物理化学第1章 部分习题解答

合集下载

物理化学第一章 习题及答案

物理化学第一章 习题及答案

第一章 热力学第一定律一、 填空题1、一定温度、压力下,在容器中进行如下反应:Zn(s)+2HCl(aq)= ZnCl 2(aq)+H 2(g)若按质量守恒定律,则反应系统为 系统;若将系统与环境的分界面设在容器中液体的表面上,则反应系统为 系统。

2、所谓状态是指系统所有性质的 。

而平衡态则是指系统的状态 的情况。

系统处于平衡态的四个条件分别是系统内必须达到 平衡、 平衡、 平衡和 平衡。

3、下列各公式的适用条件分别为:U=f(T)和H=f(T)适用于 ;Q v =△U 适用于 ;Q p =△H 适用于 ; △U=dT nC 12T T m ,v ⎰适用于 ; △H=dT nC 21T T m ,P ⎰适用于 ; Q p =Q V +△n g RT 适用于 ;PV r=常数适用于 。

4、按标准摩尔生成焓与标准摩尔燃烧焓的定义,在C (石墨)、CO (g )和CO 2(g)之间, 的标准摩尔生成焓正好等于 的标准摩尔燃烧焓。

标准摩尔生成焓为零的是 ,因为它是 。

标准摩尔燃烧焓为零的是 ,因为它是 。

5、在节流膨胀过程中,系统的各状态函数中,只有 的值不改变。

理想气体经节流膨胀后,它的 不改变,即它的节流膨胀系数μ= 。

这是因为它的焓 。

6、化学反应热会随反应温度改变而改变的原因是 ;基尔霍夫公式可直接使用的条件是 。

7、在 、不做非体积功的条件下,系统焓的增加值 系统吸收的热量。

8、由标准状态下元素的 完全反应生成1mol 纯物质的焓变叫做物质的 。

9、某化学反应在恒压、绝热和只做膨胀功的条件下进行, 系统温度由T 1升高到T 2,则此过程的焓变 零;若此反应在恒温(T 1)、恒压和只做膨胀功的条件下进行,则其焓变 零。

10、实际气体的μ=0P T H〈⎪⎭⎫ ⎝⎛∂∂,经节流膨胀后该气体的温度将 。

11、公式Q P =ΔH 的适用条件是 。

12、若某化学反应,只做体积功且满足等容或等压条件,则反应的热效应只由 决定,而与 无关。

第一章 题解答 物理化学

第一章  题解答  物理化学

第一章习题解答1.1 物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT , V= nRT/P求偏导:1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600⨯300/8.314⨯300.13 (mol)=14618.6molm=14618.6⨯62.5/1000(kg)=913.66 kgt=972.138/90(hr)=10.15hr1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.325⨯16/8.314⨯273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g。

充以4℃水之后,总质量为125.0000g。

若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。

试估算该气体的摩尔质量。

水的密度按1 g.cm-3计算。

(答案来源:)解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)⨯8.314⨯300.15/(13330⨯100⨯10-6) M w =30.51(g/mol)1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。

若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。

物理化学第一章课后习题解答

物理化学第一章课后习题解答

1.12 CO2 气体在 40℃时的摩尔体积为 0.381dm3 .mol-1 。设 CO2 为范德华气体,试 求其压力,并比较与实验值 5066.3kPa 的相对误差。
解: ,Vm =0.381× 10-3 m3 .mol-1 ,T=313.15K CO2 的范德华常数 a=364× 10-3 /Pa.m3 .mol-2 , b =42.67× 10-6 m3 .mol-1 代入方程得: P=5187.674KPa 相对误差=(5187.674-5066.3)/ 5066.3=2.4% 1.13 今有 0℃, 40530kPa 的 N2 气体,分别用理想气体状态方程及范德华方程计算 其摩尔体积.实验值为 70.3cm.mol-1 。 解:T=273.15K ,p=40530kPa N2 的范德华常数 a=140.8× 10-3 /Pa.m3 .mol-2 , b =39.13× 10-6 m3 .mol-1 =0.05603 m3 .mol-1
第一章
习题解答
1.1 物质的体膨胀系数α V 与等温压缩率κ T 的定义如下:
试导出理想气体的

与压力、温度的关系
解:对于理想气体: PV=nRT , V= nRT/P
求偏导:
1.2 气柜储存有 121.6kPa, 27℃的氯乙烯 (C2 H3 Cl) 气体 300m3 , 若以每小时 90kg 的流量输往使用车间,试问储存的气体能用多少小时? 解:将氯乙烯(Mw=62.5g/mol)看成理想气体: PV=nRT , n= PV/RT n=121600300/8.314300.13 (mol)=14618.6mol m=14618.662.5/1000(kg)=913.66 kg t=972.138/90(hr)=10.15hr 1.3 0℃,101.325kPa 的条件常称为气体的标准状况,试求甲烷在标准状况下的密 度? 解:将甲烷(Mw=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PMw/RT =101.32516/8.314273.15(kg/m3 ) =0.714 kg/m3 1.4 一抽成真空的球形容器,质量为 25.0000g。充以 4 ℃水之后,总质量为 125.0000g。 若改充以 25℃, 13.33kPa 的某碳氢化合物气体, 则总质量为 25.0163g。 -3 试估算该气体的摩尔质量。水的密度按 1 g.cm 计算。 解:球形容器的体积为 V=(125-25)g/1 g.cm-3 =100 cm3 将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M w Mw= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6 ) Mw =30.51(g的空气。为进行实验时确保安全,采用同样温度 的纯氮进行置换,步骤如下:向釜内通氮直到 4 倍于空气的压力,尔后将釜内混 合气体排出直至恢复常压,重复三次。求釜内最后排气至恢复常压时其中气体含 氧的摩尔分数。设空气中氧、氮摩尔分数之比为 1:4。 解: 根据题意未通氮之前 : ,操作 n 次后, , 操作 1 次后, ,重复三次, ,V,T 一定, 故

《物理化学》课后习题第一章答案

《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。

试计算整个过程的Q 、W 、U ∆及H ∆。

解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。

分别求两途径的Q 、W 、U ∆及H ∆。

若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。

《物理化学》课后习题第一章答案

《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。

试计算整个过程的Q 、W 、U ∆及H ∆。

解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。

分别求两途径的Q 、W 、U ∆及H ∆。

若只知始态和终态,能否求出两途径的U ∆及H ∆解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。

物理化学 答案 第一章_习题解答

物理化学 答案 第一章_习题解答
1-2 1mol 理想气体从 25K、1.00×105Pa 经等容过程和等压过程分别升温到 100K,已
-
知此气体的 Cp,m=29.10 J·K 1,求过程的ΔU、ΔH、Q 和 W 。 解: (1)等容
ΔU = n ⋅ Cv ,m (T2 − T1 ) = 1 × (29.1 − 8.314) × 75 = 1559 J ΔH = n ⋅ C p ,m (T2 − T1 ) = 1 × 29.1 × 75 = 2183 J
η = −Wr / Q1 = (T1 − T2 ) / T1 = (500 − 300) / 600 = 40%
第二个卡诺热机效率
η ′ = −Wr / Q1′ = (T1 − T2′) / T1 = (500 − 250) / 600 = 50%

η =η′
∴两个热机的效率不相同
(2)第一个热机吸收的热量: Q1 =
γ =1.4,试求 Cv,m。若该气体的摩尔热容近似为常数,试求在等容条件下加热该气体至 t2=
80℃所需的热。 解:∵ γ =
C p,m Cv , m
=
Cv , m + R Cv , m
= 1.4
∴ Cv, m =
R
γ
=
8.314 = 20.79 J ⋅ K -1 ⋅ mol-1 0.4
Qv = n ⋅ Cv ,m ⋅ ΔT = =
4
3 3 ⎧ ⎧ ⎪V1 = 5dm ⎪V2 = 6dm Q (可 ) = 0 ⎯⎯⎯⎯ → ⎨ ⎨ ⎪T1 = 298.15 K ⎪T2 = 278.15 K ⎩ ⎩
由理想气体绝热可逆过程方程式可知
T2 / T1 = (V1 / V2 ) Cv ,m =
R / Cv , m

物理化学第一章答案

物理化学第一章答案

1.
kp .
p .
12
1 8.3145×
(0 +
273.15) .
101.325 .
3 .1
=.
3 ..0.011075 ..m .
mol
1.
0.011075
101.325×10 .
10132.5 .
.53 .1
=
2.437×10 m
..
..
23 ..
16π
N 16π×
6.022 ×10
.
A ..
.
5. 解:(1) I,液-固;II,气-液;III,气-固。1,固;2,液;
3,气。
(2) 三相线,其压力为
610.5 Pa,温度为
273.16K。c点称临界点,其压力为
22.04MPa,温度
《物理化学》第
1章答案-1

1章物质的
pVT关系和热性质
基本概念
1. (1) (3)。
2. (1)分子无体积;
(2)分子间无相互作用。
3. 气。
4. 气液共存区的边界线;不稳定区的边界线。
cZ=
c
cc
RT
p V 0.375=
,得到普遍化的范德华方程
0)
22 11
.3
=[40.66 .1×8.3145×(100 +
273.15)×10 ]kJ =
37.56kJ
(忽略液体体积)
W=
0 ,
Q =ΔU .W =ΔU =
37.56kJ
3

物理化学第一、二章习题+答案

物理化学第一、二章习题+答案

第一章 气 体1 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。

若将其中的一个球加热到100℃,另一个球则维持0℃,忽略连接细管中气体。

解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。

2 一密闭刚性容器中充满了空气,并有少量的水。

但容器于300 K 条件下大平衡时,容器内压力为 kPa 。

若把该容器移至 K 的沸水中,试求容器中到达新的平衡时应有的压力。

设容器中始终有水存在,且可忽略水的任何体积变化。

300 K 时水的饱和蒸气压为 kPa 。

解:将气相看作理想气体,在300 K 时空气的分压为由于体积不变(忽略水的任何体积变化), K 时空气的分压为由于容器中始终有水存在,在 K 时,水的饱和蒸气压为 kPa ,系统中水蒸气的分压为 kPa ,所以系统的总压()()K 15.373,O H P air P P 2+== + KPa =第二章 热力学第一定律1. 1mol 理想气体经如下变化过程到末态,求整个过程的W 、Q 、△U 、△H.解:KnR V P T K nR V P T KnR V P T 7.243314.81101105.20262437314.811010105.20267.243314.8110101065.202333333322233111=⨯⨯⨯⨯===⨯⨯⨯⨯===⨯⨯⨯⨯==---恒容升温过程:W 1= 0 J恒压压缩过程:W 2= -P 外(V 3-V 1) = ×103×(1-10)×10-3= kJ恒容1 mol 理想气体P 2= KPa V 2=10dm 3T 2=1 mol 理想气体P 1= KPa V 1=10 dm 3 T 1=1 mol 理想气体P 3= KPa V 3=1 dm 3 T 3=恒压J W W W k 24.1821=+=T 3=T 1, ()()J 0T T C n H J 0T T C n U 13m .P 13m .v =-⋅⋅=∆=-⋅⋅=∆, 根据热力学第一定律J W U Q 8.24k 1-24.18-0==-∆=2. 在一带活塞的绝热容器中有一固定的绝热隔板。

物理化学(第一章)作业及答案

物理化学(第一章)作业及答案

每次物理化学作业及答案§1.1 热力学基本概念第一周(1) 练习1“任何系统无体积变化的过程就一定不对环境作功。

”这话对吗?为什么?答:不对,应该是无体积变化的过程,系统就一定不对环境作体积功。

系统和环境之间交换能量的方式,除体积功外,还有非体积功,如电功,表面功等.2“凡是系统的温度下降就一定放热给环境,而温度不变时则系统既不吸热也不放热。

”这结论正确吗?举例说明之。

答:不正确。

系统的温度下降,内能降低,可以不放热给环境.例如: (13页例1-4) 绝热容器中的理想气体的膨胀过程,温度下降释放的能量,没有传给环境,而转换为对外做的体积功.而温度不变时则系统既不吸热也不放热。

不对, 等温等压相变过程,温度不变,但需要吸热(或放热), 如一个大气压下,373.15K 下,水变成同温同压的水蒸汽的汽化过程,温度不变,但需要吸热。

3在一绝热容器中盛有水,其中浸有电热丝,通电加热。

将不同对象看作系统,则上述加热过程的Q或W大于、小于还是等于零?⑴以电热丝为系统Q<0; W>0;⑵以水为系统; Q>0;W=0;⑶以容器内所有物质为系统Q=0; W>0;⑷将容器内物质以及电源和其它一切有影响的物质看作整个系统。

Q=0;W=0.4在等压的条件下,将1mol理想气体加热使其温度升高1K,试证明所作功的数值为R。

证明:∵等压过程则P1=P2=P e∴W=-p(V2-V1)=-p[ nR(T+1)/p- nRT/p]= -p×(nR/p)= -R51mol理想气体,初态体积为25dm3,温度为373.2K,试计算分别通过下列四个不同过程,等温膨胀到终态体积100dm3时,系统对环境作的体积功。

(1)向真空膨胀。

(2)可逆膨胀。

(3)先在外压等于体积50dm3时气体的平衡压力下,使气体膨胀到50dm3,然后再在外压等于体积为100dm3时气体的平衡压力下使气体膨胀到终态。

(4)在外压等于气体终态压力下进行膨胀。

物理化学第一章课后答案

物理化学第一章课后答案

物理化学核心教程(第二版)参考答案第一章气体一、思考题1、如何使一个尚未破裂而被打瘪得乒乓球恢复原状?采用了什么原理?答:将打瘪得乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。

采用得就是气体热胀冷缩得原理。

2、在两个密封、绝热、体积相等得容器中,装有压力相等得某种理想气体。

试问,这两容器中气体得温度就是否相等?答:不一定相等。

根据理想气体状态方程,若物质得量相同,则温度才会相等。

3、两个容积相同得玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边得气体分开。

当左球得温度为273 K,右球得温度为293 K时,汞滴处在中间达成平衡。

试问:(1)若将左球温度升高10 K,中间汞滴向哪边移动?(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动?答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。

(2)两球温度同时都升高10 K,汞滴仍向右边移动。

因为左边起始温度低,升高10 K所占比例比右边大,283/273大于303/293,所以膨胀得体积(或保持体积不变时增加得压力)左边比右边大。

4、在大气压力下,将沸腾得开水迅速倒入保温瓶中,达保温瓶容积得0、7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。

请估计会发生什么现象?答:软木塞会崩出。

这就是因为保温瓶中得剩余气体被热水加热后膨胀,当与迅速蒸发得水汽得压力加在一起,大于外面压力时,就会使软木塞崩出。

如果软木塞盖得太紧,甚至会使保温瓶爆炸。

防止得方法就是灌开水时不要太快,且要将保温瓶灌满。

5、当某个纯物质得气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态得气-液两相得摩尔体积将如何变化?答:升高平衡温度,纯物得饱与蒸汽压也升高。

但由于液体得可压缩性较小,热膨胀仍占主要地位,所以液体得摩尔体积会随着温度得升高而升高。

而蒸汽易被压缩,当饱与蒸汽压变大时,气体得摩尔体积会变小。

随着平衡温度得不断升高,气体与液体得摩尔体积逐渐接近。

物理化学第一章课后答案资料

物理化学第一章课后答案资料

物理化学核心教程(第二版)参考答案第一章气体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。

采用的是气体热胀冷缩的原理。

2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。

试问,这两容器中气体的温度是否相等?答:不一定相等。

根据理想气体状态方程,若物质的量相同,则温度才会相等。

3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。

当左球的温度为273 K,右球的温度为293 K时,汞滴处在中间达成平衡。

试问:(1)若将左球温度升高10 K,中间汞滴向哪边移动?(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动?答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。

(2)两球温度同时都升高10 K,汞滴仍向右边移动。

因为左边起始温度低,升高10 K所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。

4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。

请估计会发生什么现象?答:软木塞会崩出。

这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。

如果软木塞盖得太紧,甚至会使保温瓶爆炸。

防止的方法是灌开水时不要太快,且要将保温瓶灌满。

5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。

但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。

而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。

随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。

《物理化学》课后习题第一章答案

《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。

试计算整个过程的Q 、W 、U ∆及H ∆。

解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T TQ =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR -=-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。

分别求两途径的Q 、W 、U ∆及H ∆。

若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。

陈启元版物理化学第1章 习题解答

陈启元版物理化学第1章 习题解答
(2)U为状态函数,在相同的始、末状态下,∆U相同, ∴
U 282 .18(kJ )
总功=电功+体积功=-187.82+3.7182 =-184.102(kJ)
Q U W 282 .18 184 .102 98.08(kJ )
5.在绝热密闭容器内装水1 kg。开动搅拌器使容器中 的水由298 K升温至303 K。已知液体水的 C P ,m≈ CV ,m =75.31 J· -1· -1,求 Q 、 W 、 △U 及△H ,结果说 mol K 明什么?
323.15

- Q体 1882.75 -1 S 环 5.05J K T环 373.15

S隔 S体 S环 6,06 - 5.05 1.01J K -1 0
故,过程自发,即不可逆。
16.设有两种气体,其 C P , m=28 J· -1· -1,用隔板 mol K 分开(如右图所示),两侧的体积相等,容器是绝热的。 试求抽去隔板后的 S 。 1 mol A 1 mol B 238 K, V 293 K, V
故:∆S = ∆SA + ∆SB = 6.108 + 5.424 =11.53(K·-1) J
17.试计算压强为、温度为373.15K时,1mol水向真 空蒸发为同温同压的水蒸气的 S 体 、S 外及 S总。已 知水的蒸发热 ( p 、373.15 K)为40.710 J· -1,在 mol 此条件下的水蒸气可视为理想气体。
W - pV - p(V2 - V1 ) -p(2V 1 - V1 ) nRT1 100 - pV1 - p -nRT1 8.314 273 .15 p 28 -8110 J -8.11k J

物理化学第一章课后习题解答

物理化学第一章课后习题解答

第一章习题解答1.1物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT , V= nRT/P求偏导:1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg 的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600⨯300/8.314⨯300.13 (mol)=14618.6molm=14618.6⨯62.5/1000(kg)=913.66 kgt=972.138/90(hr)=10.15hr1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PM w/RT=101.325⨯16/8.314⨯273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g。

充以4℃水之后,总质量为125.0000g。

若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。

试估算该气体的摩尔质量。

水的密度按1 g.cm-3计算。

解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)⨯8.314⨯300.15/(13330⨯100⨯10-6)M w =30.51(g/mol)1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。

若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。

物理化学第一章课后习题解答

物理化学第一章课后习题解答

第一章习题及答案8.1mol 理想气体,始态为2×101.325kPa 、11.2dm 3,经p T =常数的可逆过程压缩到终态为4×101.325kPa ,已知C V =3/2R 。

求:(1)终态的体积和温度。

(2)ΔU 和ΔH (3)所作的功。

解:(1)T 1=p 1V 1/nR 273314.8/102.112026503=××=−K 因pT =常数故T 2=p 1T 1/p 2=202.65×273/405.3=136.5KV 2=nRT -2/p 2=8.314×136.5/405.3=2.8dm 3(2)单原子理想气体C V ,m =3/2R,C p ,m =5/2RΔU =C V (T 2-T 1)=3/2×8.314×(136.5-273)=-1702J ΔH =C p (T 2-T 1)=5/2×8.314×(136.5-273)=-2837J (3)pT =B,p =B/T V=RT/p=RT 2/B,d V=(2RT/B)d TJ2270)2735.136(314.82d 2d B2B d =−××−=−=−=−=∫∫∫TR T RTT V p W 9.1mol 理想气体从373.15K 、0.025m 3经下述四个过程变为373.15K 、0.1m 3:(1)等温可逆膨胀;(2)向真空膨胀;(3)等外压为终态压力下膨胀;(4)等温下先以等外压等于气体体积为0.05m 3时的压力膨胀至0.05m 3,再以等外压等于终态压力下膨胀至0.1m 3。

求诸过程系统所作的体积功。

解:(1)∫−=−=12lnd V V nRT V p W J 4301025.01.0ln15.373314.81−=×××−=J (2))(0)(1212e V V V V p W −×−=−−==0(3))()(122122V V V nRTV V p W −×−=−−=J 2326)025.01.0(1.015.373314.81−=−×××−=J(4))]05.01.0(1.0[)025.005.0(05.0−×−+−−=nRTnRT W =-3102J 15.298.15K 的0.5g 正庚烷在等容条件下完全燃烧使热容为8175.5J·K -1的量热计温度上升了2.94℃,求正庚烷在298.15K 完全燃烧时的ΔH 。

物理化学第一章习题及答案

物理化学第一章习题及答案

物理化学第一章习题及答案15,测得的QV,当298K SO2(g)氧化为SO3(g)时,m =-141.75 kJ·mol,并计算了该反应的Qp,m16、由下列化合物?CHm会计算吗?FHM(1)(COOH)2(2)C6H 5NH 2(3)CS2(L)17,将20dm3高压釜填充290千帕、100千帕氢气,加热后,将H2压力升至500千帕。

假设H2为理想气体,计算过程的:(1)q;(2)H2最终状态的温度18,1摩尔单原子分子理想气体b,通过可逆过程从300千帕,100.0千帕达到最终状态,压力为200.0千帕,q = 1000.0 j为过程,δh = 2078.5j(1)计算最终状态的温度、体积和W,δU(2)假设气体首先经历等压可逆过程,然后通过等温可逆过程达到最终状态,这个过程的Q,W,δU,δH是什么?19.CV,m=3/2R,初始状态202.6千帕,1摩尔单原子分子的理想气体11.2立方米通过p/T = C(常数)的可逆过程压缩到最终状态,压力405.2千帕计算:(1)最终体积和温度;(2)δU和δh;(3)工作完成情况8,综合题1,工业用乙炔火焰切割金属,请计算乙炔与压缩空气混合燃烧时的最高火焰温度。

将环境温度设置为25℃,压力设置为100千帕。

空气中氮与氧的比例是4: 125C的数据如下:物质△ fhm (kj mol) CP,m(J mol K)CO2(g)-393.51 37.1 H2O(g)-241.82 33.58 C2 H2(g)226.7 43.93 N2(g)0 29.122,乙烯制冷压缩机的入口条件为-101℃,1.196×10Pa,出口压力为19.25×10Pa(1)等温可逆压缩;(2)绝热可逆压缩(γ = 1.3)计算在上述两个过程中每压缩1磅乙烯所消耗的功3.在298K时,1摩尔的一氧化碳与0.5摩尔的氧气按照下式反应:一氧化碳+1/2 O2 = =二氧化碳生成1摩尔二氧化碳。

物理化学习题答案(1-5章)

物理化学习题答案(1-5章)

第一章 热力学定律思考题1. 设有一电炉丝浸入水槽中(见下图),接上电源,通以电流一段时间。

分别按下列几种情况作为体系,试问ΔU 、Q 、W 为正、为负,还是为零?①以水和电阻丝为体系; ②以水为体系; ③以电阻丝为体系; ④以电池为体系;⑤以电池、电阻丝为体系; ⑥以电池、电阻丝和水为体系。

答:该题答案列表如下。

2. 任一气体从同一始态出发分别经绝热可逆膨胀和绝热不可逆膨胀达到体积相同的终态,终态压力相同吗?答:不同。

膨胀到相同体积时,绝热可逆与绝热不可逆的终态温度和压力不同。

3. 熵是量度体系无序程度大小的物理量。

下列情况哪一种物质的摩尔熵值更大?(1)室温下纯铁与碳钢; (2)100℃的液态水与100℃的水蒸气; (3)同一温度下结晶完整的金属与有缺陷的金属;(4)1000℃的铁块与1600℃铁水。

答:温度相同的同一种物质,气、液、固态相比(例如水蒸气、液态水和冰相比),气态的微观状态数最大,固态的微观状态数最小,液态居中,因此,摩尔熵气态最大,液态次之,固态最小;同类物质,例如,氟、氯、溴、碘,分子量越大摩尔熵越大;分子结构越复杂熵越大;分子构象越丰富熵越大;同素异形体或同分异构体的摩尔熵也不相同。

(1)、(2)、(3)和(4)均是后者摩尔熵值大。

4. 小分子电解质的渗透压与非电解质的渗透压哪个大?为什么?电解质的稀溶液是否有依数性?其渗透压公式是怎样的?答:非电解质的渗透压大。

因为非电解质不能电离,通过半透膜的几率就小,这样就造成膜两侧的浓差增大,使渗透压增大。

小分子电解质的稀溶液有依数性,但不显著。

稀溶液以浓度代替活度,()RT RT 212c 1c 1c 2c +=∆=π,若c 1>>c 2,RT 1c 2=π;若c 2>>c 1,RT 1c =π,c 1、c 2分别为溶液一侧和溶剂一侧的浓度。

5. 下列物理量中,哪一组是广度性质的状态函数?(1). C p ,C v ,S ,H m (2). U m ,T ,P ,V m (3). V m ,H m ,μ,U (4). H ,V ,U ,G答:(4)组,即H ,V ,U ,G 是广度性质的状态函数。

第一章 习题解答 物理化学

第一章  习题解答  物理化学

第一章习题解答1.1 物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT , V= nRT/P求偏导:1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600⨯300/8.314⨯300.13 (mol)=14618.6molm=14618.6⨯62.5/1000(kg)=913.66 kgt=972.138/90(hr)=10.15hr1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.325⨯16/8.314⨯273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g。

充以4℃水之后,总质量为125.0000g。

若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。

试估算该气体的摩尔质量。

水的密度按1 g.cm-3计算。

(答案来源:)解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)⨯8.314⨯300.15/(13330⨯100⨯10-6) M w =30.51(g/mol)1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。

若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。

物理化学课后习题答案(全)

物理化学课后习题答案(全)


300)
+
0.263 × (5002 2
− 3002
)

84 ×10 −6 3
× (5003

300
3ቤተ መጻሕፍቲ ባይዱ
⎤ )⎥

J
= 37.6×103 J = 37.6 kJ
11. 将 101325 Pa 下的 100 g 气态氨在正常沸点 (-33.4℃) 凝结为 液体,计算 Q 、 W 、 ΔU 、 ΔH 。已知氨在正常沸点时的蒸发焓为 1368 J ⋅ g −1 ,气态氨可作为理想气体,液体的体积可忽略不计。
第 1 章 物质的 pVT 关系和热性质
习题解答
1. 两只容积相等的烧瓶装有氮气,烧瓶之间有细管相通。若两只
烧瓶都浸在 100℃的沸水中,瓶内气体的压力为 0.06MPa。若一只烧瓶
浸在 0℃的冰水混合物中,另一只仍然浸在沸水中,试求瓶内气体的压
力。
解:
n = n1 + n2 p1 ⋅ 2V = p2V + p2V
误差
=

(1699
− 1.044) 1673
− (1673 − 1.044

1.044)
=

26 1672
=
−1.6

(4) W = − p外[V (g) − V (l)] ≈ − p外V (g) = − pV (g) ≈ −nRT
8. 在 0℃和 101325 Pa 下,1mol H2O (s)熔化为 H2O (l),求此过程 中 的 功 。 已 知 在 此 条 件 下 冰 与 水 的 密 度 分 别 为 0.9175 g ⋅ cm−3 与
6. 1mol N2 在 0℃时体积为 70.3cm3,计算其压力,并与实验值 40.5 MPa 比较: (1) 用理想气体状态方程; (2) 用范德华方程; (3) 用压

物理化学-习题和答案

物理化学-习题和答案

第一章 热力学第一定律与热化学1. 一隔板将一刚性决热容器分为左右两侧,左室气体的压力大于右室气体的压力。

现将隔板抽去左、右气体的压力达到平衡。

若以全部气体作为体系,则ΔU 、Q 、W 为正?为负?或为零?解:0===∆W Q U2. 试证明1mol 理想气体在衡压下升温1K 时,气体与环境交换的功等于摩尔气体常数R 。

证明:R T nR V V p W =∆=-=)(123. 已知冰和水的密度分别为:0.92×103kg·m -3,现有1mol 的水发生如下变化: (1) 在100o C ,101.325kPa 下蒸发为水蒸气,且水蒸气可视为理想气体; (2) 在0 o C 、101.325kPa 下变为冰。

试求上述过程体系所作的体积功。

解:(1) )(m 1096.11092.010183633--⨯⨯⨯==冰V )(m 1096.1100.110183633--⨯⨯⨯==水V )(10101.3373314.81)(3J nRT V V p W e ⨯=⨯⨯===冰水- (2) )(16.0)108.11096.1(101325)(55J V V p W e =⨯-⨯⨯=-=--水冰4. 若一封闭体系从某一始态变化到某一终态。

(1) Q 、W 、Q -W 、ΔU 是否已经完全确定。

(2) 若在绝热条件下,使体系从某一始态变化到某一终态,则(1)中的各量是否已完全确定?为什么?解:(1) Q -W 与ΔU 完全确定。

(2) Q 、W 、Q -W 及ΔU 均确定。

5. 1mol 理想气体从100o C 、0.025m 3 经过下述四个过程变为100o C 、0.1m 3: (1) 恒温可逆膨胀; (2) 向真空膨胀;(3) 恒外压为终态压力下膨胀;(4) 恒温下先以恒外压等于气体体积为0.05m 3时的压力膨胀至0.05 m 3,再以恒外压等于终态压力下膨胀至0.1m 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

√ 15.解: (1)设恒压可逆,∴ dS QR nCP ,m [ H 2O(l )]dT
T T

1 75.31 323 .15 S dT 75.31 ln 6.064 ( J K 1 ) 298.15 T 298 .15
323.15
(2)因环境温度为373.15 K,过程的热温熵为
W U 7.031 kJ
结果说明:由于非体积功不等于零,即使过程恒 容, U QV 。
6.5 mol双原子理想气体,从101325 Pa、410.3 L的始 态出发,经pT=常数的可逆过程 (即体系在变化过程中 pT =常数)压缩至末态压强为202650 Pa。求(1)末态的 温度;(2)此过程的△U 、△H 、W 、 Q。
Q0
W U n
T2 T1
100 CV ,m dT 20.79 (207 - 273.15) -4.911kJ 28
H
T2
T1
100 nCp ,m dT 29.10 (207 - 273.15) -6.875kJ 28
4.在298.15K、101325 Pa下,1 mol H2与0.5 mol O2 生成1 mol H2O(l),放热285.90 kJ。设H2及O2 在此条件下均为理想气体,求△U。若此反应在相同 的始、末态的条件下改在原电池中进行,做电功为 187.82 kJ,求 △U 、Q 及W 。
√17.解:
1mol H2O(l) 373.15K, p
p外 0
(1)
1mol H2O(g) 373.15K, p
(2)可逆,p外 p
(1)设体系发生可逆相变,
QP H 40710 S 109 .10( J K 1 ) T T 373 .15
(2)为求∆S环 ,需先求体系的热效应:
T2
V2 T2 (2) 恒压有: T V1 1
T2
末态温度T2=2T1=2×273.15K
100 H Q p nC p ,m dT 29.10 (2 273.15- 273.15) T1 28 28388J 28.4kJ
U n
T2 T1
100 CV ,m dT 20.79 273.15 20201J 20.20kJ 28
100 U QV n CV ,m dT 20 .79 (1.5 273.15- 273.15) T1 28 1.01 104 J
T2
100 H nC p ,m dT 29.10 (1.5 273.15- 273.15) T1 28 1.42 104 J
T混 2V nCV ,m ln nR ln TA V
288 2V 288 8.314 ln (28 R) ln 8.314 ln 2 6.108 ( J K 1 ) 283 V 283
同理对B而言:
SB (28 R) ln 288 2V 8.314 ln 0.339 5.763 5.424 ( J K 1 ) 293 V
H (298 .15K ) H 1 H 2(T1 ) H 3 C p ,m[H 2O(l)]T 40710 C p,m[H 2O(g)]T 75.31 (373 .15 - 298 .15) 40710 33.18 (298 .15 - 373 .15) 43870 J 43.87kJ
5 CV ,m R 20.79 J mol -1 K -1 2 p1
C p ,m
5 R R 29.10 J mol -1 K -1 2
T1 (1) W=0, 等容有:p T 2 2
p2 末态温度 T2 T1 1.5T1 1.5 273 .15 K p1
V1 V1 V2 V2 V2 V1
nRT V2 dV -nRT ln V V1
100 8.314 273 .15 ln 2 -5622 J -5.62 k J 28
Q -W 5.62 kJ
(4) 运用理想气体绝热过程方程: T V
0.4 1 1
TV
0.4 2 2
T2 0.5) T1 0.5)4 273.15 207K ( 0.4 ( 0.

(2)若改为恒温自由膨胀, ∵始、末态相同 ∴ ∆S 也为 5.76(J· -1) K
14.1 mol双原子理想气体,温度为298.15 K,压强为 p ,分别进行:①绝热可逆膨胀至体积增加1倍; ②绝热自由膨胀至体积增加1倍。求这些过程的 S 。 解:(1) Q 0 S 0 (2) 绝热自由膨胀为不可逆过程,但因Q=0,W=0,从而 ΔU=0,说明温度不变,故可以按恒温过程计算体系 的熵变:
500 500
nRT nRT 2 2nRTdT ∵ PT = K,则 V , dV P K K
K 2nRT ∴ W V1 p外dV V1 P体 dV T1 T K dT 2 5 8.314 (500 1000 ) 41 .57 (k J)
2. 设有0.1 kg N2,温度为273.15 K,压强为101325 Pa, W 分别进行下列过程,求 U 、 H、 及 Q 。 (1)恒容加热至压强为151987.5 Pa; (2) 恒压膨胀至原体积的2倍; (3)恒温可逆膨胀至原体积的2倍; (4)绝热可逆膨胀至原体积的2倍。
解: 将N2 气视为双原子理想气体,则
解:可设计如下过程,其中的ΔH(298.15K)即为 所求: ΔH(298.15K) H2O(g) H2O(l) 298.15K, P° 298.15K, P° T2
ΔH1 恒压可逆升温 H2O(l) 373.15K, P° ΔH2(373.15K) ΔH3 恒压可逆降温 H2O(g) 373.15K, P°
W - pV - p(V2 - V1 ) -p(2V 1 - V1 ) nRT1 100 - pV1 - p -nRT1 8.314 273 .15 p 28 -8110 J -8.11k J
(3) 理想气体可逆恒温, H U 0
W - p外dV - p体dV -
323.15

- Q体 1882.75 -1 S 环 5.05J K T环 373.15

S隔 S体 S环 6,06 - 5.05 1.01J K -1 0
故,过程自发,即不可逆。
16.设有两种气体,其 C P , m=28 J· -1· -1,用隔板 mol K 分开(如右图所示),两侧的体积相等,容器是绝热的。 试求抽去隔板后的 S 。 1 mol A 1 mol B 238 K, V 293 K, V
V2 V2 T2
可逆
故: Q U W 51.96 41.57 93.53(kJ )
p 10.求298.15K、p 下的 Vap H m ( H 2 O, l ) 。已知373.15 K、 下,水的蒸发热为 Vap H m ( H 2 O, l ) 40.71kJ mol -1 ,在 此温度范围内水和水蒸气的平均恒压热容分别为 75.31J· -1· -1及33.18 J· -1· -1。 mol K mol K
6.解:
P1V1 101325 410 .3 10 3 T1 1000 ( K ) (1)初始温度: nR 5 8.314
末态温度: T2
PT1 101325 1000 1 500 ( K ) P2 202650
(2) 虽然不是等容和等压过程,但是理想气体,故:
13.1 mol理想气体,温度为298.15 K,压强为 p , 经恒温可逆膨胀至体积增加1倍,求 S。如改为恒温 自由膨胀,其 S 又为多少? 解: (1) 因为理想气体等温过程△UT=0
V2 RT ln( ) Q V1 V W S R R ln( 2 ) T T T V1 8.314 2.303 lg 2 5.76 ( J K 1 )
故:∆S = ∆SA + ∆SB = 6.108 + 5.424 =11.53(K·-1) J
17.试计算压强为、温度为373.15K时,1mol水向真 空蒸发为同温同压的水蒸气的 S 体 、S 外及 S总。已 知水的蒸发热 ( p 、373.15 K)为40.710 J· -1,在 mol 此条件下的水蒸气可视为理想气体。
5 U nCV ,m dT 5 RdT 1000 1000 2 5 5 8.314 (500 1000 ) 51 .96 ( k J) 2
500 500
7 H 8.314 (500 1000 ) 72 .75(k J) 2

Q
T环
Q n 298.15 CP ,m [ H 2O(l )]dT T环 T环
323.15
1 75.31 (323 .15 298 .15) 1 5.045 ( J K ) 373 .15 Q 故 S ,此过程是不可逆过程。
T环
或者 Q体系 298.15 nCp ,m [ H 2O(l )]dT 1882 .75 J

5.解: 因为绝热,所以 QV 0;
又因为恒容并且CV , m为常数,故
U n H n
T2 T1
1000 CV ,m dT 25.31 (303 298 ) 7.031 kJ 18
T2
T1
1000 C p ,m dT 25.31 (303 298 ) 7.031 kJ 18
16.解:由题知,抽去隔板,A,B两种气体的温度及体 积都在变化 (设A,B均为理想气体)。因为气体的物质的 量相同,恒压热容相同,故混合后的温度为:
相关文档
最新文档