第1章小变形弹塑性本构关系
弹塑性有限元法
当变形体同时存在大的弹性和塑性变形时,必 须采用弹塑性力学进行分析,相应的有弹塑性 有限元法,其较一般弹性有限元复杂得多。
1、塑性区中应力与应变之间为非线性关系,非线性问 题求解 — 增量法;
2、应力与应变关系不是一一对应的,加载与卸载关系 不同,必须判断是加载还是卸载状态;
3、多种材料硬化模型产生不同的有限元计算公式;
K u Q 非线性方程组
方程组
求解
与ij 有关
与ij 有关
u tt u t uu
和
三、弹塑性有限元处理的技术问题
1、加载增量步长的选定
计算精度与收敛性
加载的增量步长
tt P t P rmin P
增量步终止载荷
初始设定载荷增量
初始载荷 载荷约束因子
2、变形区弹塑性状态的判定
弹塑性变形过程中,变形体内部可能同时存在弹 性区、过渡区、塑性加载区和塑性卸载区等四种不同 状态的区域和单元,计算时必须分别进行处理。
x xy y xy z xy 2
xy
x yz y yz z yz xy yz 2
yz
x y
zx zx
z xy
zx zx
xy zx 2
zx
二、弹塑性有限元方程
由于 非线性的应力应变关系,只能按照增量法求解。
在小变形条件下,对t到t+Δt时刻的增量步进行 分析。设变形体为各向同性硬化材料、且服从Mises 屈服条件和Prandtl – Reuss方程的本构关系,并设t 时刻的变形条件为:单位体积的体积力为tpi;作用 在边界表面ST上的单位面积力为tTi;任一质点的位
移为tui,应变为tij,应力为tij。现以t时刻的变形为
弹塑性本构关系简介
松比)。
塑性材料受外部作用的反应和变形的历史有关(可称为历 史相关性或路径相关性),本构关系应写成增量关系。
应力空间表述的弹塑性本构关系
韧性(塑性)金属材料单向拉伸试验曲线如下 图示意
强度极限
b
屈服上限
L y
U y
e
屈服下限
弹性极限
强化段
软化段 卸载
残余变形
弹性变形
y
y
卸载、反向加载 包辛格效应
屈服面随内变量改变的规律称强化规律。由 材料试验的资料可建立各种强化模型,目前广 泛采用的有:等向强化;随动强化两种模型。
等 向 强
初始屈服面
2
B
f 0(ij ) 0 B
2
C A o1
化
o A 1
o
1
C
D
随
弹性
动
f 0 (ij ) 0
强 化
后继屈服面
f
( ij
,
p ij
,
k)
0
等向强化认为屈服面形状不变,只是作均匀
称后继屈服面,f
(
ij
,
p ij
,
k
)
0
。
如果一点应力的 f (ij ,ipj,,则k)此 点0 处于弹性状态,如
果
f (,ij则,处ipj ,于k)塑 0性状态。
式变张中形量的为i量j间应。存ip力j在张如和ip量j 下k,关统系称为ipj为塑内性变应量ip力j 。张其D量i中j,klkkp与l为塑标ipj 性志应永变久
d ij
Dt ijkl
d
kl
式中 Ditjk为l 切线弹性张量,形式上仍可表为
Dt ijkl
弹塑性力学 第01-0章绪论
静力学: 物体的平衡条件--平衡微分方程和应力边界条件。 几何学: 位移与应变的关系--变形协调关系(几何方程和 位移边界条件)。 物理学: 应力与应变(或应变增量)的关系--本构关系。 如在材料力学中推导扭转切应力、弯曲正应力 时都应用了上述关系。
8、求解弹塑性力学问题的数学方法
由几何方程、物理方程、平衡方程及力和位移的边 界条件求出位移、应变、应力等函数。 精确解法:能满足弹塑性力学中全部方程的解。例 如运用分离变量法将偏微分方程组解耦并化为常微分方 程组进行求解,另外还有级数解法、复变函数解法、积 分变换等。 近似解法:根据问题的性质采用合理的简化假设而 获得近似结果;如有限元法、边界元法、有限差分法 等。
ε ≤ ε s 时,σ = Eε ε > ε s 时,σ = σ s sign ε
⎧1, 当 σ > 0 ⎪ ⎪ sign σ = ⎨0, 当 σ = 0 ⎪ ⎪ ⎩-1, 当 σ < 0
εs = σs E
4、线性强化(硬化)弹塑性模型
假设拉伸和压缩时屈服应力 的绝对值和强化模量E’都相同, 当不卸载时,应力—应变关系可 以写成
如:梁的弯曲问题
弹性力学
材料力学
当 l >> h 时,两者误差很小。
材料力学计算简单而结果往往是近似的,但不少情 况下精度可以满足工程要求的 变截面杆的分析
o
σ (x )
σ
(x )
? P
P x
τ (x )
二、弹塑性力学的基本假设
¾ 连续性假设,应力、应变和位移都可以用坐标的 连续函数表示,便于应用连续和极限的概念。 ¾ 均匀性假设,物体各部分的物理性质都相同,并 不会随坐标位置的改变而发生变化。 ¾ 各向同性假设,物体在各个方向具有相同的物理 性质,弹性常数不随坐标方向的改变而改变。
弹塑性本构模型理论课件
。
材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模
弹塑性本构关系简介
2) 势能原理的数学表达
应变能
总势能
Ve=Vε+VP =1/2∫VσijεijdV 外力势能
-∫VFbiuidV- ∫SσFsiuidS = min
2 虚力原理
1)虚力原理的表述
给定位移状态协调的充分必要条件为:对 一切自平衡的虚应力,恒有如下虚功方程成 立(矩阵)
∫V[ε]Tδ[σ]dV=∫Su([L]δ[σ])T [u ]0dS
收敛准则
1、位移模式必须包含单元的刚体位移
2、位移模式必须能包含单元的常应变
3、位移模式在单元内要连续、并使相邻单元间的位移必须协调
满足条件1、2的单元为完备单元
满足条件3的单元为协调单元 多项式位移模式阶次的选择——按照帕斯卡三角形选
几何各向同性:位移模式应与局部坐标系的方位无关
多项式应有偏惠的坐标方向,多项式项数等于单元边界结点的自由度总
变间关系为 octσoct
GKtt
oct 3K s oct oct Gs oct
并有
Gs G
1
a
oct
B c
m
KGss
εoct
oct
K G e s
s (c oct ) p
KG
其中G、K分别为初始切线剪切和体积模量,
B c
为混凝土单轴抗压强度,a、m、c和p为由试验
确定的常数。
POCT
弹性张量Dijkl
ij
Dijkl kl
( 2G 1 2
ij kl
2Giklj ) kl
i 1, j 2, k 1,l 2
12
D1212 12
( 2G 1 2
1212
2G1122 )12
11 1 12 0 22 1
率无关弹塑性本构方程建立的一般步骤
d kl
即得到弹塑性本构张量
e e D : f D : f e D e f : D : f f q : f
D
ep
大变形下的弹塑性材料模型
(Elastoplastic material model under finite strains)
屈服面(the yield surface)
对于弹塑性材料,应力(stress)和应变(strain)之间没有单一 的对应关系,应力不仅依赖于应变,还依赖于材料的应变历史。我们 用一组称为内变量(internal variables)的参数tqi (i=1,n)来刻画 宏观物质微元的变形历史。以后的讨论中,我们进一步假定:当给定 内变量之后,材料的弹性响应可通过超弹性势来加以表示,由内变量 来确定材料的屈服准则 在应力空间中,对于给定的材料,我们可以定义屈服面
f 0 的约束之下寻找最大的塑性耗散,即 t D
D D λt f
.
t
.
是拉格朗日乘子 λ
t D 需要求 在 f 0 约束之下的最大值。要求
t
tD* 0 t ij ζ
tD* tλ
.
0
由以上的式子可以得到
t
tf d λ t ij ζ
P ij t .
.
同时注意
当tƒ<0时,材料呈弹性响应而不产生新的塑性变形 当tƒ=0时,应变的继续变化就可能使材料产生新的塑性变形 过去很多年,对于不同的性能的材料,已经提出了许多屈服函 数,课本上介绍的是冯米塞斯屈服准则。应当注意durcker公设,即 对于任何稳定的材料,用任何屈服面模拟时,在屈服面演化的过程中, 应力空间中,屈服面必须是凸面。
弹塑性力学讲义—本构关系
f1 = 2 3 s=0 f2 = 3 + 1 s=0
f3 = 1 2 s=0 f4= 2 + 3 s=0 f5 = 3 1 s=0 f6 = 1 + 2 s=0 当应力点位于f1=0上
f d d 1 1 ij
Prandtl-Reuss本构关系
1 2v d kk ( )d kk E
Levy-Mises本构关系
如塑性应变增量比弹性应变增量大得多时,可将弹性应变增量忽略,应力 增量与应变增量的关系变为
p dij dij =dsij
这是一种理想刚塑性模型。
• 相对弹性力学问题,增加了d未知数,也增加了一个方程(屈服条件) • 理想弹塑性问题,应在平衡方程+几何方程+物理方程+屈服条件
d 3 d ij d ij s 2
sij
2 s dij 3
dij dij
d p
p p 2d 2 d1p d 3 p d1p d 3
ud p u
• Tresca屈服条件相关联的流动法则 不规定主应力大小顺序,Tresca屈服条件可写成
(2)不稳定材料:应变增加,应力减少,称之为应变软化,<0,
(3)随应力增加,应变减少,这种情况和能量守恒原理矛盾
应力循环
0 •从1点的应力状态 ij ij 是静力可能的应力)开始, ( 0
p ij
p p (d1p : d 2 : d3 ) = (0 d1 d1)
当应力点位于f2=0上
p d ij d 2
f 2 ij
p p (d1p : d 2 : d3 ) = (d2 0 d2)
弹塑性力学-弹塑性本构关系
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
的真实功与ij0起点无关;
Ñ d ipj ij ij 0
(2)附加应力功不符合功的 定义,并非真实功
i0j ij i0jdij0
-
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
d
p ij
d
ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
结合
-
D
ij
ij
dipj Ddipj
d
p ij
d
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性
位势理论。他假设经过应力空间的任何一点M,必有
一塑性位势等势面存在,其数学表达式称为塑性位势
残余应力增量与塑性 应变增量存在关系:
dipj Ddipj
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
Ñ WI ijdij 0 i0j
只有在弹性应变时,上述WI=0。
根据Druker塑性公设
当 i0 jij时 (iji0 j)dijp 0
弹塑性力学塑性本构关系
0
14
1.理想塑性材料的增量本构关系 2.硬化材料的增量塑性本构关系 3.全量塑性本构关系
15
2. 硬化材料的增量塑性本构关系
d
p ij
d
f
ij
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
H121
Cp ijkl
1
9K 2
G
H11H 22
H
2 22
对称
H11H 33
H 22H33
H
2 33
H11H12 H 22H12 H 33 H12
H122
H11H 23
H 22H 23
H 33 H12
H12H 23
H
2 23
H11H 31 H 22H31
H
33
H
31
H12H31
H12
H
0
如果hd以 d累积pf塑2ij d性d32应ijd变ijpdkfddijpkdp作32p0为d内2变hd量f ij
f
fij ij
ij
p ij
d
k k p k d2 p f f
p ij
d
d
p ij
d
f k
k
p
d
d p
f
p
ij
0
3 ij ij
2 f f
3 ij ij
h f
Cijkl
1 H
H
ij
H
kl
H
非线性有限元9弹塑性本构关系ppt课件
对塑性变形基本规律的认识来自于实验: • 从实验中找出在应力超出弹性极限后材料的特性; • 将这些特性进行归纳并提出合理的假设和简化模型,
确定应力超过弹性极限后材料的本构关系; • 建立塑性力学的基本方程; 1) 求解这些方程,得到不同塑性状态下物体内的应力和
应变。
• 塑性阶段:继续加载,材料可承受 更大应力,称为材料强化,并伴随 出现塑性应变。至A点以前卸载, 路径接近直线,即处于弹性卸载状 态,其斜率等于加载斜率E。
1) 破坏点:继续加载至可承受的最大 极限应力,试件出现颈缩而破坏,
称为强度极限。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
1913年:泰勒(Taylor)的实验证明,LevyMises本构关系是真实情况的一阶近似。
1924年:提出塑性全量理论,伊柳辛(Ilyushin) 等苏联学者用来解决大量实际问题。
1930年:罗伊斯(Reuss)在普朗特(Prandtle) 的启示下,提出包括弹性应变部分的三维塑性应力 -应变关系。至此,塑性增量理论初步建立。
(屈服点),描写多维问题的屈服条件就需要应力或应变空间的一个临界曲面,该
曲面称为屈服面。
考虑到塑性变形与静
水压力无关的特点
f1,2,3C
FJ2,J3C
至今已出现许多屈服理论。俞茂宏教授在这方面做出了重要贡献。 屈服函数:
是描写屈服条件的函数。不同屈服条件,其屈服函数不尽相同。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
基本实验有两个: • 简单拉伸实验:实验表明,塑性力学研究的应力与应变
弹塑性力学-弹塑性本构关系ppt课件
d
p
|
cos
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
工程弹塑性力学·塑性位势理论
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
p
ij
0
0 ij
WD
(ij
adij
0 ij
)d
p
ij
0
1 a 1 2
当
0 ij
时,略去无穷小量
ij
( ij
0 ij
)d
p ij
0
当
0 ij
ij时,
d
ij
d
p ij
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
工程弹塑性力学·塑性位势理论
1 屈服曲面的外凸性
( ij
0 ij
)dijp
|
A0 A||
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
弹塑性力学本构关系
1
工程弹塑性力学·塑性位势理论
(1) 稳定材料与非稳定材料
弹塑性力学-弹塑性本构关系
(ij , H ) F(I1, J2, J3) K 0
初始屈服面 硬化系数
tresca、von mises、M-C K H( dW p )或H( d p )
dW p
ij
d
p ij
d p
2 3
deipj deipj
mises : q s H ( dW p )[或H ( d p )] 0 tresca : max s H ( dW p )[或H ( d p )] 0
d ij
0
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
②ij0在塑性势面与屈服面
之间时,德鲁克公设不成立;
屈服面 势面线
(5)金属材料的塑性势面与 屈服面基本一致。
附加应力功为非负的条件
3.1.3 依留申塑性公设的表述
弹塑性力学本构关系
(1) 稳定材料与非稳定材料
德鲁克公设和依留申公设是传统塑性力学的基础,它把塑性势函 数与屈服函数紧密联系在一起。德鲁克公设只适用于稳定材料, 而依留申既适用于稳定材料,又适用于不稳定材料。
稳定材料
非稳定材料
附加应力对附加应变做功 附加应力对附加应变负做
为非负,即有 0
功,即 0
依留申塑性公设:在弹塑性材料的一个应变循环内, 外部作用做功是非负的,如果做功是正的,表示有塑性变 形,如果做功为零,只有弹性变形发生。
设材料单元体经历任意应力
历即史初后始,的在应应变力εσij0ij在0下加处载于面平内衡,,然
后在单元体上缓慢地施加荷载,使
ε应变原i变d先j达ε点的到ijp应ε屈。变ij+服然状d面后ε态,卸ij,ε再载此ij继0使,时续应并产加变产生载又生塑达回了性到到与应
弹塑性力学弹性与塑性应力应变关系详解课件
有限差分法
有限差分法(Finite Difference Method,简称FDM)是一种基于差分原 理的数值模拟方法。
它通过将连续的时间和空间离散化为有限个差分节点,并利用差分近似代 替微分方程中的导数项,从而将微分方程转化为差分方程进行求解。
有限差分法适用于求解偏微分方程,尤其在求解波动问题和热传导问题方 面具有优势。
05
弹塑性力学的数值模拟方法
有限元法
有限元法(Finite Element Method,简称 FEM)是一种广泛应用于解决复杂工程问题 的数值模拟方法。
它通过将连续的求解域离散化为有限个小的 单元,并对每个单元进行数学建模,从而将 复杂的连续场问题转化为离散的有限元问题。
有限元法具有灵活性和通用性,可以处理各 种复杂的几何形状和边界条件,广泛应用于 结构分析、热传导、流体动力学等领域。
与应变之间不再是线性关系。
重要性
03
了解塑性应力应变关系对于工程设计和结构安全评估具有重要
意义。
屈服准 则
屈服准则定义
描述材料开始进入塑性变形 阶段的条件。
常用屈服准则
例如,Von Mises屈服准则、 Tresca屈服准则等。
屈服准则的意义
为判断材料是否进入塑性变 形阶段提供依据,是弹塑性 力学中的重要概念。
弹塑性力学弹性与塑性应 力应变关系详解课件
目录
• 弹性应力应变关系 • 塑性应力应变关系 • 弹塑性本构模型 • 弹塑性力学的数值模拟方法
01
弹塑性力学基 础
弹塑性力学定义
01
02
03
弹塑性力学
是一门研究材料在弹性与 塑性范围内应力应变关系 的学科。
弹性
材料在受到外力作用后能 够恢复到原始状态的性质。
最新7.弹塑性力学--塑性本构关系汇总
f g J2 k
Cep ijkl
ij kl
ik jl
il jk
k2
sij skl
d ij
C d ep ijkl kl
d x
d
y
d
d z d xy
d
yz
d zx
d x
d y
d
d d
z xy
d
yz
d zx
C ep ijkl
Ce ijkl
Cp ijkl
6
1.理想塑性材料的增量本构关系
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
f
ij
d ij
d
p ij
1 h
f
ij
f
kl
d kl
如何确定?
f
ij d ij
f ij k
16
2. 硬化材料的增量塑性本构关系
f ij ,ij , k 0
sx2 sysx
Cp ijkl
G k2
szsx
sxy sx
s
yz
sx
szxsx
sxsy
s
2 y
szsy
sxy sy
syz sy
szx sy
sxsz
sysz
s
2 z
sxy sz
syz sz
szx sz
sx sxy sy sxy sz sxy sx2y syz sxy szx sxy
sx syz
弹性变形及塑性变形
一、弹性和塑性的概念可变形固体在外力作用下将发生变形。
根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值〔通常称之为弹性极限荷载〕时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一局部不能消失的变形被保存下来,这种保存下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。
根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,那么定义为在去掉外力后不能恢复原来形状的性质。
“弹性[Elasticity]"和“塑性〔Plasticity〕〃是可变形固体的根本属性,两者的主要区别在于以下两个方面:1]变形是否可恢复:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性变形那么是不可恢复的,塑性变形过程是一个不可逆的过程。
2〕应力和应变之间是否一一对应:在弹性阶段,应力和应变之间存在一一对应的单值函数关系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系而且是非线性关系〔这种非线性称为物理非线性〕。
工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,假设变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。
通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。
二、弹塑性力学的研究对象及其简化模型弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。
弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。
因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。
构成实际固体的材料种类很多,它们的性质各有差异,为便于研究,往往根据材料的主要性质做出某些假设,忽略一些次要因素,将它抽象为理想的“模型〞。
混凝土的弹塑性本构模型研究
混凝土的弹塑性本构模型研究混凝土是一种广泛应用于建筑工程中的材料,其力学性能的研究一直是结构工程领域的热点问题。
混凝土的本构模型是描述其力学性能的数学模型,对于工程设计和结构分析具有重要意义。
本文将探讨混凝土的弹塑性本构模型的研究。
1. 弹性本构模型弹性本构模型是描述材料在无限小应变范围内的力学性能的模型。
对于混凝土这种非线性材料来说,最简单的弹性本构模型是胡克定律。
胡克定律假设应力与应变之间存在线性关系,即应力等于弹性模量与应变之积。
然而,实际上混凝土在受力作用下会发生塑性变形,因此需要引入塑性本构模型。
2. 塑性本构模型塑性本构模型是描述材料在大应变范围内的力学性能的模型。
对于混凝土来说,常用的塑性本构模型有弹塑性模型和本构模型。
弹塑性模型将材料的力学性能分为弹性和塑性两个阶段,通过引入弹性模量和塑性应变来描述材料的力学性能。
本构模型则是将材料的塑性行为通过一系列的本构方程来描述。
3. 弹塑性本构模型弹塑性本构模型是将弹性本构模型和塑性本构模型结合起来的模型。
对于混凝土来说,常用的弹塑性本构模型有Drucker-Prager模型、Mohr-Coulomb模型和Cam-Clay模型等。
Drucker-Prager模型是一种常用的弹塑性本构模型,它基于摩擦理论和塑性理论,将混凝土的弹性和塑性行为进行了描述。
该模型假设混凝土的破坏是由于摩擦和塑性变形引起的,通过引入内聚力和摩擦角来描述混凝土的塑性行为。
Mohr-Coulomb模型是另一种常用的弹塑性本构模型,它基于摩擦理论和强度理论,将混凝土的弹性和塑性行为进行了描述。
该模型假设混凝土的破坏是由于剪切和压缩引起的,通过引入内摩擦角和内聚力来描述混凝土的塑性行为。
Cam-Clay模型是一种用于描述粘土的弹塑性本构模型,但也可以用于描述混凝土的力学性能。
该模型将混凝土的弹性和塑性行为进行了描述,通过引入压缩指数和膨胀指数来描述混凝土的塑性行为。
4. 本构模型的应用混凝土的本构模型在工程设计和结构分析中具有重要意义。
小变形的Lagrange型弹塑性本构模型
20 0 8年 9月
南昌大学学报 ・ 工科版
Jun l f a c a gU i r t( n i eig& T c n l y o ra o n h n nv s y E g e r N ei n n eho g ) o
V 13 . o . O No 3
S p. 0 e t 2 08
文章编号 :0 6— 4 6 20 )3— 2 8— 6 10 05 ( 0 8 0 0 4 0
小 变 形 的 L gag arn e型弹 塑 性本 构模 型
扶名福 , 光宗, 良森 刘 陈
( 南昌大学 工程 力学实验 中心 , 江西 南昌 3 0 3 ) 3 0 1
temo e sc aa tr e y tep rmee a a l h d li h rce z db aa trv r be口.T e dsu so so n iorpc eat —ls c mo e a e i h i h i sin n a s t i ls cpat d lh v c o i i
律就确 定 了。在此 , 设 弹 塑性 物 质 的 弹性 常数 不 假
讨 论 。对这种模型在单轴拉压 下 的响应 分析表 明 , 这 种模 型能统一理想塑性 、 向同性 强化和线性 随动强 各 化 模型 , 能描述单轴应力状态下 非常复杂的响应 。
1 L g ne型 本 构模 型 ar g a
摘 要 : 论 了 小 变形 Lgag 型 弹 塑 性 本 构 模 型 。 由 背应 力 定 义 塑 性 应 变 , 而 由 I uhn 设 得 到 背 应 力 的 讨 arne 从 l si 假 y 演 化 律 。分 析 表 明 , 模 型 的强 化 特 性 由参 量 口决 定 。对 一 种 特 殊 的各 向 同 性 弹 塑 性 模 型 的讨 论 表 明 , 种 L- 该 这 a
工程塑性力学
第一章:金属材料的塑性性质○1 弹性与塑性的本质区别不在于应力—应变关系是否线性,而在于卸载后变形是否可恢复1、简单○2 低碳钢屈服阶段很长,铝、铜、某些高强度合金钢没有明显的屈服阶段(此时取0.2%塑性应变对应的应力为条件屈服应力);0.2一、金属材拉伸试验○3 塑性变形量p / E (E 弹性模量;Et 切线模量)○4 简单拉伸件塑性时d E d(拉伸d 0); d Ed(压缩d 0)t料的○5 塑性变形后反向加载(单晶体:反向也对称强化;多晶体:反向弱化—包辛格效应)塑性○6 高温蠕变:应力不变时应变仍随时间增长的现象性质塑性变形不引起体积变化2 静水压○1 静水压力与材料体积改变之间近似服从线弹性规律金属材料发生大塑性变形时可忽略弹性力试验体积变化○2 材料的塑性变形与静水压力无关1、滑移面:晶体各层原子间发生的相对滑移总是平行于这种原子密排的平面,这种大密度平面称为滑移面。
二、塑2、滑移方向:滑移面内,原子排列最密的方向是最容易发生滑移的,称为滑移方向;性变3、滑移系:每个滑移面和滑移方向构成一滑移系。
(体心立方—12;面心立方—48;密排六方—3)形的物理1、为使晶体发生塑性变形,外加应力至少在一个滑移方向上的剪应力分量达到剪切屈服应力;Y基础位错刃形位错:位错运动方向与F 平行;位错在晶体内的运动是塑性变形的根源;塑性变形时位错型聚集、杂质原则阻碍滑移造成强化。
螺形位错:位错运动方向与F 垂直。
三、轴向拉伸时的塑性失稳采用应变的对数定义的优点:=F / A 1、可以对应变使用加法:名义应力:应力真应力: =F / A2、体积不可压缩条件: 1 2 3 0工程应变: =(l-l )/l应变拉伸失稳条件:0 0=ln(1+ )=ln(l /l )自然应变/对数应变:d / d (此时d / d 0)1、材料塑1、材料的塑性行为与时间、温度无关——研究常温静载下的材料;2、材料具有无限的韧性;3、变形前材料是初始各向同性的,且拉伸、压缩的真应力—自然应变曲线一致性行为基本假设4、重新加载后的屈服应力(后继屈服应力)=卸载前的应力5、应变可分解为弹性和塑性两部分: =e p6、塑性变形是在体积不变的情况下产生的,静水压力不产生塑性变形;7、应力单调变化时有:E(弹性模量) E(s 割线模量)E(t 切线模量) 0简化模型○1 理想弹性○2 理想刚塑性○3 刚线性强化○4 理想弹塑性○5 弹—线性强化四、材料塑性行为的理想化2、应力、应变曲线的理想化模型经验公式鲁得维克表达式:n=+H (0 n 1)Y修正的鲁得维克式:E (当/ E )Y当(E / )n ( /E )Y Y YY Y Y1)n=0:刚塑性材料;2)0<n≤1:刚线性强化材料1)弹性范围内用Hooke 定律表达;2)塑性范围内用幂函数表达。
材料力学中的弹塑性本构模型建立
材料力学中的弹塑性本构模型建立在工程和力学实践中,弹塑性是一种非常重要的材料本构模型。
它能够对许多材料的力学性能进行准确预测,因此在设计和分析中得到广泛应用。
本文将介绍弹塑性本构模型的基本概念和建立方法。
一、弹塑性基本概念弹塑性是一种材料可能表现出的力学特性,它包括两个不同的行为:弹性和塑性。
弹性是指材料恢复原来形状和大小的能力,这是由于分子等微观结构的作用而产生的。
而在材料接受持续变形时,会发生形变不可逆的情况。
这种现象被称为塑性。
当材料被施加应力时,如果应力不超过一定范围,材料会发生弹性形变;一旦应力超过一定界限,材料就会发生塑性变形。
材料的弹塑性是由其微观结构决定的,因此不同的材料会表现出不同的弹塑性特性。
二、弹塑性本构模型的基本原理弹塑性本构模型是描述材料弹塑性问题的一类物理模型。
它基于能量守恒原理,建立材料固体在应力和应变作用下的不同状态之间的关系。
本构模型的目的是把材料行为和材料力学特性建立起来,便于进行物理和工程分析。
所以在材料力学中,弹塑性本构模型是一个非常重要的基本理论。
材料弹塑性本构模型的建立过程包含以下三个步骤。
1. 实验数据获取该步骤是建立弹塑性本构模型的基础。
通过物理实验,可以得到材料的应力-应变曲线,即通过外力施加不同载荷,测量材料在相应的应力状态下的应变表现。
从这些实验数据中可以得到材料的力学特性。
2. 建立本构关系本构关系是弹塑性本构模型中最基本的方程。
它建立材料中的形变应力与形变大小和方向之间的关系。
大多数情况下,本构关系并不只是一个公式,而是一系列方程的集合,不同的方程适用于不同的材料。
在建立本构关系时,通常需要将材料划分为一定数量或限制条件下的应力状态,并在这些状态下建立相应的方程形式。
然后,通过插值或其它数值方法可以精确地计算出材料弹塑性的行为。
3. 参数确定弹塑性本构模型的参数是过程中最难确定的部分。
参数在本构模型中的作用类似于提供具体材料的物理性质或形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 1-1 初始与后继屈服面
在经典塑性理论中,假定“正交法则”,即塑性变形率 p 沿着屈服面的 外向法线方向。由 Drucker 假设,或 Ilyushin 假设,或最大塑性功率原理(见 节 1.6)均可论证这一正交法则。按正交法则 p // f 。不失广泛性,可 设 f 沿屈服面的外向法线 1)。故可记 2)
p f ,!
૾ ipj
f ij
,!
≥0
(1.10)
式中 称为塑性流动因子。由于塑性变形保持体积不变,
trp ipi 0 因此 f 为一偏斜张量。定义沿屈服面外法线的单位张量
(1.11)
n f f
(1.12)
式中
f f : f f f
第 1 章 小变形弹塑性本构关系
本章研究率无关材料小变形情况。
1.1 经典弹塑性本构关系
小变形情况下,变形(或应变)张量 可分解为弹性变形张量 e 与塑性 变形张量 p 之和:
e p
(1.1)
1. 预备知识
以 I 表示四阶“等同张量”(identity tensor),它的分量为
以 I 表示“特殊等同张量”(special identity tensor),其定义为
I
I
1 3
,!
Iijkl
Iijkl
1 3
ij kl
它具有以下性质。 性质 1 设 a 为任意二阶对称张量,则
I : a a ,! Iijkl akl aij
式中 a 表示 a 的偏斜张量 1):
3
)
ij
kl
1 2
Iijkl
2
(2
3
)
ij
kl
(1.8)″
式中
G
E 2(1
)
,!
K
2 3
G
2 G 1 2
(1
)
E (1
2
)
3. 塑性变形
屈服条件
f ( ,Y1,,Yn ) 0
(1.9)
式中 Y1,,Yn 为硬化参量,它们在加载过程中随着时间 t 而变化,它们依赖 于材料的当前状态,可以是标量,也可以是张量。作为硬化参量的例子,有
a
a
1 3
J1 a
,!
aij
aij
1 3
akk
ij
性质 2
I : I I ,! I I ijrs rskl Iijkl
(1.3)
(1.4) (1.5) (1.6)
2. 弹性变形
弹性变形张量 e 与应力张量 之间满足弹性关系:
e M : ,!
e ij
Mijkl kl
ij ij
(1.13)
故 n 为一单位偏斜张量
n:n 1
(1.14)
1) 在节 1.1 至 1.3 中假设 f 存在,即在应力空间中屈服面为光滑曲面。 2) 有的文献把此处的 记为 ,因此(1.10)乘以 dt 后,可以写成 d p d f , d ≥ 0 。
可证 I 具有以下性质。 性质 1 设 a 为任意二阶张量,则
I : a sym a
(1.3)
即
Iijkl akl
1 2
(aij
a ji )
高等固体力学(上册)
因此,如 a 为任意二阶对称张量,则
I : a a ,! Iijkl akl aij
性质 2
I : I I ,! I I ijrs rskl Iijkl
ijkl
1 E
1 2
1
ik jl
il jk
ij
kl
(1.8)
若用 Lamé 参数与表示,则(1.8)可写作
M
1 2
I
1 3(2
3
)
1 2
I
2
(2
3 )
,
Mijkl
1 2
Iijkl
1 3(2
之间的比例常数为 3K。
1) 二阶张量加撇表示该二阶张量的偏斜张量(简称偏量)。以后仍沿用此记号。
2
第 1 章 小变形弹塑性本构关系
e
1 2G
1 3K
1 3
J1
,
e ij
1 2G
ij
1 9K
kk
ij
1 2G
Iijkl
1 9K
ij kl
kl(1源自7)式中 M 为弹性柔度张量。如果弹性与塑性之间不存在耦合,则 M 为常张量。 下面来推导各向同性材料的弹性柔度张量 M 。各向同性材料的弹性常
数 G,K,E, 之间满足以下关系:
1 2G
1 E
,
1 9K
1 2 3E
其中 E 为杨氏模量, 为泊松比,G 为剪切模量,K 为体积模量。 在弹性变形与应力之间,它们的偏斜张量的比例常数为 2G,球形张量
4
第 1 章 小变形弹塑性本构关系
而(1.10)可写作
p f n
(1.10)
因为塑性变形保持体积不变,故 n 为偏量。 作为塑性变形的度量,引进“累积塑性变形” p ,首先定义等效塑性
变形率。设材料为各向同性,定义等效塑性变形率为
p
2 3
式中 J1( ) 表示应力张量 的第一不变量。因此,与(1.7)对比可看出
M
1 2G
I
1 9K
,!
Mijkl
1 2G
Iijkl
1 9K
ij kl
(1.8)
将(1.4)的 I 代入(1.8),可得
M
1 E
1 I
,
Mijkl
1 E
1 Iijkl
Iijkl
1 2
(
ik
jl
jkil )
(1.2)
式中 ik 等为 Kronecker delta,它是二阶单位张量 (或记作 1)的分量。易 证 Iijkl 具有下列三重对称性,又称 Voigt 对称性:
Iijkl I jikl , Iijkl Iijlk , Iijkl Iklij
累积塑性变形、累积塑性功、背应力等。 屈服条件(1.9)决定应力空间中的一曲面,称为后继屈服面(或当前屈服
面)。在材料初始状态, Y1 Yn 0 ,(1.9)相当于应力空间中的初始屈服 面,见图 1-1。屈服面之内为弹性区。设应力 在当前屈服面上,当应力率
3
高等固体力学(上册)