什么,然后根据公式2020203010T A B =-求解.22.(1)2n a n =;(2)()()1222212,112,1n n n n x nx x T x n n x +⎧-++≠⎪=-⎨⎪+=⎩;(3)存在最大的整数5m =满足题意.【分析】(1)当1n =时,11a S =;当2n ≥时,1n n n a S S -=-,将已知代入化简计算可得数列{}n a 的通项公式;(2)利用错位相减法计算n T ,分1x ≠和1x =两种情况,分别得出答案;(3)利用裂项相消法计算出n H ,并得出单调性和最值,代入不等式解出m 的范围,得到答案. 【详解】(1)当1n =时,112a S ==当2n ≥时,()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦即数列{}n a 的通项公式为2n a n =(2)12n n n n c a b nx -==,23124682n n T x x x nx -=+++++,①则23424682n n xT x x x x nx =+++++,②①﹣②,得()21122222n n n x T x x x nx --=++++-.当1x ≠时,()11221nn n xx T nx x--=⨯--,则()()1222121n n n n x nx T x +-++=-.当1x =时,224682n T n n n =+++++=+综上可得,()()1222212,112,1n n n n x nx x T x n n x +⎧-++≠⎪=-⎨⎪+=⎩(3)由(1)可得()411242n d n n n n ==-++,则12111111111111324352212n n H d d d n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-+-++-=+-- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭显然n H 为关于n 的增函数,故()1min 23n H H ==. 于是欲使9n mH >恒成立, 则293m <,解得6m <. ∴存在最大的整数5m =满足题意. 【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下: 公式法,利用等差数列和等比数列的求和公式进行计算即可;裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和. 23.(1)()*112n n a n -=∈N ;(2)137142n n n S -+=-. 【分析】 (1)令1212x x ==,求出102f ⎛⎫= ⎪⎝⎭,从而可得11a =,再有112n n a f ⎛⎫=+ ⎪⎝⎭,求得12n n a a +=,利用等比数列的通项公式即可求解.(2)由1312n n n n a b -+=,利用错位相减法即可求解. 【详解】解:(1)令1212x x ==,则()111122f f ⎛⎫==+ ⎪⎝⎭,∴102f ⎛⎫= ⎪⎝⎭,11112a f ⎛⎫=+= ⎪⎝⎭. ∵1111111111112*********n n n n n n n a f f f f a +++++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+=⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∴112n n a a +=,∴{}n a 为以1为首项,12为公比的等比数列,∴()*112n n a n -=∈N . (2)∵1312n n n n a b -+=, ∴21471031S 1222n n n -+=++++①, 由①12⨯,得23147103122222n nn S +=++++②, 由①-②,得21133331422222n n n n S -+=++++- 1131374317222n n nn n -++⎛⎫=+--=- ⎪⎝⎭, ∴137142n n n S -+=-. 【点睛】关键点点睛:本题考查了函数与数列的综合,解题的关键是根据关系式求出()*112n n a n -=∈N ,考查了计算能力. 24.(1)2nn a =;(2)1222n n S n +=+-.【分析】(1)利用等比数列的定义求出公比2q后,再根据11n n a a q -=可得结果;(2)根据等差数列的首项和公差求出n b 后再根据等差、等比数列的前n 项和公式,分组求和,即可得到结果. 【详解】(1)由题意设等比数列{}n a 的公比为q ,0q >,12a =,324a a =+,∴2224q q =+,即()()120,0,q q q +-=>∴2q ,∴{}n a 的通项公式1222n n n a -=⨯=.(2){}n b 是首项为1,公差为2的等差数列,∴()12121n b n n =+-=-,∴数列{}n n a b +的前n 项和()()1221212122122n n nn n S n +⨯-+-=+=+--.【点睛】本题考查了等差数列的通项公式和前n 项和公式,考查了等比数列的通项公式和前n 项和公式,关键是正确求得等比数列的基本量,并注意分组求和思想的应用,属于基础题. 25.(1)答案见解析;(2)3m ≥或1m ≤-. 【分析】(1)若选①,利用等差数列的通项公式以及2d ≥,d *∈N 可解得结果;若选②,根据等差数列的求和公式以及2d ≥,d *∈N 可解得结果;若选③,根据1(2)n n n a S S n -=-≥可求得结果;(2)利用()()21121212121n b n n n n ==--+-+裂项求和得到11121n T n =-<+,将不等式恒成立化为2212m m --≥,解得结果即可. 【详解】(1)由等差数列{}n a 各项均为正整数,且公差1d >,知2d ≥,d *∈N , 若选①,由4516a a +=得12716a d +=,由2d ≥,d *∈N ,得11a =,2d =,∴21n a n =-. 若选②,由39S =得1339a d +=,13a d +=, 由2d ≥,d *∈N ,得11a =,2d =,∴21n a n =-.若选③,由2n S n r =+得()()2112n S n r n -=-+≥,∴()()2211212n n n a S S n r n r n n -=-=+---=-≥,∴23a =,35a =,又因为{}n a 是等差数列,∴2d =,11a =,∴21n a n =-. (2)由(1)知21n a n =-,()()21121212121n b n n n n ==--+-+, 所以11111111335572121n T n n =-+-+-++--+1121n =-+,∴11121n T n =-<+, 因为2221n T m m <--恒成立,∴2212m m --≥,解得3m ≥或1m ≤-.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;26.21n a n =-,12n nb -=【分析】若选条件①,则可根据35a =得出125a d +=,然后根据2526a a b +=得出11256a d a d +=,最后两式联立,求出1a 、1b 、d 、q 的值,即可得出结果; 若选条件②,则可根据22b =得出12a d =,然后根据3433a a b +=得出211253a d a d +=,最后两式联立,求出1a 、1b 、d 、q 的值,即可得出结果; 若选条件③,则可根据39S =得出1339a d +=,然后根据4528a a b +=得出11278a d a d +=,最后两式联立,求出1a 、1b 、d 、q 的值,即可得出结果.【详解】选条件①:因为35a =,所以125a d +=,因为2526a a b +=,11a b =,d q =,所以11256a d a d +=,联立11125256a d a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩或1256512a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去), 则111a b ==,2d q ==,故1(1)21n a a n d n =+-=-,1112n n nb b q .选条件②:因为22b =,11a b =,d q =,所以12a d =,因为3433a a b +=,所以211253a d a d +=, 联立12112253a d a d a d =⎧⎨+=⎩,解得112a d =⎧⎨=⎩或112a d =-⎧⎨=⎩(舍去), 则111ab ==,2d q ==,故1(1)21n a a n d n =+-=-,1112n n nb b q .选条件③:因为39S =,所以1339a d +=,因为4528a a b +=,11a b =,d q =,所以11278a d a d +=, 联立111339278a d a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩或121838a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去),则111a b ==,2d q ==,故1(1)21n a a n d n =+-=-,1112n n nb b q . 【点睛】方法点睛:本题考查等差数列、等比数列通项公式的求法,常见的求通项公式的方法有:公式法、累加法、累乘法、n a 与n S 关系法、构造法,考查计算能力,是中档题.。

高二数学解析几何易错题集 试题

高二数学解析几何易错题集 试题

智才艺州攀枝花市创界学校县高二数学解析几何易错题集一、选择题:1. 〔如中〕假设双曲线22221x y a b -=-的离心率为54,那么两条渐近线的方程为A0916X Y ±=B 0169X Y ±=C 034X Y ±=D 043X Y±= 解答:C易错原因:审题不认真,混淆双曲线HY 方程中的a 和题目中方程的a 的意义。

2. 〔如中〕椭圆的短轴长为2,长轴是短轴的2倍,那么椭圆的中心到其准线的间隔是解答:D易错原因:短轴长误认为是b 3.〔如中〕过定点〔1,2〕作两直线与圆2222150xy kx y k ++++-=相切,那么k 的取值范围是Ak>2B-3<k<2 Ck<-3或者k>2D 以上皆不对 解答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240DE F +->4.〔如中〕设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,原点到直线L 的,那么双曲线的离心率为A2B2或者3解答:D易错原因:忽略条件0a b >>对离心率范围的限制。

5.〔如中〕二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的间隔为别为y x ,,当θ变化时,点),(y x 的轨迹是以下列图形中的 ABCD 解答:D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。

6.〔如中〕假设曲线y =(2)y k x =-+3有两个不同的公一共点,那么实数k 的取值范围是 A 01k≤≤B 304k ≤≤C 314k -<≤D 10k -<≤ 解答:C易错原因:将曲线y =转化为224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与双曲线的位置关系。

2024版高二上册第二章数学易错综合练习题

2024版高二上册第二章数学易错综合练习题

2024版高二上册第二章数学易错综合练习题试题部分一、选择题(每题2分,共20分)1. 已知函数f(x) = x² 2x + 1,那么f(1)的值是()。

A. 0B. 1C. 2D. 32. 若a、b为实数,且a+b=3,ab=2,则a²+b²的值为()。

A. 5B. 7C. 8D. 103. 下列函数中,奇函数是()。

A. y = x³B. y = x²C. y = x⁴D. y = |x|4. 已知等差数列{an}的公差为2,若a1=1,则第10项a10的值是()。

A. 17B. 19C. 21D. 235. 若直线y=2x+1与x轴的交点为A,与y轴的交点为B,则线段AB的长度是()。

A. √5B. √10C. √15D. √206. 若复数z满足|z1|=1,则z在复平面内对应的点位于()。

A. 圆心为(1,0)、半径为1的圆上B. 圆心为(0,1)、半径为1的圆上C. 圆心为(1,0)、半径为2的圆上D. 圆心为(0,1)、半径为2的圆上7. 在等比数列{bn}中,若b1=1,b3=8,则公比q的值为()。

A. 2B. 3C. 4D. 58. 已知sinθ=1/2,且θ为第二象限角,则cosθ的值为()。

A. √3/2B. 1/2C. √3/2D. 1/29. 若二次函数y=ax²+bx+c的图像开口向上,且顶点坐标为(2,3),则a的值()。

A. >0B. <0C. =0D. 无法确定10. 若平行线l1:3x4y+7=0,l2:3x4y+c=0,则c的值为(),使得l1与l2的距离为2。

A. 17B. 9C. 5D. 1二、判断题(每题2分,共20分)1. 若a、b为实数,且a>b,则a²>b²。

()2. 函数y=2x+3的图像是一条过原点的直线。

()3. 在等差数列中,若m+n=2p,则am+an=2ap。

(易错题)高中数学选修二第一单元《数列》检测题(包含答案解析)(2)

(易错题)高中数学选修二第一单元《数列》检测题(包含答案解析)(2)

一、选择题1.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .112.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项3.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( ) A .201920212S F =+ B .201920211S F =- C .201920202S F =+D .201920201S F =-4.在等差数列{}n a 中,n S 为其前n 项和,若202020210,0S S <>,则下列判断错误的是( )A .数列{}n a 单调递增B .10100a <C .数列{}n a 前2020项最小D .10110a >5.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1626.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +7.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a a b b ++的值为( ) A .14924B .7914C .165D .51109.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( )A .②③B .①②C .①③D .①④10.已知数列{}n a 是等比数列,数列{}n b 是等差数列,若161133a a a ⋅⋅=-,16117b b bπ++=,则3948tan1b b a a +-⋅的值是( )A .3-B .1-C .3-D .311.等差数列{}n a 的前n 项和为n S ,已知1210,a a =为整数,且4n S S ≤,设11n n n b a a +=,则数列{}n b 的前项和n T 为( ) A .310(103)nn -B .10(103)nn -C .103nn-D .10(133)nn -12.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 二、填空题13.已知等比数列{}n a 的首项为2,公比为13-,其前n 项和记为n S ,若对任意的*n N ∈,均有13n nA SB S ≤-≤恒成立,则B A -的最小值为______. 14.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?15.设数列{}n a 的前n 项和,n S 若11a =-,()*1102n n S a n N +-=∈,则{}n a 的通项公式为_______.16.数列{}n a 满足,123231111212222n na a a a n ++++=+,写出数列{}n a 的通项公式__________.17.已知数列{}n a 满足11a = 132n n a a +=+,则{}n a 的通项公式为__________________.18.设等比数列{}n a 的公比为q ,其前n 项之积为n T ,并且满足条件:11a >,201620171a a >,20162017011a a -<-,给出下列结论:①01q <<;②2016201810a a ->;③2016T 是数列{}n T 中的最大项;④使1n T >成立的最大自然数等于4031;其中正确结论的序号为______.19.牛顿迭代法(Newton 's method )又称牛顿–拉夫逊方法(Newton –Raphsonmethod ),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设r 是()0f x =的根,选取0x 作为r 初始近似值,过点()()00,x f x 作曲线()y f x =的切线,l l 与x 轴的交点的横坐标()()()()01000'0'f x x x f x f x =-≠,称1x 是r 的一次近似值,过点()()11,x f x 作曲线()y f x =的切线,则该切线与x 轴的交点的横坐标为2x ,称2x 是r 的二次近似值.重复以上过程,直到r 的近似值足够小,即把n x 作为()0f x =的近似解.设123,,,,n x x x x 构成数列{}n x .对于下列结论:①()()()12'n n n n f x x x n f x -=-≥; ②()()()1112'n n n n f x x x n f x ---=-≥;③()()()()()()12112'''n n n f x f x f x x x f x f x f x =----; ④()()()()()()()12111212'''n n n f x f x f x x x n f x f x f x --=----≥.其中正确结论的序号为__________.20.数列{}n a 中,n S 为{}n a 的前n 项和,()()*1n n n n a a a n N+-=∈,且3aπ=,则4tan S 等于______.三、解答题21.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.22.已知数列{}n a 的前n 项和n S 满足()()*231n n S a n N =-∈.(1)求数列{}n a 的通项公式; (2)记()()111nn n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,不等式141n k T n >-+都成立,求实数k 的取值范围. 23.在①535S =,②122114b b S -=,③35S T =这三个条件中任选一个,补充在下面问题中,并解答问题:已知正项等差数列{}n a 的公差是等差数列{}n b 的公差的两倍,设n S 、n T 分别为数列{}n a 、{}n b 的前n 项和,且13a =,23T =,________,设2n b n n c a =⋅,求{}n c 的前n 项和n A .注:如果选择多个条件分别解答,按第一个解答计分. 24.在①1,n a ,n S 成等差数列;②递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根;这二个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足__________,且14b a =,223b a a =-,是否存在()320,k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)25.已知各项均为正数的数列{}n a 的前n 项和n S 满足()220n n S n n S -+=(1)求数列{}n a 的通项公式; (2)设14n n n b a a +=⋅,数列{}n b 的前n 项和为n T .证明:1n T < 26.已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =. (1)求数列{}n a 的通项公式;(2)数列{}n b 通项公式为21n b n =+,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案. 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选:A. 【点睛】关键点点睛:本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .2.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.3.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.4.C解析:C 【分析】结合等差数列的求和公式及等差数列的性质可得101010110,0a a <>,从而可求出公差的符号,进而可确定单调性,进而可确定和最小问题. 【详解】因为202020210,0S S <>,即()()12021202012020210,02022a a a a ++<>,所以12020120210,0a a a a +<+>.因为10101011120201011120210,20,a a a a a a a +=+<=+> 所以101010110,0a a <>,所以101110100d a a =->,所以数列{}n a 是单调递增数列, 前1010项和最小,所以C 错误. 故选:C . 【点睛】关键点睛:本题的关键是由等差数列的求和公式对已知条件进行变形,整理出12020120210,0a a a a +<+>,再结合等差数列的性质求出101010110,0a a <>,确定公差后即可确定单调性及最值问题.5.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.6.C解析:C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+,()()()()122221222102m m m m m a a S m a a ++++++==++>.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负.7.A解析:A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.B解析:B 【分析】利用等差数列的前n 项和的性质可得正确的选项. 【详解】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>, 所以60a >,所以0d <,①正确; 111116111102a a S a +=⨯=>,故②正确; 1126712126()02a a S a a +=⨯=+>,故③错误; 因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B. 【点睛】本题考查等差数列的性质, 考查等差数列前n 项和的性质.10.A解析:A 【分析】由等比数列和等差数的性质先求出39b b +和48a a ⋅的值,从而可求出3948tan 1b b a a +-⋅的值【详解】解:因为数列{}n a 是等比数列,数列{}n b是等差数列,1611a a a ⋅⋅=-16117b b b π++=,所以36a =-,637b π=,所以6a =673b π=, 所以3961423b b b π+==,24863a a a ⋅==,所以39481473tan tan tan()tan(2)tan 113333b b a a πππππ+==-=-+=-=-⋅-,故选:A 【点睛】此题考查等差数列和等比数列的性质的应用,考查三角函数求值,属于中档题11.B解析:B 【分析】根据已知条件求得{}n a 的通项公式,利用裂项求和法求得n T . 【详解】依题意等差数列{}n a 的前n 项和为n S ,已知1210,a a =为整数,且4nS S ≤,所以4151030040a a d a a d ≥+≥⎧⎧⇒⎨⎨<+<⎩⎩,即10301040d d +≥⎧⎨+<⎩,解得10532d -≤<-,由于2a 为整数,1a 为整数,所以d 为整数,所以3d =-.所以()11313n a a n d n =+-=-+. 所以()13113310n a n n +=-++=-+,()()1111113133103310313n n n b a a n n n n +⎛⎫===⨯- ⎪-+-+-+-+⎝⎭, 所以1111111371047310313n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎣⎦()()()10310111133101031010310103n nn n n --+⎡⎤=-=⨯=⎢⎥-+--⎣⎦. 故选:B 【点睛】本小题主要考查裂项求和法,属于中档题.12.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确;令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题13.【分析】根据等比数列的求和公式由题中条件得到讨论为奇数和为偶数两种情况分别判定其单调性得出最大值和最小值进而可求出结果【详解】因为等比数列的首项为2公比为其前项和记为所以当为奇数时显然单调递减因为所解析:94【分析】根据等比数列的求和公式,由题中条件,得到n S ,讨论n 为奇数和n 为偶数两种情况,分别判定其单调性,得出最大值和最小值,进而可求出结果. 【详解】因为等比数列{}n a 的首项为2,公比为13-,其前n 项和记为n S ,所以121331331112322313n n n nS ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==--=-⋅-⎢⎥ ⎪⎪⎛⎫⎝⎭⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭, 当n 为奇数时,331223n nS ⎛⎫=+⋅ ⎪⎝⎭,显然单调递减,因为*n N ∈,所以13312223n S S ≤=+⋅=, 又33132232nn S ⎛⎫=+⋅> ⎪⎝⎭,所以322n S <≤;当n 为偶数时,331223n nS ⎛⎫=-⋅ ⎪⎝⎭,显然单调递增,因为*n N ∈,所以233142293n S S ≥=-⋅=,又33132232nn S ⎛⎫=-⋅< ⎪⎝⎭,所以4332n S ≤<,综上,对任意的*n N ∈,都有423n S ≤≤, 所以436n S ≤≤,11324n S ≤≤,则31142n S -≤-≤-, 所以31143642n n S S -≤-≤-,即13111342n n S S ≤-≤, 因此对任意的*n N ∈,都有13111342n n S S ≤-≤; 为使对任意的*n N ∈,均有13n nA SB S ≤-≤恒成立, 只需112B ≥,134A ≤, 所以B A -的最小值为11139244-=. 故答案为:94. 【点睛】 关键点点睛:求解本题的关键在于根据等比数列的求和公式求出n S 后,利用分类讨论的方法,根据n S 的单调性,求n S 的最值,进而即可求解.14.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n 个正方形的边长为n a ,则第n n ,所以第n +1个正方形的边长为12n n a a +=,12n n a a +∴=, 即数列{n a }是首项为15a =,公比为2的等比数列,15n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列, 123125(1)1250(1)1212n n nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5015.【分析】时化为:时解得不满足上式利用等比数列的通项公式即可得出【详解】解:时化为:时解得不满足上式∴时故答案为:【点睛】本题考查由求通项公式在应用时要注意其中因此求出关系式后要对进行检验否则易出错解析:21,623,2n n n a n --=⎧=⎨-⨯⎩【分析】2n ≥时,1n n n a S S --=,化为:13n n a a +=,1n =时,12112a a -==,解得22a =-.不满足上式.利用等比数列的通项公式即可得出.【详解】解:2n ≥时,111822n n n n n a S S a a -+=-=-,化为:13n n a a +=. 1n =时,12312a a -==,解得22a =-.不满足上式. ∴2n ≥时,223n n a -=-⨯.故答案为:21,623,2n n n a n --=⎧=⎨-⨯⎩. 【点睛】本题考查由n S 求通项公式n a ,在应用1n n n a S S -=-时要注意其中2n ≥,因此求出关系式后要对1a 进行检验,否则易出错.16.【分析】当时有作差可求出再验证是否成立即可得出答案【详解】当时由所以—可得所以当时所以不满足上式所以故答案为:【点睛】本题主要考查数列通项公式的求法做题的关键是掌握属于中档题解析:16,12,2n n n a n +=⎧=⎨≥⎩【分析】当2n ≥时,有()12312311111211212222n n a a a a n n --+++=-+=+-,作差可求出12n n a +=,再验证1a 是否成立,即可得出答案.【详解】当2n ≥时,由123231111212222n na a a a n ++++=+, 所以()12312311111211212222n n a a a a n n --+++=-+=+-, —可得()1212122n n a n n =+--=,所以1222n n n a +⋅==, 当1n =时,112132a =+=,所以16a =,不满足上式,所以16,12,2n n n a n +=⎧=⎨≥⎩. 故答案为: 16,12,2n n n a n +=⎧=⎨≥⎩【点睛】本题主要考查数列通项公式的求法,做题的关键是掌握1n n n a S S -=-,属于中档题.17.【分析】由递推公式可得即以为首项为公比的等比数列根据等比数列的通项公式求出的通项公式即可得解;【详解】解:因为所以即所以以为首项为公比的等比数列所以所以故答案为:【点睛】本题考查由递推公式求数列的通 解析:1231n -⨯-【分析】由递推公式可得()1131n n a a ++=+,即{}1n a +以2为首项,3为公比的等比数列,根据等比数列的通项公式求出{}1n a +的通项公式,即可得解; 【详解】解:因为132n n a a +=+,11a =, 所以()113331n n n a a a ++=+=+,即1131n n a a ++=+ 所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯所以1231n n a -=⨯-故答案为:1231n -⨯-【点睛】本题考查由递推公式求数列的通项公式,属于中档题.18.①③【分析】分别讨论和找到矛盾可判断①通过以及可得到则通过可判断②通过时时可判断③算出可判断④【详解】解:∵若则此时与矛盾故不成立若此时与矛盾故不成立∴故①正确;因为由得故②不正确;因为所以当时当时解析:①③ 【分析】分别讨论1q ≥和0q <,找到矛盾,可判断①,通过01q <<以及20162017011a a -<-可得到20171a <,则通过2201620182017a a a =可判断②,通过2016,n n N *≤∈时,1n a >,2016,n n N *>∈时,01n a <<,可判断③,算出4032T ,4033T 可判断④.【详解】 解:∵11a >,若1q ≥,则2015201620161201711,1a a qa a q =>=>, 此时20162017011a a ->-,与20162017011a a -<-矛盾,故1q ≥不成立, 若0q <,2015201620161201710,0a a qa a q =<=>, 此时201620170a a <,与201620171a a >矛盾,故0q <不成立, ∴01q <<,故①正确;因为11a >,01q <<,20162017a a >, 由20162017011a a -<-得201620171,01a a ><<22016201820171a a a ∴=<,故②不正确;因为11a >,01q <<,201620171,01a a ><<,所以当2016,n n N *≤∈时,1n a >,当2016,n n N *>∈时,01n a <<,所以2016T 是数列{}n T 中的最大项,故③正确;()()2016201640321240304031403214032201620171a a a a a a a a T a =⋅⋯⋅⋅==>,()201624033124030403140324033201720171T a a a a a a a a =⋅⋯⋅⋅⋅=⨯<,∴使1n T >成立的最大自然数等于4032,故④不正确. 故答案为:①③. 【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.19.②④【分析】①②;根据过点作曲线的切线与轴的交点的横坐标称是的一次近似值过点作曲线的切线则该切线与轴的交点的横坐标为称是的二次近似值重复以上过程利用归纳推理判断③;④根据①②判定的结果利用累加法判断解析:②④ 【分析】①,②;根据过点()()00,x f x 作曲线()y f x =的切线,l l 与x 轴的交点的横坐标()()()()01000'0'f x x x f x f x =-≠,称1x 是r 的一次近似值,过点()()11,x f x 作曲线()y f x =的切线,则该切线与x 轴的交点的横坐标为2x ,称2x 是r 的二次近似值.重复以上过程,利用归纳推理判断。

2024版高二下册第二章数学易错练习题

2024版高二下册第二章数学易错练习题

2024版高二下册第二章数学易错练习题试题部分一、选择题:1. 已知函数f(x) = x² 2x + 1,那么f(x)在区间(∞,1)上的单调性是()A. 单调递增B. 单调递减C. 先单调递增后单调递减D. 先单调递减后单调递增2. 若直线y = kx + b与圆x² + y² = 1相切,则k的取值范围是()A. 1 ≤ k ≤ 1B. k ≤ 1 或k ≥ 1C. k ≠ 0D. k ∈ R3. 已知等差数列{an}的公差为2,且a1 = 3,那么a10的值是()A. 19B. 21C. 23D. 254. 平面向量a = (2, 3),b = (1, 2),则2a 3b的模长是()A. 5B. 7C. 9D. 115. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y = x线上D. y = x线上6. 设函数g(x) = (1/2)^x,那么g(x)在(∞,+∞)上的单调性是()A. 单调递增B. 单调递减C. 先单调递增后单调递减D. 先单调递减后单调递增7. 已知三角形ABC的三个内角分别为A、B、C,若cosA = 1/2,则角A的度数是()A. 30°B. 45°C. 60°D. 90°8. 若函数h(x) = x² + mx + 1在区间(0,1)上单调递增,则实数m的取值范围是()A. m ≥ 0B. m ≤ 0C. m ≥ 2D. m ≤ 29. 在等比数列{bn}中,若b1 = 2,公比为q,且b3 = 8,则q的值是()A. 2B. 3C. 4D. 510. 若直线y = 2x + 3与圆(x 1)² + (y + 2)² = 16相切,则直线在x轴上的截距是()A. 3/2B. 3/4C. 3/2D. 3/4二、判断题:1. 若函数f(x) = x² 4x + 3在区间(2,+∞)上单调递增,则该判断正确。

(易错题)高中数学选修二第一单元《数列》检测题(含答案解析)(2)

(易错题)高中数学选修二第一单元《数列》检测题(含答案解析)(2)

一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( ) A .1125B .1250C .2250D .25003.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩4.朱载堉(1536-1611),明太祖九世孙,音乐家,数学家,天文历算家,在他多达百万字著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子,他对文乙的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包善钢琴,故朱载堉被誉为“钢琴理论的鼻担”.“十二平均律"是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第三个音频率为3f ,第九个音频率9f ,则93f f 等于( )ABCD5.已知数列{}n a 的前n 项和为n S ,且11a =,1n n a S +=,若(0,2020)n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1111433⨯- B .1211433⨯- C .1012433⨯+D .1112433⨯+6.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭7.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511B .513C .1025D .10248.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( ) A .②③B .①②C .①③D .①④9.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)10.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞11.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+B .2n n ⋅C .31n -D .123n n -⋅12.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.数列{}n a 的前n 项和2n S n n =-+,则它的通项公式是n a =__________.14.天干地支纪看法源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、已、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2020年为庚子年,那么到建国100年时,即2049年以天干地支纪年法为__________. 15.已知正项数列{}n a ,满足()*12nn n a a n N +⋅=∈,且()20201232020321a a a a ++++<-,则首项1a 的取值范围是______.16.已知等比数列{}n a 的前n 项和为n S ,且41S =,83S =,则12S =______. 17.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{}n a ,已知11a =,22a=,且()*21(1)nn n a a n N +-=+-∈,则这30天因病请假的人数共有人______.18.有一个数阵排列如下:1 2 3 4 5 6 7 8 …… 2 4 6 8 10 12 14…… 4 8 12 16 20…… 8 16 24 32…… 16 32 48 64…… 32 64 96…… 64……则第9行从左至右第3个数字为________________.19.已知n S 为等差数列{}n a 的前n 项和,且675S S S >>,给出下列说法: ①6S 为n S 的最大值;②110S >;③120S <;④850S S ->.其中正确的是______. 20.数列{}n a 中,n S 为{}n a 的前n 项和,()()*1n n n n a a a n N+-=∈,且3aπ=,则4tan S 等于______.三、解答题21.设数列{}n a 前n 项和为n S ,满足()*3142n n a S n N =+∈. (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n T .22.已知{}n a 为等差数列,123,,a a a 分别是表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数都不在表的同一列.请从①1,②1,③1的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在.并在此存在的数列{}n a 中,试解答下列两个问题: (1)求数列{}n a 的通项公式;(2)设数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S ,若不等式4nn S a λ+≥对任意的*n ∈N 都成立,求实数λ的最小值.23.设函数()112f x x =+,正项数列{}n a 满足11a =,11n n a f a -⎛⎫= ⎪⎝⎭,n *∈N ,且2n ≥.(1)求数列{}n a 的通项公式; (2)求证:122334111112n n a a a a a a a a ++++⋅⋅⋅+<. 24.设数列{}n a 满足10a =且112n n a a +=-,n *∈N .记11n nb a =-,n *∈N .(1)求证:数列{}n b 为等差数列;(2)设32nna n c ⎛⎫= ⎪⎝⎭,求满足不等式12312311113n n c c c c c c c c ⎛⎫++++>++++⎪⎝⎭的正整数n 的集合.25.已知()f x =. (1)设11a =,()11n n f a a +=,求n a . (2)设22212,n n S a a a =+++,1nn n b S S +=-,且1223341n n n T b b b b b b b b +=⋅+⋅+⋅++⋅,问是否存在最小正整数m ,使得对任意*n N ∈,都有25n mT <成立.若存在,请求出m 的值;若不存在,请说明理由. 26.设数列}{n a 的前n 项和为n S .已知24S =,121n n a S +=+,n *∈N . (1)求通项公式n a ;(2)求数列}{2n a n --的前n 项和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n na a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=,将上式累加得:1121111222n n a a --=++⋅⋅⋅+, 1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n⎛⎫=- ⎪⎝⎭. 故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.A解析:A 【分析】由题意可知,良马每日行的距离{}n a 以及驽马每日行的距离{}n b 均为等差数列,确定这两个数列的首项和公差,利用等差数列的求和公式可求得结果. 【详解】由题意可知,良马每日行的距离成等差数列,记为{}n a ,其中1103a =,公差113d =. 驽马每日行的距离成等差数列,记为{}n b ,其中197b =,公差20.5d =-. 设长安至齐为x 里,则1291292a a a b b b x +++++++=,即9813980.521039979225022x ⨯⨯⨯⨯=⨯++⨯-=,解得1125x =. 故选:A. 【点睛】关键点点睛:解本题的关键在于得出长安至齐的距离等于良马和驽马九日所行的距离之和的 2倍,并结合题意得知两匹马所行的距离成等差数列,解题时要充分抓住题中信息进行分析,将实际问题转化为数学问题来求解.3.B解析:B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.4.A解析:A 【分析】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,推导出1122q =,由此能求出93f f 的值. 【详解】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,则12131=a a q ,且1312=a a ,1122∴=q ,86912316191232⎛⎫=∴==== ⎪⎝⎭q q f q a a f a a 故选:A . 【点睛】关键点点睛:本题考查等比数列的通项公式及性质,解题的关键是分析题意将13个音的频率构成等比数列,再利用等比数列的性质求解,考查学生的分析解题能力与转化思想及运算能力,属于基础题.5.D解析:D 【分析】 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,得到12n n a a +=,求得22,2n n a n -=≥,得到数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,结合等比数列的求和公式,即可求解. 【详解】由11a =,1n n a S +=,可得1211a S a ===, 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,可得11n n n n n a a S S a +--=-=,即12n n a a +=,即12n na a +=,则数列{}n a 从第二项起是公比为2的等比数列,即22,2n n a n -=≥,又由(0,2020)n a ∈,即222020n -<,可得13,n n N +<∈,所以“和谐项”共有12项,则数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,可得数列{}n a 的所有“和谐项”的平方和为111110(11244)11416413431-+++++=+=⨯+-.故选:D. 【点睛】与数列的新定义有关的问题的求解策略:通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.6.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.7.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值.【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.8.B解析:B 【分析】利用等差数列的前n 项和的性质可得正确的选项. 【详解】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>, 所以60a >,所以0d <,①正确; 111116111102a a S a +=⨯=>,故②正确; 1126712126()02a a S a a +=⨯=+>,故③错误; 因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B. 【点睛】本题考查等差数列的性质, 考查等差数列前n 项和的性质.9.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可. 【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+(242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A . 【点睛】本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.10.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.11.A解析:A 【分析】先由已知数列递推公式可得1221n n a a n n +=⋅++,得到1n a n ⎧⎫⎨⎬+⎩⎭是以1为首项,以2为公比的等比数列,求出该等比数列的通项公式,即能求得n a .【详解】 解:∵()*12n n n a S n N n++=∈,∴12n n n a S n +=+,① 当2n ≥时,111n n n a S n --=+,② ①-②有1121n n n n n a a a n n +--=++,化简得1221n n a a n n +=⋅++()2n ≥, 另外,n =1时21113261a S a =+==,故21232a a =⋅,也符合上式, 故1n a n ⎧⎫⎨⎬+⎩⎭是以112a =为首项,以2为公比的等比数列, ∴121n na n -=+,故()112n n a n -=+⋅. 故选:A. 【点睛】本题考查了数列的递推公式,考查了数列通项公式的求法,属于中档题.12.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。

高二数学错题集锦

高二数学错题集锦

高二数学错题集锦1、写出直线3X-4Y+20=0的所有单位法向量()2、直线方程X+√3y+3=0绕它与X轴交点顺时针转30°得到直线方程为()3、已知P(2,3)到ax+(a-1)y+3的距离不小于3,则a的范围()4、3x+4y-6=0的倾斜角角平分线所在的直线方程()5、过点P(-1,-2)且在2个坐标轴上截距相等的直线方程为()6、已知直线L被两条直线L1:4x+y+6=0与L2:3x-5y-6=0截得的线段中点为坐标原点,则L的方程为:()7、已知L过M(0,2)且与A(1,4)B(3,1)为端点的AB有公共点,则L的斜率K的取值范围是()8、点P在5x-3y+15=0上,点P到X轴距离是到Y轴距离的2/3,点P( )9、过(1,2)且与原点距离max直线方程为()10、△ABC顶点A(-5,6)B(-8,-2)C(-2,0),求BC点斜式方程与AD 方程(AD⊥BC)11、已知过点(2,3)的直线L被L1:3x+4y-7=0与L2:3x+4y+8=0所截线段长为15/4,求L的方程。

12、已知△ABC中,A(1,0) B(2,0) C(3,4)边BC上高AH所在的直线方程()BC边上中垂线的方程()13、方程的方向向量a= 的方程14、过P(1-a,1+a)与Q(3,2a)的直线倾斜角为钝角,a的范围()15、2x+(1-2m)y+6=0与5x+y-(3n+2)=0垂直,垂足(2,P),m+n-p=16、已知L1,L2方程tx+2y+1=0 7x-3ty-5=0(1)求t取何值时相交(2)t取什么整数值,交点在第四象限1、点(2,3)在L上射影为(-1,2),则L方程()2、直线y=3x绕原点逆时针旋转90°,再向右平移1单位,所得直线方程为()3、已知直线L过(1,2)与(m,3),求L的倾斜角4、已知△ABC三个顶点分别为A(1,1) B(9,3) C(2,5),∠BAC的角平分线与BC交于D,求AD所在直线。

2024版高二上册第二章数学易错练习题

2024版高二上册第二章数学易错练习题

2024版高二上册第二章数学易错练习题试题部分一、选择题:1. 已知函数f(x) = x² 2x + 1,那么f(x)在区间(∞,1)上的单调性是()A. 单调递增B. 单调递减C. 先单调递增后单调递减D. 先单调递减后单调递增2. 若a > b,则下列不等式中成立的是()A. a² > b²B. a b > 0C. a/b > b/aD. a² + b² > 03. 设集合A = {x | x² 3x + 2 = 0},则集合A的元素个数为()A. 0B. 1C. 2D. 34. 下列函数中,奇函数的是()A. y = x²B. y = x³C. y = |x|D. y = x² + 15. 已知等差数列{an}的前三项分别为1,3,5,那么第10项a10的值为()A. 17B. 19C. 21D. 236. 若向量a = (2, 3),向量b = (4, 1),则2a 3b的坐标为()A. (8, 11)B. (8, 5)C. (8, 11)D. (8, 5)7. 已知函数f(x) = x² + 2x + 1,那么f(x)的最小值为()A. 0B. 1C. 2D. 38. 若|a| = 5,|b| = 3,则向量a和向量b的点积可能为()A. 15B. 0C. 15D. 99. 在三角形ABC中,若a = 8, b = 10, sinA = 3/5,则三角形ABC的面积为()A. 12B. 24C. 36D. 4810. 已知f(x) = x² 4x + 3,那么f(x)的零点为()A. 1和2B. 1和3C. 2和3D. 1和3二、判断题:1. 若a > b,则a² > b²。

()2. 函数y = x² + 1在实数范围内是单调递增的。

(完整版)高中数学易错题(含答案)

(完整版)高中数学易错题(含答案)

高中数学易错题一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.52.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=06.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是_________.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是_________.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是_________.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为_________.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为_________.13.△ABC中,AB=AC,,则cosA的值是_________.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为_________.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=_________.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.高中数学易错题参考答案与试题解析一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.5考点:三角形中的几何计算.专题:计算题.分析:设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,进而求得x和y的关系式,进而表示出xy的表达式,利用二次函数的性质求得xy的最大值.解答:解:如图,设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,即=4,所以4x=12﹣3y,y=,求xy最大,也就是那个矩形面积最大.xy=x•=﹣•(x2﹣3x),∴当x=时,xy有最大值3故选B.点评:本题主要考查了三角函数的几何计算.解题的关键是通过题意建立数学模型,利用二次函数的性质求得问题的答案.2.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.考点:三角形中的几何计算.专题:计算题.分析:直接利用正弦定理,两角差的正弦函数,即可求出三角形的外接圆的直径即可.解答:解:由正弦定理可知:====.故选D.点评:本题是基础题,考查三角形的外接圆的直径的求法,正弦定理与两角差的正弦函数的应用,考查计算能力.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.考点:三角形中的几何计算.专题:数形结合;转化思想.分析:画出图形,利用点到直线的距离之间的转化,三角形两边之和大于第三边,求出最小值与最大值.解答:解:由题意△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,在图(1)中,d=CE+PE+PF>CD==,在图(2)中,d=CE+EP+FP<CE+EG<AC=4;∴d的取值范围是;故选D.点评:本题是中档题,考查不等式的应用,转化思想,数形结合,逻辑推理能力,注意,P为△ABC内任一点,不包含边界.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.考点:三角形中的几何计算.专题:计算题.分析:由题意可知双曲线的焦点坐标就是A,B,利用正弦定理以及双曲线的定义化简即可得到答案.解答:解:由题意可知双曲线的焦点坐标就是A,B,由双曲线的定义可知BC﹣AB=2a=10,c=6,===;故选D.点评:本题是基础题,考查双曲线的定义,正弦定理的应用,考查计算能力,常考题型.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=0考点:三角形中的几何计算.专题:计算题.分析:通过向量求出直线的斜率,利用点斜式方程求出最新的方程即可.解答:解:过点A(1,﹣2),且与向量平行的直线的斜率为﹣,所以所求直线的方程为:y+2=﹣(x﹣1),即:3x+4y+5=0.故选C.点评:本题是基础题,考查直线方程的求法,注意直线的方向向量与直线的斜率的关系,考查计算能力.6.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④考点:三角形中的几何计算;恒过定点的直线.专题:应用题.分析:①由于基本不等式等号成立的条件不具备,故的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程,求出它与两坐标轴的交点,根据条件可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条.③将函数y=cos2x的图象向右平移个单位,可以得到函数y﹣sin(2x﹣)的图象,故③不正确.④若△ABC中,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形.解答:解:①∵≥2=2,(当且仅当x=0时,等号成立),故当x>0时,的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程为y﹣3=k(x﹣2),它与两坐标轴的交点分别为(2﹣,0),(0,3﹣2k),根据直线与两坐标轴围成的面积为13=,化简可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条,故②正确.③将函数y=cos2x的图象向右平移个单位,可以得到函数y=cos2(x﹣)=sin[﹣(2x﹣)]=sin()=﹣sin(2x﹣)的图象,故③不正确.④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形,故④正确.故选B.点评:本题基本不等式取等号的条件,过定点的直线,三角函数的图象变换,诱导公式的应用,检验基本不等式等号成立的条件,是解题的易错点.二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是[,4].考点:向量在几何中的应用;三角形中的几何计算.专题:综合题.分析:设三边分别为a,b,c,利用正弦定理和余弦定理结合向量条件利用三角形面积公式即可求出三边长.欲求x+y+z的取值范围,利用坐标法,将三角形ABC放置在直角坐标系中,通过点到直线的距离将求x+y+z的范围转化为,然后结合线性规划的思想方法求出范围即可.解答:解:△ABC为Rt△ABC,且∠C=90°,设三角形三内角A、B、C对应的三边分别为a,b,c,∵(1)÷(2),得,令a=4k,b=3k(k>0)则∴三边长分别为3,4,5.以C为坐标原点,射线CA为x轴正半轴建立直角坐标系,则A、B坐标为(3,0),(0,4),直线AB方程为4x+3y﹣12=0.设P点坐标为(m,n),则由P到三边AB、BC、AB的距离为x,y,z.可知,且,故,令d=m+2n,由线性规划知识可知,如图:当直线分别经过点A、O时,x+y+z取得最大、最小值.故0≤d≤8,故x+y+z的取值范围是.故答案为:[].点评:本题主要考查了解三角形中正弦定理、余弦定理、平面向量数量积的运算、简单线性规划思想方法的应用,综合性强,难度大,易出错.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=4.考点:二倍角的余弦;三角形中的几何计算.专题:计算题.分析:首先根据三角形的面积公式求出b的值,然后将所给的式子写成+=3进而得到acosC+ccosA+a+c=6,再根据在三角形中acosC+ccosA=b=2,即可求出答案.解答:解:∵S=absinC=asinC∴b=2∴acos2+ccos2=3∴+=3即a(cosC+1)+c(cosA+1)=6∴acosC+ccosA+a+c=6∵acosC+ccosA=b=2∴2+a+c=6∴a+c=4故答案为:4.点评:本题考查了二倍角的余弦以及三角形中的几何运算,解题的关键是巧妙的将所给的式子写成+=3的形式,属于中档题.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是.考点:三角形中的几何计算.专题:计算题.分析:先根据求得sin(A+B)的值,进而求得sinC的值,根据同角三角函数的基本关系求得cosC,根据韦达定理求得a+b和ab的值,进而求得a2+b2,最后利用余弦定理求得c的值.解答:解:∵,∴sin(A+B)=∴sinC=sin(π﹣A﹣B)=sin(A+B)=∴cosC==∵a,b是方程的两根∴a+b=2,ab=2,∴a2+b2=(a+b)2﹣2ab=8∴c===故答案为:点评:本题主要考查了三角形中的几何计算,余弦定理的应用,韦达定理的应用.考查了考生综合运用基础知识的能力.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是.考点:三角形中的几何计算;正弦定理.专题:计算题;解三角形.分析:构造以BC为正三角形的外接圆,如图满足,即可观察推出|AM|的取值范围.解答:解:构造以BC为正三角形的外接圆,如图,显然满足题意,由图可知红A处,|AM|值最大为,A与B(C)接近时|AM|最小,所以|AM|∈.故答案为:.点评:本题考查三角形中的几何计算,构造法的应用,也可以利用A的轨迹方程,两点减距离公式求解.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.考点:棱柱的结构特征;三角形中的几何计算.专题:计算题.分析:由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.解答:解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.点评:本小题主要考查棱柱的结构特征、三角形中的几何计算等基础知识,考查空间想象力.属于基础题.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为1或.考点:三角形中的几何计算.专题:计算题.分析:先利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2;再分∠A=30°以及∠C=30°两种情况分别求出对应的面积.解答:解:因为2,转化为边长和角所以有2acosB=c可得:cosB==⇒a2=b2⇒a=b=2.当∠A=30°=∠B时,∠C=120°,此时S△ABC=×2×2×sinC=;当∠C=30°时,∠A=∠B=75°,此时S△ABC=×2×2×sinC=1.故答案为:或1.点评:本题主要考查余弦定理的应用以及三角形中的几何计算.解决本题的关键在于利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2.13.△ABC中,AB=AC,,则cosA的值是.考点:三角形中的几何计算.专题:计算题.分析:根据AB=AC可推断出B=C,进而利用三角形内角和可知cosA=cos(π﹣2B)利用诱导公式和二倍角公式化简整理,把cosB的值代入即可.解答:解:∵AB=AC,∴B=C∴cosA=cos(π﹣2B)=cos2B=2cos2B﹣1=﹣1=﹣故答案为:﹣点评:本题主要考查了三角形中的几何计算,二倍角公式的应用.考查了学生综合运用三角函数基础知识的能力.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为x+y+z=3.考点:三角形中的几何计算.专题:计算题.分析:设等边三角形的边长为a,高为h将P与三角形的各顶点连接,进而分别表示出三角形三部分的面积,相加应等于总的面积建立等式求得x+y+z的值.解答:解:设等边三角形的边长为a,高为h将P与三角形的各顶点连接根据面积那么:ax+ay+az=ah所以x+y+z=h因为等边三角形的边长为2,所以高为h=3所以x.y.z所满足的关系是为:x+y+z=3故答案为:3点评:本题主要考查了三角形中的几何计算.考查了学生综合分析问题的能力和转化和化归的思想.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为.考点:三角形中的几何计算.专题:计算题.分析:根据已知可得△AOC是等边三角形,从而得到OA=AC=2,则可以利用勾股定理求得AD的长.解答:解:(2)∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=2,∵∠OAD=90°,∠D=30°,∴AD=•AO=.故答案为:.点评:本题考查和圆有关的比例线段,考查同弧所对的圆周角等于弦切角,本题在数据运算中主要应用含有30°角的直角三角形的性质,本题是一个基础题.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=.考点:三角形中的几何计算.专题:计算题.分析:先利用三个内角成等差数列求得A,根据,∠B=30°求得C,然后利用tan30°=表示出a,代入三角形面积公式求得b.解答:解:三角形ABC中,三个内角A,B,C成等差数列A+B+C=3A=180°∴∠A=60°∵∠A=30°,∴C=90S=ab=∵tan30°=∴a=∴b=故答案为:点评:本题主要考查了三角形的几何计算.考查了学生基础知识综合运用的能力.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.考点:三角形中的几何计算.专题:计算题.分析:设出BD,利用余弦定理分别在△ABC,△ABD中表示出AB,进而建立等式求得b﹣x=2acosC代入四边形ABCD的面积表达式中,利用正弦函数的性质求得问题的答案.解答:解:设BD=x,则由余弦定理可知b2+a2﹣2abcosC=AB2=a2+x2+2axcosC∴b﹣x=2acosC.∵S=(absinC)﹣(axsinC)=a(b﹣x)sinC=a2•sin2C,∴当C=时,S有最大值.点评:本题主要考查了三角形的几何计算.注意灵活利用正弦定理和余弦定理以及其变形公式.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.考点:三角形中的几何计算;二倍角的正弦.专题:计算题.分析:(1)利用同角三角函数关系及三角形内角的范围可求;(2)利用正弦定理可知b=2a,再利用余弦定理,从而求出a、b的值,进而可求面积.解答:解:(1)由题意,,∴(2)由sinB=2sinA可知b=2a,又22=a2+b2﹣2abcosC,∴a=1,b=2,∴点评:此题考查学生灵活运用三角形的面积公式,灵活运用正弦、余弦定理求值,是一道基础题题.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.考点:三角形中的几何计算;正弦定理的应用;余弦定理的应用.专题:计算题;综合题.分析:(1)由三角形的面积公式,结合余弦定理求出的值,进而有sinA=.(2)利用,结合正弦定理,求出b+c的值,利用三角形的面积公式和基本不等式求出面积的最大值.解答:解:(1)得进而有(2)∵,∴即所以故当b=c=8时,S最大=.点评:本题是中档题,考查三角函数的化简,正弦定理、余弦定理的应用,三角形的面积公式以及基本不等式的应用,考查计算能力,逻辑推理能力.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.考点:三角形中的几何计算;正弦定理.专题:计算题.分析:(1)利用余弦定理和题设等式求得cosA的值,进而求得A.(2)利用正弦定理把题设中的正弦转化成边的关系,进而求得bc的值,最后利用三角形面积公式求得答案.解答:解:(1)因为b2+c2﹣a2=2bccosA=bc所以所以(2)因为sin2B+sin2C=2sin2A所以b2+c2=2a2=2因为b2+c2﹣a2=bc所以bc=1所以=点评:本题主要考查了正弦定理和余弦定理的应用.注意挖掘题设中关于边,角问题的联系.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?考点:三角形中的几何计算.专题:综合题.分析:(1)由题意画出简图,设CN=x,则QD=5﹣x,路灯高BD为h,利用三角形相似建立方程解德;(2)由题意当小迪移到BD所在线上(设为DH),连接AH交地面于E,则DE长即为所求的影长,利用三角形相似建立方程求解即可.解答:解:如图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯的底部.由题中已知得MN=PQ=1.6m,NQ=5m,CD=10m(1)设CN=x,则QD=5﹣x,路灯高BD为h∵△CMN∽△CBD,即⇒又△PQD∽△ACD即⇒由①②式得x=2.5m,h=6.4m,即路灯高为6.4m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求的影长.∵△DEH∽△CEA⇒⇒解得DE=m,即他在A路灯下的身影长为m.点评:此题考查了学生理解题意的能力,还考查了利用三角形相似及方程思想求解变量及学生的计算能力.22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.考点:三角形中的几何计算.专题:计算题.分析:(1)求AB长,关键是求sinB,sinC,利用已知条件可求;(2)根据三角形的面积公式,故关键是求sinA的值,利用sinA=sin(B+C)=sinBcosC+cosBsinC可求解答:解:(1)设AB、BC、CA的长分别为c、a、b,,∴,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为.∴sinA=sin(B+C)=sinBcosC+cosBsinC=﹣﹣﹣﹣﹣﹣﹣(12分)故所求面积﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题的考点是三角形的几何计算,主要考查正弦定理得应用,考查三角形的面积公式,关键是正确记忆公式,合理化简.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②考点:三角形中的几何计算.专题:计算题;分类讨论.分析:(1)先根据正弦定理以及大角对大边求出角C,再根据三角形内角和为180°即可求出角A.(2)分情况分别代入三角形的面积计算公式即可得到答案;(3)直接根据前两问的结论填写即可.解答:解:(1)∵,…(2分)∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°…(2分)(2)∵S=bcsinA∴A=90°,S=bcsinA=;A=30°,S=bcsinA=.…(2分)(3)点评:本题主要考查三角形中的几何计算.解决本题的关键在于根据正弦定理以及大角对大边求出角C.24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.考点:三角形中的几何计算;解三角形.专题:计算题;数形结合.分析:(1)由正弦定理知===2R,根据题目中所给的条件,不难得出弦AB的长;(2)若∠C是钝角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可证得结果;(3)根据图形进行分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分成三类讨论即可.解答:解:(1)在△ABC中,BC=2,∠ABC=45°===2R⇒b=2sinA=∵A为锐角∴A=30°,B=45°∴C=75°∴AB=2Rsin75°=4sin75°=;(2)∠C为钝角,∴cosC<0,且cosC≠1cosC=<0∴a2+b2<c2<(2R)2即a2+b2<4R2(8分)(3)a>2R或a=b=2R时,△ABC不存在当时,A=90,△ABC存在且只有一个∴c=当时,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个∴c=2RsinC=2Rsin2AC=当时,∠B总是锐角,∠A可以是钝角,可是锐角∴△ABC存在两个∠A<90°时,c=∠A>90°时,c=点评:本题考查三角形中的几何计算,综合考查了三角形形状的判断,解三角形,三角形的外接圆等知识,综合性很强,尤其是第三问需要根据a,b两边以及直径的大小比较确定三角形的形状.再在这种情况下求第三边的表达式,本解法主观性较强.难度较大.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.考点:三角形中的几何计算.专题:计算题.分析:(Ⅰ)根据∥和两向量的坐标可求得,利用正弦定理把边转化成角的正弦,然后利用两角和公式化简整理求得cosA的值,进而求得A(Ⅱ)把A的值代入,利用两角和公式整理后,利用正弦函数的性质求得2cos2B+sin(A﹣2B)的最小值.解答:解:(Ⅰ)由得.由正弦定理得,.∴.∵A,B∈(0,π),∴sinB≠0,,∴.(Ⅱ)解:∵∴2cos2B+sin(A﹣2B)==,.2cos2B+sin(A﹣2B)的最小值为点评:本题主要考查了三角形中的几何计算,正弦定理的应用和两角和公式的化简求值.注意综合运用三角函数的基础公式,灵活解决三角形的计算问题.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.考点:正弦定理的应用;三角形中的几何计算.专题:计算题.分析:(1)由已知结合正弦与余弦定理=化简可求b,由余弦定理可得,cosA=代入可求cosA,及A(2)代入三角形的面积公式可求解答:解:(1)∵∵∴=化简可得,b2﹣2b﹣8=0∴b=4由余弦定理可得,cosA==∴;(2)==点评:本题主要考查了解三角形的基本工具:正弦定理与余弦定理的应用,解题的关键是具备综合应用知识解决问题的能力27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.考点:三角函数中的恒等变换应用;三角形中的几何计算.专题:计算题.分析:(Ⅰ)利用正弦定理化简(2a+c)cosB+bcosC=0,得到三角形的角的关系,通过两角和与三角形的内角和,求出B的值;(Ⅱ)通过S=,利用B=以及a+c=4,推出△ABC面积S的表达式,通过平方法结合a的范围求出面积的最大值.解答:解(Ⅰ)由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sinCcosB+cosCsinB=0得2sinACcosB+sin(C+B)=0,因为A+B+C=π,所以sin(B+C)=sinA,得2sinAcosB+sinA=0,因为sinA≠0,所以cosB=﹣,又B为三角形的内角,所以B=.(Ⅱ)因为S=,由B=及a+c=4得S===,又0<a<4,所以当a=2时,S取最大值…(3分)点评:本题是中档题,考查三角形面积的最值,三角形的边角关系,三角函数的公式的灵活应用,考查计算能力.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.考点:三角函数的恒等变换及化简求值;三角形中的几何计算.专题:综合题.分析:(1)由,推出,利用坐标表示化简表达式,结合余弦定理求角C;(2)利用(1)中c2=a2+b2﹣ab,应用正弦定理和基本不等式,求三角形ABC的面积S的最大值.解答:解答:解:(1)∵∴且,由正弦定理得:化简得:c2=a2+b2﹣ab由余弦定理:c2=a2+b2﹣2abcosC∴,∵0<C<π,∴(2)∵a2+b2﹣ab=c2=(2RsinC)2=6,∴6=a2+b2﹣ab≥2ab﹣ab=ab(当且仅当a=b时取“=”),所以,.点评:本题考查数量积判断两个平面向量的垂直关系,正弦定理,余弦定理的应用,考查学生分析问题解决问题的能力,是中档题.。

部编版高中数学选修二综合测试题易错知识点总结

部编版高中数学选修二综合测试题易错知识点总结

(名师选题)部编版高中数学选修二综合测试题易错知识点总结单选题1、某市抗洪指挥部接到最新雨情通报,未来24ℎ城区拦洪坝外洪水将超过警戒水位,因此需要紧急抽调工程机械加高加固拦洪坝.经测算,加高加固拦洪坝工程需要调用20台某型号翻斗车,每辆翻斗车需要平均工作24ℎ.而抗洪指挥部目前只有一辆翻斗车可立即投入施工,其余翻斗车需要从其他施工现场抽调.若抽调的翻斗车每隔20min才有一辆到达施工现场投入工作,要在24ℎ内完成拦洪坝加高加固工程,指挥部至少还需要...抽调这种型号翻斗车()A.25辆B.24辆C.23辆D.22辆答案:C分析:由题意可知每辆车的工作时间成等差数列,利用等差数列前n项和公式可确定n辆车的工作总时长S n,当n=23时,S n<480,当n=24时,S n>480,可知共需要24辆车,由此确定结果.总工作量为:20×24=480ℎ,由题意可知:每调来一辆车,工作时间依次递减13ℎ,则每辆车的工作时间成等差数列,设第n辆车的工作时间为a n,则a1=24,等差数列的公差d=−13,∴n辆车的工作总时长S n=na1+n(n−1)2d=24n−n(n−1)6,∵S23=24×23−23×226≈468<480,S24=24×24−24×236=484>480,∴共需24辆车完成工程,∴至少还需要抽调24−1=23辆车.故选:C.2、在等比数列{a n}中,a1=1,a2a3=8,则a4+a5a1+a2=()A.8B.6C.4D.2答案:A分析:由题设结合等比数列通项公式求得公比q=2,进而求a4+a5a1+a2. 由题设,a2a3=a12q3=8,又a1=1,可得q=2,∴a4+a5a1+a2=a1q3+a1q4a1+a1q=243=8.故选:A3、若数列{an}的前n项和Sn=an-1(a∈R,且a≠0),则此数列是()A.等差数列B.等比数列C.等差数列或等比数列D.既不是等差数列,也不是等比数列答案:C分析:当n=1时,求出a1;当n≥2时,an=Sn-Sn-1=(an-1)-(an-1-1)=an-an-1=an-1(a-1)然后对a-1是否为0讨论即可当n=1时,a1=S1=a-1;当n≥2时,an=Sn-Sn-1=(an-1)-(an-1-1)=an-an-1=an-1(a-1).当a-1=0,即a=1时,该数列为等差数列,当a≠1时,该数列为等比数列.故选:C小提示:等比数列各项都不等于0.4、已知函数f(x)=22021x+1+x2021+sinx(x∈R),则f(2021)+f(−2021)+f′(2021)−f′(−2021)=()A.0B.2C.2021D.2022答案:B分析:求f′(x)可得f′(x)为偶函数,可得f′(2021)−f′(−2021)=0,计算f(x)+f(−x)可得定值,即可求解.因为f′(x)=−2×2021x×ln2021(2021x+1)2+2021x2020+cosx,f′(−x)=−2×2021−x×ln2021(2021−x+1)2+2021(−x)2020+cos(−x),=−2×ln20212021x(2021x+12021x)2+2021(−x)2020+cos(−x)=−2×2021x×ln2021(2021x+1)2+2021x2020+cosx=f′(x)即f′(−x)=f′(x),所以f′(x)是偶函数,所以f′(x)−f′(−x)=0,又因为f(x)+f(−x)=22021x+1+x2021+sinx+22021−x+1+(−x)2021+sin(−x)=22021x+1+2×2021x2021x+1=2,所以f(2021)+f(−2021)+f′(2021)−f′(−2021)=2+0=2,故选:B.5、数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a n等于()A.3×4n B.3×4n+1C.{1,n=13×4n−2,n≥2D.{1,n=13×4n−2+1,n≥2答案:C分析:讨论n=1和n≥2两种情况,当n≥2时,通过a n+1−a n=3(S n−S n−1)及等比数列的定义得到答案. n=1时,a2=3S1=3a1=3,n≥2时,a n=3S n−1,所以a n+1−a n=3(S n−S n−1)=3a n⇒a n+1=4a n,而a2=3a1≠4a1,所以数列{a n}从第二项起是以3为首项,4为公比的等比数列,所以a n={1,n=13×4n−2,n≥2.故选:C.6、函数f(x)的图象如图所示,f′(x)为函数f(x)的导函数,下列排序正确的是()A.f(a+1)−f(a)<f′(a)<f′(a+1)B.f′(a+1)<f′(a)<f(a+1)−f(a)C.f′(a+1)<f(a+1)−f(a)<f′(a)D.f′(a)<f(a+1)−f(a)<f′(a+1)答案:C分析:根据函数的变化率和导数的几何意义进行判断.因为f′(a)、f′(a +1)分别是函数f(x)在x =a 、x =a +1处的切线斜率, 由图可知f′(a +1)<f′(a)<0, 又f(a +1)−f(a)=f(a+1)−f(a)(a+1)−a=f′(x 0),x 0∈(a,a +1),所以f ′(a +1)<f (a +1)−f (a )<f ′(a ), 故选:C.小提示:关键点点睛:该题考查的是有关导数的几何意义的问题,正确解题的关键是理解函数的变化率和导数的几何意义.7、已知数列{a n }满足a 1=3,a n+1=a n +1n (n+1),则a n =( ) A .4+1n B .4−1n C .2+1n D .2−1n 答案:B分析:由a n+1−a n =1n −1n+1,利用累加法得出a n . 由题意可得a n+1−a n =1n (n+1)=1n −1n+1,所以a 2−a 1=1−12,a 3−a 2=12−13,…,a n −a n−1=1n−1−1n,上式累加可得a n −a 1=(a 2−a 1)+(a 3−a 2)+⋯+(a n −a n−1) =1−12+12−13+⋯+1n−1−1n=1−1n,又a 1=3,所以a n =4−1n . 故选:B .8、已知函数f (x )=x 2+alnx 的图象在(1,f (1))处的切线经过坐标原点,则函数y =f (x )的最小值为( ) A .12−12ln2B .14+ln2C .12+12ln2D .1 答案:C解析:利用导数的几何意义求出a =−1,从而可得f (x )=x 2−lnx ,求出导函数,利用导数判断出函数的单调性,由单调性即可求出最值.函数f (x )=x 2+alnx ,则f (1)=12+aln1=1 且f ′(x )=2x +ax ,所以f ′(1)=2+a , 所以f ′(1)=f (1)−01−0=1=2+a ,解得a =−1,所以f (x )=x 2−lnx ,(x >0) f ′(x )=2x −1x ,令f ′(x )≥0,即2x −1x ≥0,解得x ≥√22, 令f ′(x )<0,即2x −1x<0,解得0<x <√22, 所以函数在区间(0,√22)上单调递减,在区间[√22,+∞)上单调递增. 所以f (x )min =f (√22)=(√22)2−ln√22=12−ln √22=12+12ln2.故选:C 多选题9、在无穷数列{a n }中,若a p =a q (p,q ∈N ∗),总有a p+1=a q+1,此时定义{a n }为“阶梯数列”.设{a n }为“阶梯数列”,且a 1=a 4=1,a 5=√3,a 8a 9=2√3,则( ) A .a 7=1B .a 8=2a 4C .S 10=10+3√3D .a 2020=1 答案:ACD解析:根据“阶梯数列”的性质,结合题中条件,确定数列{a n }以3为周期,进而可求出结果. 因为{a n }为“阶梯数列”,由a 1=a 4=1可得a 2=a 5,a 3=a 6,a 4=a 7,a 5=a 8,a 6=a 9,…,观察可得a 1=a 4=a 7=...=a 3n−2=...(n ∈N ∗),a 2=a 5=a 8=...=a 3n−1=...(n ∈N ∗),a 3=a 6=a 9=...=a 3n =...(n ∈N ∗), 即数列{a n }以3为周期,又a 5=√3,a 8a 9=2√3,所以√3a 9=2√3,即a 9=2,综上,a 1=a 4=a 7=...=a 3n−2=1(n ∈N ∗),a 2=a 5=a 8=...=a 3n−1=√3(n ∈N ∗),a 3=a 6=a 9=...=a 3n =2(n ∈N ∗), 故A 正确,B 错;S10=(a1+a4+a7+a10)+(a2+a5+a8)+(a3+a6+a9)=10+3√3,即C正确;a2020=a1+3×673=a1=1,即D正确.故选:ACD.小提示:思路点睛:求解数列新定义的问题时,一般需要根据新定义的概念,推出数列的性质(如周期性、增减性等),再结合题中所给条件,进行求解即可.10、已知函数f(x)=xe x−x2−2x−1,则()A.f(x)的极大值为−1B.f(x)的极大值为−1eC.曲线y=f(x)在(0,f(0))处的切线方程为x−y−1=0D.曲线y=f(x)在(0,f(0))处的切线方程为x+y+ 1=0答案:BD分析:首先求出函数的导函数,即可求出函数的单调区间,从而求出函数的极大值,再求出f(0)、f′(0),再利用点斜式求出切线方程;解:因为f(x)=xe x−x2−2x−1,所以f′(x)=e x+x e x−2x−2=(x+1)(e x−2),所以当x>ln2或x<−1时f′(x)>0,当−1<x<ln2时f′(x)<0,所以f(x)在(−∞,−1)和(ln2,+∞)上单调递增,在[−1,ln2]上单调递减,故f(x)的极大值为f(−1)=−1e,故A 错误,B正确;因为f(0)=−1,f′(0)=−1.所以曲线y=f(x)在(0,f(0))处的切线方程为y−(−1)=−1(x−0),即x+y+1=0,故C错误,D正确;故选:BD11、已知S n是数列{a n}的前n项和,且a1=a2=1,a n=a n−1+2a n−2(n≥3),则下列结论正确的是()A.数列{a n+1+a n}为等比数列B.数列{a n+1−2a n}为等比数列C.a n=2n+1+(−1)n3D.S20=23(410−1)答案:ABD分析:根据已知递推公式进行变形求解判断AB.求出数列{a n}前几项,验证后判断C,求出前20项和可判断D,因为a n=a n−1+2a n−2(n≥3),所以a n+a n−1=2a n−1+2a n−2=2(a n−1+a n−2),又a1+a2=2≠0,所以{a n+a n+1}是等比数列,A正确;同理a n−2a n−1=a n−1+2a n−2−2a n−1=−a n−1+2a n−2=−(a n−1−2a n−2),而a2−2a1=−1,所以{a n+1−2a n}是等比数列,B正确;若a n=2n+1+(−1)n3,则a2=23+(−1)23=3,但a2=1≠3,C错;由A{a n+a n−1}是等比数列,且公比为2,因此数列a1+a2,a3+a4,a5+a6,⋯仍然是等比数列,公比为4,所以S20=(a1+a2)+(a3+a4)+⋯+(a19+a20)=2(1−410)1−4=23(410−1),D正确.故选:ABD.小提示:方法点睛:本题考查数列的递推公式,解题关键是由已知递推关系变形推导出新数列的递推关系,从而得证新数列的性质.而对称错误的结论,可以求出数列的某些项进行检验.填空题12、已知函数f(x)=lnx−ax2+bx,当x>0,f(x)≤0恒成立,则ba的最大值为___________.答案:1分析:令t=ba,则b=at,先由f(1)≤0得a(1−t)≤0,再由f(x)≤0对x>0恒成立得a>0,t≤1,结合a(1−t)≤0得,t≤1,往下证明t=1时,存在实数a使得f(x)≤0对x>0恒成立,即可说明ba的最大值为1.令t=ba,则b=at,f(x)=lnx−ax2+atx,当x>0,f(x)≤0恒成立,则有f(1)≤0,a(1−t)≥0,由f(x)=lnx−ax2+atx≤0得,lnx≤a(x2−tx)因为任意的x>0,都有lnx≤a(x2−tx),所以a>0,t≤1,结合a(1−t)≥0,得t≤1.当t=1时,f(x)=lnx−ax2+ax,令g(x)=x−1−lnx,x>0,则g′(x)=1−1x =x−1x,由g′(x)>0得,x>1;由g′(x)<0得,0<x<1;所以g(x)在(0,1)上递减,在(1,+∞)上递增,g(x)的最小值为g(1)=0,由g(x)≥g(1),得lnx≤x−1,对x>0恒成立.所以f(x)=lnx−ax2+ax≤x−1−ax2+ax,取a=1,有f(x)=lnx−x2+x≤x−1−x2+x=−(x−1)2≤0恒成立. 综上可知,b的最大值为1.a所以答案是:1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验中学2012-2013学年度高二数学易错精选50题2一、选择题1.经过抛物线y 2 = 4x 的焦点弦的中点轨迹方程是( )A .y 2=x -1B .y 2=2(x -1)C .y 2=x -21 D.y 2=2x -12.如图,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使λ==FDCF EBAE (0<λ<+∞),设λλβαλ+=)(f ,其中λα表示EF 与AC 所成的角,λβ表示EF 与BD 所成的角,则( ) A .)(λf 在(0, +∞)上单调递增B .)(λf 在(0, +∞)上单调递减C .)(λf 在(0, 1)上单调递增,在(1, +∞)上单调递减D .)(λf 在(0, +∞)上为常数函数3.如图,在正三棱锥BCD A -中,F E ,分别是BC AB ,的中点,DE EF ⊥且1=BC ,则正三棱锥BCD A -体积是( )A.122. B..242C.123 D.2434.设c b a ,,是空间三条不同的直线,βα,是空间两个不重合的平面,则下列命题中,逆命题不成立的是 ( ) A.当α⊂b 时,且c 是a 在α内的射影时,若c b ⊥,则b a ⊥. B.当α⊂b ,且α⊄c 时,若α//c ,则c b //. C.当α⊂b 时,若β⊥b ,则βα⊥. D.当α⊥c时,若β⊥c,则βα//.5.若m 、n 是不大于6的非负整数,则2626yC x C nm + = 1表示不同的椭圆个数为( )A .27AB .26C C .24AD .24C6.在北纬45°圈上有A 、B 两地,A 地在东经120°,B 地在西经150°,设地球半径为R ,则A 、B 两地的球面距离是( ) A .R π35B .R π21 C .R π42 D .R π317.直线531+=x y 与曲线1259||2=+yx x 的交点个数为( )A .3个B .2个C .1个D .0个8.已知双曲线12222=-by ax (a >0, b >0)的离心率为e ∈]2,2[,则它的两条渐近线所成的角中以实轴为平分线的角的大小为( ) A .]2,6[ππB .]2,3[ππC .]32,2[ππD .],32[ππ9.下列四个命题中,正确命题有( )①直线方程的一般式为Ax + By + C = 0 ②k 1·k 2 = –1为两直线垂直的充要条件③k 1 = k 2为两直线平行的必要非充分条件 ④l :A 1x + B 1y + C 1 = 0和l 2:A 2x + B 2y + C 2 = 0,(B 1≠0,B 2≠0,A 1A 2 + B 1B 2≠0),则直线l 1到l 2的角θ的正切值为21211221tan B B A A B A B A +-=θA .0个B .1个C .2个D .3个E A DBFC10.已知()lg()(10),x x f x a b a b =->>>则不等式()0f x >的解集为(1,)+∞的充要条件是 ( ) A .1a b =+ B .1a b <+ C .1a b >+ D .1b a =+11.正五边形的边与对角线所在的直线能围成的三角形的个数是( )A .40个B .60个C .80个D .120个12.P A B C -的四个顶点都在同一球面上,则此球的表面积为 ( )A .3πB .2πC .43π D .4π13.点P 是双曲线15422=-yx右支上一点,F 是该双曲线的右焦点,点M 为线段PF 的中点。

若3=OM ,则点P 到该双曲线右准线的距离为 ( )A 、34 B 、43 C 、23 D 、3214.定义在R 上的偶函数)(x f 在]0,(-∞上单调递增,若0,2121>+>x x x x ,则( )A 、)()(21x f x f >B 、)(|)(|21x f x f >C 、)()(21x f x f -<D 、)(1x f 与)(2x f 的大小与1x 、2x 的取值有关15.}),{(},),{(a x y y x B x a y y x A +====,若B A 是双元素集,则 ( )A 、10<<aB 、1>a 或10<<aC 、1>aD 、1>a 或1-<a16.过双曲线)0,0(12222>>=-b a by ax 的右焦点F ,作渐近线x ab y =的垂线与双曲线左右两支都相交,则双曲线的离心率e 的取值范围为 ( )A 、21<<eB 、21<<e C 、2>e D 、2>e17.定义椭圆22221x y ab+=的面积为ab π,若{(,),}U x y x y R =∈,22{(,)1}4xA x y y =+≤,{(,)220}B x y x y =+-<,则()A B I ð所表示图形的面积为 ( )A 、1B 、12π- C 、21π- D 、312π+18.设a 、b ∈R ,那么a 2 + b 2<1是ab + 1>a + b 的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件19.一条线段AB (|AB | = 2a )的两个端点A 和B 分别在x 轴上、y 轴上滑动,则线段AB 中点M的轨迹方程为( )A .x 2+ y 2= a 2(x ≠0) B .x 2+ y 2= a 2(y ≠0) C .x 2 + y 2 = a 2 (x ≠0且 y ≠0) D .x 2 + y 2 = a 220.现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有( )种.(A )5536A A ⋅ (B )336688A A A ⋅- (C )3335A A ⋅ (D )4688A A -21.高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( ). (A )16种 (B )18种 (C )37种 (D )48种22.已知⎪⎭⎫⎝⎛∈ππβα,2,且0sin cos >+βα,这下列各式中成立的是( ) A.πβα<+ B.23πβα>+ C.23πβα=+ D.23πβα<+23.如果2πlog|3π|log 2121≥-x ,那么x sin 的取值范围是( )A .21[-,]21 B .21[-,]1 C .21[-,21()21 ,]1 D .21[-,23()23 ,]124.已知奇函数()x f 在()0,∞-上单调递减,且()02=f ,则不等式()()11--x f x >0的解集是( )A. ()1,3--B. ()()3,11,1 -C. ()()+∞-,30,3D. ()()+∞-,21,325.不等式()32log2+-x xa≤1-在R x ∈上恒成立,则实数a 的取值范围是( )A. [)+∞,2B. (]2,1C. ⎪⎭⎫⎢⎣⎡1,21D. ⎥⎦⎤⎝⎛21,026.设1!,2!,3!,……,n !的和为S n (3>n 且*N n ∈),则S n 的个位数是 ( )A .1B .3C .5D .727.直线,a b 是不互相垂直的异面直线,平面,αβ满足,a b αβ⊂⊂,且αβ⊥,则这样的平面,αβ:( ) A .不存在 B .只有一对 C .有有限对 D .有无数对28.直线过圆内一点,则被圆截得的弦长恰为整数的直线共有A 、5条B 、6条C 、7条D 、8条29.在5张卡片上分别写着数字1、2、3、4、5,然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是 ( )A 、0.8B 、0.6C 、0.4D 、0.230.下面是一个算法的程序框图,当输入的值x 为8时,则其输出的结果是( ) A .5.0 B . 1 C .2 D .431.将锐角为060=∠BAD 且边长是2的菱形ABCD ,沿它的对角线BD 折成60°的二面角,则( ) ①异面直线AC 与BD 所成角的大小是 . ②点C 到平面ABD 的距离是 . A .90°,23 B .90°,2 C .60°,23 D .60°,232.长方体ABCD —A 1B 1C 1D 1中,AB=AA 1=2,AD=1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A .1010 B .1030 C .1060 D .1010333.已知定点)4,3(A ,点P 为抛物线x y 42=上一动点,点P 到直线1-=x 的距离为d ,则|PA|+d 的最小值为( ) A .4B .52C .6D .328-34.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( )A.10x y ++=B.10x y +-=C.10x y -+=D.10x y --=35.若不等式0lg ])1[(<--a a n a 对于任意正整数n 恒成立,则实数a 的取值范围是( )A .210<<a B .10<<a C .121<<a D .a >136.在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种.(A )34A (B )34 (C )43 (D )34C37.某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有( )种.(A )5040 (B )1260 (C )210 (D )63038.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )(A)1024种(B)1023种(C)1536种(D)1535种39.如果执行右面的程序框图,那么输出的S =( )A .1275B .2550C .5050D .250040.不论k 为何值,直线(2)y k x b =-+与双曲线221x y -=总有公共点,实数b 的取值范围是( )A.(B.⎡⎣C.()2,2-D.[]2,2-41.设直线12,l l 是两直线,,αβ是两平面,A 为一点,有下列四个命题:①1,l α⊂2l A α= ,则12,l l 必为异面直线 ②若1//l α,21//l l ,则2//l α③若1,l α⊂2l β⊂,1//l β,2//l α,则//αβ ④若αβ⊥,1,l α⊂则1l β⊥其中正确的命题个数是 ( ) A.0 B.1 C.2 D.342.已知球的表面积为20π,球面上有A,B,C 三点,如果AB=AC=2,BC=则球心到平面ABC的距离为 ( )A.1 D.243.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310等于 ( )A.恰有2只是好的概率B.恰有1 只是坏的概率C.至多2只是坏的概率D.4只全是好的概率44.已知函数13,)(x x x x f --=、2x 、3x R ∈,且021>+x x ,032>+x x ,013>+x x ,则)()()(321x f x f x f ++的值 ( ) A 、一定大于零 B 、一定小于零 C 、等于零 D 、正负都有45.已知二项式()32nx +的展开式中所有项的系数和为3125,此展开式中含4x 项的系数是( )A.240B.720C.810D.108046.直线1y x =-交抛物线()220y px p =>于M,N 两点,向量OM ON +与弦MN 交于点E,若E 点的横坐标为32,则p 的值为 ( )A.2B.1C.14D.1247.已知正四面体ABCD 棱长为a ,其外接圆的体积为1V ,内切球的体积为2V ,则12V V 等于( )A.9B.8C.52D.2748.直线1y x =-交椭圆221m x ny +=于M,N 两点,MN 的中点为P ,若2op k =(O 为原点),则m n等于 ( )A.2C. 2-D. 49.设a 在区间[0,5]上随机的取值,则方程02142=+++a ax x 有实根的概率为( )A.54 B.53 C.52 D. 150.圆()2211x y -+=在不等式组00x y x y ->⎧⎨+>⎩所表示的平面区域中占有的面积是( )A.12π- B.2π+ C.2π- D.12π+试卷答案1.B2.D3.B4.解析:C 当α⊂b 时,若βα⊥,则b 不一定垂直于β,故选C.5.解析:m 、n 分别可以取0,1,2,3,4,5,6,又因为462656166606,,C C C C C C ===,所以mC 6取值只有4个不同的值,故m C 6与n C 6的不同取值种数为24A ,从而选C.6.D7.C8.C9.解析: B ①错,条件AB ≠0;②错,两直线垂直,它们中可能一条斜率不存在;③错,两直线倾斜角都为直角时,斜率不存在,但可能平行,④正确.10.A 11.B 12.A 13.A 14.C 15.D 16.C 17.B18.解析:若a 2 + b 2<1,则a <1且b <1. ∴(ab + 1) – (a + b ) = (a – 1) (b – 1)>0,若(ab + 1) – (a + b ) = (a – 1) (b – 1)>0. 则⎩⎨⎧<<11b a 或⎩⎨⎧>>11b a ,故选C.19.解析:因原点即在x 轴上,又在y 轴上,故本题无特殊情况,选D.20.解析:在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙三人不相邻的方法数,即336688A A A ⋅-,故选B .21.解析:用间接法.先计算3个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即:37333444=⨯⨯-⨯⨯种方案.22.D23.B24.B25.C26.B27.D28.D29.B 30.C 31.A 32.B 33.B 34.C35.A解析:当a >1时,易知0lg ])1[(<--a a n a 是恒成立;当0<a <1时,0lg <a ,所以0)1(>--a n a 恒成立,即aa n ->1恒成立,只需aa ->11恒成立,可得.210•a <<36.解析:四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有433333=⨯⨯⨯种.37.解析:6302332527=A C C 种.38.解析:除100元人民币以外每张均有取和不取2种情况,100元人民币的取法有3种情况,再减去全不取的1种情况,所以共有15351329=-⨯种.39.B 40.B41.A42.A 43.A44. B45.C46.D47.D48.A49.B50.D。

相关文档
最新文档