一选择题五中第一章单元试题

合集下载

2025届泸州市泸县五中高三数学上学期第一次模拟考试卷及答案解析

2025届泸州市泸县五中高三数学上学期第一次模拟考试卷及答案解析

泸县五中高2022级高三上期第一次诊断性考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.共150分.考试时间120分钟.第I 卷(选择题 共58分)一、选择题:本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知全集U =R ,集合{|11}A x x =-<,{|1B x x =<或4}x ³,则()U A B =U ð( )A. {|12}x x <<B. {|04}x x <<C. {|12}x x £<D. {|04}x x <£【答案】B 【解析】【分析】根据并集、补集的定义进行计算得出结果.【详解】由{|1B x x =<或4}x ³得{|14}U B x x =£<ð,又{{|11}|02}A x x x x =-<=<<,所以(){|04}U x A x B =<<U ð.故选:B.2. 命题“(),1x $Î-¥,3210x x +-<”的否定是( )A. [1,]x $Î+¥,3210x x +-≥ B. (),1x $Î-¥,3210x x +-≥C. [1,]x "Î+¥,3210x x +-≥ D. (),1x "Î-¥,3210x x +-≥【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“(),1x $Î-¥,3210x x +-<”的否定是“(),1x "Î-¥,3210x x +-≥”.故选:D.3. 已知sin 4πsin 3aa =æö-ç÷èø,则tan a =( )A. -B.C.D.【答案】D 【解析】【分析】由正弦展开式和三角函数化简求值得出.【详解】sin 4πsin 3a a ==æö-ç÷èø,4=,所以tan 2tan a a =,解得tan a =故选:D4.已知tan q =,则cos2q =( )A. 89-B.89C. 79-D.79【答案】C 【解析】【分析】根据给定条件,利用二倍角公式,结合正余弦齐次式法计算即得.【详解】由tan q =,得22222222cos sin 1tan 7cos2cos sin cos sin 1tan 9q q q q q q q q q --=-===-++.故选:C5. 将函数()cos3f x x =的图象向右平移π6个单位,得到函数()g x 的图象,则函数()g x 的一条对称轴方程是( )A. π2x =B. π3x =C. π9x = D. π18x =【答案】A【解析】【分析】根据三角函数的图象变换及诱导公式结合三角函数的性质即可判定.【详解】由题意得()ππcos 3cos 3sin 362g x x x x éùæöæö=-=-=ç÷ç÷êúèøèøëû显然由()()πππ3πZ Z 263k x k k x k =+ÎÞ=+Î,当1k =时,π2x =是其一条对称轴,而B 、C 、D 三项,均不存在整数k 满足题意.故选:A6. {}n a 为等差数列,若11100a a +<,1190a a +>,那么n S 取得最小正值时,n 的值( )A. 11 B. 17C. 19D. 21【答案】C 【解析】【分析】由等差数列的性质可得10110,0a a ><,从而得0d <,由1()2n n n a a S +=,结合条件得到19200,0S S ><,即可求解.【详解】因为11100a a +<,1191020a a a +=>,所以10110,0a a ><,故等差数列{}n a 的公差0d <,又1()2n n n a a S +=,又11120100a a a a +=+<,1191020a a a +=>,得到1202020()02a a S +=<,1191919()02a a S +=>,所以n S 取得最小正值时,n 的值为19,故选:C.7. 如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y =+ÎR uuu r uuu r uuu r,则2x y +的最小值为( )A. 1-B. 1C. 2D. 3【答案】B 【解析】【分析】建立平面直角坐标系,设00(,)P x y ,利用坐标法将,x y 用P 点坐标表示,即可求出2x y +的最小值.【详解】以A 点为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立如图所示的平面直角坐标系,设2AB =,00(,)P x y ,则(0,0)A ,(0,2)D ,(2,1)E ,半圆的方程为22(1)1(0)x y y -+=³,所以(2,1)AE =uuu r ,(0,2)AD =uuu r ,00(,)AP x y =uuu r,因为(,)AE xAD y AP x y =+ÎR uuu r uuu r uuu r,即00(2,1)(0,2)(,)x y x y =+,所以00212yx x yy =ìí=+î,即0002221y x y x x ì=ïïíï=-ïî,所以01212y x y x -+=+×,又00(,)P x y 是半圆上的任意一点,所以01cos x θ=+,0sin y q =,[0,]q p Î,所以1sin 2121cos θx y θ-+=+×+,所以当2pq =时,2x y +取得最小值1.故选:B【点睛】关键点点睛:本题主要考查二元变量的最值求法,关键是根据已知把几何图形放在适当的坐标系中,把有关点与向量用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.8. 已知函数ln ,0()ln(),0ax x x f x ax x x ->ì=í+-<î,若()f x 有两个极值点12,x x ,记过点11(,())A x f x ,22(,())B x f x 的直线的斜率为k ,若02e k <£,则实数a 的取值范围为( )A. 1,e e æùçúèûB. 1,2eæùçúèûC. (e,2e]D. 12,2eæ+ùçúèû【答案】A【解析】【分析】当0x >时,求导,根据()f x 有两个极值点可得0a >,由奇函数的定义可得()f x 为奇函数,不妨设210x x =->,则有21x a =,所以1,1ln B a a æö+ç÷èø,()1,1ln A a a æö--+ç÷èø.由直线的斜率公式k 的表达式,可得1(1ln ),e k a a a =+>,令1()(1ln ),e h a a a a =+>,利用导数可得()h a 在1,e æö+¥ç÷èø上单调递增,又由10,(e)2e e h h æö==ç÷èø,根据单调性可得实数a 的取值范围.【详解】当0x >时,函数()ln f x ax x =-的导数为()11ax f x a x x-¢=-=,由函数()f x 由两个极值点得0a >.当10x a<<时,()0f x ¢<,()f x 单调递减;当1x a>时,()0f x ¢>,()f x 单调递增.故当0x >时,函数()f x 的极小值点为1x a=.当0x <时,则0x ->,则()()()()()ln ln f x a x x ax x f x -=---=-+-=-éùëû,同理当0x >时,也有()()f x f x -=-,故()f x 为奇函数.不妨设210x x =->,则有21x a =,所以1,1ln B a a æö+ç÷èø,可得()1,1ln A a a æö--+ç÷èø,由直线的斜率公式可得2121()()(1ln ),0f x f x k a a a x x -==+>-,又0,1ln 0k a >+>,所以1e >a 设()1(1ln ),eh a a a a =+>,得()2ln 1(1ln )0h a a a =+=++>¢,所以()h a 在1,eæö+¥ç÷èø上单调递增,又由10,(e)2e e h h æö==ç÷èø,.由02e k <<,得()1()e e h h a h æö<£ç÷èø,所以1e ea <£.故选:A.【点睛】对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知关于x 的不等式20ax bx c ++>的解集为()(),12,-¥+¥U ,则()A. 0a >且0c >B. 不等式0bx c +>的解集是23x x ìü>íýîþC. 0a b c -+>D. 不等式20cx bx a ++<的解集为1,12æöç÷èø【答案】ACD 【解析】【分析】由题意可知a >0且1和2是方程ax 2+bx +c =0的两个根,根据韦达定理可得3,2b a c a =-=,由此易判断A,将b c 、替换成a ,由此可求B 、D ,结合二次函数的图象可以判断C.【详解】Q 关于的的不等式20ax bx c ++>的解集为()(),12,¥¥-È+,0a \>且1和2是方程ax 2+bx +c =0的两个根,12123,2b cx x x x a a\+=-===,3,2b a c a \=-=对A,0,20a c a >\=>Q ,故A 正确.对B,3,2,0b a c a bx c =-=\+>Q 可化为320ax a -+>0320a x >\-+>Q ,解的23x <,\不等式0bx c +>的解集为23x x ìü<íýîþ,故B 错误.对C,0a >Q ,1和2是方程ax 2+bx +c =0的两个根,且二次函数y =ax 2+bx +c 开口向上,\当x =―1时,0y >,即0a b c -+>,故C 正确.对D ,不等式20cx bx a ++<可化为2230ax ax a -+<,202310a x x >\-+<Q ,即()()2110x x --<,解得112x <<,\不等式20cx bx a ++<的的集为1{1}2x x <<∣,故D 正确.故选:ACD10. 已知函数2()log (1)f x x =-,若12x x <,12()()f x f x =,则( )A. 122x x << B. 122x x << C.12111x x +=D. 1223x x ++>【答案】ACD 【解析】【分析】作出函数2()log (1)f x x =-的图象,根据12x x <,12()()f x f x =,结合函数图象逐项判断.【详解】作出函数2()log (1)f x x =-的图象,如图所示:因为12x x <,12()()f x f x =,由图象可知:12122,x x <<<,故A 正确;B 错误;由12()()f x f x =,得2122log (1)log (1)x x -=-,即2122log (1)log (1)x x --=-,所以12(1)(1)1x x --=,即1212x x x x =+,所以12111x x +=,故C 正确;因为121223(1)2(1)x x x x +=-+-³=-12(1)2(1)x x -=-时,等号成立,因12x x <,所以122(1)12(1)x x x -<-<-,所以取不到等号,故D 正确.故选:ACD【点睛】关键点点睛:本题关键是将12()()f x f x =转化为12(1)(1)1x x --=而得解.11. 已知数列{}n a 满足11a =,211n n a a +=+,则( )A. 2n a n³ B. 12n n a -³C. 12161n n a -³+ D. 122log 4n n a -³【答案】BCD 【解析】【分析】先证明{}n a 是递增数列,且各项均为正,由递推公式求得234,,a a a 发现A 错误,然后由递推关系利用基本不等式变成不等式2n n a a ³,让n 依次减1进行归纳得出B 正确,由递推式适当放缩得222421()n n n n a a a a ++>>=,这样对2n a 进行归纳得出21444222242()()()n n n n a a a a --->>>>L 142n -=,此不等式两边取以2为底的对数可证明选项D ,对142n -由指数幂运算法则变形为1244216n n --=,然后证明241n n ->-,再结合{}n a 是正整数可得证C .【详解】221131()024n n n n n a a a a a +-=-+=-+>,∴1n n a a +>,{}n a 是递增数列,又11a =,所以0n a >,22a =,35a =,426a =,233a <,A 显然错误;2211112222n n n n n n a a a a a +-=+³³³³=L ,∴12n n a -³,B 正确;对选项C ,222421()n n n n a a a a ++>>=,∴244442222424()()n n n n a a a a --->>=,依此类推:21444222242()()()n n n n a a a a --->>>>L 142n -=,1244216n n --=,下证241n n -³-,1n =时,140-³,2n =时,0411=³,3n =时,242>,假设n k =时,241k k -³-成立,2k >,为则1n k =+时,1224444(1)(1)1k k k k +--=׳->+-,所以对任意不小于3的正整数n ,241n n ->-,所以24121616n n n a --=>,又2n a 是正整数,所以12161n n a -³+,C 正确;对选项D ,由选项C 得1422n n a -³,所以141222log log 24n n n a --³=, D 正确.故选:BCD .第II 卷(非选择题共92分)注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效.(2)本部分共8个小题,共92分.三、填空题:本大题共3小题,每小题5分,共计15分.12. 已知函数()2log ,02,12,2,2x x f x x x ì<£ï=í-+>ïî则()()3f f =______.【答案】1【解析】【分析】结合分段函数解析式,由内向外计算即可.【详解】由题意得()1133222f =-´+=,211log 122f æö==ç÷èø.所以((3))1f f =,故答案为:1.13. 计算:14cos10tan10-=o o____________【解析】【分析】切化弦,通分后结合二倍角和两角和差正弦公式可化简求得结果.【详解】1cos10cos104sin10cos10cos102sin 204cos104cos10tan10sin10sin10sin10---=-==o o o o o o o oo o o o()cos102sin 3010sin10--====o o o o.14. 已知函数2()(1)ln 2x f x mx x mx =-+-,函数()()g x f x ¢=有两个极值点12,x x .若110,e x æùÎçúèû,则()()12g x g x -的最小值是______.【答案】4e【解析】【分析】求导后可知12,x x 是方程210x mx ++=在()0,¥+上的两根,结合韦达定理可得211x x =,111a x x æö=-+ç÷èø;将()()12g x g x -化为11111112ln 2x x x x x æöæö-++-ç÷ç÷èøèø,令()11122ln 0e h x x x x x x x æöæöæö=--+<£ç÷ç÷ç÷èøèøèø,利用导数可求得()min h x ,从而得到结果.【详解】因为2()(1)ln 2x f x mx x mx =-+-,令()()g x f x ¢=()11ln ln 0mx m x x m m x x x x x-=++-=+->,因为()222111m x mx g x x x x++=++=¢,()g x 有两个极值点12,x x ,所以12,x x 是方程210x mx ++=在()0,¥+上的两根,所以12x x m +=-,121x x =,所以211x x =,111m x x æö=-+ç÷èø,所以()()1211221211ln ln g x g x m x x m x x x x -=+---+111111*********ln ln 2ln 2m x x m x x x x x x x x x æöæö=+-+-+=-++-ç÷ç÷èøèø,设()11122ln ,0e h x x x x x x x æöæöæö=--+<£ç÷ç÷ç÷èøèøèø,则()()()222221122122ln 21ln x x h x x x x x x x +-æöæö¢=+---+=-ç÷ç÷èøèø,所以当10,ex æùÎçúèû时,()0h x ¢<,所以()h x 在10,e æùçúèû上单调递减,所以()min 11142e 2e e e e eh x h æöæöæö==-++=ç÷ç÷ç÷èøèøèø,即()()12g x g x -的最小值为4e .故答案为:4e.【点睛】思路点睛:本题考查利用导数求解函数最值的问题;本题求解最值的基本思路是将多个变量统一为关于一个变量的函数的形式,通过构造函数将问题转化为函数最值的求解问题.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()()sin f x x w j =+(其中0w >,π02j <<)的最小正周期为π,且___________.①点π,112æöç÷èø在函数()y f x =的图象上;②函数()f x 的一个零点为π6-;③()f x 的一个增区间为5ππ,1212æö-ç÷èø.请你从以上三个条件选择一个(如果选择多个,则按选择的第一个给分),补充完整题目,并求解下列问题:(1)求()f x 的解析式;(2)用“五点作图法”画出函数()f x 一个周期内的图象.【答案】(1)无论选哪个条件,函数()f x 的解析式均为()πsin 23f x x æö=+ç÷èø. (2)答案见解析【解析】【分析】(1)若选①,则ππsin 211212f j æöæö=´+=ç÷ç÷èøèø,若选②,则ππsin 063f j æöæö-=-+=ç÷ç÷èøèø,若选③,则5ππππ,,6622j j æöæö-++=-ç÷ç÷èøèø,由此求出分别求出j 即可得解.(2)直接用“等距法”按照五点画图的步骤作图即可.【小问1详解】由题意最小正周期为2ππ,>0T w w==,解得2w =,所以()()sin 2f x x j =+,若选①,则ππsin 211212f j æöæö=´+=ç÷ç÷èøèø,所以ππ2π,Z 62k k j +=+Î,又π02j <<,所以π0,3k j ==,所以函数()f x 的解析式为()πsin 23f x x æö=+ç÷èø;若选②,则ππsin 063f j æöæö-=-+=ç÷ç÷èøèø,所以ππ,Z 3k k j -+=Î,又π02j <<,所以π0,3k j ==,所以函数()f x 的解析式为()πsin 23f x x æö=+ç÷èø;若选③,即()f x 的一个增区间为5ππ,1212æö-ç÷èø,当5ππ,1212x æöÎ-ç÷èø时,5ππ2,66t x j j j æö=+Î-++ç÷èø,又π02j <<,由复合函数单调性可知,只能5ππππ,,6622j j æöæö-++=-ç÷ç÷èøèø,π3j =,所以函数()f x 解析式为()πsin 23f x x æö=+ç÷èø;综上所述,无论选哪个条件,函数()f x 的解析式均为()πsin 23f x x æö=+ç÷èø.【小问2详解】列表如下:xπ6-π12π37π125π6π23t x =+π2π3π22π()πsin 23f x x æö=+ç÷èø0101-0的描点、连线(光滑曲线)画出函数()f x 一个周期内的图象如图所示:16. 已知定义在R 上的函数1()1xxa f x a-=+(0a >且1a ¹).(1)判断函数奇偶性,并说明理由;(2)若1(1)2f =-,试判断函数()f x 的单调性并加以证明;并求()10f x m +-=在[2,3]-上有解时,实数m 的取值范围.【答案】(1)()f x 为奇函数,理由见解析 (2)()f x 为减函数,证明见解析;51914,m éùÎêúëû【解析】【分析】(1)先判断函数的奇偶性,再利用定义证明即可.(2)求出参数值得到原函数,再转化为交点问题求解参数范围即可.【小问1详解】()f x 为奇函数对任意x ÎR ,都有R x -Î,且该函数的定义域为R ,显然关于原点对称,可得1111()()01111x x x x x x xx a a a a f x f x a a a a ------+-=+=+=++++.()f x \为奇函数.【小问2详解】当1(1)2f =-时,可得2111a a -+=-,解得3a =,此时13()13xxf x -=+在R 上为严格减函数,证明如下:任取21x x >,且12,R x x Î,则()()21212113131313x x x x f x f x ---=-++的()()()()()12121122123(13)(13)(13)(13)2131313133x x x x x x x x x x -+--++++=+-=,21x x >Q ,21330x x >>,()()210f x f x \-<,()f x \在R 上为严格减函数,而413(2),(4)513f f -=-=-,13()13xxf x -\=+在[2,3]-上的值域为13,5414éù-êúëû,要使()10f x m +-=在[2,3]-上有零点,此时等价于y m =与()1y f x =+在[2,3]-上有交点,而当[2,3]x Î-时,可得()1,,51914f x éù+Îêúëû故51914,m éùÎêúëû.17. 在ABCV 中,已知)tan tan tan tan 1A B A B +=-.(1)求C ;(2)记G 为ABC V 的重心,过G 的直线分别交边,CA CB 于,M N 两点,设,CM CA CN CB l m ==uuuu r uuu r uuu r uuu r .(i )求11lm+的值;(ii )若CA CB =,求CMN V 和ABC V 周长之比的最小值.【答案】(1)π3C = (2)(i )3(ii )23【解析】【分析】(1)借助三角形内角关系及两角和的正切公式化简并计算即可得;(2)(i )设D 为AB 的中点,结合重心的性质及向量运算可得1133CG CM CN l m=+uuu r uuuu r uuu r,再利用三点共线定理即可得解;(ii )由题意可得ABC V 为等边三角形,可设其边长为1,则可用,l m 表示两三角形周长之比,结合(i )中所得与基本不等式即可得解.【小问1详解】由题可知()()tan tan tan tan πtan 1tan tan A BC A B A B A B+=--=-+=-=-又()0,πC Î,所以π3C =;【小问2详解】(i )设D 为AB 的中点,则1122CD CA CB =+uuu r uuu r uuu r,又因为23CG CD =uuu r uuu r,所以11113333CG CA CB CM CN l m=+=+uuu r uuu r uuu r uuuu r uuu r ,因,,M G N 三点共线,所以11133l m +=,所以113l m+=;(ii )由CA CB =,π3C =,可得ABC V 为等边三角形,设ABC V 的边长为1,CMN V 与ABC V 周长分别为12,C C ,则23C =,MN =,所以1C l m =+所以12C C =由113lm+=可得,3lm l =+,解得49lm ³,易知函数y x =4,9éö+¥÷êëø上单调递增,所以12C C lm =³所以CMN V 和ABC V 的周长之比的最小值为23.18. 已知等比数列{}n a 的各项均为正数,5462,,4a a a 成等差数列,且满足2434a a =,等差数列数列{b n }的前n 项和244,6,10n S b b S +==.(1)求数列{}n a 和{b n }的通项公式;(2)设{}*252123,,n n n n n n b d a n d b b +++=ÎN 的前n 项和n T ,求证:13n T <.(3)设()()n n n n b n c a b n ìï=í×ïî为奇数为偶数,求数列{}n c 的前2n 项和.【答案】(1)1()2nn a =;n b n =(2)证明见解析 (3)2868994nn n ++-×【解析】为【分析】(1)设等比数列{}n a 的公比为q ,等差数列{b n }的公差为d ,根据题意,列出方程组,分别求得11,,,a q b d 的值,即可求得数列{}n a 和{b n }的通项公式;(2)由(1)求得111(21)2(23)2[]2n n n d n n +-=+×+×,结合裂项法求和,求得数列{}n d 的前n 项和113(23)2n nT n =-+×,即可得证;(3)根据题意,求得数列{}n c 的通项公式,结合等差数列的求和公式和乘公比错位法求和,即可求解.【小问1详解】解:由等比数列{}n a 的各项均为正数,设公比为(0)q q >,因为5462,,4a a a 成等差数列,且满足2434a a =,可得4562432244a a a a a =+ìí=î,即()3451112321124a q a q a q a q a q ì=+ïí=ïî,即211214q q a q ì=+í=î,解得111,22a q ==,所以1111((222n nn a -=×=,设等差数列{b n }的公差为d ,因为2446,10b b S +==,可得112464610b d b d +=ìí+=î,解得11b d ==,所以1(1)1n b n n =+-´=,即数列{b n }的通项公式为n b n =.【小问2详解】证明:由(1)知1()2nn a =,n b n =,可得252123125111()(21)(23[)2(21)2(23)22n n n n n n n n b d a b b n n n n n +++++=×-+++×+×=,则()()11111111123254547878916212232n n n T n n +éùæöæöæöæö=-+-+-++-êúç÷ç÷ç÷ç÷ç÷××××××+×+×èøèøèøêúèøëûL 111112[]6(23)23(23)2n nn n +=×-=-+×+×,因为10(23)2n n >+×,所以1113(23)23n n -<+×,故13nT <.【小问3详解】解:因为()()n n n n b n c a b n ìï=í×ïî为奇数为偶数,可得,1,2n n n n c n n ìï=íæö×ïç÷èøî为奇数为偶数,则数列{}n c 的前2n 项和2111(1321)(2424162n n M n n =+++-+×+×++×L L ,令()2(121)13212n n n U n n +-=+++-==L ,令21112424162n n V n =×+×++×L ,则221111242416642n n V n +=×+×++×L ,两式相减得21222211(1)3111111242214283222214n n n n n n n -++×-=++++-×=-×-L 21212141112341()3222332n n n n n ++++=×--×=-×,所以8681868994994n n nn n V ++=-×=-×,所以数列{}n c 的前2n 项和2868994n n n nn M U V n +=+=+-×.19. 已知函数()()()ln 3cos 2f x x x =-+-的图象与()g x 的图象关于直线1x =对称.(1)求函数()g x 的解析式;(2)若()1g x ax -£在定义域内恒成立,求a 的取值范围;(3)求证:()2*11ln 2ni n g n n i =+æö<+Îç÷èøåN .【答案】(1)()()ln 1cos g x x x =++ (2)1 (3)证明见解析【解析】【分析】(1)根据两函数关于1x =对称求解析式即可;(2)先探求1a =时成立,再证明当1a =时恒成立,证明过程利用导数求出函数极大值即可;(3)根据(2)可得111g i i æö£+ç÷èø,转化为211111112212ni n g n i n n n n =+æöæö£+++++ç÷ç÷++-èøèøåL ,再由()11ln ln 1ln 1n n n n n+<=+-+,累加相消即可得证.【小问1详解】设()g x 图象上任意一点00(,)P x y ,则其关于直线1x =的对称点为00(2,)P x y ¢-,由题意知,P ¢点在函数()f x 图象上,所以()()()000002ln 1cos y g x f x x x ==-=++,所以()()ln 1cos g x x x =++.【小问2详解】不妨令()()1ln(1)cos 1(1)h x g x ax x x ax x =--=++-->-,则()0≤h x 在(1,)-+¥上恒成立,注意到(0)0h =且()h x 在(1,)Î-+¥x 上是连续函数,则0x =是函数()h x 的一个极大值点,所以(0)0h ¢=,又()1sin 1h x x a x ¢=--+,所以()010h a =¢-=,解得 1.a =下面证明:当1a =时,()0≤h x 在()1,x ¥Î-+上恒成立,令()()()ln 11x x x x j =+->-,则()1111x x x x j -=-=¢++,当(1,0)x Î-时,()0x j ¢>,()j x 单调递增;当(0,)x Î+¥时,()0,()x x j j ¢<单调递减,所以()(0)0x j j £=,即ln(1)x x +£在(1,)Î-+¥x 上恒成立,又cos 10x -£,所以()0≤h x ,综上,1a =.【小问3详解】由(2)知,()1g x x -£,则111g i iæö-£ç÷èø,111g i iæö\£+ç÷èø,211111112212ni n g n i n n n n =+æöæö\£+++++ç÷ç÷++-èøèøåL ,又由(2)知:ln(1)x x +£在(1,)-+¥恒成立,则ln 1£-x x 在(0,+∞)上恒成立,当且仅当1x =时取等号,则令()*0,1,N 1nx n n =ÎÎ+,则1<1ln 1n n n +-+,()11ln ln 1ln .1n n n n n +\<=+-+()()()()()111ln 1ln ln 2ln 1ln 2ln 21ln 2.122n n n n n n n n n\+++<+-++-+++--=++L L()2*11ln 2ni n g n n i =+æö\<+Îç÷èøåN ,证毕.【点睛】关键点点睛:在证明第(3)问时,关键应用(2)后合理变形,得到211111112212ni n g n i n n n n =+æöæö£+++++ç÷ç÷++-èøèøåL ,再令()*0,1,N 1n x n n =ÎÎ+,利用(2)中式子得()11ln ln 1ln 1n n n n n+<=+-+,能够利用累加相消是证明的关键.。

福建省泉州五中人教版初中物理八年级上册第一章复习题(培优)

福建省泉州五中人教版初中物理八年级上册第一章复习题(培优)

考试范围:xxx;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(0分)[ID:116386]用刻度尺测量物体的长度时,下列要求错误的是()A.测量时,刻度尺要放正,有刻度的一边要紧贴被测物体B.读数时,视线应与尺面垂直C.记录测量结果时,必须在数字后面写上单位D.测量时,必须从刻度尺的零刻度线处量起2.(0分)[ID:116384]甲、乙、丙、丁为四辆在同一平直公路上行驶的小车,它们的运动图像如图所示,由图可知其中受到平衡力作用的是()A.甲和丙B.甲和丁C.甲、丙、丁D.乙、丙、丁3.(0分)[ID:116368]如图所示,甲、乙两同学从同一地点同时向相同方向做直线远动,他们通过的路程随时间变化的图象如图所示,由图象可知,下列说法正确的是()~内,乙同学比甲同学运动的快A.在010sB.两同学在距离出发点100m处相遇~内,甲同学平均速度大C.在015s~内,乙同学的速度10m/sD.在010s4.(0分)[ID:116359]汽车后刹车灯的光源,若采用发光二极管LED,则通电后亮起的时间会比采用白炽灯大约快0.5s,故有助于后车驾驶员提前作出反应,即遇到情况时可提前0.5s刹车。

在限速为110km/h的高速公路上,行车安全距离约可以减少()A.55m B.25m C.15m D.5m5.(0分)[ID:116358]晓燕在学校春季运动会百米赛跑中以16s的成绩获得冠军,测得她在50m处的速度是5m/s,到终点时的速度为7m/s,则全程内的平均速度是()A.5m/s B.6m/s C.6.25m/s D.7m/s6.(0分)[ID:116340]甲、乙两物体都做匀速直线运动,它们路程之比是1:2,它们通过时间之比是3:2,则甲、乙两物体的速度之比是()A.2:1B.1:1C.1:3D.4:17.(0分)[ID:116333]如图甲是a,b两车在平直公路上行驶的路程与时间关系图像,关于该图像下列说法正确的是()A.图甲中的a车的图线表示的是a车比b车晚出发5sB.图甲中的10s时刻表示a,b两车此时的速度相等C.图甲中的b车的图线表示的是b车出发时间在a车前15m处D.图乙中的图线是b车的速度与时间关系图象8.(0分)[ID:116319]下列对一些常见的估测恰当的是()A.中学生课桌高度约40cm B.中学生心脏每分钟跳动约是70次C.人眨眼一次的时间约是1s D.我国高速公路限速300km/h9.(0分)[ID:116313]甲物体的速度是36km/h,乙物体的速度是20m/s,丙物体1min内通过的路程是900m,通过比较可知()A.甲物体运动得最快B.乙物体运动得最快C.丙物体运动得最快D.三个物体运动得一样快10.(0分)[ID:116310]为了庆祝中华人民共和国成立70周年,我国在天安门广场举行了盛大的阅兵式。

福建省泉州五中初中英语八年级下册Unit 1复习题(培优)

福建省泉州五中初中英语八年级下册Unit 1复习题(培优)

一、选择题1.—I have a ______.—You should take your temperature.A.fever B.headache C.sore throat D.sore back A解析:A【详解】句意:——我发烧了。

——你应该量量体温。

have a fever发烧,have a headache头疼,have a sore throat嗓子疼,have a sore back背疼。

根据You should take your temperature.可知你应该量体温,应是发烧了,故选A。

2.You should ____ more water when you have a fever.A.drinks B.drinking C.drinked D.have D解析:D【解析】句意:你发烧的时候应该多喝水。

Should:应该,情态动词,后面跟动词原形;故选D。

3.He’s ill. He must go to ____ a doctor in the hospital.A.look B.watch C.see D.visited C解析:C【解析】句意:他病了。

他必须去医院看医生。

短语see a doctor:看医生,看病;故选C。

4._____ did the headache start? --- About two hours ago.A.When B.What C.where D.How A解析:A【解析】句意:头痛是什么时候开始的?大约两小时前。

A. When什么时候;B. What什么;C. where在哪里;D. How怎样,如何。

根据回答About two hours ago(两个小时前)可知询问的是时间,就时间提问用when;结合句意和语境可知选A。

5.You are always angry, maybe you have____ “yang”.A.too B.too many C.much too D.too much D解析:D【解析】句意:你总是生气,也许你有太多的“阳”。

山东省日照五中度人教版九年级化学上册_第一章_走进化学世界_单元检测试题(有答案)

山东省日照五中度人教版九年级化学上册_第一章_走进化学世界_单元检测试题(有答案)

山东省日照五中度人教版九年级化学上册_第一章_走进化学世界_单元检测试题(有答案)第一章走退化学世界单元检测试题考试总分: 80 分考试时间: 90 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题〔共 15 小题,每题 2 分,共 30 分〕1.以下是说法正确的选项是〔〕A.发生光和热的变化一定是化学变化B.物理变化的特征是没有新物质发生,化学变化的特征是有新物质发生C.物理变化和化学变化同时发作,同时完毕D.物理变化中一定包括化学变化2.加热胆矾的实验进程中,相关实验基本操作正确的选项是〔〕A. B.C. D.3.以下实验操作,合理的是〔〕A.反省装置的气密性时,先用两手掌紧贴试管外壁,再将导管浸入水中B.用高锰酸钾制氧气时,先固定试管,后放置酒精灯C.用高锰酸钾制氧气时用排水法搜集,先将导管伸入集气瓶,后加热试管D.给试管中的药品加热时,先使试管平均受热,再固定在药品的下部加热4.以下关于物理变化和化学变化的区别和联络的表达中,正确的选项是〔〕A.物理变化和化学变化一定同时发作B.化学变化时常随同着物理变化C.化学变化时一定不发作物理变化D.物理变化和化学变化的实质区别:能否有新物质消费5.以下图示实验操作中,正确的选项是〔〕A. B.C. D.6.以下实验操作错误的选项是〔〕A.液体取用B.读取液体体积C.给液体加热D.液体滴加7.以下变化属于化学变化的是〔〕A.试管分裂B.冰雪消融C.酒精挥发D.蜡烛熄灭8.玻璃仪器洗净的标志是〔〕A.用热的纯碱溶液洗濯过B.用蒸馏水洗过屡次C.洗濯后的仪器曾经透明了D.仪器内壁附着的水既不聚成水滴,也不成股流下9.某同窗的实验报告中,有以下实验数据,其中合理的是〔〕A.用托盘天平称得11.7g食盐B.排空气法搜集氧气的纯度可以到达100%C.用煤油温度计测得水溶液的温度值为500∘CD.用100mL量筒量取5.26mL盐酸10.以下物质的用途,是应用其化学性质的是〔〕A.铝材做高压锅B.液化气做燃料C. D.炭黑做填充剂钢材制铁轨11.过生日时,精巧的蛋糕上都会插上美丽的生日蜡烛,扑灭后,让我们吹灭.我们学化学的第一个探务实验也是观察和描画蜡烛的熄灭.如下图是实验中的几个步骤,请剖析以下结论不正确的选项是〔〕A.实验要先观察物质的物理性质,这是与往常扑灭蜡烛的清楚不同之处B.由图1可以清楚地观察到外焰温度最高C.由图2可见烧杯内廓清的石灰水变混浊D.由图3可证明蜡烛是气体熄灭12.设计实验方案是迷信探求的重要环节.以下化学实验设计中,能到达实验目的是〔〕A.用铜和稀硫酸反响制取硫酸铜溶液B.用石灰石除去氯化钙溶液中混有的盐酸C.用氢氧化钠溶液除去二氧化碳中混有的氯化氢气体D.用酚酞试液检验暴露在空气中的NaOH固体能否蜕变13.以下词汇中,与相关物质的颜色并无联络的是〔〕A.白色污染B.赤潮现象C.绿色食品D.棕色烟雾14.空气与人体呼出气体比拟,以下表达正确的选项是〔〕A.空气中氧气含量比呼出气体中多B.空气中二氧化碳含量比呼出气体中多C.空气中水蒸气含量比呼出气体中多D.空气中氧气、二氧化碳、水蒸气含量都比呼出气体中多15.自然界中的〝氧循环〞,以下说法正确的选项是〔〕A.自然界中发生氧气的途径主要是植物的光协作用B.〝氧循环〞指得是氧气的循环,多是物理变化C.关于相对动摇的大气来说〝氧循环〞有没有无所谓D.物质在空气中的缓慢氧化是释放氧气的进程二、多项选择题〔共 5 小题,每题 2 分,共 10 分〕16.天文学家在研讨星系运动方式时发现,人们所观察到的星系其外部的引力仅占〝物质〞引力总量的1%∼l0%,其他是少量的非星系外部引力.这一现象说明,有些〝物质〞是不可见的,缘由是它们不发光也不反射光,因此迷信家称这些能够存在的物质为〝暗物质〞.但是,直到如古人类仍没有探求到〝暗物质〞存在的任何证据,对此,你以为以下观念不可取的是〔〕A.〝暗物质〞是人类虚拟出来的,理想上,宇宙中基本就不存在B.〝暗物质〞能够存在,人类应不时地停止探求,一旦发现它存在的证据,将为人类重新看法宇宙开拓一个全新的视角C.〝暗物质〞能够存在距地球十分悠远的中央,迷信家能够经过探求〝暗物质〞发生的粒子的存在而直接证明〝暗物质〞的存在D.人类探求至今,仍未发现〝暗物质〞,说明〝暗物质〞是不存在的17.迷信的假定与猜想是探求的先导和价值所在.以下假定引导下的探求一定没有意义的是〔〕A.探求二氧化碳和水反响能够有硫酸生成B.探求钠与水的反响发生的气体能够是氢气C.探求镁条外表灰黑色的物质能够只是氧化镁D.探求铜丝在酒精灯火焰上灼烧时出现的黑色物质能够是炭黑18.以下选项中不属于模型的是〔〕A.I=URB.C. D.19.小明在厨房中发现一种白色固体,他以为〝能够是食盐〞.小花说〝可以尝一尝〞.关于〝能够是食盐〞应属于迷信探求中的〔〕,关于〝可以尝一尝〞这一进程应属于迷信探求中的〔〕A.提出假定B.搜集证据C.实验D.得出结论20.以下仪器中,能在酒精灯火焰上直接加热的是〔〕A.熄灭匙B.烧杯C.试管D.量筒三、填空题〔共 3 小题,每题 4 分,共 12 分〕21.按以下要求填空:(1)正确量取15mL液体,应选用以下________〔填序号〕量筒.①20mL②50mL③10mL和5mL(2)某同窗量取食盐水,读数时量筒放平在桌上且面对刻度线,当视野仰望时读数为10mL,其正确的体积数应________〔填〝大于〞〝小于〞或〝等于〞〕10mL.(3)用来吸取和滴加大批液体的仪器是________;(4)实验室常用的加热仪器是________.22.在实验室配制溶液时,常触及以下进程:①溶解;②称量;③计算;④装瓶贴标签寄存.请按要求回答以下效果:(1)现欲配制100克0.9%的氯化钠溶液,配制进程的先后顺序是________〔填序号〕(2)应选择的仪器有________〔填序号〕.①水槽②托盘天平③烧杯④玻璃棒⑤铁架台⑥量筒⑦药匙⑧胶头滴管(3)用已调理平衡的天平称取氯化钠固体时,发现指针偏右,接上去的操作应该是________.(4)量取水时,仰望读数,所得溶液的溶质的质量分数会________〔〝偏大〞或〝偏小〞〕23.酒精灯是实验室常用的加热的仪器,加热时用酒精灯火焰的________加热,给试管内液体加热时,液体体积不超越其容积的________,给试管内固体加热时,试管口应________.四、解答题〔共 1 小题,共 8 分〕24.〔8分〕将以下操作与操作中试管位置正确的用直线将它们衔接起来五、实验探求题〔共 2 小题,每题 10 分,共 20 分〕25.化学实验中经常要依据实验内容选择对应的仪器.将操作还需求配合运用的另一种仪器〔如下图〕用短线衔接起来.26.药品的取用(1)药品取用〝三〞原那么:①〝三不原那么〞:不能用手拿药品;不能把鼻孔靠近容器口去闻药品的气息;不得品味任何药品的滋味.②浪费原那么:严厉按实验规则用量取用药品.假设没有说明用量,普通取最大批,液体lmL∼2mL,固体只需盖满试管的底部.③处置原那么:实验时剩余的药品不能放回原瓶;不要随意丢弃;更不要拿出实验室.(2)药品取用方法〔往试管里加固体药品或倾倒液体药品〕固体药品:①块状:用________夹取;操作要领是:〝一平、二放、三慢竖〞〔将试管横放.用镊子将块状固体药品放入试管口,然后渐渐地将试管竖立起来,使块状固体渐渐滑至试管底部〕.②粉末状:用________〔或________〕取用;操作要领是:〝一斜、二送、三直立〞〔将试管倾斜,把盛有药品的药匙或纸槽送入试管底邵,然后使试管直立起来,让药品落入试管底部〕.液体药品:操作要领是:〝取下瓶塞________着放,标签________缓慢倒,用完盖紧原处放.〞(3)用量筒量取液体体积的方法:①读数时,应将量筒放置颠簸,并使视野与液面凹面最________处坚持水平,②应依据量取液体体积的多少,选用大小适当的量筒.答案1.B2.B3.D4.D5.A6.C7.D8.D9.A10.B11.D12.B13.C14.A15.A16.AD17.AC18.AC19.AC20.AC21.(1)①;(2)大于;(3)胶头滴管;(4)酒精灯.22.③②①④;(2)配制溶液的需求的仪器:烧杯、托盘天平、玻璃棒、量筒、药匙和胶头滴管,故答案:②③④⑥⑦⑧;(3)假定天平指针偏右,说明食盐质量小于所需的质量应再加药品;故答案:向左盘中添加食盐;(4)仰望读数小于液体的实践体积,所以配制的溶液的质量偏大,故答案:偏小.23.外焰13向下倾斜24.25.26.镊子.②粉末状固体普通采用药匙或纸槽取用,瓶塞倒放是为了防止污染瓶塞,而污染药品.标签向着手心是防止瓶口残留的药品流下腐蚀标签.故答案为:药匙;纸槽;倒放;对着手心.镊子药匙纸槽倒对着手心最低处。

潍坊市五中必修一第一单元《集合》检测(答案解析)

潍坊市五中必修一第一单元《集合》检测(答案解析)

一、选择题1.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .0B .1-C .1D .1或1-2.已知x ,y 都是非零实数,||||||x y xyz x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉3.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个4.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .45.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+6.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥7.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]28.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤9.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<10.已知()()()()22221234()4444f x x x c xx c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( ) A .4B .9C .16D .6411.已知全集为R ,集合A ={﹣2,﹣1,0,1,2},102x B xx -⎧⎫=<⎨⎬+⎩⎭∣,则A ∩(∁R B )的子集个数为( ) A .2B .3C .4D .812.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.全集{U x x =是不大于20的素数},若{}3,5A B ⋂=,{}7,19A B ⋂=,{}2,17A B ⋃=,则集合A =___________.14.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为________.15.已知,a b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为_____________. 16.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且A B =________.17.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________ 18.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.19.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________. 20.设A 、B 是非空集合,定义:{|A B x x AB ⊗=∈且}x A B ∉,已知{|2}2xA x x =<+,{|3}B x x =>-,则A B ⊗=_________ 三、解答题21.已知集合{}|13A x x =-<<,集合(){}2|25250B x x k x k =+--<,k ∈R .(1)若1k =时,求B R,A B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数k 的取值范围.22.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.23.已知集合A ={x |2≤x <7},B ={x |3<x <10},C ={x |x a ≤}. (1)求A ∪B ,(∁R A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.24.已知集合{}2210A x mx x =∈-+=R ,在下列条件下分别求实数m 的取值范围. (1)A =∅; (2)A 恰有两个子集; (3)1A ,22⎛⎫⋂≠∅⎪⎝⎭. 25.已知集合{|12},{|11}A x ax B x x =<<=-<<,求满足A B ⊆的实数a 的取值范围. 26.已知全集U =R ,设集合{}213A x x =-≤,集合(){}2440B x x a x a =+-->,若A B A =,求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101a b +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.2.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.3.C解析:C 【分析】根据新定义,对每个选项逐一判断,即可得到答案. 【详解】对于(1),因为20155403÷=,余数为0,所以2015[0]∈,故(1)正确; 对于(2),因为()3512-=⨯-+,所以33[]-∉,故(2)错误; 对于(3),因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故(3)正确;对于(4),因为整数,a b 属于同一“类”,所以整数,a b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”.故(4)正确.综上所述,正确的个数为:3个. 故选C . 【点睛】本题考查了集合的新定义,解题关键是理解被5所除得余数为k 的所有整数组成一个“类”,考查了分析能力和计算能力.4.B解析:B【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误; 对于②,因为||||AB A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0A B =,但不满足A 、B 中至少有个是空集,即③错误; 对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.5.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.6.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.7.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.8.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.9.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.10.A解析:A 【分析】先设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,4,i i i i i x y x y c +=⋅=,再依题意分析根均为整数,列举根的所有情况,确定44c =和1c 的可能情况,得到41c c -的最小取值和其他可能的情况,即得结果. 【详解】设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,则由根和系数的关系知4,i i i i i x y x y c +=⋅=,又{}{}127()0,,,M x f x x x x Z ===⋯⊆,说明方程204i x x c -+=()1,2,3,4i =有一个方程是两个相等的根,其他三个方程是两个不同的根,由于根均为整数且和为4,则方程的根有以下这些情况:…,()()()()()()()()()6,105,9,4,8,3,7,2,6,1,5,0,4,1,3,2,2------,乘积分别为…,-60,-45,-32,-21,-12,-5,0,3,4.因为1234c c c c ≤≤≤,故44c =,123,,c c c 来自于4前面的任意可能三个不同的数字,1c 最小,故当15c =时41c c -最小,等于9,故不可能取4,能取9;当112c =-或160c =-时41c c -可以取16,64. 故选:A.【点睛】本题解题关键是能依据题意分析方程204i x x c -+=()1,2,3,4i =的根的可能情况,既是整数又满足和为4,判断44c =,再根据1c 的可能情况,确定41c c -的可能结果,以突破难点.11.D解析:D 【分析】解不等式得集合B ,由集合的运算求出()R A B ,根据集合中的元素可得子集个数.【详解】10{|21}2x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭∣,{|2R B x x =≤-或1}x ≥,所以()R A B {2,1,2}=-,其子集个数为328=.故选:D . 【点睛】本题考查集合的综合运算,考查子集的个数问题,属于基础题.12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.【分析】本题首先可根据素数的定义得出然后根据题意绘出韦恩图最后根据韦恩图即可得出结果【详解】因为全集是不大于的素数所以因为所以因为所以可绘出韦恩图如图所示:由韦恩图可知故答案为:【点睛】本题考查根据 解析:{}3,5,11,13【分析】本题首先可根据素数的定义得出{}2,3,5,7,11,13,17,19U =,然后根据题意绘出韦恩图,最后根据韦恩图即可得出结果. 【详解】因为全集{U x x =是不大于20的素数},所以{}2,3,5,7,11,13,17,19U =, 因为{}2,17A B ⋃=,所以{}3,5,7,11,13,19AB =,因为{}3,5A B ⋂=,{}7,19A B ⋂=, 所以可绘出韦恩图,如图所示:由韦恩图可知,{}3,5,11,13A =, 故答案为:{}3,5,11,13. 【点睛】本题考查根据集合运算结果求集合,考查素数的定义,素数是指在大于1的自然数中,只能被1和该数本身整除的数,考查韦恩图的应用,能否根据题意绘出韦恩图是解决本题的关键,考查数形结合思想,是中档题.14.【分析】由分和两种情况分别讨论进而建立不等关系可求出答案【详解】当即时此时满足;当即时此时由可得解得综上实数的取值范围为故答案为:【点睛】本题考查根据集合的包含关系求参数的范围其中的易漏点在于漏掉考 解析:(,3]-∞【分析】由B A ⊆,分B =∅和B ≠∅两种情况分别讨论,进而建立不等关系,可求出答案. 【详解】当121m m +>-,即2m <时,此时B =∅,满足B A ⊆; 当121m m +≤-,即2m ≥时,此时B ≠∅,由B A ⊆,可得12215m m +≥-⎧⎨-≤⎩,解得23m ≤≤.综上,实数m 的取值范围为(,3]-∞. 故答案为:(,3]-∞ 【点睛】本题考查根据集合的包含关系求参数的范围,其中的易漏点在于漏掉考虑子集为空集的情况,易错点在于弄错不等关系,结合数轴依次分类讨论即可避免此类问题.15.【分析】由集合相等可求出直接计算即可【详解】即故解得故答案为:【点睛】本题主要考查了集合相等的概念集合中元素的互异性属于中档题 解析:1-【分析】由集合相等可求出,a b ,直接计算20192019a b +即可. 【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 0,0a b ∴≠=,即{}{}2,0,1,,0a a a =,故21,1a a =≠,解得1a =-,2019201920192019(1)01a b +=-+=-故答案为:1- 【点睛】本题主要考查了集合相等的概念,集合中元素的互异性,属于中档题.16.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.17.【分析】根据集合所以集合没有公共元素列出两个集合的端点满足的不等关系结合数轴可以得出的范围得到结果【详解】集合由借助于数轴如图所示可得故答案为:【点睛】该题主要考查集合中参数的取值范围的问题两个集合解析:(,1]-∞-. 【分析】根据集合{|14}A x x =-≤≤,{|}B x x a =<,A B φ⋂=,所以集合,A B 没有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围,得到结果. 【详解】集合{|14}A x x =-≤≤,{|}B x x a =<,由A B φ⋂=,借助于数轴,如图所示,可得1a ≤-,故答案为:(,1]-∞-.【点睛】该题主要考查集合中参数的取值范围的问题,两个集合的关系,属于中档题目. 18.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】 由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题. 19.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题 解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可.【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意;若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =. 【点睛】 本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题.20.【分析】先计算集合A 再根据定义得到答案【详解】或且或故答案为:【点睛】本题考查了集合的新定义问题意在考查学生的理解能力和解决问题的能力解析:(,4)(3,2]-∞---【分析】先计算集合A ,再根据定义得到答案.【详解】{{|2}42x A x x x x =<=<-+或2}x >-,{|3}B x x =>- {|A B x x A B ⊗=∈且{}4x A B x x ∉⋂=<-或}32x -<≤-故答案为:(,4)(3,2]-∞---【点睛】本题考查了集合的新定义问题,意在考查学生的理解能力和解决问题的能力. 三、解答题21.(1)[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,5,32⎛⎫- ⎪⎝⎭;(2)[)3,+∞. 【分析】(1)若1k =,化简集合B ,利用补集和并集的定义进行计算可得答案;(2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,分52k <-,52k =-和52k >-分别求出集合B ,列出不等式可得实数k 的取值范围. 【详解】(1)若1k =,{}25|2350|12B x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭ 则R B =[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,A B =5,32⎛⎫- ⎪⎝⎭; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,(){}()(){}2|25250|250B x x k x k x x k x =+--<=-+<当52k <-时,5,2B k ⎛⎫=- ⎪⎝⎭,不合题意; 当52k =-时,B φ=,不合题意; 当52k >-时,5,2B k ⎛⎫=- ⎪⎝⎭,只需3k ≥; 综上可得:实数k 的取值范围是[)3,+∞.【点睛】结论点睛:本题考查集合的交并补运算,考查充分不必要条件的应用,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.22.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a .【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B ,(2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案.【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈,当0a =时,{|10}A x x =-<<, 276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆,分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立;②,当12a a -<时,即1a >-时,A ≠∅,若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a .【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题.23.(1) {x |2≤x <10}, {x |7≤x <10};(2) 2a ≥【分析】(1)根据交、并、补集的运算分别求出A ∪B ,(∁R A )∩B ;(2)根据题意和A∩C≠∅,即可得到a 的取值范围.【详解】解:(1)因为A ={x |2≤x <7},B ={x |3<x <10},所以A ∪B ={x |2≤x <10}.因为A ={x |2≤x <7},所以∁R A ={x |x <2,或x ≥7},则(∁R A )∩B ={x |7≤x <10}.(2)因为A ={x |2≤x <7},C ={x |x a ≤},且A ∩C ≠∅,所以2a ≥所以a 的取值范围为2a ≥.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.24.(1)1m ;(2){}0,1;(3)](0,1m ∈.【分析】(1)若A =∅,则关于x 的方程2210mx x -+=没有实数解,即∆<0;(2)若A 恰有两个子集,则A 为单元素集,对0m =和0m ≠,0∆=两种情况分类讨论即可; (3)若1,22A ⎛⎫⋂≠∅ ⎪⎝⎭,则关于x 的方程221mx x =-在区间1,22⎛⎫ ⎪⎝⎭内有解,即2211,,22m x x x ⎛⎫=-∈ ⎪⎝⎭,函数值域即为所求. 【详解】(1)若A =∅,则关于x 的方程2210mx x -+=没有实数解,所以0m ≠,且440m ∆=-<,所以1m .(2)若A 恰有两个子集,则A 为单元素集,所以关于x 的方程2210mx x -+=恰有一个实数解,讨论:①当0m =时,12x =,满足题意; ②当0m ≠时,Δ440m =-=,所以1m =. 综上所述,m 的集合为{}0,1.(3)若1,22A ⎛⎫⋂≠∅ ⎪⎝⎭, 则关于x 的方程221mx x =-在区间1,22⎛⎫ ⎪⎝⎭内有解,等价于当1,22x ⎛⎫∈ ⎪⎝⎭时,求2221111m x x x ⎛⎫=-=-- ⎪⎝⎭的值域, 所以](0,1m ∈.【点睛】本题主要考查集合与二次型方程的应用,根据题目要求确定集合中方程根的情况是解答本题的关键.25.{}(,2]0[2,)-∞-+∞.【分析】根据题意,分0a =,0a >和0a <三种情况分类讨论,结合A B ⊆,列出相应的不等式组,即可求解.【详解】由题意,集合{|12},{|11}A x ax B x x =<<=-<<,①当0a =时,集合A φ=,满足A B ⊆; ② 当0a >时,集合12{|}A x x a a =<<,因为A B ⊆,则1121a a⎧≥-⎪⎪⎨⎪≤⎪⎩,解得2a ≥; ③ 当0a <时,集合21{|}A x x a a =<<,因为A B ⊆,则2111a a⎧≥-⎪⎪⎨⎪≤⎪⎩,解得2a ≤-. 综上所述,所求实数a 的取值范围为{}(,2]0[2,)-∞-+∞. 故答案为:{}(,2]0[2,)-∞-+∞. 【点睛】本题主要考查了根据集合的包含关系求解参数问题,其中解答中熟练应用集合的包含关系,合理分类讨论求解是解答的关键,着重考查分类讨论思想,以及推理与运算能力. 26.1a <-【分析】 先化简集合{}{}21312A x x x x =-≤=-≤≤,集合(){}()(){}244040B x x a x a x x a x =+-->=-+>,再根据A B A =,转化为A B ⊆求解.【详解】 集合{}{}21312A x x x x =-≤=-≤≤,集合(){}()(){}244040B x x a x a x x a x =+-->=-+>,因为A B A =,所以A B ⊆ ,当4a =-时,{}4B x x =≠-,满足A B ⊆, 当4a >-时,{B x xa =或}4x <- ,要使A B ⊆成立, 则1a <- 即41a -<<-, 当4a 时,{4B x x =-或}x a <,满足A B ⊆,综上:实数a 的取值范围1a <-.【点睛】本题主要考查了集合的关系及基本运算,还考查了转化化归的思想和运算求解的能力,属于中档题.。

七年级上册生物校本作业

七年级上册生物校本作业

七年级上册生物校本作业漳州市校本作业编者:漳州二中诏安一中漳州五中七上生物范坤芳沈益明黄惠本第一单元生物和生物圈第一章认识生物第一节生物的特征一、单项选择题1.下列各项中,不属于科学观察的是()A.及时记录菜豆种子萌发过程B.用相机拍摄记录水稻生长过程C.追逐树林中偶然发现的一只野兔D.用录影机录下昆虫的叫声并加以分析2.下列不属于生命现象的是()A.潮涨潮落B.蜘蛛结网C.孔雀开屏D.金蝉脱壳3.下列属于生物的是()①生石花②钟乳石③机器人④含羞草A.①②B.②③C.③④D.①④4.课上被点名回答问题时你会主动起立,这说明生物具有的特征是()A.能进行呼吸B.能够进行生长C.生活需要营养D.能对外界刺激作出反应5.“螳螂捕蝉,黄雀在后”描述的现象体现的生物特征是()A.能排出废物B.生活需要营养C.能够进行繁殖D.能够进行呼吸6.下列成语蕴含的生物特征与其他三项不同的是()A.惊弓之鸟B.杯弓蛇影C.蜻蜓点水D.望梅止渴7.图1所示的现象,体现的生物特征有()图12①能进行呼吸②生活需要营养③能够进行生长④能排出体内产生的废物⑤能对外界刺激作出反应A.①②③④B.②③④⑤C.①③④⑤D.①②④⑤二、非选择题8.请将下列生物的生命现象与其所体现的生物特征相连。

A.鲸鱼喷出水柱a.繁殖B.植物开花结果b.变异C.龙生龙,凤生凤c.呼吸D.子代与亲代产生差异d.遗传9.请判断图2中四位同学有关生物特征的说法,正确的在括号内画“√”,错误的在括号内画“某”。

(1)①的说法()(2)②的说法()(3)③的说法()(4)④的说法()第二节调查周边环境中的生物一、单项选择题1.下列有关调查的说法不正确的是()A.作为科学探究常用方法之一B.需要制定合理的调查方案C.有时需要用到数学方法统计D.森林资源清查不是调查2.下列关于调查步骤的排序正确的是()①设计调查路线②选择调查范围③归类整理④调查、记录A.①②③④B.②①④③C.①②④③D.②①③④3.在调查校园生物中,以下同学的做法正确的是()A.小伟独自一人下到河水中去观察鱼B.小梅拨开草丛,看到一只蟋蟀便把它记录下来3有的生物没有细胞结构。

【襄樊五中】第一章《化学反应中的能量变化》测试题

【襄樊五中】第一章《化学反应中的能量变化》测试题

《化学反应及其能量变化》检测题(总分:120分时间90分钟)一、选择题(本题包括20小题,每题3分,共60分。

每小题只有一个选项符合题意)1.在下列反应中,CO2作为氧化剂的反应是()。

A.CaCO3+CO2+H2O Ca(HCO)2B.CO2+C 高温 2COC.2Fe2O3+3C 高温 4Fe+3CO2↑D.Cu2(OH)2CO3△ CuO+CO2↑+H2O23A. 醋酸钠(CH3COONa)稀H2SO4B. 氯化钠溶液和稀H2SO4C. 碳酸氢钠溶液和稀盐酸D. 氯化钙溶液和硝酸银溶液4.下列离子方程式写正确的是()。

A. 实验室制取CO2: CO32―+2H+ CO2↑+H2OB. 氢氧化铁溶于盐酸:Fe(OH)3+3H+ Fe2++3H2OC. 过量的CO2通入澄清石灰水中:CO2+Ca2++2OH― CaCO3↓+H2OD.“曾青得铁化为铜”:Fe +Cu2+ Fe2+ +Cu5.下列各组离子在同一溶液中能大量共存的是()。

A. Na+、HCO3―、H+、NO3―B.Fe2+、H+、Cl―、CO32-C.Cu2+、H+、Cl―、NO3―D.Ca2+、Cl―、OH―、HCO3―6.H―可以跟NH3反应:H―+NH3 NH2―+H2,根据反应事实可以得出的结论正确的是()。

A. NH3被氧化B. H―是很强的还原剂C. H2是氧化产物、NH2—是还原产的D. 该反应是置换反应7.已知某温度时可以发生如下三个反应:(1)C+CO2 2CO (2)C+H2O CO+H2(3)CO+H2O CO2+H2由此可以判断,在该温度下C、CO、H2的还原性强弱顺序是()。

A.C>CO>H2B. CO>C>H2C.C>H2>COD.CO>H2>C8.金属M的硫酸盐的化学式为Ma(SO4) b,则该金属同价态的氯化物的化学式是()。

A. MCl b/aB. MCl2h/aC. MCl a/bD. MCl b/2a9.氢气是一种高效而无污染的能源,有着十分广泛的开发前景,大量氢气可以通过分解水而获得,关于用水制取氢气,以下研究方向不正确的是()。

坡头区五中八年级数学下册第一章三角形的证明检测题新版北师大版

坡头区五中八年级数学下册第一章三角形的证明检测题新版北师大版

第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为(B )A .23°B .46°C .67°D .78°,第1题图) ,第2题图) ,第3题图)2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是(D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE3.(福建中考)如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC =45°,则∠ACE 等于(A )A .15°B .30°C .45°D .60°4.(达州二模)如图,在△ABC 中,∠C =90°,∠ABC 的平分线交AC 于点D ,DE 垂直平分AB ,垂足为E ,若BC =3,则AD 的长为(C )A . 3B .2C .2 3D .4,第4题图) ,第5题图) ,第10题图)5.(雅安中考)如图,四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =1,BC =2,则四边形ABCD 的面积是(A )A .332B .3C .2 3D .4 6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为(D )A .20B .10 3C .5 3D .2532 7.已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画(B )A .3条B .4条C .5条D .6条8.已知等边△ABC 的边长为12,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF⊥BC 于点F ,过F 作FG ⊥AB 于点G.当G 与D 重合时,AD 的长是(C )A .3B .4C .8D .99.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有(B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是(C )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.(南通中考)一个等腰三角形的两边长分别为4 cm 和9 cm ,则它的周长为22cm .12.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D到AB 的距离为4.,第12题图) ,第13题图) ,第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是AC =DF(答案不唯一).(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE的周长为14 cm ,则AB =8 cm .15.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是 5.,第15题图) ,第16题图)16.(葫芦岛中考)如图,∠MON =30°,点B 1在边OM 上,且OB 1=2,过点B 1作B 1A 1⊥OM 交ON 于点A 1,以A 1B 1为边在A 1B 1右侧作等边三角形A 1B 1C 1;过点C 1作OM 的垂线分别交OM ,ON 于点B 2,A 2,以A 2B 2为边在A 2B 2的右侧作等边三角形A 2B 2C 2;过点C 2作OM 的垂线分别交OM ,ON 于点B 3,A 3,以A 3B 3为边在A 3B 3的右侧作等边三角形A 3B 3C 3,…;按此规律进行下去,则△A n A n +1C n 的面积为(32)2n -2×33.(用含正整数n 的代数式表示) 点拨:由题意△A 1A 2C 1是等边三角形,边长为233,△A 2A 3C 2是等边三角形,边长为32×233,△A 3A 4C 3是等边三角形,边长为32×32×233=(32)2×233,△A 4A 5C 4是等边三角形,边长为32×32×32×233=(32)3×233,…,△A n A n +1C n 的边长为(32)n -1×233,∴△A n A n +1C n 的面积为34×[(32)n-1×233]2=(32)2n-2×33三、解答题(共72分)17.(6分)如图,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.证明:过点A作AP⊥BC于P.∵AB=AC,∴BP=PC,∴AD=AE,∴DP=PE,∴BP-DP =PC-PE,∴BD=CE18.(7分)(成都期末)如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB 和BC于点D,E,且AE平分∠BAC.(1)求∠C的度数;(3分)(2)若CE=1,求AB的长.(4分)解:(1)∵DE是线段AB的垂直平分线,∠B=30°,∴∠BAE=∠B=30°,∵AE平分∠BAC,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°-∠BAC-∠B=180°-60°-30°=90°(2)∵∠C=90°,∠B=30°,AE平分∠BAC,CE=1,∴AC=3,∴AB=2 319.(7分)(达州期末)如图,在△ABC中,AD平分∠BAC,DE∥AC,EF⊥AD交BC延长线于F.求证:∠FAC=∠B.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠EDA=∠EAD,∴AE=ED,又∵EF⊥AD,∴EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA.又∵∠FAD=∠CAD+∠FAC,∠FDA=∠B+∠BAD,∴∠FAC=∠B20.(7分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(3分)(2)求证:过点A,F的直线垂直平分线段BC.(4分)解:(1)∠ABE =∠ACD.理由:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD ,∴∠ABE =∠ACD(2)连接AF.∵AB =AC ,∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD ,∴∠FBC =∠FCB ,∴FB =FC ,∵AB =AC ,∴点A ,F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC21.(7分)如图,在△ABC 中,∠A =60°,点D 是BC 边的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于△ABC 内一点P ,连接PC.(1)若∠ACP =24°,求∠ABP 的度数;(4分)(2)若∠ACP =m °,∠ABP =n °,请直接写出m ,n 满足的关系式:________________.(3分)解:(1)∵点D 是BC 边的中点,DE ⊥BC ,∴PB =PC ,∴∠PBC =∠PCB.∵BP 平分∠ABC ,∴∠PBC =∠ABP ,∴∠PBC =∠PCB =∠ABP ,∵∠A =60°,∠ACP =24°,∴∠PBC +∠PCB +∠ABP =180°-60°-24°,∴3∠ABP =120°-24°,∴∠ABP =32°(2)m +3n =12022.(8分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A=30°,∴BE=12AB =12×40=20(m )(2)AE =AB 2-BE 2=203,∵∠A+∠ADB=∠DBC=75°,∴∠ADB=75°-∠A=45°,∵BE⊥AD,∴∠BED=90°,∴∠DBE=∠ADB=45°,∴DE=BE =20,∴AD=AE +DE=203+20,∵CD⊥AC,∴∠C=90°,又∵∠A=30°,∴CD =12AD =12(203+20)=(103+10) m23.(8分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC中,⎩⎪⎨⎪⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC(AAS ),∴EG =EC24.(10分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC=BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA(等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形25. (12分)如图1,已知点B(0,6),点C为x轴上一动点,连接BC,△ODC和△EBC 都是等边三角形.(1)求证:DE=BO;(3分)(2)如图2,当点D恰好落在BC上时.①求OC的长及点E的坐标;(3分)②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;(3分)③如图3,点M是线段BC上的动点(点B,C除外),过点M作MG⊥BE于点G,MH⊥CE 于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.(3分)(1)证明:∵△ODC和△EBC都是等边三角形,∴OC=DC,BC=CE,∠OCD=∠BCE=60°,∴∠BCE+∠BCD=∠OCD+∠BCD,即∠ECD=∠BCO,∴△DEC≌△OBC(SAS),∴DE=BO(2)①∵△ODC是等边三角形,∴∠OCB=60°.∵∠BOC=90°,∴∠OBC=30°.设OC =x,则BC=2x,∴x2+62=(2x)2,解得x=23,∴OC=23,BC=4 3.∵△EBC是等边三角形,∴BE=BC=4 3.又∵∠OBE=∠OBC+∠CBE=90°,∴E(43,6)②若点P在C点左侧,则CP=CE=43,OP=43-23=23,点P的坐标为(-23,0);若点P在C点右侧,CP=CE=43,则OP=23+43=63,点P的坐标为(63,0),若CP=EP,∵∠DCO=60°,∠BCE=60°,∴∠ECP=60°,∴△ECP为等边三角形,∴CP=EP=CE=43,则OP=23+43=63,点P的坐标为(63,0),综上,点P坐标为(-23,0)或(63,0)③不会变化,MH+MG=64.2一次函数【知识与技能】1。

绥滨五中八年级物理 第一章机械运动检测题

绥滨五中八年级物理 第一章机械运动检测题

图5图4图1绥滨五中八年级物理第一章机械运动检测题一、单项选择题(每题2分,共计24分)1.某学生在测量记录中忘记写单位,下列哪个数据的单位是cm ( )A.普通课本一张纸的厚度是7 B、茶杯的高度是10C.物理书的长度是252 D.他自己的身高是16.72.在学校运动会中测量跳高成绩时,应选取合适的测量工具是 ( )A.分度值是1cm、量程为5m的皮卷尺 B.分度值是1mm的1.5m钢卷尺C分度值是1mm的米尺 D、自制一根分度值是1cm、量程为3m的硬杆长尺3. 坐在行驶的列车中的乘客,我们说他是静止的,是以下列哪个物体为参照物()A.路边的树木 B.走动的列车员C.停在车站上的另一辆车 D、火车车箱4.如图1所示,是香香同学在相等时间间隔里运动的情景,可能做匀速运动的是()5.从匀速直线运动的速度公式v = s/ t得出的结论,正确的是()A.速度与路程成正比B.速度与时间成反比C.速度不变,路程与时间成正比D、速度与路程成反比6. 如果一个物体做匀速直线运动,4s内通过20m的路程,那么它前2s内的速度是() A.20m/s B.10m/s C、5m/s D.无法确定7.甲、乙两小车同时同地同方向做匀速直线运动,它们的s-t图象分别如图3(A)和(B)所示。

则下列说法正确的是()A.甲车速度小于乙车速度 B.甲车速度是4米/秒C.甲车运动4秒后路程是1.5米 D、10秒两车相距3米8. 水中游动最快的旗鱼,速度可达108km/h;陆地上跑得最快的猎豹,1s可跑40m;空中飞行最快的褐海燕,1min能飞5km。

比较它们速度的大小()A、猎豹速度最大 B.旗鱼速度最大 C.褐海燕速度最大 D.三者速度一样大9. 在学校“运用物理技术破案”趣味游戏活动中,小明根据“通常情况下,人站立时身高大约是脚长的7倍”这一常识,可知留下图4中脚印的“犯罪嫌疑人”的身高约为()A.1.95m B、1.85mC.1.75m D.1.65m10. 一般人步行10min通过的路程最接近于( )A. 7m B. 70mC、700m D. 7000m11. 如图5所示是汽车仪表盘上的速度计,如果汽车以现在的速度行驶30min,通过的路程为()A.30km B、35km C.40km D.45km12. 甲、乙两物体运动的路程之比是2:3,所用的时间之比是3:2,则它们的速度之比是() A. 1:1 B. 9:4 C. 2:3 D、4:9二、双选题(每题3分,共计9分,每小题有两个正确选项,选项不全但正确得1分,有错误选项不得分)13、课外活动时,小明和小华均在操作上沿直线进行跑步训练。

瑞安五中高一经济生活第一单元测试卷

瑞安五中高一经济生活第一单元测试卷

瑞安五中高一经济生活第一单元测试卷2007.10 亲爱的同学,你即将开始你上高中以来的第一次思想政治考试。

在这里,我衷心地希望你认真审题,沉着应答,以自己的实力考出优异的成绩!预祝你在这次考试中取得好成绩!——命题老师:孙有新说明:1、本试卷分为第I卷和第II卷两部分,满分105分,考试时间为90分钟。

2、第I卷为单项选择题,请选出最符合题意的一项,并将答案填在答题卷相应的位置上,共60分。

3、第II卷为主观性试题,请把答案写在答题卷相应的位置上,共45分(包括附加题5分)。

第I卷(选择题共60分)一、请你选一选(下列各小题,你一定是听过、看过、思考过的,请认真阅读,在每题给出的四个选项中,选出一项最符合题目要求的答案。

每小题2分,共60分。

)1、商品是用于交换的劳动产品。

下列属于商品的是①废品收购站收购的啤酒瓶②我国发射的神舟六号飞船③医院里的各种药品④农民卖给国家的粮食⑤刘先生摸彩票中的一辆宝马轿车⑥居民使用的自来水A、②③④⑤B、①③④⑥C、②④⑤D、④⑤⑥2、下列关于商品的说法正确的是A、商品是货币发展到一定阶段的产物B、供别人消费的产品就是商品C、有使用价值的东西就是商品D、使用价值和价值是商品的两个基本属性,二者缺一不可3、货币的本质是A、商品B、纸币C、一般等价物D、流通手段4、高一《经济生活》教材定价8.7元,在此,货币执行的是职能,——————————的货币。

是———————————A、流通手段观念B、价值尺度观念C、流通手段现实D、价值尺度现实5、下列活动中,货币执行流通手段职能的是A、一台彩电在商店里标价2800元B、工厂财务人员向工人发放工资C、用3999元可以买到一台神舟笔记本电脑D、张某在家电商场用2800元买了一台彩电6、假定市场上待售商品的价格总额是1000亿元,并且待售商品的价值都得到实现。

若发行纸币2000亿元,纸币在一定时期内平均流通两次。

此时1元纸币相当于()A、0.5元货币的购买力B、1元货币的购买力C、0.25元货币的购买力D、4元货币的购买力2005年7月21日,中国人民银行发布公告:自2005年7月21日19时,美元对人民币交易价格调整为1美元兑8.11元人民币。

甘肃省第五中学八级数学下册 第一单元综合测试卷(无答案)

甘肃省第五中学八级数学下册 第一单元综合测试卷(无答案)

第一单元综合测试卷学号 姓名 成绩一.选择题(每小题3分,共30分)1.已知b a <,下列不等式中错误的是( )A .z b z a +<+B .c b c a ->-C .b a 22<D .b a 44->-2.若0<k ,则下列不等式中不能成立的是( )A .45-<-k kB .k k 56>C .k k ->-13D .96k k ->-3.不等式53>-x 的解集是( ) A .35-<x B .35->x C .15-<x D .15>-x 4.不等式3312-≥-x x 的正整数解的个数是( )A .1个B .2个C .3个D .4个5.若3<a ,则不等式3)3(-<-a a 的解集是( )A .1>xB .1<xC .1->xD .1-<x6.下列说法①0=x 是012<-x 的解②31=x 不是013>-x 的解③012<+-x 的解集是2>x ④⎩⎨⎧>>21x x 的解集是1>x ,其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个7.如图,用不等式表示数轴上所示的解集,正确的是( )A .<x .31≤<-x8.若不等式组⎩⎨⎧<<-ax x 312的解集是,则的取值范围是( )A .2<aB .2≤aC .2≥aD .无法确定9.已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD . 2-<x10.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本( )本A .7B .6C .5D .4二.填空题11.用适当的符号表示:m 的2倍与n 的差是非负数: ;12.不等式538->-x x 的最大整数解是: ;13.若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号);15.已知方程121-=+x kx 的根是正数,则k 的取值范围是: ;16.某种商品进价150元,标价200元,但销量较小。

潍坊市五中九年级数学上册第一单元《一元二次方程》检测(答案解析)

潍坊市五中九年级数学上册第一单元《一元二次方程》检测(答案解析)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2-C .2D .42.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=113.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+4.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -=5.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( ) A .有一个实数根 B .有两个相等的实数根 C .没有实数根 D .有两个不相等的实数根 6.不解方程,判断方程23620x x --=的根的情况是( )A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确7.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( ) A .1a ≥-且3a ≠ B .1a >-且3a ≠ C .1a ≥-D .1a >-8.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >9.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14-10.下列方程是一元二次方程的是( ) A .20ax bx c ++= B .22(1)x x x -=- C .2325x x y -+=D .2210x +=11.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 12.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( )A .2,8B .3,4C .4,3D .4,8二、填空题13.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.14.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.15.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.16.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______. 17.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.18.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______. 19.若()22214x y +-=,则22x y +=________.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.解下列方程: (1)2x 2﹣4x +1=0; (2)(2x ﹣1)2=(3﹣x )2.22.按要求的方法解方程,否则不得分. (1)2450x x -=+(配方法) (2)22730x x -+=(公式法) (3)(1)(2)24x x x ++=+(因式分解法)23.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由.24.解方程:(1)23620x x -+= (2)222(3)9x x -=-25.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元. (1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.26.如图,在ABC 中,13AB AC ==厘米,10BC =厘米,AD BC ⊥于点D ,动点P 从点A 出发以每秒1厘米的速度在线段AD 上向终点D 运动.设动点运动时间为t 秒.(1)求AD 的长;(2)当PDC △的面积为15平方厘米时,求t 的值;(3)动点M 从点C 出发以每秒2厘米的速度在射线CB 上运动.点M 与点P 同时出发,且当点P 运动到终点D 时,点M 也停止运动.是否存在t ,使得112PMDABCS S =?若存在,请求出t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答. 【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程, ∴240,20m m -=-≠, ∴m=-2, 故选:B . 【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.D解析:D 【分析】方程常数项移到右边,两边加上4变形得到结果即可. 【详解】解:x 2﹣4x ﹣7=0, 移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -= 故答案为:D . 【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.3.C解析:C 【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可. 【详解】解:方程24121x x +=变形为2(2)621x x +⨯=,2(2)62+91+9x x +⨯=∴2412919x x ++=+ 故选:C 【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.4.A解析:A 【分析】根据配方法解一元二次方程的步骤计算可得. 【详解】 解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A . 【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤: ①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方; ④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.5.C解析:C 【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根. 【详解】解:∵△=22-4×1×3=-8<0, ∴方程23210x x ++=没有实数根. 故选:C . 【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.6.C解析:C 【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论. 【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x--=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.7.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x的方程()32a x4x10---=有两个不相等的实数根∴a-3≠0,且2=(4)4(3)(1)440a a∆--⨯-⨯-=+>解得:1a≥-且a≠3故选B.【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a的不等式,是解题的关键.8.B解析:B【分析】由方程有实数根即△=b2﹣4ac≥0,从而得出关于m的不等式,解之可得.【详解】解:根据题意得,△=b2﹣4ac=[﹣(2m﹣1)]2﹣4m2=﹣4m+1≥0,解得:14 m,故选:B.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.9.B解析:B【分析】关于x的一元二次方程(m-2)x2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x的一元二次方程(m-2)x2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B . 【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.10.D解析:D 【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可. 【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意. B 、该方程化简整理后是一元一次方程,故本选项不符合题意. C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意. D 、该方程符合一元二次方程的定义,故本选项符合题意. 故选:D . 【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.11.B解析:B 【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根. 【详解】在方程()21210--+=k x kx 中,∵1a k =-,2b k =-,1c =, ∴()()224241b ac k k =-=---214302k ⎛⎫=-+> ⎪⎝⎭,∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B . 【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”.12.D解析:D 【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c 的值. 【详解】解:设方程的另一个根为t , 根据题意得t +2=6,2t =c , 解得t =4,c =8. 故选:D . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 二、填空题13.120【分析】设平均年增长率为x 列式求出年平均增长率即可算出结果【详解】解:设平均年增长率为x 根据题意得:整理得:开方得:解得:(舍去)则平均年增长率为20∴该公司2018年盈利100(1+20)=解析:120 【分析】设平均年增长率为x ,列式()21001144x +=,求出年平均增长率,即可算出结果. 【详解】解:设平均年增长率为x , 根据题意得:()21001144x +=, 整理得:()21 1.44x +=, 开方得:1 1.2x +=±,解得:10.2x =,2 2.2x =-(舍去), 则平均年增长率为20%,∴该公司2018年盈利100(1+20%)=120(万元). 故答案为:120. 【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的求解方法.14.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣1 2【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x2+3x﹣1=0的两个根是x1,x2,∴x1x2=﹣12,故答案为:﹣12.【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.15.-1【分析】根据方程的根的判别式得出m的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m结合α2+β2=12即可得出关于m的一元二次方程解之即可得出结论【详解】解:∵关于x的解析:-1【分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m2-m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【详解】解:∵关于x的方程x2+2(m-1)x+m2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m2-m)=-4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m2-m,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m2-m)=12,即m2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m的一元二次方程.16.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1 【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值. 【详解】∵a ,b 是方程210x x --=的两根, ∴a+b=1,ab=-1,∴11a b + =a b ab + =11- =-1,故答案为:-1. 【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.17.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16 【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案. 【详解】解:∵关于x 的方程2100x x m -+= ∴1a =,10b =-,c m = ∴1210b x x a +=-=,12cx x m a== ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=. ∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.18.且【分析】根据题意结合一元二次方程的定义和根的判别式可得关于k 的不等式然后解不等式即可求解【详解】解:∵关于的一元二次方程有两个不相等的实数根∴∴的取值范围是且故答案为:且【点睛】本题考查了一元二次 解析:0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根, ∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩, ∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.19.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=±2,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.(1)1215x x ==-,;(2)12132x x ==,;(3)1221x x ,=-=.【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)方程整理后利用因式分解法解方程即可.【详解】(1)2450x x -=+,移项得:245x x +=,配方得:24454x x ++=+,即()229x +=,直接开平方得:23x +=±,∴1215x x ==-,;(2)22730x x -+=,∵2a =,7b =-,3c =, ()2247423250b ac =-=--⨯⨯=>,∴754x ±==, ∴12132x x ==,; (3)(1)(2)24x x x ++=+, 整理得:23224x x x ++=+,即220x x +-=,因式分解得:()()210x x +-=,∴20x +=或10x -=,∴1221x x ,=-=.【点睛】本题考查了解一元二次方程,解题的关键是会用配方法、公式法、因式分解法解方程. 23.(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=,∵()()2221410m m m ⎡⎤∆=----=>⎣⎦, ∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.24.(1)13+3x =,233x -=2)x=3或x=9. 【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴6363x ±±==∴1x =2x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.25.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键.26.(1)12厘米;(2)6秒;(3)存在t 的值为2或或S △PMD =112S △ABC . 【分析】 ①根据等腰三角形性质和勾股定理解答即可;②根据直角三角形面积求出PD×DC×12=15即可求出t ; ③根据题意列出PD 、MD 的表达式解方程组,由于M 在D 点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.【详解】解:(1)∵AB=AC=13,AD ⊥BC ,∴BD=CD=5cm ,且∠ADB=90°,∴AD 2=AC 2-CD 2∴AD=12cm .(2)AP=t ,PD=12-t ,又∵由△PDM 面积为12PD×DC=15, 解得PD=6,∴t=6.(3)假设存在t ,使得S △PMD =112S △ABC . ①若点M 在线段CD 上,即 0≤t≤52时,PD=12-t ,DM=5-2t , 由S △PMD =112S △ABC , 即 12×(12−t)(5−2t)=5, 2t 2-29t+50=0解得t 1=12.5(舍去),t 2=2.②若点M 在射线DB 上,即52≤t≤12. 由S △PMD =112S △ABC 得 12(12−t)(2t−5)=5, 2t 2-29t+70=0解得 t 1,t 2综上,存在t 的值为2或294或 294-,使得S △PMD =112S △ABC . 【点睛】 此题关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。

兰州铁路局第五中学人教版初中物理九年级全一册第一章内能经典题(含答案解析)

兰州铁路局第五中学人教版初中物理九年级全一册第一章内能经典题(含答案解析)

考试范围:xxx;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列说法中错误的是()A.物体的温度升高肯定是由于物体吸收了热量B.汽车的发动机用水作冷却剂是由于水的比热容大C.墙内开花墙外香,是由于分子在不停地做无规则运动D.夏天游泳者从水中上岸后会感觉冷是由于他体表的水蒸发吸热造成的2.下列现象,不能用分子动理论解释的是()A.水和酒精混合后体积变小B.红墨水在热水中扩散的快C.铅块紧压后粘在一起D.挤压海绵海绵变形3.有两种物体,体积之比是2∶1,密度之比是3∶2,放出热量之比是2∶1,则它们降低的温度之比和比热容之比分别是()A.3∶2,1∶10B.2∶5,5∶3C.2∶3,10∶1D.3∶5,5∶24.下列现象中与分子热运动无关的是()A.春天,小溪里流水潺潺B.盛夏,洒水后的路面变干C.秋天,校园里丹桂飘香D.冬天,室外冰雕一天天变小5.下列关于温度、热量和内能的说法,正确的是()A.0℃的水没有内能B.温度高的物体所含热量多C.物体温度升高,内能增加D.热量总是从内能大的物体向内能小的物体传递6.用相同的电加热器分别对质量、初温都相等的A和B两种物体同时加热(不计热量损失),A和B的温度随加热时间变化关系如图所示,下列说法正确的是()A.升高相同的温度,B物体吸收的热量较多B.B物质的吸热能力比A物质的吸热能力强C.加热相同时间后将A和B接触,热量将从A传递给BD.A的比热容与B的比热容之比为2:17.关于物体的内能,下列说法正确的是()A.运动的物体有内能,静止的物体没有内能B.物体在0℃以下时没有内能C.高温物体的内能一定比低温物体的内能多D.质量大且温度高的物体的内能可能比同状态质量小、温度低的物体的内能多8.关于下列一些物理现象,说法正确的是()A.用手捏海绵,海绵体积变小了,说明分子间有间隙B.水凝固成冰后,水分子不再做无规则的热运动C.固体很难被压缩,表明固体分子间只存在斥力,没有引力D.扩散现象也能发生在固体之间9.手指按到键盘上,与键盘间没有发生热传递,则手指和键盘一定具有相同的()A.热量B.温度C.比热容D.质量10.下列说法正确的是()A.给自行车车胎打气时要用力,说明气体分子间只有斥力,没有引力B.室内扫地时,在一束阳光下看到灰尘在空中飞舞,这就是分子运动C.用力拉铁丝,铁丝不断,是由于分子间有引力D.新冠病毒在一定的条件下会传播,说明分子在不停地运动11.在“探究某物质熔化和凝固规律”的实验中,根据实验数据绘制的图像如图所示,则下列说法中正确的是()A.该物质的熔点为60℃B.在EF阶段,该物质温度不变,内能不变C.该物质熔化过程持续了6min D.该物质在BC阶段的内能不断增加12.下列关于内能、热量、温度的说法中正确的是()A.夏天用电风扇吹风使人感到凉快,是因为电风扇可以减小空气的内能B.物体温度越低,内能越小,所以0℃的物体没有内能C.物体吸收热量,内能一定增加D.热胀冷缩中的“热、冷”指热量13.下列说法中正确的是()A.物体温度越高,含有的热量越多B.物体的温度相同,内能一定相同C.在热传递过程中,温度总是从高温物体传向低温物体D.做功和热传递在改变物体内能时是等效的14.下列实验过程中,物体内能的改变方式与其他三个不同..的是()A.甲图中,活塞下压玻璃筒内的空气,空气内能增大B.乙图中,烧瓶内的空气将瓶塞推出,空气内能减小C.丙图中,烧杯内的水被电加热器加热,内能增大D.丁图中,试管内的气体推出橡胶塞,试管内气体内能减小二、填空题15.某足球运动员传球时足球被踢出后的运动轨迹如图所示,在不计空气阻力的情况下,A点的重力势能______(前两空选填“大于”“小于”或“等于”)B点的重力势能,A点的机械能______B点的机械能。

人教版高中数学必修五第一章单元测试(一)及参考答案

人教版高中数学必修五第一章单元测试(一)及参考答案

2018-2019学年必修五第一章训练卷解三角形(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( ) A.1B.1-C.D.-2.在ABC △中,3AB =,2AC =,BC =则BA ·AC 等于( ) A.32-B.23-C.23D.323.在△ABC 中,已知a,b =A =30°,则c 等于( )A.C.D.以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A.a =8,b =16,A =30°,有两解 B.b =18,c =20,B =60°,有一解 C.a =5,c =2,A =90°,无解 D.a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )D. 6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A.直角三角形 B.等腰三角形或直角三角形 C.等腰直角三角形D.正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c ==且A =75°,则b 等于( ) A.2C.4-D.4+8.在△ABC 中,已知b 2-bc -2c 2=0,a ,7cos 8A =,则△ABC 的面积S 为( )D.9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )10.若sin cos cos A B Ca b c==,则△ABC 是( ) A.等边三角形 B.有一内角是30°的直角三角形 C.等腰直角三角形D.有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan a c b B +-=,则角B 的值为( ) A.6π B.3π C.6π或56π D.3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( )A.33B π⎛⎫++ ⎪⎝⎭B.36B π⎛⎫++ ⎪⎝⎭C.6sin 33B π⎛⎫++ ⎪⎝⎭D.6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)此卷只装订不密封班级 姓名 准考证号 考场号 座位号13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222a c b +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =.(1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值;(2)求AE.20.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,3 cos5B .(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值. 21.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b+c)sin B+(2c +b)sin C.(1)求A的大小;(2)若sin B+sin C=1,试判断△ABC的形状.22.(12分)已知△ABC的角A、B、C所对的边分别是a、b、c,设向量(),a bm=, ()sin,sinB A=n,()2,2b a--p=.(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,角3Cπ=,求△ABC的面积.2018-2019学年必修五第一章训练卷解三角形(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan30ba =︒,tan30b a =︒=,2c b ==c b -=故选C. 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A.3.【答案】C【解析】∵a 2=b 2+c 2-2bc cosA ,∴2515c c =+-. 化简得:2100c -+=,即(0c c --=,∴c =c =故选C. 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B=︒,即只有一解;B 中,20sin 60sin 18C ︒=,且c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b =即有解, 故A 、B 、C 都不正确.故选D. 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=∴32sinR θ==R =故选C. 6.【答案】A【解析】由2cos cos 22A b c bA c c +⋅=⇒⋅=,又222cos 2b c a A bc+-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A. 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒=, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A==.∴b =4sin B =2.故选A.8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A , 即22276448c c c =+-⋅.∴c=2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△故选A. 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB , 即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC 即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a 故选B.10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅==∵0<B <π,∴角B 的值为3π或23π.故选D. 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA AB C++=++,,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=+⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-===∴6B π=.15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤<【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos 2cos 22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a =19.【答案】;(2)AE=. 【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒=. (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒==︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B . 由正弦定理得sin sin a b A B=,42sin 25sin 45a B A b ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b ac ac B =+-=+-⨯⨯⨯=,∴b 21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =+-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形. 22.【答案】(1)见解析;(2)ABC S △ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△。

蚌埠五中物理(选修3—1)第一章静电场质量检查试卷.docx

蚌埠五中物理(选修3—1)第一章静电场质量检查试卷.docx

蚌埠五中物理(选修3—1)第一章静电场质量检查试卷命题人:王赐德一、选择题:(每小题4分,共40分,请将每小题正确答案的字母填入答卷的表格内)1、一平行板电容器中存在匀强电场,电场沿竖直方向。

两个比荷(即粒了的电荷虽与质屋Z比)不同的带正电的粒子。

和b,从电容器边缘的戶点(如图)以相同的水平速度射入两平行板之间。

测得Q和b与电容器的撞击点到入射点之间的水平距离之比为1 :20若不计重力,则G和b的比荷之比是-------------A. 1 : 2B. 1 : 1 P*C・ 2 : 1 D. 4 : 1 --------------------2、如图所示,实线是一簇未标明方向的由点电荷Q产生的电场线,若带电粒子q(◎>>1讷)由Q运动到〃,电场力做正功。

已知在a、b两点粒了所受电场力分别为凡、Fb,则下列判断正确的是A.若0为正电荷,则q带正电,F a>F bB.若0为止电荷,则g带正电,F a<F bC.若0为负电荷,则q带正电,F a>F bD.若0为负电荷,则q带正电,Fa<Fb3、电容器是一种常用的电子元件。

对电容器认识正确的是A.电容器的电容表示其储存电荷能力B.电容器的电容与它所带的电量成正比C.电容器的电容与它两极板间的电压成正比D.电容的常用单位有pF和pF, lMF=103pF4、匀强电场中的三点/、B、C是一个三处形的三个顶点,如?的氏度为1 m, D为M的小点,如图所示。

己知电场线的方向平行于A ABC所在平面,A. B、C三点的电势分别为14 V、6 V和2 Vo设场强人小为E,一电最为1 x 10"6 C的正电荷从D 点移到C点电场力所做的功为0,则A.IF=8X10~6J, E>8 V/mB.0=6X10", E>6 V/mC.0=8Xl()f J, V/mD.W=6X1()T J, EW6V/m5、两个质量相同的小球用不町伸长的细线连结,直于场强为E的匀强电场中,小球1和小球2均带正电,电量分别为0和盘(0>盘)。

福建泉州五中人教版初中九年级化学第一章走进化学世界测试卷

福建泉州五中人教版初中九年级化学第一章走进化学世界测试卷

考试范围:xxx;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知:Cu+2H2SO4(浓)=CuSO4+SO2↑+H2O。

为了探究铜和浓硫酸的反应及生成的二氧化硫气体的都分性质,某同学设计如图实验(图中脱脂棉团蘸有紫色石蕊溶液可检验物质的酸碱性),关于该实验的说法错误的是()A.与鼓气球相连接的导管需插入浓硫酸中B.该装置便于控制铜和浓硫酸的发生和停止C.铜丝烧成螺旋状是为了加快铜和浓硫酸的反应速率D.氢氧化钠溶液的作用是吸收二氧化硫防止污染环境2.下列基本操作正确的是①如果没有说明药品用量,则固体盖满试管底部即可,液体取1-2mL②取用一定量的液体药品,可以用烧杯代替量筒③打开试剂瓶后要把瓶塞正放在桌面上,右手心向着瓶签拿药瓶倒液体试剂④用胶头滴管向试管中滴加少量液体时,滴管的尖嘴口端要靠在试管壁上,使液体沿管壁流下,防止液体飞溅出来⑤观察量筒里液体的体积,应把量筒举起,让视线与量筒的液面相平,再读出数值⑥取液后的滴管应保持橡胶头在上,不要平放或倒置,防止试液倒流,腐蚀胶头A.①②③④⑤B.③⑤⑥C.②⑥D.①⑥3.下列图示实验操作,正确的是A.B.C.D.4.给试管里的物质加热时,切勿让试管底部接触灯芯,这是因为( )A.将使酒精燃烧不完全B.易使酒精灯熄灭C.灯芯温度低,易使已受热后的试管受热不均匀而破裂D.灯芯温度高,易使试管底部熔化5.下列变化中,发生物理变化的是A.铁钉生锈B.木柴燃烧C.汽油挥发D.米饭变馊6.今年世界各地爆发了“新冠肺炎”,中国人民在中国共产党的坚强领导下,取得了抗击疫情的重大胜利。

下列防疫措施中利用了化学变化的是()A.外出配戴N95口罩B.用84消毒液消毒C.用水银温度计测体温D.经常开窗通风7.装置的气密性的检查方法有很多,如可用推拉注射器活塞的方法。

高一数学必修5第一章单元测试题及答案

高一数学必修5第一章单元测试题及答案

AC2 AB 2 BC 2 2AB BC cos
2
28t
81
2
20t
2 9 20t
(
1 )
,128t
2
60t
27
0 ,( 4t -3)(32t+9 ) =0,
2
解得 t= 3 ,t= 9 (舍)∴ AC=28× 3 =21 n mile ,BC=20× 3 =15 n mile 。
4
32
4ቤተ መጻሕፍቲ ባይዱ
4
根据正弦定理,得 sin
a、b、c
,边
c= 2
,且
tanA+tanB=
3
33 tanA ·tanB - 3 ,又△ ABC的面积为 S△ = ABC 2 ,求 a+b 的值。
高一数学必修 5 解三角形单元测试题参考答案
一、选择题 题号 1 答案 B
二、填空题
2 3 4 5 6 7 8 9 10 11 12 CB A B DB BB B D D
13. ②④ 三、解答题
14.50, 15.120
0, 16. 45 0
17. 解:( 1)∵ m n cosC cosC 2cosC 1
1
cosC

2
0 C 180
∴ C 60
…………………………… 2分
a
2
由正弦定理得, sin 45 sin60 ,
………………………………… 4分
a 22 26
1 sin A sin B 1 2
2 sin A
1
2
42
21 2
内切圆半径的取值范围是
21 0,
2
21. 解析:设用 t h ,甲船能追上乙船,且在 C处相遇。 在△ ABC中, AC=28t,BC=20t,AB=9,设∠ ABC=α ,∠ BAC=β。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题五中第一章单元试题
1、如图,把左边的图形折起来,它会变成右边的正方体()
2、如图,这四幅图是一个正方体不同的侧面,六个面上分别写着A、B、C、D、E、F,则C、A、E的对面字
母分别是()
A F、B、D
B D、F、B
C B、F、
D D B、D、F
3、小明从正面观察下图所示的两个物体,看到的是()
4、下列平面图形经过折叠后,不能围成正方体的是( )
B
C
D
5、某物体的三视图是如图所示的三个图形,那么该物体
的形状是()
A长方体
B圆锥体 C
立方体 D
圆柱体
6
.用一个平面去截一个正方体,截面不可能是


A、梯形
B、五边形
C、六边形 D
、七边形
7.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块
最多
..
有()
A.7个 B.6个 C.5
个 D.4个
8. 小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方平展开图可能是(
A B C D
9.从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2003个三角形,则这个多边形的边数为()
A、2001
B、2005
C、2004
D、2006
10.如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的体有多少个小立方块
B
A C D
俯视图主视图
俯视图
左视图
主视图
( )
(A ) 4个 (B ) 5个 (C ) 6个 (D )
7个
二、填空题
11. 若要使图中平面展开图按虚线折叠成正方体后,相 对面上两个数之和为6,x=_ ___,y=______.
12.一个多面体的面数为12,棱数是30,则其顶点数为_________. 13.薄薄的硬币在桌面上转动时,看上去象球,这说明了____ ____________ 14.如果一个几何体的主视图、左视图、俯视图都完全相同的是 . 15.
三、解答题
16. 若要使得图中平面展开图折叠成正方体后,
相对面上的两个数之和为5,求
x+y+z 的值.
17小正方体中的数字表示在该位置的小立方体的个数, 请画出这个几何体的主视图和左视图.
18. (1)画出下图几何体的三种视图。

(2)每个小立方体的边长为1厘米,求出右边图形的表面积.
19.已知下图为一几何体的三视图: (1)写出这个几何体的名称;
(2)任意画出它的一种表面展开图; (
3)若主视图的长为
10cm ,
俯视图中三角形的边长为4cm ,求这个几何体的侧面积。

1 2 3
x y
俯视图:等边三角形
左视图:长方形主视图:长方形。

相关文档
最新文档