2014年26.1.1反比例函数的意义
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
人教版九年级数学下册全册教案
26.1.1反比例函数的意义教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学方法:类比启发教学辅助:多媒体投影片教学过程:一、创设情景探究问题随着速度的变化,全程所用时间发生怎样的变化?情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:2(3)速度v是时间t的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.全册每单元每课时 3[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.二、例题教学练习:1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=x15;(2)y=2x-1;(3)y=-3x;通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.练习:2:在函数y=2x-1,y=2x+1,y=x-1,y=12x中,y是x的反比例函数的有个.全册每单元每课时 4[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=2x-1通分为y=2-xx,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=2x可说成(y+1)与x成反比例.练习3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为.[说明]这个练习引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.例题:第5页例1三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.全册每单元每课时 52、已知函数y=(m+1)x22 m是反比例函数,则m的值为.[备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)板书设计:概念:例1解:练习练习全册每单元每课时 6教学反思:本节课学生对有关概念都很好的落实,亮点在于练习设计有梯度,学生认识清楚。
反比例函数的意义ppt
反比例函数的奇偶性
奇函数
反比例函数是奇函数,满足f(-x)=-f(x)。
图像对称
反比例函数的图像关于原点对称。
反比例函数的值域和定义域
值域
反比例函数的值域为R{0},即除了0以外的所有实数。
定义域
反比例函数的定义域为(0, +∞)。
PART 03
反比例函数的应用
REPORTING
WENKU DESIGN
在经济中的应用
供需关系
在市场经济中,供给与需求量之间存在反比关系,即当供 给量增加时,需求量减少;反之,当供给量减少时,需求 量增加。
投资回报率
投资回报率与投资风险之间存在反比关系,即当投资回报 率较高时,投资风险也相应较大;反之,当投资回报率较 低时,投资风险也相应较小。
货币供应量与通货膨胀率
货币供应量与通货膨胀率之间存在反比关系,即当货币供 应量增加时,通货膨胀率减小;反之,当货币供应量减少 时,通货膨胀率增大。
反比例函数的意义
https://
REPORTING
• 反比例函数的定义 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数与其他数学知识的联系 • 反比例函数的意义和重要性
目录
PART 01
反比例函数的定义
REPORTING
WENKU DESIGN
反比例函数的数学定义
反比例函数与其他数学知 识的联系
REPORTING
WENKU DESIGN
与一次函数的联系
反比例函数与一次函数在形式上 存在相似性,都包含一个自变量 和一个因变量,且因变量都是关
于自变量的函数。
一次函数的一般形式为 $y = ax + b$,其中 $a$ 和 $b$ 是常数, 而反比例函数的一般形式为 $y = frac{k}{x}$,其中 $k$ 是常数。
新人教版九年级数学下册全册教案
义务教育课程标准人教版数学教案九年级下册第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。
那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)x y 2-= (3)xy =21 (4)25+=x y (5)31+=xy 例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。
反比例函数导学案
反⽐例函数导学案26.1.1反⽐例函数的意义(第1课时)⼀、学习⽬标1.使学⽣理解并掌握反⽐例函数的概念2.能判断⼀个给定的函数是否为反⽐例函数,并会⽤待定系数法求函数解析式3.能根据实际问题中的条件确定反⽐例函数的解析式,体会函数的模型思想⼆、重、难点1.重点:理解反⽐例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反⽐例函数的概念三、【学习过程】(⼀)依标独学 1.复习:(1)⼀般地,在⼀个变化过程中,如果有两个变量x 与y ,并且对于x 的每个确定的值,y 都有唯⼀确定的值与其对应,那么我们就说x 是⾃变量,y 是x 的函数。
(2)⼀般地,形如y=kx+b(k 、b 是常数,k ≠0)的函数,叫做。
(3)⼀般地,形如y=kx(k 是常数,k ≠0)的函数,叫做,其中k 叫做⽐例系数。
2.完成课本思考题,写出三个问题的函数解析式:(1);(2);(3)。
3.概念:上述函数都具有的形式,其中是常数。
⼀般地,形如()的函数称为,其中是⾃变量,是函数。
⾃变量的取值范围是。
4. 反⽐例函数xk y =(k ≠0)的另两种表达式是1-=kx y 和xy=k (k ≠0)(⼆)围标群学,⼩组交流答案(三)扣标展⽰。
下列等式中,哪些是反⽐例函数(1)3x y = (2)x y 2-=(3)xy =21 (4)25+=x y (5)x y 23-=(6)31+=xy(四)达标测评1、下列关系式中的y 是x 的反⽐例函数吗?如果是,⽐例系数k 是多少?41111221x y y y x xy y y y xx x x==-=-====-(1)(2)(3)(4)(5)(6)(7)2、若函数28m (3)y m x -=+是反⽐例函数,则m 的取值是3、已知函数4(3)a y a x-=+是反⽐例函数,则a =课后反思26.1.1 反⽐例函数的意义(第2课时)【学习⽬标】会根据已知条件⽤待定系数法求反⽐例函数解析式【学习过程】(⼀)依标独学1:已知y 是x 的反⽐例函数,当x=2时,y=6.(1)写出y 与x 之间的函数解析式;(2)求当x=4时y 的值。
反比例函数函数K的几何意义
反比例函数函数K的几何意义反比例函数的几何意义是在坐标系中表示直角坐标的一条曲线。
由于该函数的定义域为x≠0,因此在坐标系中,x轴上的原点除外,函数的图像将存在断点。
根据反比例函数的定义,当x的值趋近于零时,x的值将趋近于正无穷大。
同样地,当x的值趋近于正无穷大或负无穷大时,x的值将趋近于零。
这意味着反比例函数的图像将以原点为对称中心,分别在第一、第三象限不断向正无穷大和负无穷大逼近,而在第二、第四象限不断向零逼近。
反比例函数的图像通常表现为一条双曲线,称为反比例双曲线。
该曲线的两个分支在坐标平面中以渐进线(Asymptotes)为边界无限延伸。
渐进线是反比例双曲线的特殊特征,由于两个变量之间的反比例关系,当一个值趋近于无穷大时,另一个值将趋近于零。
因此,反比例双曲线的渐近线是表示这种趋势的标志。
反比例双曲线分为两类:水平渐近线和垂直渐近线。
水平渐近线与x轴平行,表示当x的值趋近于正无穷大或负无穷大时,函数值趋近于零。
垂直渐近线与x轴平行,表示当x的值趋近于零时,函数值趋近于无穷大。
通过做一些简单的数学变换,我们可以将反比例函数的标准形式x=x/x转化为x=xx的形式。
这种形式的反比例函数在坐标系中表示为一条直线。
直线的斜率为x,它表示的是x轴上单位长度对应的x轴上的长度。
当x为正数时,直线向右上方倾斜;当x为负数时,直线向右下方倾斜。
通过改变x的值,可以在坐标系中绘制出不同斜率的直线。
反比例函数的几何意义在数学和物理方面起到了重要的作用。
在数学中,反比例函数的性质使它成为其他函数的重要组成部分,如复合函数、一次函数、二次函数等。
在物理中,许多自然界现象的描述都使用反比例函数,比如电阻和电流之间的关系、浓度和稀释之间的关系、速度和时间之间的关系等。
因此,了解和理解反比例函数的几何意义具有重要的实际应用价值。
26.1.1 反比例函数课件(共22张PPT)
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
数学人教版九年级下册26.1.1反比例函数的意义.1.1反比例函数的意义
26.1.1 反比例函数的意义教学目标1、理解并掌握反比例函数的概念。
2、能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3、能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
重点、难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式难点:理解反比例函数的概念。
教学方法:先学后导教学过程一、自主学习,整合目标(一)创设情境,引入课题1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?这就是我们从今天要研究的内容,本节课研究的是:(板书课题)26.1.1 反比例函数的意义〖设计意图〗启迪思维,激发学习热情,增强学习信心.(二)组织引导学生自主学习教材:请同学们按提纲自主学习教材第39至40页的例3和例4.自学提纲:1.勾划并记住教材中的定义、定理、公理及重点词句,思考并解答遇到的每一个问题.2.归纳学到的解题方法或步骤.3.模仿例题或运用所学知识完成教材练习.10分钟后汇报或展示自主学习成果.〖设计意图〗培养学生自学的能力.(三)组织并鼓励学生完成自学检测:1.下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;_________________(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化_________________(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S(平方千米/人)随全市总人口数n(单位:人)的变化而变化。
_________________上面的函数关系式,都具有_____________的形式,其中_________是常数。
2.下列问题中,变量间的对应关系可用这样的函数式表示吗?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;_________________(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;_________________(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
人教版九年级数学下册:26.1.1《反比例函数》教学设计
人教版九年级数学下册:26.1.1《反比例函数》教学设计一. 教材分析人教版九年级数学下册第26.1.1节《反比例函数》是学生在学习了正比例函数之后,进一步探索函数的性质和应用。
本节内容通过引入反比例函数的概念,让学生理解反比例函数的定义、性质及其在实际生活中的应用。
教材通过丰富的例题和练习,帮助学生掌握反比例函数的图象和解析式,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。
但是,对于反比例函数的概念和性质,学生可能较为抽象,难以理解。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的实例,引导学生理解反比例函数的定义和性质。
三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。
2.学会反比例函数的解析式,并能灵活运用。
3.提高解决实际问题的能力,培养学生的数学思维。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数的解析式的运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生探索反比例函数的性质;以实际案例为例,让学生理解反比例函数的应用;小组讨论,培养学生的合作精神和数学思维。
六. 教学准备1.准备相关的案例和实际问题。
2.准备反比例函数的图象和解析式的资料。
3.准备教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过提问方式复习正比例函数的知识,然后引导学生思考:如果两个量的乘积为定值,这两个量之间是什么关系?从而引出反比例函数的概念。
2.呈现(15分钟)呈现反比例函数的定义和性质,让学生初步了解反比例函数的概念。
通过展示反比例函数的图象,让学生直观地感受反比例函数的性质。
3.操练(15分钟)让学生分组讨论,根据反比例函数的性质,找出实际生活中的反比例关系。
每组选取一个实例,并用反比例函数的解析式表示。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对反比例函数的理解和运用。
新人教版数学九年级下册第二十六章 反比例函数教案
新人教版数学九年级下册第二十六章反比例函数教案第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。
从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。
因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定26.1.2 反比例函数的图象和性质知能准备【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.2、能用反比例函数的定义和性质解决实际问题.【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质【学思指导】教法:讲授法、对比法学法:类比法、数形结合法学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.【【课前预习】1.若y=(21)(1)n nx-+是反比例函数,则n必须满足条件 n≠12或n≠-1 .2.用描点法画图象的步骤简单地说是列表、描点、连线. 3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.设计意图:通过回忆,学会用描点法画函数的图象课堂引讨——【展示互动】问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=k x(k为常数且k≠0)的图象是什么样呢?[尝试]用描点法来画出反比例函数的图象.画出反比例函数y=6x和y=-6x的图象.解:列表思考:取什么值更易描出来x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来探究反比例函数y=6x和y=-6x的图象有什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳:反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性精编精练例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0)在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.备选例题1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.2.如图所示的函数图象的关系式可能是(• )A.y=x B.y=1xC.y=x2 D.y=1||x设计意图:通过具体的习题使学生加深对本部分知识的理解能解决具体问题。
反比例函数的意义课件
反比例函数的应用1反比例函数在经济学中的应用
2
经济学中的供给与需求曲线通常呈反比
例关系,反比例函数在解释价格与数量
关系时起到重要作用。
3
实际问题中的反比例关系
反比例函数被广泛应用于解决各种实际 问题,如贸易、经济、人口增长等。
反比例函数在物理学中的应用
物理学中的牛顿第二定律中的力与加速 度的关系、阻力与速度的关系等可以用 反比例函数表示。
反比例函数的求解
解析式 求解方法 例题解析
反比例函数的解析式通常可以表示为 y = k/x 的形 式。
为了求解反比例函数,我们可以将已知条件代入 反比例函数的表达式中,求解出未知变量。
通过解析具体例题,我们可以更深入地理解反比 例函数的求解方法和原理。
反比例函数的拓展
变形
反比例函数可以通过在表达 式中加入额外的项,进行平 移和拉伸,得到更多变形的 函数。
反比例函数的意义
反比例函数是数学中重要的概念之一。它在各个领域的应用广泛,为我们解 决许多实际问题提供了有力的工具。
什么是反比例函数
1 定义
反比例函数是指当自变量 的值增大时,函数值会相 应地减小;反之,自变量 的值减小时,函数值会增 大。
2 表达式
3 图像
一般情况下,形如 y = k/x 的函数被称为反比例函数, 其中 k 是一个非零常数。
反比例函数的图像通常呈 现出一条曲线,其特点是 自变量趋近于零时,函数 值呈无穷大。
反比例函数的特点
定义域和值域
反比例函数的定义域为除零以 外的所有实数,值域为除零以 外的所有实数。
单调性
当自变量增大时,反比例函数 的函数值单调减小;当自变量 减小时,函数值单调增大。
26.1.1反比例函数 教案
26.1.1反比例函数教案1. 仔细审题,完成下面填空:(1)京沪线铁路全长1463km,某次列车的平均速度v •随此次列车的全程运行时间t 的变化而变化,其关系可用函数式表示为:(2)某住宅小区要种植一个面积为1 000 m2矩形草坪,草坪的长y随宽x 的变化而变化,其关系可用函数式表示为(3) 已知北京市的总面积为1.68×104km2,人均占有的土地面积S km2/人,随全市总人口n人的变化而变化,其关系可用函数式表示为.2、合作探究分析:上述问题中的函数关系式都是y=的形式,其中k为常数.归纳:一般地,形如y=(k为常数,且k•≠0)•的函数称为。
注:在y=中,自变量x是分式的分母,当x=0时,分式无意义,所以x•的取值范围.3、反比例函数的变形形式:新课标第一网(1) xy=k; (2) y=kx-1.四、【教后反思】在教学反比例的定义时,我首先通过复习,巩固学生对正比例函数的理解.然后安排从中发现不成正比例,从而引入学习内容和学习目标。
这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度.在教学时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力.本节教案旨在实行启发式教学,主要以学生的自主探究为主,教师以问题的形式形成主导作用。
重视基础知识与基本技能、过程与方法、情感态度和价值观等课程目标的全面落实,注重数学思想方法的渗透.26.1.2反比例函数的图像和性质(1)一、【教材分析】二、【教学流程】1.函数x y 20=的图象在第________象限, 在每一象限内,y 随x 的增大而_________.2.函数x y 30-= 的图象在第________象限, 在每一象限内,y 随x 的增大而_________. 3.函数 x πy = ,当x >0时,图象在第____象限, y 随x 的增大而_________. 4.1000米长跑比赛中,速度h 关于时间t 的函数的图象大致是( ) .5.当0>k 时,函数kx y =与x k y -=在同一坐标系的大致图像是( ).6.在平面直角坐标系中,反比例函数xa a y 22+-=图象的两个分支分别在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 7.如图k >0能表示在同一坐标系中的大致图像的是( )Y y y y XxxxA B C D1.抛物线y =ax 2+bx +c 图像如图所示,则一次函数y =-bx -4ac +b 2与反比例函数xc b a y ++=在同一坐标系内的图像大致为( )2.若)>(0k xky =当x=-3,-2,-1时值为y y y 321,,小刚说y y y 321<<,你同意他的观点吗?说明理由.三、【板书设计】四、【教后反思】反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用. 课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。
人教版九年级数学下册26.1.1:反比例函数的意义(教案)
一、教学内容
人教版九年级数学下册26.1.1:反比例函数的意义。本节课我们将学习以下内容:
1.反比例函数的定义:形如\( y = \frac{k}{x} \)(\( k \neq 0 \))的函数称为反比例函数。
2.反比例函数的性质:反比例函数的图像是一条经过原点的曲线,称为双曲线。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是指当两个量的乘积为常数时,它们之间的关系可以表示为\( y = \frac{k}{x} \)的形式。这种函数在描述现实世界中的许多现象中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。假设有一个水池,其排水速率是恒定的,我们可以通过反比例函数来描述排水时间和水池中剩余水量的关系。
-反比例函数的图像特征:掌握反比例函数图像的双曲线形状,以及图像在第一、三象限的特点。
-反比例函数的性质:了解反比例函数在定义域内\( x \)增大时\( y \)减小,\( x \)减小时\( y \)增大的规律。
举例:通过实际案例,如物体在水平面上以恒定速度移动,距离\( x \)与时间\( y \)之间的关系可以表示为\( y = \frac{k}{x} \),强调\( k \)代表的是速度常数。
3.反比例函数的图像特点:当\( x \)的值增大时,\( y \)的值减小;当\( x \)的值减小时,\( y \)的值增大。
4.反比例函数在生活中的应用实例。
二、核心素养目标
1.理解反比例函数的概念,培养学生数学抽象素养,提升对函数本质的认识。
2.通过分析反比例函数的性质和图像,培养学生逻辑推理和直观想象素养,增强对函数图像与性质关系的理解。
反比例函数的意义说
https://
REPORTING
目录
• 反比例函数的定义 • 反比例函数的意义 • 反比例函数的性质 • 反比例函数的应用举例 • 反比例函数与其他数学知识的综合应用
PART 01
反比例函数的定义
REPORTING
WENKU DESIGN
反比例函数的数学定义
02
与正比例函数不同,反比例函数 的图像是双曲线,其形状和位置 会随着 $k$ 的正负变化而变化。
反比例函数的图像表示
当 $k > 0$ 时,反比例函数的 图像分布在第一象限和第三象限。
当 $k < 0$ 时,反比例函数的 图像分布在第二象限和第四象限。
在每一个象限内,随着 $x$ 的 增大或减小,$y$ 的值会无限接 近于 $0$,但永远不会等于 $0$。
PART 02
反比例函数的意义
REPORTING
WENKU DESIGN
反比例函数在现实生活中的应用
物理学
在物理学中,反比例函数经常被用来描述两 个物理量之间的关系,如电流与电阻之间的 关系($I propto frac{1}{R}$)。
经济学
在经济学中,反比例函数可以用来描述 商品的需求量与价格之间的关系,即需 求定律($Q propto frac{1}{P}$)。
反比例函数与三角函数的综合应用
三角函数和反比例函 数的图像特性
三角函数的图像是一个周期性的 波形,而反比例函数的图像是双 曲线。两者在图像上可能存在交 点或无交点。
解析式上的关联
实际问题的应用
三角函数的一般形式为 y = sin(x)、 y = cos(x) 等,通过适当的变换, 可以将三角函数转换为与反比例 函数有关的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中,当x的值由4增加
到6时,y的值减小3,求这个反比例函数的 解析式.
36 y x
6、一水池内有污水20 米3,设放完 全池污水的时间为t(分钟),每分 钟的放水量为w(米3),规定放水 时间在4分钟至8分钟之间,请把t表 示为w的函数,并给出w的取值范围。
1.当m= 1 时,关于x的函数 2 y=(m+1)xm -2是反比例函数?
m -7 y = x 8 ; ⑶ 判断一个等式为反比例 已知函数 是正比例函数,则 m = ___ 已知函数 是反比例函数 ,则 m = ___ 。 函数,要两个条件 : x -1 = 1 6 x m -7 y = 3x (1)自变量的指数为 -1;
8
3
y = x2
(2)自变量系数不为0.
2-|m| y = (m3) x 已知函数 是反比例函数,则 m = -3 ___ 。
k 都是 y= x 的形式,其中k是常数. 3.反比例函数的定义 k 一般地,形如 y= x (k是常数,k≠0)的函数称为反比
例函数,其中x是自变量,y是函数. 有时反比例函数 不为0的全体实数 4.也写成 反比例函数的自变量的取值范围是 y=kx-1或 xy=k的形式.
下列函数中哪些是反比例函数?并说出它的k。哪些是一次函数?
y = 3x-1 3 y = 2x
y = 2x
反比例函数
y=
1 x
5 1 0. 4 x y = 3x y y xy 2. x x 2
xy 2
1 y 2x2
y 2x
1
一次函数
【现场提问】
⑵ 在下列函数中,y是x的反比例函数的是( C ) (A) y = X+5(B) y = 2x (C)xy = 5 (D) x
变量t与v之间的关系可以表示成 : 1262 t v
做一做
工程中的数学
某机械厂加工一批零件,每小时加工的数量和 所需的加工时间如下表:
工效 x 时间 y 10 6 20 3 30 2 40 1.5 50 1.2 60 1
x y 60
60 y x
“行家”看门道
1.由上面的问题中我们得到这样的三个函数,你能指 出自变量和函数吗? 60 220 1262 y I t . R v x 2.上面的函数关系式形式上有什么的共同点?
k1 k2
11
40
5.5
60
3.67
80
100
2.75 2.2
当R越来越大时,I怎样变化?当R越来越小呢? (3)变量I是R的函数吗?为什么?
做一做
运动中的数学
行程问题中的函数关系
京沪高速公路全长约为1262km, 汽车沿京沪高速公路从上海驶 往北京,汽车行完全程所需的时 间t(h)与行驶的平均速度 v(km/h)之间 有怎样的关系?变 量t是v的函数吗?为什么?
【课堂练习】
1.y是x2成反比例,当x=3时,y=4. (1)写出y与x的函数关系式. (2)求当y=1.5时x的值.
2.已知函y=m+n,其中m与x成正比例, n与x成反比例,且当x=1时,y=4; x=2时y=5. (1)求y与x的函数关系式. (2)当x=4时,求y的值.
3.y是x的反比例函数,下表给出了x与y的一些值:
复习与回顾
1、什么是函数?我们学习了几种函数? 2、什么是正比例函数?
3、什么是一次函数? 4、什么是二次函数? 5、在一次函数、二次函数中自变量的取值 范围分别是什么?
第26章 反比例函数
26.1.1 反比例函数的意义
及用待定系数法求 反比例函数的解析式流I,电阻R,电压U之间满足关系式 U=IR.当U=220V时. 220 (1)你能用含有R的代数式表示I吗? I (2)利用写出的关系式完成下表: R R/Ω I/A 20
y x 1 x2 222 33 y 1 x y 33 y 1 x yx xx 3 y 1 y x y 1 2 y y x
yx 是 的一次函数 y 是 x是 的一次函数 y 是 x 的一次函数 y 是 的一次函数 y xx 的一次函数
∵当x=3时,y=-6 ∴ k=-12 ∴ 6
12 ∴y x 1
31
例2:已知y=y1-2y2,y1与x成反比例,y2与x2成 正比例,且当x=-1时,y=-5,当x=1时,y=1,求y 与x的函数关系式.
及时巩固
将下列各题中y与x的函数关系写出来. (1)y与x成反比例; (2)y与z成反比例,z与3x成反比例; (3)y与2z成反比例,z与X成正比例;
已知y y1 y2 , 其中y1与x成反比例,且比例系数 是k1 ; y2与x 2成正比例,且比例系数 是k 2 , 若x 1 时, y 0, 则k1与k 2的关系是
k1 2 1 解:由y y y y11 y y22 y k2 解:由 2x x
k1 2 由 x=y -1 y=0 解:由 时, y1 y2 0 k2 1 1
分析:
{
即
m2-2=-1
m+1≠0 m=±1
{
m≠-1
1 已知y 1与 成反比例, 且当x 1时y 4, 求y与x x2 的函数表达式,并判断 是哪类函数?
k k 11 kk x 解:由题意知 y y x 22 1 x 2 x 2 3 k 4 1 k 1 3 k 4 1 k 1 由 x=1 时, 3k 4 1 k 3k1 4 1 11 3y=4 k 4 k k1
x
y
-3
2 3
-2
1
-1
2
1 2
-4
1 2
1
-2
2 -1
… …
-4
(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.
2 y x
4 .近视眼镜的度数y(度)与镜片焦距x(米)成反 比例,已知400度近视眼镜镜片的焦距为0.25 米,则眼镜度数y与镜片焦距x之间的函数关
100 系式是___________ 。 y x
【待定系数法求反比例函数的表达式】
例1:已知y是x的反比例函数,当x=2时,y=6 (1)写出y与x的函数关系式; (2)求当x=4时,y的值. 变式:y是x-1的反比例函数,当x=2时,y=-6. (1)写出y与x的函数关系式. (2)求当y=4时x的值.
k 解:(1)设y与x的函数关系式为:y k x 1