第五章 翼型气动特性
翼型及其气动性能参数的基本概念及应用
翼型及其气动性能参数的基本概念及应用翼型是指飞机、鸟类等载体所采用的具有特定截面形状的部件,它决定了载体的飞行性能。
在飞行器领域,翼型的气动性能参数是设计和优化翼型的基础。
本文将介绍翼型及其气动性能参数的基本概念及其应用。
1. 翼型翼型是由上、下表面、前缘和后缘构成的一个二维曲面,在飞行器领域有着广泛的应用。
翼型的形状对飞行器的气动性能影响非常大,关系着飞行器的升力、阻力、气动失速特性等。
2. 翼型气动性能参数翼型气动性能参数是指翼型概念设计和优化的基础,常见的翼型气动性能参数有:2.1 升力系数升力系数是指翼型受气动力作用产生的升力与翼展面积之比,记为Cl。
在翼型设计中,通常需要通过改变翼型的几何形状、攻角等因素来达到一定的升力系数。
升力系数可以用来评估翼型的升力性能,并与翼型的阻力系数相结合来评估翼型的性能。
2.2 阻力系数阻力系数是指翼型受气动力作用产生的阻力与翼展面积之比,记为Cd。
阻力系数是评估翼型阻力性能的重要参数,与翼型的升力系数一起可以用来评估翼型的综合气动性能。
2.3 气动中心位置气动中心位置是指翼型在气动力作用下产生的力和力矩中心,它是设计翼型和确定飞行器平衡特性的重要参数。
2.4 失速速度失速速度是指翼型在攻角增加到一定程度时失去升力的速度。
失速速度是评估翼型失速性能的关键参数之一。
3. 应用翼型的气动性能参数对于飞行器的设计、优化和性能评估都有着重要的应用价值。
例如,在飞机设计和优化中,可以通过改变翼型几何形状、攻角等因素来达到一定的升力、阻力和失速性能要求。
在飞行器的性能评估中,可以通过分析翼型的气动性能参数来评估飞行器的升力、阻力、气动稳定性等性能特征。
总之,翼型及其气动性能参数是飞行器设计和优化的基础,深入了解和掌握翼型的基本概念和气动性能参数,对于提高飞行器的性能、减小飞行器的阻力和增加飞行器的升力等都具有重要的意义。
第五章机翼低速气动特性(3)PPT课件
个常量,而法向分速 V n 不断地改变,所以
流线就会左右偏斜,其形状呈“S”形, 如 右图所示。
后掠翼的绕流图画
后掠翼的绕流图画
这是因为气流从远前方流向机翼前缘时,其 法向分速 V n 受到阻滞而越来越慢,致使气流的合 速越来越向左偏斜。
后掠翼的绕流图画
右图给出了后掠角对剖面升力
系数 CL z 沿展向分布的影响
的例子。
后掠翼的气动特性
后掠翼的升力特性,可用升力面理论来计算。
后掠翼的诱导阻力系数仍可按下式计算:
CDi
CL2 (1)
6 小展弦比机翼的低速气动特性
小展弦比机翼的低速气动特性
通常把<3的机翼称为小展弦比机翼。由 于超声速飞行时小展弦比机翼具有较低的 阻力,所以这种机翼常用于战术导弹和超 声速飞机。
大展弦比直机翼的失速特性
所以,对于椭圆形的机翼,
随着α的增大,整个展向各翼
剖面同时出现分离,同时达
到CLmax∞(翼型的最大升力系
数), 同时发生失速,失速
i
特性良好,如右图所示。
大展弦比直机翼的失速特性
矩形机翼(=1)的诱
导下洗速度从翼根向翼尖增
大,翼根翼剖面的有效迎角
将比翼尖大,剖面升力系数
大迎角下的CLmax也小,但 翼根区先分离不会引起副翼
特性的恶化,并可给驾驶员
i
一个快要失速的警告,一般
还是可以接受的。
大展弦比直机翼的失速特性
梯形机翼由于中小迎角下 的升阻特性接近椭圆翼,结构 重量也较轻,使用甚为广泛。 但是,分离首先发生在翼尖附 近,使翼尖先失速,所以就失 i 速特性来说,上述三种机翼中, 梯形直机翼最差。
第五章+机翼低速气动特性(1)
所以机翼的平面形状给定后,机 翼的焦点位置xF就可以确定。
x
z
z
o
xF
1 弦线 4
x
c( z )
机翼的焦点
由于在推导过程中曾假设剖面的焦点位置在1/4弦长处, 这个假设对大展弦比直机翼是对的,但对后掠机翼和小展弦
比机翼来说与实际是有出入的。
z
z
o
xF
1 弦线 4
x
c( z )
x
机翼的焦点
要精确确定后掠机翼的焦点位置,必须依靠实 验或按后面将要介绍的升力面理论进行计算。
z
z
o
xF
1 弦线 4
x
c( z )
x
4 大展弦比直机翼的气动特性
大展弦比直机翼的气动特性
二维翼型相当于展长无限大的机翼,即λ =∞, 而实际机翼的展长及相应的λ 均为有限值,流
绕流流态
对于有限翼展机翼,由于翼端的存在,在正升力时机翼
下表面压强较高的气流将从机翼翼尖翻向上翼面。
_
vz
y
_ _ _ _ _ _3; + + + + + + +
vz
vz
绕流流态
使得上翼面的流线向对称面偏斜,下翼面的流线向翼尖
偏斜。
上翼面流线
下翼面流线
绕流流态
而且这种偏斜从机翼的对称面到翼尖逐渐增大。如图所
机翼的几何参数
y
几何扭转角:机翼上平行于对
称面的翼剖面的弦线相对于翼
根翼剖面弦线的角度称为机翼 的几何扭转角扭;如右图所 示。
扭
o
x
风力机叶片设计及翼型气动性能分析
风力机叶片设计及翼型气动性能分析风力机叶片是风力发电机的核心部件之一,其设计和翼型选择对风力机的发电效率、噪音和寿命等都有着非常重要的影响。
本文将介绍风力机叶片的设计及翼型气动性能分析。
一、叶片设计原理风力机叶片的设计目的是将大气中的风能转换成旋转能,并将其通过转轴传递给发电机,从而产生电能。
因此,叶片的设计主要围绕以下几点展开:1. 创造足够的扭矩:风力机的转子需要达到一定的转速才能发电,而叶片的弯曲和扭矩对于旋转速度的影响至关重要。
设计中需要选择合适的曲线形状和长度来实现理想的扭矩和转速。
2. 保证叶片的强度和稳定性:因叶片在高速旋转状态下会受到巨大的惯性力和风力力矩的作用,因此其材料和结构要足够坚固和稳定,以避免可能的断裂等事故。
3. 提高叶片的气动效率:叶片的气动效率是指其转化风能的能力,通常可以通过优化翼型、减小阻力、降低风阻等方法来提高。
二、叶片设计步骤1. 选定叶片长度:叶片长度通常是根据风力机的规格和性能要求来确定的,也可以根据标准长度来选择。
2. 选择翼型:翼型是叶片的重要组成部分,其形状和性能决定了叶片的阻力和气动效率。
目前,常用的翼型有NACA0012、NACA4415等,根据实际需求来选择。
3. 确定叶片曲线:叶片的曲线是决定扭矩和转速的关键因素,可以通过实验或模拟方法得到合适的曲线形状。
4. 优化叶片的结构:结构设计主要涉及到叶片的强度和稳定性,通常需要进行材料选择、计算等工作以保证叶片的安全性和寿命。
5. 模拟叶片气动特性:叶片的气动特性可以通过流场模拟、试验等方式来获取,可以根据实际需求来对叶片进行调整以达到理想的效果。
三、翼型气动性能分析翼型气动性能是指翼型在气流中运动时产生的力和力矩,其中,升力和阻力是翼型气动力的主要组成部分。
通过分析翼型气动性能,可以选择最优化的翼型来设计叶片。
1. 升力和阻力翼型的升力和阻力是由翼型形状、气流速度、攻角等因素共同决定的。
实际上,翼型的气动性能曲线通常都是非线性的,其升力和阻力特性会随着攻角的变化而不断变化。
第五章翼型气动特性
确定了无粘位流理 论涉及的速度环量 的唯一性,这是库 塔—儒可夫斯基后
缘条件的实质。
V后上=V后下=0; 后缘角τ=0, 后缘点处流速为有限值,
V后上=V后下 ; (2)实际小圆弧后缘翼型(见右图)
VS上=VS下 。 简单讲,就是后缘无载荷:p后上 = p后下
这被称为推广的库塔—儒可夫斯基后缘条件。
A 轴 向 R 在 力 平c 行 方于 向弦 的线
• 存在如下数学关系:
LN co sA sin
DNsian Aco s
§ 5.2.2 翼型的空气动力系数
定义自由来流的动压为
q
:q
1 2
v2
➢升力系数
CL
L qS
L
1 2v2•b•1
➢阻力系数
CD
D qS
D
1 2v2•b•1
➢力矩系数
Mz
§5.3低速翼型的流动特点及起动涡
起动涡
——起动过程完结,
翼型匀速前进
后驻点O1移至后缘点B时,后缘绕流分离形成的涡脱离翼面流向下游, 形成起动涡,后缘处上下翼面流动平顺汇合流向下游。
§5.3低速翼型的流动特点及起动涡
绕翼型环量的产生
由于远离翼面处流动不受粘性影响,所以 Γ= 0
若设边界层和尾流中的环量为Γ3,则应有 Γ = Γ1+ Γ 2 +Γ3
§5.3低速翼型的流动特点及起动涡 翼 型 的 升 力 曲 线
§5.3低速翼型的流动特点及起动涡
起动涡的概念: 以上给出的,是翼型已处于运动速度恒定和迎角不变 的条件下低速翼型的绕流图画。然而,翼型是由静止 加速才达到速度恒定的运动状态的。
翼型由静止加速到恒定运动状态的过程,称为起动过 程。
(精品)空气动力学课件:超声速和跨声速翼型气动特性
Folie 9
y d sin 2 (x Bh)
l
Folie 21
9.1.2 薄翼型超声速的线化理论
在线化理论假设下,对于超声速气流绕过波纹壁面的 扰动速度和流线的幅值均不随离开壁面的距离而减小。
在壁面处的压强分布为
超声速绕流压强系数与波纹壁面相位差 /2,亚声速差
。
4 d 2x
C ps
B
cos l
l
超声速
超声速翼型将承受阻力,这种与马赫波传播有关的阻力 称为波阻。
Folie 7
9.1.1超声速薄翼型的绕流特点和流动图画
在超声速流动中,绕流物体产生的激波阻力大小与物 体头部钝度存在密切的关系。由于钝物体的绕流将产生 离体激波,激波阻力大;而尖头体的绕流将产生附体激 波,激波阻力小。
Folie 8
9.1.1超声速薄翼型的绕流特点和流动图画
空气动力学
Folie1
超声速和跨声速翼型 气动特性
超声速和跨声速翼型气动特性
本章主要应用超声速流的线化理论来研究薄翼型在无 粘性有位绕流和小扰动假设下的纵向空气动力特性。由 于作了无粘性绕流的假设,因此,不涉及与粘性有关的 摩擦阻力和型阻力的特性。
与亚声速翼型绕流不同,超声速翼型绕流,承受有波 阻力,这是超声速空气动力特性与亚声速空气动力特性 的主要区别之一。
Folie 12
9.1.2 薄翼型超声速的线化理论
第五章+机翼低速气动特性(2)
L = ρV
l 2 ∞ l − 2
∫
Γ(z)dz
Γ (z) 2z = 1− Γ0 l
2V∞ S ∴Γ0 = CL πl
2
l Γ0πl 2 2 CL = l ∫−2 Γ(z)dz = 2V∞S V∞ S
椭圆形环量分布无扭转平直机翼的气动特性
而
vi (z) Γ0 CL ∆αi = = = V∞ 2lV∞ πλ
C'L (z) = Cα∞ (z)[αe (z) −α0∞ (z)] = Cα∞ (z)[α(z) − ∆αi (z) −α0∞ (z)] L L = Cα∞ (z)[αa (z) − ∆αi (z)] L
上式中的 Cα∞ (z)、α0∞ (z)为二维翼剖面的升力线斜率和零 L 升迎角。 升迎角。
确定环量Γ(z) 的微分-积分方程
C = C L∞ (α a − ∆α i ) = 常值
' L
dX
沿展向也是不 Cα∞ L
α
C
' Di
= C ∆α i = 常值
' L
dY dR
αe
vi
Ve
V∞ V∞
∆αi
α
∆αi
椭圆形环量分布无扭转平直机翼的气动特性
对整个机翼则有
l 1 2 2 C ρV∞ c( z )dz ∫ 2 ∫− 2l c( z )dz ' L ' CL = = = CL = CL 1 1 S ρV∞2 S ρV∞2 S 2 2 l l ' 1 2 2 2 ρV∞ c( z )dz l CDi ∫− 2 2 ∫− 2l c( z)dz ' Di ' CDi = = = CDi = CDi 1 1 S ρV∞2 S ρV∞2 S 2 2 ' L l 2 l − 2
翼型气动特性及其设计优化
翼型气动特性及其设计优化翼型是航空、航天领域中最基本的构件之一,其气动特性的优化对于提高飞行能力,降低油耗,增加航程等方面有着重要的作用。
本文将从基本概念开始,通过对气动特性的分析和探讨,介绍如何进行翼型优化设计。
一、翼型基本概念翼型是指截面形状成翼形的构件,它在空气中运动时,会产生升力和阻力。
升力是垂直向上的力,阻力是沿着运动方向的力。
而翼型的特性包括以下几个方面:升力系数、阻力系数、升阻比、稳定性等。
其中,升力系数是表示翼型升力产生能力的指标,通常用Cl来表示。
阻力系数则是表示翼型阻力产生能力的指标,通常用Cd来表示。
升阻比是Cl/Cd,是一个衡量翼型效率的重要参数。
稳定性则是指翼型在空气中运动时的稳定性。
二、翼型气动特性分析翼型的气动特性是翼型优化设计的基础。
了解翼型的气动特性可以帮助设计人员更好地掌握其特点,并在设计时针对性地进行优化。
1. 升力系数分析升力系数Cl是翼型气动特性中最为重要的一个系数,它与翼型截面形状、攻角、雷诺数等因素密切相关。
翼型升力系数的大小与翼型的凸度、弯曲度、良好的分离、截面厚度等有关。
2. 阻力系数分析阻力系数Cd是指翼型运动时产生的阻力,它与翼型的截面形状、表面摩擦力、压力分布等有关。
在设计优化中,阻力系数的减小常常是设计的目标之一。
3. 升阻比分析升阻比是翼型在不同的条件下(攻角、雷诺数)所产生的升力系数与阻力系数之比。
好的翼型设计应该追求高升阻比,以提高飞行效率。
4. 稳定性分析稳定性是指翼型在运动过程中所表现出的稳定性能力,包括长期稳定性和短期稳定性。
翼型的稳定性与其几何特征、流场特性、攻角等因素密切相关。
三、翼型优化设计1. 翼型参数分析翼型优化设计需要对翼型的参数进行分析,例如凸度、弯曲度、良好的分离、截面厚度等参数。
在优化设计过程中应该根据设计需要和实际情况对这些参数进行调整。
2. 数值模拟分析数值模拟分析是翼型优化设计的重要方法之一。
通过CFD流体力学分析软件进行数值模拟分析,可以快速准确地评估翼型的气动特性,优化翼型设计方案。
飞机机翼的气动特性研究与优化设计
飞机机翼的气动特性研究与优化设计在航空工程领域,飞机机翼的气动特性研究与优化设计是一项重要的工作。
机翼的气动特性直接影响着飞机的飞行性能和安全性。
本文将对飞机机翼的气动特性进行研究,并提出优化设计方案,以期提高飞机的性能和安全性。
一、气动力学基础在开始研究飞机机翼的气动特性之前,我们首先需要了解一些气动力学基础知识。
气动力学是研究空气与物体运动相互作用的科学,而飞机机翼则是在飞行中扮演着至关重要的角色。
机翼产生升力和阻力是其最基本的气动特性。
升力使飞机能够克服重力并维持在空中飞行,而阻力则是抵抗飞机前进的力量。
除此之外,机翼的升阻比、失速特性、气动操纵特性等也是需要研究与优化的关键要素。
二、机翼气动特性研究方法为了研究飞机机翼的气动特性,科学家和工程师们采用了多种研究方法。
其中,数值模拟、风洞试验和实际飞行测试是最常见的方法。
1. 数值模拟数值模拟是通过计算机模拟飞机在各种飞行状态下与空气之间的相互作用,从而得出机翼的气动特性。
数值模拟方法可以节省时间和成本,并且可以对各种参数进行敏感性分析,提供了许多有价值的信息。
2. 风洞试验风洞试验是通过在实验室里建立一个人工流体环境,模拟飞机在真实空气中的飞行情况。
利用风洞试验可以获得具体的数据和图像,并验证数值模拟的准确性。
3. 实际飞行测试实际飞行测试是验证数值模拟和风洞试验结果的最终步骤。
通过在真实飞行中对机翼的气动特性进行观测和测量,可以对研究结果进行验证和修正。
三、飞机机翼气动特性的优化设计了解了机翼的气动特性研究方法后,我们可以开始讨论如何进行机翼的优化设计。
机翼的优化设计旨在减小阻力、提高升力,并尽量降低飞机的空气阻力。
1. 翼型设计翼型的选择对机翼的气动特性有着重要的影响。
不同的翼型具有不同的升阻比、失速速度和气动操纵特性。
通过翼型的优化设计,可以在提高升力的同时减小阻力,提高整体飞行性能。
2. 翼展与梢加载荷分布翼展和梢加载荷分布也是影响机翼气动特性的关键因素。
第五章 低速翼型
EXIT
1.3 低速翼型的低速气动特性概述
lj、C y max 以及失速后的 C y 曲线受Re影响较大,当 lj 2 lj1 , C y max 2 C y max 1 Re 2 Re1 时, 。
EXIT
1.3 低速翼型的低速气动特性概述
EXIT
1.1
翼型的几何参数及其发展
在上世纪三十年代初期,美国国家航空咨询委员会(
National Advisory Committee for Aeronautics,缩写为
NACA,后来为NASA,National Aeronautics and Space Administration)对低速翼型进行了系统的实验研究。他们
展了NACA2系列,3系列直到6系列,7系列的层流翼型族。 层流翼型是为了减小湍流摩擦阻力而设计的,尽量使上 翼面的顺压梯度区增大,减小逆压梯度区,减小湍流范围。
EXIT
1.1
翼型的几何参数及其发展
EXIT
1.1
翼型的几何参数及其发展
1967年美国NASA兰利研究中心的Whitcomb主要为了提高
通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力
小。 对于不同的飞行速度,机翼的翼型形状是不同的。如
对于低亚声速飞机,为了提高升力系数,翼型形状为圆头
尖尾形;而对于高亚声速飞机,为了提高阻力发散Ma数, 采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘
向下凹;对于超声速飞机,为了减小激波阻力,采用尖头
CL f y (Re, Ma, ),CD f x (Re, Ma, ), mz f m (Re, Ma, )
对于低速翼型绕流,空气的压缩性可忽略不计,但必须 考虑空气的粘性。因此,气动系数实际上是来流迎角和Re数 的函数。至于函数的具体形式可通过实验或理论分析给出。 对于高速流动,压缩性的影响必须计入,因此Ma也是其 中的主要影响变量。
飞行器翼型气动性能研究
飞行器翼型气动性能研究伴随人类科技和工业的快速发展,飞行器的设计和制造也在不断的进步和改良。
而在飞行器中,翼型作为飞行器的核心部件之一,扮演着至关重要的角色。
翼型的气动性能直接关系到飞行器的飞行性能和安全性能。
因此翼型的气动性能研究成为了飞行器研发和制造的重要内容之一。
翼型的气动性能研究是基于流体动力学的理论基础进行的。
流体动力学是物理学和工程学的一个交叉学科,它涉及了流体的力学、热和质量传递等学科,是翼型气动性能研究领域的核心理论。
在翼型气动性能研究中,通常会通过计算流体力学仿真或风洞实验来获得翼型的气动力系数和气动特性。
翼型气动力系数指的是在不同的流场条件下,翼型所受到的气动力和翼型的特性系数的综合表现。
翼型的特性系数包括了升力系数、阻力系数和矩系数。
升力系数是指单位翼展上升力的大小,它是翼型升力产生能力的重要指标。
阻力系数是指单位翼展的飞行阻力大小,它是翼型阻力产生能力的重要指标。
矩系数是指单位翼展的弯矩大小,它是翼型稳定性和控制性的重要指标。
这些特性系数的获得可以通过计算流体力学仿真和风洞实验等方法进行。
计算流体力学仿真是一种基于计算机数值模拟的方法,可以模拟翼型在不同流场条件下的气动性能和气动力系数。
它通过离散化的控制方程求解方法来模拟流场,在数值计算上具有高精度和高效率的优点。
同时,计算流体力学仿真还可以在短时间内对数百种气动特性进行分析和处理,为翼型设计和优化提供了重要的理论基础。
风洞实验是一种基于物理实验的方法,可以通过实际测量得到翼型在不同流场条件下的气动力系数和气动特性。
风洞实验通常利用各种尺度大小的模型,在不同速度下进行测试,获得翼型的运动状态和流场状态,并通过实验数据进行分析和处理。
虽然风洞实验具有高度的可靠性和准确性,但它的实验时间和成本较高,相对来说比较耗时和昂贵。
无论是计算流体力学仿真还是风洞实验,都需要建立翼型模型和流场模型,以便对翼型的气动性能进行计算和测试。
翼型模型通常基于CAD软件设计制造,在模型制造过程中需要考虑翼型的真实尺寸和特性系数的精度。
飞机翼型设计及其气动特性分析
飞机翼型设计及其气动特性分析飞机翼型是飞机气动外形的重要组成部分,其形状和参数对于飞机的性能、燃油经济性、舒适性和安全性等方面都有着重要的影响。
如何设计出优秀的飞机翼型,使其具有良好的气动特性,是飞机设计的重要课题之一。
翼型的选择在飞机设计的初步阶段,需要根据任务需求和技术条件,选择合适的翼型。
现代飞机翼型大致可分为四类:直翼、后掠翼、前缘后掠翼和双曲线翼。
直翼结构简单,制造成本低,但飞行性能一般;后掠翼具有良好的高速性能,但低速性能差;前缘后掠翼的优点是高速和低速性能均较好,但是制造难度较大;双曲线翼兼顾高速和低速性能,但制造复杂。
较新型的翼型是蝶形翼、斜三角翼、翼身一体等,总体来说,选择合适的翼型是需要考虑多方面因素的综合考虑。
翼型气动特性分析飞机翼型的气动特性包括升阻特性、稳定性和操纵性。
其中升阻特性是最重要的,它决定了飞行速度、起飞和着陆距离以及载荷能力等方面的性能。
升力系数是描述翼型升力的重要参数。
在翼型设计中,需要尽可能地提高翼型的最大升力系数,以提高飞机起飞和着陆性能。
同时,升力系数的变化规律对哪些因素敏感,比如攻角、马赫数、气压高度等因素需要深入研究,以更好的处理飞机的飞行特性。
阻力系数是衡量升阻性能的重要参数。
较小的阻力系数有利于提高飞机的速度和燃油经济性,降低噪声和污染等方面。
一般不同攻角情况下的阻力系数变化,另外还需要研究横滚阻力以及迎风面阻力等方面的性能变化情况。
气动稳定性是飞机翼型设计中的关键性问题,翼型的气动稳定性主要表现在其稳定裕度和稳定性边界上。
稳定裕度的大小反映了翼型受扰动时保持稳定的能力,而稳定性边界则是指翼型失去稳定性的临界状态。
操纵性是指飞机在飞行中对操纵输入的响应能力,包括响应速度、控制精度、横向和纵向操纵性等各方面内部和外部的因素。
在设计翼型时,需要确定操纵面的尺寸和位置等参数,以将操纵性最大化并保持良好的稳定性和控制。
总体来说,翼型设计时需要考虑多种因素的综合影响,从而得到最优的气动特性。
第五章 低速翼型的气动特性
在上世纪三十年代初期,美国国家航空咨询委员会 ( National Advisory Committee for Aeronautics,NACA, National Aeronautics and Space Administration, NASA ) 对低速翼型进行了系统的实验研究。 将当时的几种优秀翼型的厚度折算成相同厚度时,厚度分布 规律几乎完全一样。在当时认为是最佳的翼型厚度分布作为 NACA翼型族的厚度分布。厚度分布函数为:
将头部弄弯以后的平板翼型, 失速迎角有所增加
鸟类的飞行研究:
弯曲的平板更接近于鸟翼的形状 能够产生更大的升力和效率。
鸟翼具有弯度和大展弦比的特征
德国人奥托·利林塔尔设计并测试了许多曲线翼的滑翔机,他 仔细测量了鸟翼的外形,认为试飞成功的关键是机翼的曲率 或者说是弯度,他还试验了不同的翼尖半径和厚度分布。
(2)对于有弯度的翼型升力系数曲线是不通过原点的, 通常把升力系数为零的迎角定义为零升迎角0,而过后缘 点与几何弦线成0的直线称为零升力线。对有弯度翼型0
是一个小负数,一般弯度越大, 0的绝对值越大。
(3)阻力 在二维情况下,主要是粘性引起的摩擦与压差
阻力。在小迎角时,翼型的阻力主要是摩擦阻力,阻力系数 随迎角变化不大;在迎角较大时,出现了压差阻力的增量, 分离区扩及整个上翼面,阻力系数大增。 但应指出的是无 论摩擦阻力还是压差阻力都与粘性有关。
低亚声速飞机:圆头尖尾形 提高升力系数 高亚声速飞机:超临界翼型 提高阻力发散Ma数,前缘丰 满、上翼面平坦、下翼面后缘向内凹; 超声速飞机:尖头、尖尾形 减小激波阻力
对翼型的研究最早可追溯到19世纪后期 带有一定安装角的平板能够产生升力
在实践中发现弯板比平板好,能用于 较大的迎角范围
高速螺旋桨的翼型气动特性研究
高速螺旋桨的翼型气动特性研究
随着航空技术的迅速发展,高速螺旋桨作为一种重要的推进装置,在航空、航天以及其他领域中得到了广泛应用。
对于提高其性能和效率具有重要意义。
翼型气动特性是指螺旋桨在运行过程中受到气流作用而产生的力和力矩的变化规律。
研究翼型气动特性可以帮助我们了解螺旋桨在不同工况下的性能表现,为优化设计和改进提供参考。
首先,高速螺旋桨的翼型气动特性受到气动力学原理的影响。
气动力学原理是研究流体力学和空气动力学的基本理论。
通过分析翼型在气流中的运动,可以得到其受到的升力、阻力和扭矩的大小和方向。
这些气动力学参数直接影响着螺旋桨的性能和效率。
其次,高速螺旋桨的翼型气动特性还与翼型的几何形状和材料特性有关。
翼型的几何形状包括翼型剖面曲线和翼型展弦比等,而材料特性包括翼型的强度、刚度和表面光滑度等。
这些因素会直接影响翼型在气流中的流动情况,进而影响螺旋桨的性能。
最后,高速螺旋桨的翼型气动特性还与工作状态和工作环境有关。
例如,螺旋桨在高速旋转时,会受到旋转力的影响,从而产生附加的气动力。
此外,螺旋桨在不同的气温、气压和湿度等环境条件下,其气动特性也会发生变化。
综上所述,高速螺旋桨的翼型气动特性研究是一项复杂而重要的工作。
通过深入研究翼型的气动特性,可以为高速螺旋桨的
设计和改进提供理论依据和技术支持。
未来的研究方向可以包括进一步优化翼型的几何形状和材料特性,提高螺旋桨的性能和效率。
同时,还可以研究螺旋桨在不同工况和环境条件下的气动特性,为实际应用提供更加准确的数据和参考。
第五章低速翼型的气动特性
这不仅促使边界层增厚,变成湍流,而且迎角大到一定程度 以后,逆压梯度达到一定数值后,气流就无力顶着逆压减速 了,而发生分离。这时气流分成分离区内部的流动和分离区 外部的主流两部分。
vx y
0
0
2
1 dp 0 dx
3
S
dp 0 dx
dp 0 dx
vx y
0
对翼型的研究最早可追溯到19世纪后期 带有一定安装角的平板能够产生升力
在实践中发现弯板比平板好,能用于 较大的迎角范围
平板翼型效率较低,失速迎角很小
将头部弄弯以后的平板翼型, 失速迎角有所增加
鸟类的飞行研究:
弯曲的平板更接近于鸟翼的形状
能够产生更大的升力和效率。
鸟翼具有弯度和大展弦比的特征
德国人奥托·利林塔尔设计并测试了许多曲线翼的滑翔机,他 仔细测量了鸟翼的外形,认为试飞成功的关键是机翼的曲率 或者说是弯度,他还试验了不同的翼尖半径和厚度分布。
层流翼型是为了减小湍流摩擦阻力而设计的,尽量使上翼面
的顺压梯度区增大,减小逆压梯度区,减小湍流范围。
1967年美国NASA兰利研究中心的Whitcomb主要为了提高亚 声速运输机阻力发散Ma数而提出了超临界翼型的概念。
层流翼型
超临界翼型
5.2 翼型的气动参数
1、翼型的迎角与空气动力
在翼型平面上,来流V∞与翼弦线之间的夹角定义 为翼型的几何迎角,简称迎角。对弦线而言,来 流上偏为正,下偏为负。
第5章 低速翼型的气动特性 (Airfoil of low speed)
5.1 翼型的几何参数及表示方法
5.1.1 翼型的几何参数 5.1.2 NACA翼型 5.1.3 NACA五位数 5.1.4 层流翼型 5.1.5 超临界机翼
飞机翼型设计与气动特性分析
飞机翼型设计与气动特性分析随着航空技术的不断进步,飞机的翼型设计和气动特性分析变得至关重要。
这些因素直接影响到飞机的性能和安全。
本文将探讨飞机翼型设计的基本原理以及如何进行气动特性分析。
一、飞机翼型设计飞机的翼型设计是航空工程学的基础之一。
一个合理的翼型设计可以有效地提高飞机的升力和阻力比,降低飞行阻力和燃料消耗。
以下是飞机翼型设计的几个关键因素:1. 翼型截面形状:翼型的截面形状通常决定了飞机的气动特性。
最常见的翼型形状包括对称翼型、厚度和对称翼型、厚度和弯曲翼型等。
不同的翼型形状适用于不同的飞机应用,例如高速飞机、低速飞机和滑翔机。
2. 翼型横截面曲线:翼型的横截面曲线可以影响飞机的升力和阻力性能。
典型的横截面曲线包括平直线、凹线和凸线等。
这些曲线的选择在设计过程中需要根据实际需求进行权衡。
3. 翼展和翼载荷分布:翼展是指翼展展展及其之间的间距。
翼展和翼载荷分布之间的关系对飞机的稳定性和操纵性有重要影响。
合理的翼展设计可以改善飞机的飞行性能。
二、气动特性分析气动特性分析是评估飞机翼型设计的关键步骤。
通过数值模拟和实验测试,可以获得飞机翼型的气动力数据和流场特性。
以下是气动特性分析的几个重要方面:1. 升力和阻力:升力和阻力是气动力学中最基本的两个参数。
通过气动特性分析,可以评估翼型在不同运动状态下的升力和阻力性能。
这对于飞机的性能预测和改进至关重要。
2. 失速特性:失速是飞机飞行中最重要的安全问题之一。
通过气动特性分析,可以研究翼型的失速机制和性能。
这有助于设计更稳定和安全的飞机翼型。
3. 入流和分离流动:入流和分离流动是飞机翼型设计中的关键问题。
通过气动特性分析,可以研究不同入流条件下翼型表面的流动特性,进而优化翼型设计。
三、案例研究为了更好地理解飞机翼型设计和气动特性分析的实际应用,我们以某型号飞机为例进行案例研究。
通过数值模拟和实验测试,我们获得了该飞机翼型的气动力数据和流场特性。
通过对这些数据的分析,我们发现该翼型在高速状态下具有良好的升力和阻力性能,并且可以有效抑制失速现象。
低速翼型的气动特性
第五章 低速翼型讲解
1.1 翼型的几何参数及其发展
4、厚度
பைடு நூலகம்
厚度分布函数为:
yc (x)
yc b
1 2 ( yu
yl )
相对厚度
c
c b
2 ycmax b
2 ycmax
最大厚度位置
xc
xc b
EXIT
1.1 翼型的几何参数及其发展
r 5、前缘半径 L ,后缘角
翼型的前缘是圆的,要很精确地画出前缘附近的翼型 曲线,通常得给出前缘半径。这个与前缘相切的圆,其圆
0 x xf xf x 1
例: NACA ②
④
①②
f 2% xf 40%
c 12%
EXIT
1.1 翼型的几何参数及其发展
1935年,NACA又确定了五位数翼型族。 五位数翼族的厚度分布与四位数翼型相同。不同的是中 弧线。它的中弧线前段是三次代数式,后段是一次代数式。
EXIT
1.1 翼型的几何参数及其发展
在上世纪三十年代初期,美国国家航空咨询委员会(
National Advisory Committee for Aeronautics,缩写为
NACA,后来为NASA,National Aeronautics and Space
Administration)对低速翼型进行了系统的实验研究。他们
心在 x 0.05处中弧线的切线上。
翼型上下表面在后缘处切线间的夹角称为后缘角。
EXIT
1.1 翼型的几何参数及其发展
三、翼型的发展 通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力
小。
对于不同的飞行速度,机翼的翼型形状是不同的。如 对于低亚声速飞机,为了提高升力系数,翼型形状为圆头 尖尾形;而对于高亚声速飞机,为了提高阻力发散Ma数, 采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘 向下凹;对于超声速飞机,为了减小激波阻力,采用尖头 、尖尾形翼型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L = N cosα − Asinα D = N sin a + Acosα
第五章 低速翼型的气动特性 § 5.2.2 翼型的空气动力系数
定义自由来流的动压为 q
C
L
∞
:q ∞பைடு நூலகம்
1 = ρ 2
∞ v
2
∞
升力系数
= =
L q
∞
S
= =
L 1 ρ 2 1 ρ 2
∞
v
2
∞
• b •1 • b •1
C
D q
起动涡的概念: 起动涡的概念: 以上给出的,是翼型已处于运动速度恒定和迎角不变 的条件下低速翼型的绕流图画。然而,翼型是由静止 加速才达到速度恒定的运动状态的。 翼型由静止加速到恒定运动状态的过程,称为起动过 程。 在起动过程中,由于流体粘性的作用和后缘有相当大 的锐度,会有旋涡从后缘脱落,这种旋涡被称为起动 涡;同时,产生绕翼型的速度环量。
X/C
Ref.[18] this paper
0.6 0.8 1
=
τ
q∞
等压线
第五章 低速翼型的气动特性 § 5.2.3 压力中心
现在我们知道, 现在我们知道,法向力和轴向力都是由于 分布的压强和剪切应力载荷引起的。 分布的压强和剪切应力载荷引起的。同时 这些分布载荷还产生了一个对前缘点的力 矩。 问题: 问题:如果物体上受到的气动力要用一个 合力或者其分量和来表示, 合力或者其分量和来表示,那么这些力应 该作用在物体的什么位置呢? 该作用在物体的什么位置呢? 这个问题的答案就是: 这个问题的答案就是:合力作用在某个 具体的位置上, 具体的位置上,使得合力产生与分布载 荷同等的作用。 荷同等的作用。
第五章
低速翼型的气动特性
§5.3低速翼型的流动特点及起动涡 低速翼型的流动特点及起动涡
起动涡
——起动前的静止状态 ——起动前的静止状态
翼面邻近的闭曲线( 上速度环量Γ 离翼型足够远的闭曲线( 翼面邻近的闭曲线(L1)上速度环量Γ1,离翼型足够远的闭曲线(L) 上速度环量Γ 翼型前缘、后缘点分别为A、 上速度环量Γ,翼型前缘、后缘点分别为 、 B
L ≡升力≡ R在垂直于来流 V ∞ 方向的分量 升力≡
D ≡阻力≡ R在平行于来流 V ∞ 方向的分量
也可以将分解为垂直于弦线和平行于弦线方向 的两个分量, 的两个分量,并定义 : N ≡法向力≡ R在垂直于弦线c方向的分量
A≡轴向力≡ R在平行于弦线c方向的分量
第五章
低速翼型的气动特性
• 存在如下数学关系:
xc xc ≡ b
c ≤ 12% 的翼型,一般称为薄翼型。
第五章
低速翼型的气动特性
翼弦与最大厚度
厚弦比不同的翼型
最大厚度位置
中弧线与最大弧高
第五章
低速翼型的气动特性
§5.1 翼型的几何参数
§ 5.1.5 前缘钝度及后缘尖锐度
对圆头翼型,用前缘的内切圆半径 rL 表示前缘钝度 ,该内切圆的圆心在中弧线前缘点的切线上,圆的 rL 称为前缘半径,其相对值定义为: rL = rL 半径 b 后缘处上下翼面切线的夹角,称为后缘角τ,表 示后缘的尖锐度。
翼型的气动力 气流绕翼型的流动是二维平面流动, 气流绕翼型的流动是二维平面流动,翼型上的 气动力应视为无限翼展机翼在展向截取单位长 翼段上所产生的气动力。 翼段上所产生的气动力。
单位展长翼段
第五章 低速翼型的气动特性 § 5.2.1 翼型的迎角和空气动力
翼型的气动力: 翼型的气动力: 翼型表面上每个点都作用有压强和摩擦应力, 翼型表面上每个点都作用有压强和摩擦应力, 它们产生一个合力R,将R分解为垂直于来流和 平行于来流方向的两个分量,并定义: 平行于来流方向的两个分量,并定义:
§5.1 翼型的几何参数
§ 5.1.2 翼面无量纲坐标
图5.2 翼型的体轴系和几何参数
坐标原点位于前缘,x轴沿弦线向后,y轴向上,即取体轴坐 标系,见图5.2。该坐标系中,翼型上表面和下表面的无量纲 坐标为: y 上, x 下 y 上, ≡ = f 上, ( ) ≡ f 上, ( x ) 下 下 下 b b
∞
D
∞
阻力系数
M
D
S
v
2
∞
力矩系数
z
=
M q
∞
Sl
=
M 1 ρ 2
∞
v
2
∞
• b
2
•1
第五章
低速翼型的气动特性
§ 5.2.2 翼型的空气动力系数
引入两个即将用到的无量纲参数:
1.5 1
p− p∞ 压强系数:C p = q∞
摩擦应力系数:c f
0.5
-Cp
0 -0.5 -1 -1.5 0 0.2 0.4
第五章
低速翼型的气动特性
§5.3低速翼型的流动特点及起动涡 低速翼型的流动特点及起动涡
绕翼型环量的产生
由于远离翼面处流动不受粘性影响, 由于远离翼面处流动不受粘性影响,所以 Γ= 0 若设边界层和尾流中的环量为Γ 若设边界层和尾流中的环量为 3,则应有 Γ = Γ1+ Γ 2 +Γ3 于是 Γ1 = - (Γ 2 +Γ3) 此时,如不计粘性影响, 此时,如不计粘性影响,绕翼型的速度环量与 起动涡的速度环量大小相等、方向相反, 起动涡的速度环量大小相等、方向相反,即 Γ1 = - Γ 2
第五章
低速翼型的气动特性
引 言
• 按其几何形状,翼型分为两大类:一类是 圆头尖尾的,用于低速、亚音速和跨音速 飞行的飞机机翼,以及低超音速飞行的超 音速飞机机翼;另一类是尖头尖尾的,用 于较高超音速飞行的超音速飞机机翼和导 弹的弹翼。 • 本章中,围绕低速翼型的气动特性,主要 介绍,翼型的几何参数及翼型的绕流图画, 求解翼型气动特性的位流理论和实用翼型 的一般气动特性等主要内容。
第五章 低速翼型的气动特性 § 5.2.3 压力中心
当合力作用在这个点上, 当合力作用在这个点上,合力产生与分布 载荷相同的效果。 载荷相同的效果。如果对压力中心取力矩 ,那么分布载荷产生的力矩在整个翼型表 面的积分等于零。 面的积分等于零。
单位展长翼段对 前缘点的力矩: 前缘点的力矩:
' M LE
第五章
低速翼型的气动特性
§5.3低速翼型的流动特点及起动涡 低速翼型的流动特点及起动涡
起动涡
——刚起动的极短时间内, 刚起动的极短时间内,
粘性尚未起作用
流动是无粘无旋的,与静止时一 流动是无粘无旋的, 绕翼型的速度环量仍为零; 样,绕翼型的速度环量仍为零; 此时,后驻点不在后缘处, 此时,后驻点不在后缘处,而在 翼面上,例如在上翼面的O1点处 翼面上,例如在上翼面的 点处
(b)厚翼型后缘分离 厚翼型后缘分离
(c )薄翼型前缘分离 薄翼型前缘分离
小迎角无分离时, 小迎角无分离时,粘性作用对翼面压力分布没有本质改变
第五章
低速翼型的气动特性
§5.3低速翼型的流动特点及起动涡 低速翼型的流动特点及起动涡
翼 型 的 升 力 曲 线
第五章
低速翼型的气动特性
§5.3低速翼型的流动特点及起动涡 低速翼型的流动特点及起动涡
第五章
低速翼型的气动特性
§5.1 翼型的几何参数
5.1.6常用低速翼型编号法简介 常用低速翼型编号法简介 1、NACA四位数字翼型,以NACA 2412为例 第一位数字2—— f = 2% 相对弯度 第二位数字4—— x f = 40% c = 12% 相对厚度 最末两位数字12—— 所有NACA四位数字翼型的 xc = 30% 2、 NACA五位数字翼型,例如NACA 23012翼型 第一位数字2—— 2 = 第二位数字3—— 3 = 2 x f ×10 第三位数字表示后段中弧线的类型:0——直线, 1——反弯曲线;
第五章
低速翼型的气动特性
§5.3低速翼型的流动特点及起动涡 低速翼型的流动特点及起动涡
起动涡
——起动过程完结, 起动过程完结,
翼型匀速前进
后驻点O 移至后缘点B时 后缘绕流分离形成的涡脱离翼面流向下游, 后驻点 1移至后缘点 时,后缘绕流分离形成的涡脱离翼面流向下游, 形成起动涡,后缘处上下翼面流动平顺汇合流向下游。 形成起动涡,后缘处上下翼面流动平顺汇合流向下游。
低速翼型的气动特性
§5.1 翼型的几何参数
图5.2 翼型的体轴系和几何参数
翼型的尖尾点,称为翼型的后缘。在翼型轮廓线上的诸多点 中,有一点与后缘的距离最大,该点称为翼型的前缘。连接 前缘和后缘的直线,称为翼型的弦线,其长称为几何弦长, 简称弦长,用b表示。弦长是翼型的特征尺寸,见图5.2。
第五章
低速翼型的气动特性
空气动力学
第五章 低速翼型的气动特性
退出
第五章
低速翼型的气动特性
引 言
• 机翼一般都有对称面。平行于机翼的对称面截得 的机翼截面,称为翼剖面,通常也称为翼型。 • 翼型的几何形状是机翼的基本几何特性之一。翼 型的气动特性,直接影响到机翼及整个飞行器的 气动特性,在空气动力学理论和飞行器设计中具 有重要的地位。
f f ≡ ≡ [ y f ( x )] max b
xf ≡ xf b
第五章
§ 5.1.4 厚度
低速翼型的气动特性
§5.1 翼型的几何参数
翼面到中弧线的y方向无量纲距离,称为厚度 分布函数 y c (x ),其最大值的两倍称为相对厚 度 c ,所在弦向位置记为 xc ,即:
1 c y c ( x ) ≡ ( y 上 − y 下 ) c ≡ ≡ 2[ y c ( x )]max 2 b
' LE
= − ( x cp ) N
' M LE
'
x cp = −