第1章集合章末检测B (苏教版必修1)
新教材苏教版数学选择性必修第一册课件:第一章直线与方程章末复习与总结
一、数学运算 数学运算是数学活动的基本形式,也是演绎推理的一种形式,是得到数学
结果的重要手段.本章中直线方程的求解与距离问题体现了核心素养中的数学 运算.
直线的方程
[例 1] 若直线经过点 A(- 3,3),且倾斜角为直线 3x+y+1=0 的倾斜 角的一半,则该直线的方程为________________.
[答案] (1)C (2)2x+4y-11=0 或 2x+4y+9=0 或 2x-4y+9=0 或 2x -4y-11=0
二、逻辑推理 逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维
过程,主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类 比;一类是从一般到特殊的推理,推理形式主要有演绎.本章中在判断直线与 直线的位置关系就是从一般到特殊的推理.
即 4x-6=±2,即 x=1 或 x=2,故 P(1,2)或(2,-1).
(2)∵l1∥l2,∴m2 =m8 ≠-n1, ∴nm≠=-4,2 或mn≠=2-. 4, ①当 m=4 时,直线 l1 的方程为 4x+8y+n=0, 把 l2 的方程写成 4x+8y-2=0, ∴ |1n6++26| 4= 5,解得 n=-22 或 n=18. 故所求直线的方程为 2x+4y-11=0 或 2x+4y+9=0. ②当 m=-4 时,直线 l1 的方程为 4x-8y-n=0, l2 的方程为 2x-4y-1=0, ∴ |-16n++624| = 5,解得 n=-18 或 n=22. 故所求直线的方程为 2x-4y+9=0 或 2x-4y-11=0.
则 a=
()
A.2 或12
B.13或-1
C.13
D.-1
[解析] (1)当 m=2 时,代入两直线方程中,易知两直线平行,即充分性 成立.当 l1∥l2 时,显然 m≠0,从而有m2 =m-1,解得 m=2 或 m=-1,但 当 m=-1 时,两直线重合,不合要求,故必要性成立.
2022-2022年必修一检测第一单元章末过关检测数学带参考答案和解析(苏教版)
2022-2022年必修一检测第一单元章末过关检测数学带参考答案和解析(苏教版)解答题已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C ={x|x2+2x-8=0},求a取何值时,A∩B≠∅与A∩C=∅同时成立.【答案】-2.【解析】试题分析:先求集合B,C;再根据A∩B≠∅与A∩C=∅得3在A中,代入可得a=-2或a=5.最后逐一检验.试题解析:解:因为B={2,3},C={2,-4},由A∩B≠∅且A∩C=∅知,3是方程x2-ax+a2-19=0的解,所以a2-3a-10=0.解得a=-2或a=5.当a=-2时,A={3,-5},适合A∩B≠∅与A∩C=∅同时成立;当a=5时,A={2,3},A∩C={2}≠∅,故舍去.所求a的值为-2.选择题已知集合A={x|a-1≤x≤a+2},B={x|3 ⇒3≤a≤4.选B.解答题已知集合A=,B={x|2;(2).【解析】试题分析:(1)利用交集、补集的定义进行集合的混合运算即可;(2)利用题意结合空集的定义可得实数a的取值范围为a>1.试题解析:(1) ;(2)解答题已知A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求a的取值范围.【答案】a=1或a≤-1.【解析】试题分析:由子集概念得B有四种取法依次讨论对应a 的取值范围最后求并集试题解析:解:集合A={0,-4},由于B⊆A,则:(1)当B=A时,即0,-4是方程x2+2(a+1)x+a2-1=0的两根,代入解得a=1.(2)当B≠A时:①当B=∅时,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1;②当B={0}或B={-4}时,方程x2+2(a+1)x+a2-1=0应有两个相等的实数根0或-4,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满足条件.综上可知a=1或a≤-1.填空题设集合A={x||x|0},则集合{x|x∈A,且x∉A∩B}=________.【答案】{x|1≤x≤3}【解析】A={x|-43或x故a+b=4.选择题已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A. {0}B. {0,1}C. {0,2}D. {0,1,2}【答案】C【解析】因为A={x|x2-2x=0}={0,2},B={0,1,2},所以A ∩B={0,2}.选C.选择题设P={x|x1或x0} B. {x|x1}C. {x|x1}D. {x|x0},所以A∪∁UB={x|x0}.选A.选择题若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k 的值为()A. 1B. 0C. 0或1D. 以上答案都不对【答案】C【解析】当k=0时,A={-1};当k≠0时,Δ=16-16k=0,k =1.故k=0或k=1.选C.选择题设全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若点P(2,3)∈A∩(∁UB),则下列选项正确的是()A. m>-1,n<5B. m<-1,n<5C. m>-1,n>5D. m<-1,n>5【答案】A【解析】由P(2,3)∈A∩(∁UB)得P∈A且P∉B,故,选A.选择题已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁UB=()A. {3}B. {4}C. {3,4}D. ∅【答案】A【解析】由题意A∪B={1,2,3},又B={1,2}.所以∁UB={3,4},故A∩∁UB={3}.选A.选择题已知集合A={1,2},B={(x,y)|x-y=1},则A∩B=()A. {1}B. {2}C. {(1,2)}D. ∅【答案】D【解析】由于A是数集,B是点集,故A∩B=∅.选D.解答题已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.(1)已知a=3,求(∁RP)∩Q;(2)若P∪Q=Q,求实数a的取值范围.【答案】(1) (∁RP)∩Q={x|-2≤x<4}.(2) (-∞,2].【解析】试题分析:(1)先求集合Q以及∁RP,再求(∁RP)∩Q;(2)由P∪Q=Q,得P⊆Q.再根据P为空集与非空分类讨论,结合数轴求实数a的取值范围.试题解析:解:(1)因为a=3,所以集合P={x|4≤x≤7}.所以∁RP={x|x<4或x>7},Q={x|1≤2x+5≤15}={x|-2≤x≤5},所以(∁RP)∩Q={x|-2≤x<4}.(2)因为P∪Q=Q,所以P⊆Q.①当a+1>2a+1,即a<0时,P=∅,所以P⊆Q;②当a≥0时,因为P⊆Q,所以所以0≤a≤2.综上所述,实数a的取值范围为(-∞,2].解答题已知A={x|a-4<x<a+4},B={x|x<-1或x>5}.(1)若a=1,求A∩B;(2)若A∪B=R,求实数a的取值范围.【答案】(1) {x|-3<x<-1}.(2){a|1<a<3}.【解析】试题分析:(1)根据数轴求集合交集(2)结合数轴,确定A∪B=R成立时实数a满足的条件,解不等式可得实数a的取值范围.试题解析:解:(1)当a=1时,A={x|-3<x<5},B={x|x<-1或x>5}.所以A∩B={x|-3<x<-1}.(2)因为A={x|a-4<x<a+4},B={x|x<-1或x>5},又A∪B=R,所以⇒1<a<3.所以所求实数a的取值范围是{a|1<a<3}.填空题设集合M={x|2x2-5x-3=0},N={x|mx=1},若N⊆M,则实数m的取值集合为________.【答案】【解析】集合M=.若N⊆M,则N={3}或或∅.于是当N={3}时,m=;当N=时,m=-2;当N=∅时,m=0.所以m的取值集合为.选择题(2015·山东卷)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0}.则A∩B=()A. (1,3)B. (1,4)C. (2,3)D. (2,4)【答案】C【解析】易知B={x|1<x<3},又A={x|2<x<4},所以A∩B={x|2<x<3}=(2,3).选C.选择题下列四句话中:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】空集是任何集合的子集,故④正确,②错误;③不正确,如∅只有一个子集,即它本身;结合空集的定义可知①不正确;故只有1个命题正确.选B.选择题已知集合A={x|x(x-1)=0},那么下列结论正确的是()A. 0∈AB. 1∉AC. -1∈AD. 0∉A【答案】A【解析】由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.选A.。
苏教版高一数学必修一章末检测
苏教版高一数学必修一章末检测Modified by JEEP on December 26th, 2020.章末检测一、填空题1.f (x )=2x +13x -1的定义域为________. 2.y =2x 2+1的值域为________.3.已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是________.4.设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是______. 5.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是________.6.函数f (x )=-x 2+2x +3在区间[-2,3]上的最大值与最小值的和为________.7.若函数f (x )=x 2+(a +1)x +a x为奇函数,则实数a =________. 8.若函数f (x )=x 2-mx +m +2是偶函数,则m =______.9.函数f (x )=x 2+2x -3,x ∈[0,2],那么函数f (x )的值域为________.10.用min{a ,b }表示a ,b 两数中的最小值,若函数f (x )=min{|x |,|x +t |}的图象关于直线x =-12对称,则t 的值为________. 11.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x <1,x 2+ax , x ≥1,当f [f (0)]=4a ,则实数a 的值为________. 12.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+3,则f (-2)的值为________.13.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________.14.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是________函数(填“增”或“减”).二、解答题15.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数且1满足f (1)=52,f (2)=174,求f (x )的解析式.16.已知函数f (x )=x +4x,x ∈(0,+∞). (1)求证:f (x )在(0,2)上是减函数,在(2,+∞)上是增函数;(2)求f (x )在(0,+∞)上的最小值和值域.17.函数f (x )是R 上的偶函数,且当x >0时,函数的解析式为f (x )=2x-1. (1)用定义证明f (x )在(0,+∞)上是减函数;(2)求当x <0时,函数的解析式.18.已知f (x )=ax 3+bx -3,a 、b ∈R ,若f (3)=5,求f (-3).19.已知函数f (x )=|x +2|+x -3.(1)用分段函数的形式表示f (x );(2)画出y =f (x )的图象,并写出函数的单调区间、值域.20.已知函数f (x )对一切实数x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (3)=-2.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)求f (x )在[-12,12]上的最大值和最小值.答案2.[1,+∞)3.[-3,0)4.245.m ≤26.-17.-18.09.[-3,5]10.111.212.-713.[25,+∞)14.减15.解 ∵f (x )=-f (-x ),∴ax +b x+c =-⎝⎛⎭⎫-ax -b x +c , ∴2c =0即c =0.∵f (1)=52,f (2)=174,∴a +b =52,2a +b 2=174,解得⎩⎪⎨⎪⎧ a =2b =12,∴f (x )=2x +12x . 16.(1)证明 任取x 1,x 2∈(0,2)且x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)+4(x 1-x 2)x 1x 2=(x 2-x 1)(x 1x 2-4)x 1x 2. ∵0<x 1<x 2<2,∴x 2-x 1>0,x 1x 2-4<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在(0,2)上是减函数,同理f (x )在(2,+∞)上是增函数.(2)解 f (x )在(0,+∞)上的最小值为f (x )min =f (2)=4,且f (x )在(0,+∞)上无最大值,∴f (x )在(0,+∞)上的值域为[4,+∞).17.(1)证明 设0<x 1<x 2,则f (x 1)-f (x 2)=(2x 1-1)-(2x 2-1) =2(x 2-x 1)x 1x 2, ∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数.(2)解 设x <0,则-x >0,∴f (-x )=-2x-1, 又f (x )为偶函数,∴f (-x )=f (x )=-2x-1, 即f (x )=-2x-1(x <0). 18.解 f (x )=ax 3+bx -3的定义域为R .令g (x )=f (x )+3=ax 3+bx 的定义域为R .g (-x )=f (-x )+3=a (-x )3+b (-x )=-(ax 3+bx )=-g (x ),∴g (x )为R 上的奇函数,∴g (-3)=-g (3)=-[f (3)+3]=-8.19.解 (1)当x +2<0即x <-2时,f (x )=-(x +2)+x -3=-5,当x +2≥0即x ≥-2时,f (x )=x +2+x -3=2x -1,∴f (x )=⎩⎪⎨⎪⎧-5, x <-22x -1, x ≥-2. (2)y =f (x )的图象如图由图象知y =f (x )的单调增区间为[-2,+∞),值域为[-5,+∞).20.解 (1)令x =y =0,得f (0+0)=f (0)=f (0)+f (0)=2f (0),∴f (0)=0.令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ),∴f (x )为奇函数.(2)任取x 1<x 2,则x 2-x 1>0,∴f (x 2-x 1)<0,∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)<0,即f(x2)<f(x1)∴f(x)在R上是减函数.(3)∵f(x)在[-12,12]上是减函数,∴f(12)最小,f(-12)最大.又f(12)=f(6+6)=f(6)+f(6)=2f(6)=2[f(3)+f(3)]=4f(3)=-8,∴f(-12)=-f(12)=8.∴f(x)在[-12,12]上的最大值是8,最小值是-8.。
苏教版数学高一- 数学苏教必修一练习第一章《集合》质量评估
章末质量评估(一)(时间:100分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.满足{a ,b }∪B ={a ,b ,c }的集合B 的个数是________.解析 ∵{a ,b }∪B ={a ,b ,c },∴B 中必含元素c ,且B ⊆{a ,b ,c }.∴b ={c }或{a ,c }或{b ,c }或{a ,b ,c }.答案 42.若A ={1,4,x },B ={1,x 2},且A ∩B =B ,则x =________.解析 x 2=4或x 2=x .解得x =2,或x =-2,或x =0,或x =1(舍去).答案 2,-2或03.已知A ={0,1},B ={x |x ⊆A },则A 与B 之间的关系是________.解析 A ={0,1},B ={∅,{0},{1},{0,1}}.答案 A ∈B4.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则使A ⊇B 成立的实数a 的取值范围是________.解析 由题意知⎩⎪⎨⎪⎧a -1≤3,a +2≥5,解得3≤a ≤4. 答案 {a |3≤a ≤4}5.已知A ={x |-1<x <4},B ={x |x <a },若A ∩B =A ,则实数a 的取值范围是________.解析 因为A ∩B =A ,所以A ⊆B .因为A ={x |-1<x <4},B ={x |x <a },所以a ≥4.答案 [4,+∞)6.如图所示,已知A ,B 均为集合U ={1,2,5,7,11}的子集,且A ∩B ={2},(∁U B )∩A ={11},则A 等于________.解析 本题考查集合的交、并、补运算,难度较小.∵A ∩B ={2},(∁U B )∩A ={11}且B ∪(∁U B )=U ,∴A ={2,11}.答案 {2,11}7.已知全集A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则实数m 的范围是______.解析 ∵A ={x |-2≤x ≤7},又∵A ∪B =A ,∴B ⊆A 且B ≠∅,∴⎩⎪⎨⎪⎧ 2m -1>m +1,m +1≥-2,2m -1≤7,∴2<m ≤4.答案 (2,4] 8.定义A -B ={x |x ∈A 且x ∉B },若M ={1,2,3,4,5},N ={2,3,6},则N -M =________.解析 因为集合N -M 是由N 的元素中不属于M 元素构成的,所以N -M ={6}.故填{6}.答案 {6}9.设全集U ={x |x ≤5,且x ∈N *},集合A ={x |x 2-5x +q =0},B ={x |x 2+px +12=0},且(∁U A )∪B ={1,3,4,5},则p +q =________.解析 因为U ={1,2,3,4,5},(∁U A )∪B ={1,3,4,5},所以必有2∈A ,从而22-10+q =0,即q =6,所以A ={x |x 2-5x +6=0}={2,3},∁U A ={1,4,5},于是又由(∁U A )∪B ={1,3,4,5},得3∈B ,所以32+3p +12=0,即p =-7,所以A ={x |x 2-7x +12=0}={3,4}.答案 -110.已知两个集合A 与B ,集合A ={x |-1≤x ≤2},集合B ={x |2a <x <a +3},且满足A ∩B =∅,则实数a 的取值范围是______.解析 由已知A ={x |-1≤x ≤2},又由A ∩B =∅,①若B =∅,则2a ≥a +3,即a ≥3;②若B ≠∅,则⎩⎪⎨⎪⎧ a +3≤-1,2a <a +3或⎩⎪⎨⎪⎧2a ≥2,2a <a +3.答案 (-∞,-4]∪[1,+∞)11.若集合A 1、A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合{1,2,3}的不同分拆种数是________.解析 若A 1=∅,则A 2={1,2,3};若A 1={1},则A 2={2,3}或{1,2,3};若A 1={2},则A 2={1,3}或{1,2,3};若A 1={3},则A 2={1,2}或{1,2,3};若A 1={1,2},则A 2={3}或{1,3}或{2,3}或{1,2,3},若A 1={2,3},则A 2={1}或{1,2}或{1,3}或{1,2,3};若A 1={1,3},A 2={2}或{1,2}或{2,3}或{1,2,3};若A 1={1,2,3},则A 2=∅或{1}或{2}或{3}或{1,2}或{2,3}或{1,3}或{1,2,3},共有27种不同的分拆方程.答案2712.设集合M={(x,y)|x+y=1,x∈R,y∈R},N={(x,y)|x2-y=0,x∈R,y∈R},则集合M∩N中元素的个数为________.解析如右图,在同一直角坐标系中画出x+y=1与x2-y=0的图象,由图象可得,两曲线有两个交点,即M∩N中有两个元素.答案 213.设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.解析∵U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},∴∁U(A∪B)={2,4,8}.答案{2,4,8}答案(2,0)二、解答题(本大题共6小题,共90分)15.(本小题满分14分)已知A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A,求实数m的取值范围.解(1)当B=∅时,显然满足B⊆A,此时有m +1>2m -1,解得m <2.(2)当B ≠∅时,要使B ⊆A ,需⎩⎨⎧ m +1≤2m -1,m +1≥-2,2m -1≤5,解得2≤m ≤3.综上可知,实数m 的取值范围是(-∞,3].16.(本小题满分14分)已知集合U ={x |-3≤x ≤3},M ={x |-1<x <1},∁U N ={x |0<x <2}.求:(1)集合N ,(2)集合M ∩(∁U N ),(3)集合M ∪N .解 借助数轴可得(1)N ={x |-3≤x ≤0或2≤x ≤3}.(2)M ∩(∁U N )={x |0<x <1}.(3)M ∪N ={x |-3≤x <1或2≤x ≤3}.17.(本小题满分14分)已知集合A ={x |x 2-4mx +2m +6=0,x ∈R },若A ∩R -≠∅,求实数m 的取值范围.解 设全集U ={m |Δ=16m 2-8m -24≥0}={m |m ≤-1或m ≥32},方程x 2-4mx +2m +6=0的两根均非负满足⎩⎨⎧ m ∈U4m ≥02m +6≥0,得m ≥32. ∴A ∩R -≠∅时,实数m 的范围是{m |m ≤-1}.18.(本小题满分16分)若集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},求a 的值,使得∅(A ∩B )与A ∩C =∅同时成立.解 B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={-4,2},∴B ∩C ={2}.∵(A ∩B )∅,A ∩C =∅,∴3∈A .将x =3代入方程x 2-ax +a 2-19=0,得a 2-3a -10=0,解得a =5或a =-2.①若a =5,则A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2}≠∅,不符合要求,舍去;②若a =-2,则A ={x |x 2+2x -15=0}={-5,3},满足要求.综上可知,a 的值为-2.19.(本小题满分16分)设集合A ={x |x 2-3x +2=0},B ={x |x 2-(a +1)x +a =0}.(1)若A ∪B ={1,2,3},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值集合.解 (1)因为A ={1,2},A ∪B ={1,2,3},所以3∈B ,即9-3(a +1)+a =0,解得a =3.此时B ={x |x 2-4x +3=0}={1,3},满足题意,∴实数a 的值为3.(2)因为A ∪B =A ,所以B ⊆A .又因为1∈B ,a ∈B ,所以有B ={1},这时a =1或B ={1,2},这时a =2,故a 的取值集合为{1,2}.20.(本小题满分16分)已知集合E ={x |1-m ≤x ≤1+m },F ={x |x <-2或x >0}.(1)若E ∪F =R ,求实数m 的取值范围;(2)若E ∩F =∅,求实数m 的取值范围.解 (1)由题意,得⎩⎨⎧1-m ≤-2,1+m ≥0,即⎩⎨⎧m ≥3,m ≥-1所以m ≥3. 故m 的取值范围是{m |m ≥3}.(2)由题意,得E =∅,这时1-m >1+m , 解得m <0.或E ≠∅,这时-2≤1-m ≤1+m ≤0,解得m ∈∅. 综上,m 的取值范围是{m |m <0}.。
凤凰新学案 高中数学 苏教版 必修第一册 练习本第1章
! 001 " #!$%第1课时 集合的概念与表示(1) /123第2课时 集合的概念与表示(2) /123第3课时 子集、全集、补集 /123第4课时 交集、并集 /123章末复习 考点聚焦&素养提升 /123" #!&'()'*第1课时 命题、定理、定义 /123第2课时 充分条件、必要条件、充要条件(1) /123第3课时 充分条件、必要条件、充要条件(2) /123第4课时 全称量词命题与存在量词命题 /123第5课时 全称量词命题与存在量词命题的否定 /123章末复习 考点聚焦&素养提升 /123综合测试 第1,2章集合与常用逻辑用语(见测试卷)" #!+,-第1课时 不等式的基本性质 /123第2课时 基本不等式的证明(1) /123第3课时 基本不等式的证明(2) /123第4课时 基本不等式的应用(1) /123第5课时 基本不等式的应用(2) /123第6课时 基本不等式的应用(3) /123第7课时 从函数观点看一元二次方程 /123第8课时 从函数观点看一元二次不等式(1) /123第9课时 从函数观点看一元二次不等式(2) /123第10课时 从函数观点看一元二次不等式(3) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第3章不等式(见测试卷)" #!./01/第1课时 指数(1) /123第2课时 指数(2) /123第3课时 对数(1) /123第4课时 对数(2) /123第5课时 对数(3) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第4章指数与对数(见测试卷)" #!2/34056第1课时 函数的概念和图象(1) /123第2课时 函数的概念和图象(2) /123第3课时 函数的概念和图象(3) /123第4课时 函数的表示方法(1) /123第5课时 函数的表示方法(2) /123综合小练 函数的概念、图象及表示方法 /123第6课时 函数的单调性(1) /123第7课时 函数的单调性(2) /123第8课时 函数的奇偶性(1) /123第9课时 函数的奇偶性(2) /123综合小练 函数的单调性、奇偶性 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第5章函数概念与性质(见测试卷)阶段测试 第1~5章(见测试卷)" #!72/8./2/81/2/第1课时 幂函数(1) /123第2课时 幂函数(2) /123第3课时 指数函数(1) /123第4课时 指数函数(2) /123第5课时 指数函数(3) /123第6课时 指数函数(4) /123综合小练 指数函数 /123第7课时 对数函数(1) /123第8课时 对数函数(2) /123第9课时 对数函数(3) /123综合小练 对数函数 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第6章幂函数、指数函数、对数函数(见测试卷)" #!9:2/第1课时 任意角 /123第2课时 弧度制 /123第3课时 任意角的三角函数(1) /123第4课时 任意角的三角函数(2) /123第5课时 同角三角函数关系(1) /123第6课时 同角三角函数关系(2) /123第7课时 三角函数的诱导公式(1) /123第8课时 三角函数的诱导公式(2) /123综合小练 三角函数概念 /123第9课时 三角函数的周期性 /123第10课时 三角函数的图象与性质(1) /123第11课时 三角函数的图象与性质(2) /123第12课时 三角函数的图象与性质(3) /123第13课时 三角函数的图象与性质(4) /123第14课时 函数狔=犃sin(ω狓+φ)(1) /123第15课时 函数狔=犃sin(ω狓+φ)(2) /123综合小练 三角函数的图象和性质 /123第16课时 三角函数的应用 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第7章三角函数(见测试卷)" #!2/;'第1课时 函数的零点(1) /123第2课时 函数的零点(2) /123第3课时 用二分法求方程的近似解 /123第4课时 几个函数模型的比较 /123第5课时 函数的实际应用(1) /123第6课时 函数的实际应用(2) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第8章函数应用(见测试卷)阶段测试 第6~8章(见测试卷)阶段测试 第1~8章(见测试卷)002 !! 001 " <=!$%>?@ABCDE F1.下面给出的四类对象中构成集合的是( ) A.某班个子较高的同学B.中国长寿的人C.圆周率π的近似值D.倒数等于它本身的数2.(多选)下列判断中不正确的是( )A.π∈犙B.-5∈犣C.13∈犙D.-槡3 犚3.(多选)下列结论中错误的是( )A.{1,2,3,1}是由4个元素组成的集合B.集合{1}表示仅由一个“1”组成的集合C.犖中最小的数是1D.若-犪 犖,则犪∈犖4.由实数-狓,|狓|,狓槡2,狓组成的集合中含有元素的个数最多的是( )A.1B.2C.3D.45.已知集合犃中含有2,4,6这三个元素,若犪∈犃,且6-犪∈犃,则犪的值为( )A.2B.4C.6D.2或46.若1∈{狓|狓2+犪狓+犫+1=0},2∈{狓|狓2+犪狓-犫=0},则犪= ,犫= .7.集合犃中的元素由犪+犫槡2(犪∈犣,犫∈犣)组成,判断下列元素与集合犃的关系:(1)0; (2)1槡2-1; (3)1槡3-槡28.已知狓,狔都是非零实数,狕=狓|狓|+狔|狔|+狓狔|狓狔|可能的取值组成集合犃,则下列判断中正确的是( )A.3∈犃,-1 犃B.3∈犃,-1∈犃C.3 犃,-1∈犃D.3 犃,-1 犃9.集合{狓-1,狓2-1,2}中的狓不能取的值构成的集合是( )A.{1,3,槡3}B.{0,1,槡3,-槡3}C.{0,1,3,槡3}D.{0,1,3,槡3,-槡3}10.集合犃={狓|犪狓+1=0}中元素的个数为 .11.若-3∈{2狓-5,狓2-4狓,12},则狓的值为 .12.把可以表示成两个整数的平方之和的全体整数记作集合犕,试证明集合犕中的任意两个元素的乘积仍属于犕.13.设犛是满足下列两个条件的实数所构成的集合:①1∈犛;②若犪∈犛,则11-犪∈犛.请解答下列问题:(1)若2∈犛,则犛中必有另外两个数,求出这两个数;(2)自己设计一个数属于犛,然后求出犛中另外两个数;(3)从上面的解答过程中,你能得到什么结论?并大胆证明你发现的结论. 注:标 的题目供选做,下同.002 " <=!$%>?@ABCDE F1.下列集合的表示方法正确的是( )A.第二、四象限内的点集可表示为{(狓,狔)|狓狔≤0,狓∈犚,狔∈犚}B.不等式狓-1<4的解集为{狓<5}C.{全体整数}D.实数集可表示为犚2.(多选)下列说法中正确的是( )A.{1,2}{2,1}是两个不同的集合B.集合{(0,2)}有两个元素{}是有限集D.{狓∈犙|狓2+狓+2=0}是空集C.狓∈犣6狓∈犣3.下列集合中不同于另外三个集合的是( )A.{1}B.{狔∈犚|(狔-1)2=0}C.{狓=1}D.{狓|狓-1=0}4.(多选)下面各组集合中表示同一个集合的是( )A.犘={2,5},犙={5,2}B.犘={(2,5)},犙={(5,2)}C.犘={狓|狓=2犿+1,犿∈犣},犙={狓|狓=2犿-1,犿∈犣}D.犘={狓|狓=6犿,犿∈犣},犙={狓|狓=2犿且狓=3狀,犿∈犣,狀∈犣}5.(1)所有偶数组成的集合用描述法表示为 ;(2)平面直角坐标系内属于第三象限的点的集合用描述法表示为 ;(3)与3的倍数相差2的所有整数组成的集合用描述法表示为 .6.用列举法表示下列集合:(1){(狓,狔)|狓∈{0,1},狔∈{1,2}}= ;(2){狓|狓是数字和为5的两位数}= ;(3){(狓,狔)|2狓+5狔=20,狓∈犖,狔∈犖}= .7.已知集合犃={-1,3},犅={狓|狓2+犪狓+犫=0},且犃=犅,则犪犫= .8.已知集合犃={(狓,狔)|狓2+狔2≤3,狓∈犣,狔∈犣},则集合犃中元素的个数为( )A.9B.8C.5D.49.定义集合运算:犃 犅={狕|狕=狓狔(狓+狔),狓∈犃,狔∈犅}.若集合犃={0,1},犅={2,3},则集合犃 犅中所有元素之和为( )A.6B.12C.18D.36{},则集合犃= .(用列举法表示)10.已知集合犃=犪63-犪∈犖,犪∈犣 003 !。
高中数学(苏教版必修一)配套单元检测第一章 集 合 章末检测B Word版含答案
第章集合()(时间:分钟满分:分)一、填空题(本大题共小题,每小题分,共分).下列各组对象中能构成集合的是.(填序号)①北京尼赏文化传播有限公司的全体员工;②年全国经济百强县;③年全国“五一”劳动奖章获得者;④美国的篮球明星..设全集=,集合={≤},={<-或>},那么如图所示的阴影部分所表示的集合为..设全集=,集合={-<},={>},则集合∩∁=..已知()、()为实数函数,且={()=},={()=},则方程[()]+[()]=的解集是.(用、表示)..设集合={-≤≤},={-≤≤+},且⊇,则实数的取值范围为..定义两个数集,之间的距离是-(其中∈,∈).若={=-,∈},={=,∈},则数集,之间的距离为..已知集合={-+-,+-},若∈,则满足条件的实数组成的集合为..若={-≤≤},={-≤≤+},⊆,则实数的取值范围为..若集合、、满足∩=,∪=,则与之间的关系是..设、为两个非空实数集合,定义集合运算:*={=(+),∈,∈},若={},={},则*中元素之和为..集合由正整数的平方组成,即={,…},若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的.对下列运算封闭的是.①加法②减法③乘法④除法.设全集={(,),∈},集合={(,)=},={(,)≠+},则∁(∪)=..若集合={≥},={<}满足∪=,∩=∅,则实数=..设集合={+-=},={+=},若,则实数的不同取值个数为个.三、解答题(本大题共小题,共分).(分)已知全集={},集合={-+=,∈},求的值及∁..(分)已知全集=,集合={≤},={<},求∪,(∁)∩,(∁)∪(∁).。
苏教版选择性必修1——章末检测试卷(一)
章末检测试卷(一)(时间:120分钟满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.直线x+y=0的倾斜角为()A.45°B.60°C.90°D.135°答案 D解析因为直线的斜率为-1,所以tan α=-1,即倾斜角为135°.2.过点(0,-2)且与直线x+2y-3=0垂直的直线方程为()A.2x-y+2=0 B.x+2y+2=0C.2x-y-2=0 D.2x+y-2=0答案 C解析设该直线方程为2x-y+m=0,由于点(0,-2)在该直线上,则2×0+2+m=0,即m=-2,即该直线方程为2x-y-2=0.3.直线3x-4y+5=0关于x轴对称的直线方程为()A.3x+4y+5=0 B.3x+4y-5=0C.-3x+4y-5=0 D.-3x+4y+5=0答案 A解析设所求直线上任意一点(x,y),则此点关于x轴对称的点的坐标为(x,-y),因为点(x,-y)在直线3x-4y+5=0上,所以3x+4y+5=0.4.P点在直线3x+y-5=0上,且P到直线x-y-1=0的距离为2,则P点坐标为() A.(1,2) B.(2,1)C.(1,2)或(2,-1) D.(2,1)或(-1,2)答案 C|x-5+3x-1|=2,解得x=1或x=2,故P(1,2)或(2,-1).解析设P(x,5-3x),则d=12+(-1)25.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4) D .(4,-2)答案 B解析 直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).6.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且它们间的距离是5,则m +n 等于( )A .0B .1C .-1D .2 答案 A解析 由题意,所给两条直线平行,所以n =-2. 由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5, 解得m =2或m =-8(舍去),则m +n =0.7.已知P (-1,2),Q (2,4),直线l :y =kx +3.若P 点到直线l 的距离等于Q 点到直线l 的距离,则k 等于( )A.23或6B.23 C .0 D .0或23 答案 D解析 由题可知|-k +3-2|1+k 2=|2k +3-4|1+k 2,解得k =0或23.8.直线4x +3y -12=0与x 轴、y 轴分别交于A ,B 两点,则∠BAO (O 为坐标原点)的平分线所在直线的方程为( ) A .2x -y -6=0 B .x +2y -3=0 C .x +2y +3=0D .2x -y -6=0或x +2y -3=0 答案 B解析 由直线4x +3y -12=0,令x =0,得y =4,令y =0,得x =3,即B (0,4),A (3,0). 由图可知∠BAO 为锐角,∴∠BAO 的平分线所在的直线的倾斜角为钝角,其斜率为负值.设P (x ,y )为∠BAO 的平分线所在的直线上的任意一点,则点P 到OA 的距离为|y |,到AB 的距离为|4x +3y -12|42+32=|4x +3y -12|5.由角平分线的性质,得|y |=|4x +3y -12|5,∴4x +3y -12=5y 或4x +3y -12=-5y ,即2x -y -6=0或x +2y -3=0.由于斜率为负值,故∠BAO 的平分线所在直线的方程为x +2y -3=0.二、多项选择题(本题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得2分,有选错的得0分)9.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是( ) A .(2,0) B .(6,4) C .(4,6) D .(0,2)答案 AC解析 设B 点坐标为(x ,y ),根据题意知⎩⎪⎨⎪⎧k AC ·k BC =-1,BC =AC ,则⎩⎪⎨⎪⎧3-43-0·y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解得⎩⎪⎨⎪⎧ x =2,y =0或⎩⎪⎨⎪⎧x =4,y =6.10.过点A (1,2)的直线在两坐标轴上的截距之和为零,则满足条件的直线方程有( ) A .y -x =1 B .y +x =3 C .y =2x D .y =-2x答案 AC解析 当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ;当直线不过原点时,设方程为x a +y -a =1,代入点(1,2)可得1a -2a =1,解得a =-1,故方程为x -y +1=0.故所求直线方程为y =2x 或y -x =1.11.直线l 1:m 2x +y +3=0和直线l 2:3mx +(m -2)y +m =0,若l 1∥l 2,则m 可以取的值为( ) A .-1 B .0 C .3 D .-2 答案 AB解析 由m 2(m -2)-3m =0,解得m =0或m =-1或m =3.经验证,当m =3时,两条直线重合,舍去.所以m =0或m =-1.12.已知点A (-2,0),B (2,0),如果直线3x -4y +m =0上有且只有一个点P 使得P A ⊥PB ,那么实数m 可以等于( ) A .4 B .-4 C .10 D .-10 答案 CD解析 直线3x -4y +m =0上有且只有一个点P 使得P A ⊥PB ,则此直线与圆:x 2+y 2=4相切,所以|0+0+m |32+(-4)2=2,解得m =±10.三、填空题(本题共4小题,每小题5分,共20分)13.已知A (2,3),B (-1,2),若点P (x ,y )在线段AB 上,则y x -3的最大值是________.答案 -12解析yx -3的几何意义是点P (x ,y )与点Q (3,0)连线的斜率, 又点P (x ,y )在线段AB 上,由图知,当点P 与点B 重合时,y x -3有最大值,又k BQ =2-0-1-3=-12,因此y x -3的最大值为-12.14.若直线l 1:y =kx -3与l 2:2x +3y -6=0的交点M 在第一象限,则直线l 1恒过定点________,l 1的倾斜角α的取值范围是________. 答案 (0,-3) ⎝⎛⎭⎫π4,π2解析 直线l 2:2x +3y -6=0在x 轴和y 轴上的截距分别为3,2,直线l 1:y =kx -3恒过定点(0,-3),如图,因为k P A =1,所以直线P A 的倾斜角为π4,由图可知,要使直线l 1:y =kx -3与l 2:2x +3y -6=0的交点M 在第一象限, 则l 1的倾斜角的取值范围是⎝⎛⎭⎫π4,π2.15.若两平行直线2x +y -4=0与y =-2x -k -2的距离不大于5,则k 的取值范围是________.答案 -11≤k ≤-1且k ≠-6解析 因为两平行直线2x +y -4=0与y =-2x -k -2的距离不大于5,即两平行直线2x +y -4=0与2x +y +k +2=0的距离不大于5,所以k +2≠-4,且|k +2+4|4+1≤5,求得-11≤k ≤-1且k ≠-6.16.在平面直角坐标系中,坐标原点O 到过点A (cos 130°,sin 130°),B (cos 70°,sin 70°)的直线距离为________. 答案32解析 k AB =sin 70°-sin 130°cos 70°-cos 130°=cos 20°-cos 40°sin 20°+sin 40°=cos 20°-2cos 220°+1sin 20°+2sin 20°·cos 20°=1-cos 20°sin 20°=sin 10°cos 10°,根据诱导公式可知,B (sin 20°,cos 20°), 所以经过A ,B 两点的直线方程为 y -cos 20°=sin 10°cos 10°(x -sin 20°),即sin 10°x -cos 10°y +cos 10°cos 20°-sin 10°sin 20°=0, 即sin 10°x -cos 10°y +32=0, 所以原点O 到直线的距离d =32sin 210°+cos 210°=32. 四、解答题(本题共6小题,共70分)17.(10分)已知点A (-2,2),直线l 1:3x -4y +2=0. (1)求过点A 且与直线l 1垂直的直线方程;(2)直线l 2为过点A 且和直线l 1平行的直线,求平行直线l 1,l 2间的距离.解 (1)设过点A 且与直线l 1垂直的直线方程为4x +3y +m =0.把点A 的坐标代入可得-8+6+m =0,解得m =2.所以过点A 且与直线l 1垂直的直线方程为4x +3y +2=0. (2)设过点A 且和直线l 1平行的直线l 2的方程为3x -4y +n =0. 把点A 的坐标代入可得-6-8+n =0,解得n =14, 所以直线l 2的方程为3x -4y +14=0, 所以平行直线l 1,l 2间的距离d =|14-2|32+(-4)2=125. 18.(12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.解 设点P 的坐标为(a ,0)(a >0),点P 到直线AB 的距离为d , 由已知,得S △ABP =12AB ·d=12(3-1)2+(3-2)2·d =5,解得d =2 5.由已知易得,直线AB 的方程为x -2y +3=0, 所以d =|a +3|1+(-2)2=25,解得a =7或a =-13(舍去), 所以点P 的坐标为(7,0).19.(12分)已知直线l 经过点P (-2,5),且斜率为-34.(1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程. 解 (1)由直线方程的点斜式, 得y -5=-34(x +2),整理得所求直线方程为3x +4y -14=0.(2)由直线m 与直线l 平行,可设直线m 的方程为3x +4y +C =0, 由点到直线的距离公式得|3×(-2)+4×5+C |32+42=3,即|14+C |5=3,解得C =1或C =-29,故所求直线方程为3x +4y +1=0或3x +4y -29=0. 20.(12分)已知直线l :(2+m )x +(1-2m )y +4-3m =0. (1)求证:不论m 为何实数,直线l 恒过一定点;(2)过点M (-1,-2)作一条直线l 1,使l 1夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程.(1)证明 因为m (x -2y -3)+2x +y +4=0,所以由题意得⎩⎪⎨⎪⎧ x -2y -3=0,2x +y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-2,所以直线l 恒过定点(-1,-2).(2)解 设所求直线l 1的方程为y +2=k (x +1),直线l 1与x 轴、y 轴交于A ,B 两点,则A ⎝⎛⎭⎫2k -1,0,B (0,k -2),因为AB 的中点为M ,所以⎩⎪⎨⎪⎧-2=2k -1,-4=k -2,,解得k =-2, 所以所求直线l 1的方程为2x +y +4=0.21.(12分)如图,面积为8的平行四边形ABCD ,A 为坐标原点,B 的坐标为(2,-1), C ,D 均在第一象限.(1)求直线CD 的方程;(2)若BC =13,求点D 的横坐标.解 (1)由题意,得k AB =k CD =-12,所以设直线CD 的方程为y =-12x +m ,即x +2y -2m =0,因为S ▱ABCD =8,AB =5,所以|2m |1+4=85,所以m =±4,由题图可知m >0,所以m =4,所以直线CD 的方程为x +2y -8=0.(2)设D (a ,b ),若BC =13,则AD =13,所以⎩⎪⎨⎪⎧a +2b -8=0,a 2+b 2=13,所以点D 的横坐标a=65或2. 22.(12分)已知在△ABC 中,A (1,1),B (m ,m ),C (4,2)(1<m <4).当m 为何值时,△ABC 的面积S 最大?解 因为A (1,1),C (4,2), 所以AC =(1-4)2+(1-2)2=10,又直线AC 的方程为x -3y +2=0,所以点B 到直线AC 的距离d =|m -3m +2|10,所以S =S △ABC =12AC ·d =12|m -3m +2|=12⎪⎪⎪⎪⎝⎛⎭⎫m -322-14. 因为1<m <4,所以1<m <2,0≤⎝⎛⎭⎫m -322<14, 所以S =18-12⎝⎛⎭⎫m -322, 当且仅当m =32,即m =94时,S 最大.。
最新第1章集合测试题苏教版必修1.doc
西亭高级中学高一数学第一章(集合)测试题 班级 姓名 学号一、选择题1、下列六个关系式:①{}{}a b b a ,,⊆ ②{}{}a b b a ,,= ③{0}=∅ ④}0{0∈ ⑤{0}∅∈ ⑥{0}∅⊆ 其中正确的个数为( )(A) 6个 (B) 5个 (C) 4个 (D) 少于4个2.下列各对象可以组成集合的是( )(A )与1非常接近的全体实数(B )某校20xx-20xx 学年度笫一学期全体高一学生(C )高一年级视力比较好的同学 (D )与无理数π相差很小的全体实数。
3、已知集合P M ,满足M P M = ,则一定有( )(A) P M = (B)P M ⊇ (C) M P M = (D) P M ⊆4、集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 的元素个数为( )(A)10个 (B)8个 (C)18个 (D) 15个5.设全集U=R ,M={x|x≥1}, N ={x|0≤x<5},则(C U M )∪(C U N )为( )(A ){x|x≥0}(B ){x|x<1 或x ≥5}(C ){x|x ≤1或x ≥5}(D ){x| x<0或x ≥5 }6.设集合{}x A ,4,1=,{}2,1x B =,且{}x B A ,4,1=⋃,则满足条件的实数x 的个数是( )(A )1个 (B )2个 (C )3个 (D )4个.7.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( )(A )3个 (B )4个 (C )5个 (D )6个8.全集U=N 集合A={x|x=2n,n ∈N},B={x|x=4n,n ∈N}则( ) (A )U=A ∪B (B )(C U A)⊆B (C )U= A ∪C U B (D )C U A ⊇C U B9、已知集合{}}8,7,3{},9,6,3,1{,5,4,3,2,1,0===C B A ,则C B A )(等于(A){0,1,2,6} (B){3,7,8,} (C){1,3,7,8} (D){1,3,6,7,8}10、满足条件{}{}1,01,0=A 的所有集合A 的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个 11、如右图,那么阴影部分所表示的集合是( )(A))]([C A C B U (B))()(C B B A(C))()(B C C A U (D)B C A C U )]([12.定义A -B={x|x ∈A 且x ∉B}, 若A={1,2,3,4,5},B={2,3,6}, 则A -(A -B )等于( )(A)B (B){}3,2 (C) {}5,4,1 (D) {}6 二.填空题13.集合P=(){}0,=+y x y x ,Q=(){}2,=-y x y x ,则P ∩Q = 。
苏教版数学必修1:第1章 章末综合测评1
章末综合测评(一)集合(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示B=________.【解析】由题知,A={-2,2,3,4},B={x|x=t2,t∈A},∴B={4,9,16}.【答案】{4,9,16}2.已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.【解析】由题意得A∩B={-1,3}.【答案】{-1,3}3.集合A={x|0≤x<3且x∈N}的真子集的个数是________.【解析】集合A={0,1,2},含有3个元素,因此子集个数为23=8,所以真子集个数为8-1=7.【答案】74.已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A=_______________.【解析】由已知,∁U A={3,4,5},所以B∩∁U A={2,3,4}∩{3,4,5}={3,4}.【答案】{3,4}5.已知集合M={-1,0,1,2,3,4},N={-2,2},则下列结论成立的是________.(填序号)(1)N⊆M;(2)M∪N=M;(3)M∩N=N;(4)M∩N={2}.【解析】由集合的运算知N⊄M,N∪M={-2,-1,0,1,2,3,4},M∩N={2}.【答案】(4)6.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,4},则下列说法正确的是________.(填序号)(1)U=A∪B;(2)U=(∁U A)∪B;(3)U=A∪(∁U B);(4)U=(∁U A)∪(∁U B).【解析】 对于(1),A ∪B ={1,2,3,4,5},不正确;对于(2),(∁U A )∪B ={2,4,6},不正确;对于(3),A ∪(∁U B )={1,3,5,6},不正确.【答案】 (4)7.下面四个叙述中正确的个数是________个.①∅={0};②任何一个集合必有两个或两个以上的子集; ③空集没有子集;④空集是任何一个集合的子集.【解析】 空集不等于{0};空集只有一个子集;空集是任何一个集合的子集,故①②③错误,④正确.【答案】 18.设集合{x |ax 2+bx +c =0}={-2,1},则b c =________.【解析】 由集合{x |ax 2+bx +c =0}={-2,1},可知方程ax 2+bx +c =0的根为x 1=-2,x 2=1,∴x 1+x 2=-b a =-1,x 1x 2=c a =-2,两式相除得b c =-12.【答案】 -129.已知集合A ={0, 1}, B ={a +2, 2a },其中a ∈R, 我们把集合{x | x =x 1+x 2, x 1∈A, x 2∈B }记作A +B ,若集合A +B 中的最大元素是2a +1,则a 的取值范围是________.【解析】 由题知A +B 中的元素为a +2,2a ,a +3,2a +1,由于最大元素为2a +1,则⎩⎪⎨⎪⎧ a +2<2a +1,2a <2a +1,a +3<2a +1,解得a >2.【答案】 a >210.已知集合A ={x |1<x <2},B ={x |x ≤a },若A ∩B ≠∅,则实数a 的取值范围是________.。
苏教版必修一《第1章集合》单元测试(有答案)-(高一数学)附答案
一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列六个关系式:①{a ,b }⊆{b ,a };②{a ,b }={b ,a };③{0}=∅;④0∈{0};⑤∅∈{0};⑥∅⊆{0}.其中正确的个数为________.解析:①②④⑥是正确的.答案:42.下列各对象可以组成集合的是________.①与1非常接近的全体实数;②某校2013~2014学年度第一学期全体高一学生;③高一年级视力比较好的同学;④与无理数π相差很小的全体实数.解析:据集合的概念判断,只有②可以组成集合.答案:②3.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________.解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}4.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为________.解析:∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,6},∴{a ,a 2}={4,16},∴a =4.答案:45.设集合A ={-1,4,8},B ={-1,a +2,a 2+4},若A =B ,则实数a 的值为________.解析:∵A =B ,∴①⎩⎪⎨⎪⎧a +2=4a 2+4=8或②⎩⎪⎨⎪⎧a +2=8a 2+4=4, 由①得a =2,此时B ={-1,4,8}满足题意,②无解,∴a =2.答案:26.已知集合A ={3,m 2},B ={-1,3,2m -1},若A ⊆B ,则实数m 的值为________.解析:∵A ⊆B ,∴A 中元素都是B 的元素,即m 2=2m -1,解得m =1.答案:17.若集合A ={x |x ≥3},B ={x |x <m }满足A ∪B =R ,A ∩B =∅,则实数m =________.解析:结合数轴知,当且仅当m =3时满足A ∪B =R ,A ∩B =∅.答案:38.设集合A ={1,4,x },B ={1,x 2},且A ∪B ={1,4,x },则满足条件的实数x 的个数是________. 解析:由题意知x 2=4或x 2=x ,所以x =0,1,2,-2,经检验知x =0,2,-2符合题意,x =1不符合题意,故有3个.答案:39.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有________个.解析:M 可以为∅,{4},{4,7},{8},{8,7},{7}.答案:610.已知集合A ={x |y = 1-x 2,x ∈Z },B ={y |y =x 2+1,x ∈A },则A ∩B 为________.解析:由1-x 2≥0得,-1≤x ≤1,∵x ∈Z ,∴A ={-1,0,1}.当x ∈A 时,y =x 2+1∈{2,1},即B ={1,2},∴A ∩B ={1}.答案:{1}11.集合P ={(x ,y )|x +y =0},Q ={(x ,y )|x -y =2},则P ∩Q =________.解析:P ∩Q ={(x ,y )|⎩⎪⎨⎪⎧x +y =0,x -y =2,}={(x ,y )|⎩⎪⎨⎪⎧x =1,y =-1,}={(1,-1)}. 答案:{(1,-1)}12.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q},若P ={1,2,3,4},Q ={x | x +12<2,x ∈R },则P -Q =________.解析:由定义P -Q ={x |x ∈P ,且x ∉Q},求P -Q 可检验P ={1,2,3,4}中的元素在不在Q ={x | x +12<2,x ∈R }中,所有在P 中不在Q 中的元素即为P -Q 中的元素,故P -Q ={4}.答案:{4}13.设P 、Q 为两个非空实数集合,定义集合P*Q ={z |z =ab ,a ∈P ,b ∈Q},若P ={-1,0,1},Q ={-2,2},则集合P*Q 中元素的个数是________.解析:按P*Q 的定义,P*Q 中元素为2,-2,0,共3个.答案:314.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么k 是A 的一个“孤立元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:不含“孤立元”的集合就是在集合中有与k 相邻的元素,故符合题意的集合有:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知全集U =R ,A ={x |2≤x <5},集合B ={x |3<x <9}.求(1)∁U (A ∪B );(2)A ∩∁U B .解:(1)∵A ∪B ={x |2≤x <9},∴∁U (A ∪B )={x |x <2或x ≥9}.(2)∵∁U B ={x |x ≤3或x ≥9},∴A ∩∁U B ={x |2≤x ≤3}.16.(本小题满分14分)设全集U ={2,4,-(a -3)2},集合A ={2,a 2-a +2},若∁U A ={-1},求实数a 的值.解:由∁U A ={-1},可得⎩⎨⎧-1∈U ,-1∉A , 所以⎩⎪⎨⎪⎧-(a -3)2=-1,a 2-a +2≠-1,解得a =4或a =2. 当a =2时,A ={2,4},满足A ⊆U ,符合题意;当a =4时,A ={2,14},不满足A ⊆U ,故舍去.综上,a 的值为2.17.(本小题满分14分)已知集合A ={x |x 2-3x -10≤0},集合B ={x |p +1≤x ≤2p -1}.若B ⊆A ,求实数p 的取值范围.解:由x 2-3x -10≤0得-2≤x ≤5,故A ={x |-2≤x ≤5}.①当B ≠∅时,即p +1≤2p -1⇒p ≥2.由B ⊆A 得:-2≤p +1且2p -1≤5,解得-3≤p ≤3.∴2≤p ≤3.②当B =∅时,即p +1>2p -1⇒p <2.由①②得p 的取值范围是p ≤3.18.(本小题满分16分)已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值;(3)若A 中至多只有一个元素,求a 的取值范围.解:(1)若A 是空集,则方程ax 2-3x +2=0没有根,则a ≠0且Δ=9-8a <0,即a >98. (2)若A 中只有一个元素,则方程ax 2-3x +2=0有一个根,①当a ≠0且Δ=9-8a =0时,则a =98; ②当a =0时,方程为-3x +2=0,只有一个根.综上,a =0或98. (3)若A 中至多只有一个元素,则A 是空集或A 只有一个元素,故a =0或a ≥98. 19.(本小题满分16分)某班50名学生中,会讲英语的有36人,会讲日语的有20人,既会讲英语又会讲日语的有14人,问既不会讲英语又不会讲日语的有多少人?解:设全集U ={某班50名学生},A ={会讲英语的学生},B ={会讲日语的学生},A ∩B ={既会讲英语又会讲日语的学生},则由韦恩图知,既不会英语又不会日语的学生有:50-22-14-6=8(人).20.(本小题满分16分)已知集合A ={x |x 2-2x -8=0},B ={x |x 2+ax +a 2-12=0},若A ∪B ≠A ,求实数a 的取值范围.解:若B ∪A =A ,则B ⊆A ,又A ={x |x 2-2x -8=0}={-2,4},所以集合B 有以下三种情况:①当B =∅,有Δ=a 2-4(a 2-12)<0⇒a 2>16⇒a <-4或a >4;②当B 是单元素集合时,有Δ=0⇒a 2=16⇒a =-4或a =4.若a =-4,则B ={2}⊄A ,若a =4,则B ={-2}⊆A ;③当B ={-2,4}时,有-2,4是关于x 的方程x 2+ax +a 2-12=0的两根⇒⎩⎪⎨⎪⎧-2+4=-a (-2)×4=a 2-12⇒a =-2. 此时,B ={x |x 2-2x -8=0}={-2,4}⊆A .综上可知,B ∪A =A 时,实数a 的取值范围是a <-4或a ≥4或a =-2.所以B ∪A ≠A 时,实数a 的取值范围为-4≤a <4,且a ≠-2.。
高中数学(苏教版必修一)配套单元检测:第一章 集 合 模块综合检测b 含答案
模块综合检测(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.集合A ={0,2,a},B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________________.2.设函数f(x)=⎩⎪⎨⎪⎧ 1-2x 2 (x ≤1)x 2+3x -2 (x>1),则f(1f (3))的值为________. 3.若函数y =f(x)的定义域是[0,2],则函数g(x)=f (2x )x -1的定义域是________.4.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是________.5.若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是________.(填序号)①函数f(x)在区间(0,1)内有零点;②函数f(x)在区间(0,1)或(1,2)内有零点;③函数f(x)在区间[2,16)内无零点;④函数f(x)在区间(1,16)内无零点.6.已知0<a<1,则方程a |x|=|log a x|的实根个数是________.7.函数f(x)=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是________.8.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________万元.9.下列4个函数中:①y =2 008x -1;②y =log a 2 009-x 2 009+x(a>0且a ≠1); ③y =x 2 009+x 2 008x +1; ④y =x(1a -x -1+12)(a>0且a ≠1). 其中既不是奇函数,又不是偶函数的是________.(填序号)10.设函数的集合P ={f(x)=log 2(x +a)+b|a =-12,0,12,1;b =-1,0,1},平面上点的集合Q ={(x ,y)|x =-12,0,12,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f(x)的图象恰好..经过Q 中两个点的函数的个数是________. 11.计算:0.25×(-12)-4+lg 8+3lg 5=________. 12.若规定⎪⎪⎪⎪⎪⎪⎪⎪a b c d =|ad -bc|,则不等式log 2⎪⎪⎪⎪⎪⎪⎪⎪1 11 x <0的解集是________.13.已知关于x 的函数y =log a (2-ax)在[0,1]上是减函数,则a 的取值范围是________.14.已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=1-2-x ,则不等式f(x)<-12的解集是________. 二、解答题(本大题共6小题,共90分)15.(14分)已知函数f(x)A ,函数g(x)=223m x x---1的值域为集合B,且A∪B=B,求实数m的取值范围.16.(14分)已知f(x)=x+ax2+bx+1是定义在[-1,1]上的奇函数,试判断它的单调性,并证明你的结论.17.(14分)若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)·f(b),且当x<0时,f(x)>1;(1)求证:f(x)>0;(2)求证:f(x)为减函数;(3)当f(4)=116时,解不等式f(x2+x-3)·f(5-x2)≤14.18.(16分)我市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.。
新教材苏教版高中数学必修第一册第一章集合 课时练习题及章末测验含答案解析
第一章集合1.1集合的概念与表示................................................................................................. - 1 -第1课时集合的概念.......................................................................................... - 1 -第2课时集合的表示.......................................................................................... - 5 -1.2子集、全集、补集................................................................................................. - 9 -1.3交集、并集 .......................................................................................................... - 14 -第1章测评 ................................................................................................................... - 19 - 1.1集合的概念与表示第1课时集合的概念1.(2020江苏南京高一检测)下列判断正确的个数为()①所有的等腰三角形构成一个集合;②倒数等于它自身的实数构成一个集合;③质数的全体构成一个集合;④由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4,故①正确;若=a,则a2=1,解得a=±1,构成的集合中的元素为1,-1,故②正确;质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故③正确;集合中的元素具有互异性,由2,3,4,3,6,2构成的集合含有4个元素,分别为2,3,4,6,故④错误.故选C.2.下列说法:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的是()A.②④B.②③C.①②D.①④N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.3.用符号∈或∉填空:(1)-2N+;(2)(-4)2N+;(3)Z;(4)π+3Q.∉(2)∈(3)∉(4)∉4.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=.x∈N,2<x<a,且集合P中恰有三个元素,∴集合P中的三个元素为3,4,5,∴a=6.5.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.a∈A且3a∈A,∴解得a<2.又a∈N,∴a=0或1.6.(2020河北师范大学附属中学高一期中)设由“我和我的祖国”中的所有汉字组成集合A,则A中的元素个数为()A.4B.5C.6D.7,集合A中的元素分别为我、和、的、祖、国,共5个元素.故选B.7.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可2∈A可知,m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A 的元素为0,3,2,符合题意.8.(2020上海高一月考)如果集合中的三个元素对应着三角形的三条边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,该三角形一定不可能是等腰三角形.故选D.9.(多选)(2020北京高一检测)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数A,C,D中的元素都是确定的,能构成集合,选项B中“难题”的标准不明确,不符合确定性,不能构成集合.故选ACD.10.(多选)(2020广东深圳第二高级中学高一月考)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是()A.-1B.-2C.6D.2a2,2-a,4组成一个集合A,且集合A中含有3个元素,所以a2≠2-a,a2≠4,2-a≠4,解得a≠±2,且a≠1.故选AC.11.(多选)(2020山东济南高一检测)已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.0∉MB.2∈MC.-4∈MD.4∈M,分4种情况讨论:①当x,y,z全部为负数时,则xyz也为负数,则=-4;②当x,y,z中只有一个负数时,则xyz为负数,则=0;③当x,y,z中有两个负数时,则xyz为正数,则=0;④当x,y,z全部为正数时,则xyz也为正数,则=4.则M中含有三个元素-4,0,4.分析选项可得C,D正确.故选CD.12.(2020山东潍坊高一检测)如果有一集合含有三个元素1,x,x2-x,则实数x满足的条件是.≠0,且x≠1,且x≠2,且x≠x≠1,x2-x≠1,x2-x≠x,解得x≠0,且x≠1,且x≠2,且x≠.13.若方程ax2+x+1=0的解构成的集合只有一个元素,则a的值为.或a=0时,原方程为一元一次方程x+1=0,满足题意,所求元素即为方程的根x=-1;当a≠0时,由题意知方程ax2+x+1=0只有一个实数根,所以Δ=1-4a=0,解得a=.所以a的值为0或.14.集合A是由形如m+n(m∈Z,n∈Z)的数构成的,试分别判断a=-,b=,c=(1-2)2与集合A的关系.a=-=0+(-1)×,而0∈Z,-1∈Z,∴a∈A.∵b=,而∉Z,∉Z,∴b∉A.∵c=(1-2)2=13+(-4)×,而13∈Z,-4∈Z,∴c∈A.15.设A为实数集,且满足条件:若a∈A,则∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.若a∈A,则∈A.又2∈A,∴=-1∈A.∵-1∈A,∴∈A.∵∈A,∴=2∈A.∴A中必还有另外两个元素,且为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无实数解.∴a≠,∴集合A不可能是单元素集.第2课时集合的表示1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7,B={2,3,4,5,6,8},共有6个元素,故选C.3.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.集合3,,…用描述法可表示为()A.x x=,n∈N*B.x x=,n∈N*C.x x=,n∈N*D.x x=,n∈N*解析由3,,即从中发现规律,x=,n∈N*,故可用描述法表示为x x=,n∈N*.5.(2020山东济宁高一检测)已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为B=.-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.6.已知集合A={x|x2+2x+a=0},若1∈A,则A=.-3,1}x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1 000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.(2020福建厦门翔安一中高一期中)已知集合M={x|x(x+2)(x-2)=0},则M=()A.{0,-2}B.{0,2}C.{0,-2,2}D.{-2,2}M={x|x(x+2)(x-2)=0}={-2,0,2}.9.(2020河北沧州高一期中)已知集合M={a,2a-1,2a2-1},若1∈M,则M中所有元素之和为()A.3B.1C.-3D.-1a=1,则2a-1=1,矛盾;若2a-1=1,则a=1,矛盾,故2a2-1=1,解得a=1(舍)或a=-1,故M={-1,-3,1},元素之和为-3.故选C.10.(2020上海嘉定第一中学高一月考)已知集合A={a2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为()A.0B.-1C.1D.±1a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a2=1,此时(ab)2 021=(-1)2 021=-1;当b=-1时,a2=a,因为a≠0,所以a=1,此时(ab)2 021=(-1)2 021=-1.故选B.11.(多选)(2020山东潍坊高一检测)下列选项表示的集合P与Q相等的是()A.P={x|x2+1=0,x∈R},Q=⌀B.P={2,5},Q={5,2}C.P={(2,5)},Q={(5,2)}D.P={x|x=2m+1,m∈Z},Q={x|x=2m-1,m∈Z}A,集合P中方程x2+1=0无实数根,故P=Q=⌀;对于B,集合P中有两个元素2,5,集合Q中有两个元素2,5,故P=Q;对于C,集合P中有一个元素是点(2,5),集合Q中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|x=2m+1,m∈Z}表示所有奇数构成的集合,集合Q={x|x=2m-1,m∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.(多选)(2020山东济宁曲阜一中高一月考)下列选项能正确表示方程组的解集的是()A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.(多选)(2020江苏连云港高一期中)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是()A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉BA={y|y≥1},集合B是由抛物线y=x2+1上的点组成的集合,故A正确,B错误,C正确,D正确.故选ACD.14.(2020上海南洋模范中学高一期中)已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.答案,1解析由题意,集合A={x,y},B={2x,2x2},且A=B,则x=2x或x=2x2.若x=2x,可得x=0,此时集合B不满足集合中元素的互异性,舍去;若x=2x2,可得x=或x=0(舍去),当x=时,可得2x=1,2x2=,即A=B=,1.15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A=;用描述法表示“所有被4除余1的整数组成的集合”是.{x|x=4k+1,k∈Z}A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k∈Z}.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值..①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0.当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0, 所以c2-2c+1=0,即c=1,但当c=1时,B中的三个元素相同,不符合题意.②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0.由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0,解得c=-或c=1(舍去),当c=-时,经验证,符合题意.综上所述,c=-.17.(2020天津南开翔宇学校高一月考)已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.当a=0时,-3x+2=0,此时x=,所以A不是空集,不符合题意;当a≠0时,若A是空集,则Δ=9-8a<0,所以a>.综上可知,a的所有取值组成的集合为a a>.(2)当a=0时,-3x+2=0,此时x=,满足条件,此时A中仅有一个元素;当a≠0时,Δ=9-8a=0,所以a=,此时方程为x2-3x+2=0,即(3x-4)2=0,解得x=,此时A 中仅有一个元素.综上可知,当a=0时,A中只有一个元素为;当a=时,A中只有一个元素为.(3)A中至多有一个元素,即方程ax2-3x+2=0只有一个实数根或无实数根.则a=0或Δ=9-8a<0,解得a=0或a>.故a的所有取值组成的集合为a a=0,或a>.1.2子集、全集、补集1.(2020山东青岛高一检测)已知集合M={x|x2-2x=0},U={2,1,0},则∁U M=()A.{0}B.{1,2}C.{1}D.{0,1,2}M={x|x2-2x=0}={0,2},U={2,1,0},则∁U M={1}.故选C.2.集合A={x|-1<x<2},B={x|0<x<1},则()A.B∈AB.A⊆BC.B⊆AD.A=BA={x|-1<x<2},B={x|0<x<1},∴B⊆A.故选C.3.下列关系:①0∈{0};②⌀⫋{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1B.2C.3D.4正确,0是集合{0}的元素;②正确,⌀是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.4.已知集合B={-1,1,4},满足条件⌀⫋M⊆B的集合M的个数为()A.3B.6C.7D.8M是集合B的非空子集,集合B中有3个元素,因此非空子集有7个,故选C.5.若集合M=x x=,k∈Z,集合N=x x=,k∈Z,则()A.M=NB.N⊆MC.M⫋ND.以上均不对解析M=x x=,k∈Z=x x=,k∈Z,N=x x=,k∈Z=x x=,k∈Z.又2k+1,k∈Z 为奇数,k+2,k∈Z为整数,所以M⫋N.6.设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围是.a|a≥2},因为A⫋B,所以a≥2,即a的取值范围是{a|a≥2}.7.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是.m|m<1}∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1,即m的取值范围是{m|m<1}.8.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.B=⌀时,2a>a+3,即a>3,显然满足题意.当B≠⌀时,根据题意作出如图所示的数轴,可得解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4,或a>2}.9.(2020山东济宁高一月考)如果集合P={x|x>-1},那么()A.0⊆PB.{0}∈PC.⌀∈PD.{0}⊆PP={x|x>-1},∴0∈P,{0}⊆P,⌀⊆P,故A,B,C错误,D正确.故选D.10.已知M={x|x>1},N={x|x>a},且M⫋N,则()A.a≤1B.a<1C.a≥1D.a>1M={x|x>1},N={x|x>a},且M⫋N,∴a<1.故选B.11.集合M={x|x=4k+2,k∈Z},N={x|x=2k,k∈Z},P={x|x=4k-2,k∈Z},则M,N,P的关系为()A.M=P⊆NB.N=P⊆MC.M=N⊆PD.M=P=NM=P={±2,±6…},N={0,±2,±4,±6…},所以M=P⊆N.12.(2020山东济南高一检测)已知A={x|x2-3x+2=0},B={x|ax=1},若B⊆A,则实数a 取值的集合为()A.0,1,B.1,C.0,2,D.-2,解析因为A={x|x2-3x+2=0}={x|(x-1)(x-2)=0}={1,2},又B={x|ax=1},当B=⌀时,方程ax=1无解,则a=0,此时满足B⊆A;当B≠⌀时,a≠0,此时B={x|ax=1}=,为使B⊆A,只需=1或=2,解得a=1或a=.综上,实数a取值的集合为0,1,.故选A.13.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2,知则a=2.14.(多选)(2020山东五莲教学研究室高一期中)已知集合M={x|-3<x<3,x∈Z},则下列符号语言表述正确的是()A.2∈MB.0⊆MC.{0}∈MD.{0}⊆MM={x|-3<x<3,x∈Z}={-2,-1,0,1,2},∴2∈M,0∈M,{0}⊆M.∴A,D正确,B,C错误.故选AD.15.(多选)(2020福建宁德高一期中)已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆AB.A⊆BC.0∉AD.1∈AA={y|y=x2+1}={y|y≥1},B={x|x>2},所以B⊆A,0∉A,1∈A.故选ACD.16.(多选)(2020北京高一检测)集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的可能取值为()A.-1B.0C.1D.2解析由题意,B⊆A,当a=0时,B=⌀符合题意;当a≠0时,B=-⊆A,则-=1或-=-1,解得a=-1或a=1,所以实数a的取值为-1,0或1.故选ABC.17.(2020山东东营高一月考)设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a=,b=.4U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b}.∵∁U A={x|x<3,或x>4},∴a=3,b=4.18.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为.或-A有两个子集可知,该集合中只有一个元素,当a=1时,满足题意;当a≠1时,由Δ=9+8(a-1)=0,可得a=-.19.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.a=,则B={5},元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B⫋A.(2)当a=0时,由题意B=⌀,又A={3,5},故B⊆A;当a≠0时,B=,又A={3,5},B⊆A,此时=3或=5,则有a=或a=.所以C=0,.20.设集合A={x|-1≤x+1≤6},m为实数,B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若B⊆A,求m的取值范围.A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集个数为28-2=254.(2)当m-1≥2m+1,即m≤-2时,B=⌀⊆A;当m>-2时,B≠⌀,因此,要使B⊆A,则只要解得-1≤m≤2.综上所述,m的取值范围是{m|m≤-2,或-1≤m≤2}.21.(2020山西平遥综合职业技术学校高一月考)已知全集U=R,集合A={x|-2≤x≤3},B={x|2a<x<a+3},且B⊆∁U A,求实数a的取值集合.A={x|-2≤x≤3},所以∁U A={x|x<-2,或x>3}.因为B⊆∁U A,当B=⌀时,2a≥a+3,解得a≥3;当B≠⌀时,由B⊆∁U A,得解得≤a<3或a≤-5.所以实数a的取值集合为a a≤-5,或a≥.1.3交集、并集1.(2020北京八中期末)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4},全集U={1,2,3,4},A={1,2},B={2,3},可得A∪B={1,2,3},所以∁U(A∪B)={4}.故选D.2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4}.∴A∩B中元素的个数为2.故选B.3.(2021全国甲,理1)设集合M={x|0<x<4},N=,则M∩N=()A. B.C.{x|4≤x<5}D.{x|0<x≤5}解析由交集的定义及图知M∩N=x≤x<4.4.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则()A.a=3,b=2B.a=2,b=3C.a=-3,b=-2D.a=-2,b=-3A∩B={(2,5)},∴解得故选B.5.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个A∪B=A,∴B⊆A.∵A={0,1,2,x},B={1,x2},∴x2=0或x2=2或x2=x,解得x=0或x=±或x=1.经检验,当x=或-时满足题意.故选B.6.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=.∩B={1,2,3}∩{y|y=2x-1,x∈A}={1,2,3}∩{1,3,5}={1,3}.7.(2020山东泰兴第三高级中学高一月考)设M={a2,a+1,-3},N={a-3,2a-1,a2+1},若M∩N={-3},则a的值为,此时M∪N=.1{-4,-3,0,1,2}M∩N={-3},∴a-3=-3或2a-1=-3,解得a=0或a=-1.当a=0时,M={0,1,-3},N={-3,-1,1},得M∩N={1,-3},不符合题意,舍去.当a=-1时,M={0,1,-3},N={-4,-3,2},得M∩N={-3},符合题意.此时M∪N={-4,-3,0,1,2}.8.(2020上海浦东华师大二附中高一月考)调查班级40名学生对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1,则对A,B都赞成的学生有人.A的人数为40×=24,赞成B的人数为24+3=27.设对A,B都赞成的学生数为x,则对A,B都不赞成的学生数为x+1,如图可得x+1+27-x+x+24-x=40,解得x=18.9.已知集合A={x|-2<x<4},B={x|x-m<0,m∈R}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.∵A={x|-2<x<4},B={x|x<m,m∈R},又A∩B=⌀,∴m≤-2.故实数m的取值范围为{m|m≤-2}.(2)由A∩B=A,得A⊆B.∵A={x|-2<x<4},B={x|x<m,m∈R},∴m≥4.故实数m的取值范围为{m|m≥4}.10.已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2B.3C.4D.8,可知满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2},共4个.故选C.11.(2020江苏无锡期末)下图中的阴影部分,可用集合符号表示为()A.(∁U A)∩(∁U B)B.(∁U A)∪(∁U B)C.(∁U B)∩AD.(∁U A)∩BA与集合B的补集的交集,所以图中阴影部分可以用(∁U B)∩A表示.12.(2020江苏镇江月考)集合论是德国数学家康托尔于19世纪末创立的.在他的集合理论中,用card(A)表示有限集合中元素的个数,例如:A={a,b,c},则card(A)=3.若对于任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B).某校举办运动会,高一某班参加田赛的学生有14人,参加径赛的学生有9人,两项都参加的有5人,那么该班参加本次运动会的人数为()A.28B.23C.18D.16A,则card(A)=14,参加径赛的学生组成集合B,则card(B)=9,由题意得card(A∩B)=5,所以card(A∪B)=card(A)+card(B)-card(A∩B)=14+9-5=18,所以该班参加本次运动会的人数为18.故选C.13.(2020天津南开中学高一开学考试)已知集合A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则实数a的取值范围是()A.{a|a≥1}B.a a≥C.{a|a≥0}D.a0≤a≤解析因为A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则B≠⌀且B与A有公共元素,则需解得a≥.故选B.14.(多选)(2020江苏江浦高级中学期中)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B 中的元素有()A.-2B.-1C.0D.1A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.故选AB.15.(多选)(2020河北曲阳第一高级中学月考)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=x x<B.A∩B≠⌀C.A∪B=x x<D.A∪(∁R B)=R解析∵A={x|x<2},B={x|3-2x>0}=x x<,∁R B=x x≥,∴A∩B=x x<,A∩B≠⌀,A∪B={x|x<2},A∪(∁R B)=R.故选ABD.16.(多选)(2020山东菏泽高一月考)已知集合M={2,-5},N={x|mx=1},且M∪N=M,则实数m的值可以为()A. B.-5C.-D.0解析因为M∪N=M,所以N⊆M,当m=0时,N=⌀,满足N⊆M.当m≠0时,N=,若N⊆M,则=2或=-5,解得m=或m=-.综上所述,m=0或m=或m=-,故选ACD.17.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N=.y|y≥-1}{x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.18.(2020山西太原第五十三中学月考)已知A={x|x2+px+1=0},M={x|x>0},若A∩M=⌀,则实数p的取值范围为.p|p>-2}A=⌀时,Δ=p2-4<0,解得-2<p<2;当A≠⌀,即p≤-2或p≥2时,此时方程x2+px+1=0的两个根需满足小于等于0,则x1x2=1>0,x1+x2=-p<0,得p>0,则p≥2.综上,实数p的取值范围为{p|p>-2}.19.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.{1,2},因为A∪B=A,所以B⊆A.若B=⌀,则方程x2-4x+a=0无实数根,所以Δ=16-4a<0,所以a>4.若B≠⌀,则a≤4,当a=4时,B={2}⊆A满足条件;当a<4时,1,2是方程x2-4x+a=0的根,此时a无解.所以a=4.综上可得,a的取值范围是{a|a≥4}.20.(2020天津宝坻大钟庄高中月考)已知集合A={x|-3≤x≤6},B={x|x<4},C={x|m-5<x<2m+3,m∈R}.(1)求(∁R A)∩B;(2)若A⊆C,求实数m的取值范围.因为A={x|-3≤x≤6},所以∁R A={x|x<-3,或x>6},故(∁R A)∩B={x|x<-3,或x>6}∩{x|x<4}={x|x<-3}.(2)因为C={x|m-5<x<2m+3},且A⊆C,所以<m<2,所以m的取值范围为m<m<2.21.(2020山东滕州第一中学新校高一月考)已知全集U=R,集合A={x|x>2},B={x|-4<x<4}.(1)求∁U(A∪B);(2)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).因为A={x|x>2},B={x|-4<x<4},所以A∪B={x|x>-4},则∁U(A∪B)={x|x≤-4}.(2)因为A-B={x|x∈A,且x∉B},所以A-B={x|x≥4},因此A-(A-B)={x|2<x<4}.第1章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给对象能构成集合的是()A.2020年全国Ⅰ卷数学试题中的所有难题B.比较接近2的全体正数C.未来世界的高科技产品D.所有整数A,B,C的标准不明确,所以不能构成集合;而选项D的元素具有确定性,能构成集合.故选D.2.(2021新高考Ⅰ,1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}A={x|-2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选B.3.(2020山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}数形结合)由数轴可知所以A∪B={x|1≤x<4},故选C.4.(2020江苏梅村高级中学月考)已知A={x,x+1,1},B={x,x2+x,x2},且A=B,则()A.x=1或x=-1B.x=1C.x=0或x=1或x=-1D.x=-1x=1时,集合A={1,2,1},B={1,2,1}不满足集合中元素的互异性,排除A,B,C;当x=-1时,A={-1,0,1},B={-1,0,1},A=B,满足题意.故选D.5.(2020江苏吴江中学月考)满足{2}⫋A⊆{1,2,3,4,5},且A中元素之和为偶数的集合A 的个数是()A.5B.6C.7D.8{2}⫋A⊆{1,2,3,4,5},所以2∈A.又A中元素之和为偶数,所以满足条件的集合A有{2,4},{1,2,3},{1,2,5},{2,3,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共7个,故选C.6.(2020安徽安庆白泽湖中学月考)已知集合A={x|x<1,或x>3},B={x|x-a<0},若B⊆A,则实数a的取值范围为()A.{a|a>3}B.{a|a≥3}C.{a|a<1}D.{a|a≤1}B={x|x<a},因为B⊆A,所以a≤1.故选D.7.(2020山东潍坊月考)设全集U=R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2,或x>3}D.{x|-2≤x≤2}∁R(M∪N).又M={x|x<-2,或x>2},N={x|1≤x≤3},所以M∪N={x|x<-2,或x≥1},则图中阴影部分表示的集合为∁R(M∪N)={x|-2≤x<1}.故选A.8.(2020山西高一月考)某学校组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,则两科均未取得优秀的人数是()A.8B.6C.5D.4,两科都取得优秀的有6人,数学取得优秀物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,这样共有22人至少取得一科优秀.某班共有30名同学,则两科均未取得优秀的人数是30-22=8.故选A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知集合M={1,m+2,m2+4},且5∈M,则m的可能取值有()A.1B.-1C.3D.25∈M,所以m+2=5或m2+4=5,解得m=3,或m=±1.当m=3时,M={1,5,13},符合题意,当m=1时,M={1,3,5},符合题意,当m=-1时,M={1,1,5},不满足元素的互异性,不成立.所以m=3或m=1.故选AC.10.(2020山东邹城第一中学高一月考)已知全集U=R,A={x|x<2,或x>4},B={x|x≥a},且∁U A⊆B,则实数a的取值可以是()A.1B.3C.2D.4A={x|x<2,或x>4},得∁U A={x|2≤x≤4}.因为∁U A⊆B,B={x|x≥a},所以a≤2,所以实数a的取值可以是1,2.故选AC.11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8A={0,1,4},B={0,1,3},所以A∩B={0,1},A∪B={0,1,3,4},选项A,C都正确;又全集U={0,1,2,3,4},所以∁U B={2,4},选项B错误;集合A={0,1,4}的真子集有7个,所以选项D错误.12.(2020重庆万州第二高级中学月考)给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法错误的是()A.集合M={-4,-2,0,2,4}为闭集合B.正整数集是闭集合C.集合M={n|n=5k,k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合A,4∈M,2∈M,但4+2=6∉M,故A错误;对于B,1∈N*,2∈N*,但1-2=-1∉N*,故B错误;对于C,对于任意a,b∈M,设a=5k1,b=5k2,k1∈Z,k2∈Z,a+b=5(k1+k2),a-b=5(k1-k2),k1+k2∈Z,k1-k2∈Z,所以a+b∈M,a-b∈M,故C正确;对于D,A1={n|n=5k,k∈Z},A2={n|n=3k,k∈Z}都是闭集合,但A1∪A2不是闭集合,如5∈(A1∪A2),3∈(A1∪A2),但5+3=8∉(A1∪A2),故D错误.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.A={0,1},B={1,2},∴C={x|x=a+b,a∈A,b∈B}={1,2,3}有3个元素,∴集合C的真子集个数为23-1=7.14.(2020湖南雨花雅礼中学高一月考)设A={x|-1<x≤3},B={x|x>a},若A⊆B,则实数a的取值范围是.a|a≤-1},如图所示,∵A⊆B,∴a≤-1.15.(2020江苏玄武南京田家炳高级中学月考)集合A={x|x<1,或x≥2},B={x|a<x<2a+1},若A∪B=R,则实数a的取值范围是.答案a≤a<1集合A={x|x<1,或x≥2},B={x|a<x<2a+1},A∪B=R,∴解得≤a<1,∴实数a的取值范围是a≤a<1.16.(2020山西高一月考)设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串.如:(2,5)表示的是从左往右第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.若M={1,3,4},则∁U M表示6位字符串为;若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为.4U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},则∁U M表示6位字符串为010011.因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6}.又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020江苏镇江月考)已知全集U={0,1,2,3,4,5,6,7},集合A={1,2,3},B={1,3,4}.(2)集合C满足(A∩B)⊆C⊆(A∪B),请写出所有满足条件的集合C.由A={1,2,3},B={1,3,4},得A∩B={1,3},A∪B={1,2,3,4}.由U={0,1,2,3,4,5,6,7},得(∁U A)∩(∁U B)={0,5,6,7}.(2)由(A∩B)⊆C⊆(A∪B),A∩B={1,3},A∪B={1,2,3,4},得C可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}.18.(12分)已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x(a∈R,x ∈R).(1)若x2∈B,求实数x的值.(2)是否存在实数a,x,使A=B?若存在,求出a,x;若不存在,请说明理由.集合B中有三个元素:0,1,x.x2∈B,当x取0,1,-1时,都有x2∈B,∵集合中的元素都有互异性,∴x≠0,x≠1,∴x=-1.∴实数x的值为-1.(2)不存在.理由如下:a2+1≠0,若a-3=0,则a=3,A={0,5,10}≠B;若2a-1=0,则a=,A=0,-≠B,∴不存在实数a,x,使A=B.19.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由.(2)若A⊆B成立,求出相应的实数对(a,b).不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时,A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).20.(12分)(2020山东枣庄第三中学高一月考)已知集合A={x|a-1<x<2a+1,a∈R},B={x|0<x<1},U=R.(2)若A∩B=⌀,求实数a的取值范围.解(1)当a=时,A=x-<x<2.因为B={x|0<x<1},所以∁U B={x|x≤0,或x≥1}.因此A∩B={x|0<x<1},A∩(∁U B)=x-<x≤0,或1≤x<2.(2)当A=⌀时,显然符合题意,因此有a-1≥2a+1,解得a≤-2;当A≠⌀时,因此有a-1<2a+1,解得a>-2,要想A∩B=⌀,则有2a+1≤0或a-1≥1,解得a≤-或a≥2,而a>-2,所以-2<a≤-或a≥2.综上所述,实数a的取值范围为a a≤-,或a≥2.21.(12分)(2020安徽芜湖一中月考)已知集合A={x|-1≤x≤3},B={x|x<0,或x>2},C={x|m-2≤x≤m+2},m为实数.(1)求A∩B,∁R(A∩B);(2)若A⊆∁R C,求实数m的取值范围.因为A={x|-1≤x≤3},B={x|x<0,或x>2},所以A∩B={x|-1≤x<0,或2<x≤3},∁R(A∩B)={x|x<-1,或0≤x≤2,或x>3}.(2)因为C={x|m-2≤x≤m+2},所以∁R C={x|x<m-2,或x>m+2}.因为A⊆∁R C,所以m-2>3或m+2<-1,解得m>5或m<-3,所以m的取值范围为{m|m<-3,或m>5}.22.(12分)(2020北京八中月考)设a为实数,集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.,B={2,3},C={-4,2}.(1)因为A∩B=A∪B,所以A=B.又B={2,3},则解得a=5.(2)由于A∩B≠⌀,而A∩C=⌀,则3∈A,即9-3a+a2-19=0,解得a=5或a=-2.由(1)知,当a=5时,A=B={2,3}.此时A∩C≠⌀,矛盾,舍去.当a=-2时,经检验,满足题意.因此a=-2.。
【步步高】2021届高考化学大一轮温习 第一章 章末检测(含解析)苏教版(1)
第一章章末检测(时刻:100分钟,总分值:100分)第Ⅰ卷(选择题,共52分)一、单项选择题(此题包括7个小题,每题2分,共14分)1.(2020·南京模拟)电影《闪闪的红星》中,为了让被困的红军战士吃上食盐,潘冬子将渗透食盐水的棉袄裹在身上,带进山中……假设潘冬子在实验室中,欲从食盐水中提掏出食盐,最好采纳的方式是( ) A.过滤B.萃取C.蒸发D.蒸馏2.现有简易洗气瓶(如图),正放在桌面上,可别离实现以下实验目的,其中适用于从y口进入的是( )①瓶内盛必然量液体干燥剂,用于干燥气体②瓶内盛必然量液体洗涤剂,用于除去气体中的某些杂质③瓶内盛水,用于测量难溶于水的气体体积④瓶内贮存难溶于水的气体,加入水使气体排出⑤用于搜集密度大于空气的气体⑥用于搜集密度小于空气的气体A.①③ B.②④ C.③⑤ D.③⑥3.(2020·常熟月考)选择萃取剂将碘水中的碘萃掏出来,这种萃取剂应具有的性质是( )A.不溶于水,且必需易与碘发生化学反映B.不溶于水,且比水更易使碘溶解C.不溶于水,且必需比水密度大D.不溶于水,且必需比水密度小4.在0℃,101 kPa下,以下有关H2、O2、CH43种气体的表达正确的选项是( )A.其密度之比等于物质的量之比B.其密度之比等于摩尔质量之比C.等质量的3种气体,其体积之比等于相对分子质量之比D.等体积的3种气体,其物质的量之比等于相对分子质量之比5.14%的KOH溶液蒸发掉100 g水后,生成28%的KOH溶液80 mL,现在溶液的物质的量浓度为( ) A.7 mol·L-1B.6.75 mol·L-1C.6.25 mol·L-1 D.6 mol·L-16.以下图是某学校实验室从化学试剂商店买回的硫酸试剂标签上的部份内容。
据此,以下说法正确的选项是( )硫酸化学纯CP500 mL品名:硫酸化学式:H2SO4相对分子质量:98密度:1.84 g·cm-3质量分数:98%A.该硫酸的物质的量浓度为9.2 mol·L-1B.1 mol Zn与足量的该硫酸反映产生2 g氢气C.配制200 mL 4.6 mol·L-1的稀硫酸需取该硫酸50 mLD.该硫酸与等质量的水混合所得溶液的物质的量浓度大于9.2 mol·L-17.已知某饱和溶液的①体积,②密度,③溶质和溶剂的质量比,④溶质的摩尔质量,要依照溶质的溶解度计算该溶液的物质的量浓度,上述条件中必不可少的是( )A.①④ B.②④ C.①②③ D.①②③④二、不定项选择题(此题包括7个小题,每小题4分,共28分)8.不管在化学实验室仍是在家中进行实验或探讨活动,都必需注意平安,以下实验操作正确的选项是( ) A.为避免试管破裂,加热固体时试管口一样要略低于试管底部B.不慎将酒精洒在桌面上引发着火,应当即用较多的水浇灭C.白磷在空气中易自燃,用剩的白磷可溶解于CS2后倒入垃圾箱D.配制H2SO4溶液时,先在烧杯中加必然体积的水,再在搅拌下慢慢加入浓硫酸9.以下实验进程能引发结果偏高的是( )A.配制100 g 10% CuSO4溶液,称取10 g硫酸铜晶体溶于90 g水中B.测定硫酸晶体中结晶水的百分含量时,所用的晶体已经受潮C.配制必然物质的量浓度的硫酸溶液时,定容时俯视容量瓶的刻度线D.质量分数为10%和90%的两种硫酸等质量混合配制50%的硫酸溶液10.容量瓶是用来配制必然物质的量浓度的溶液的定量仪器,其上标有:①温度②浓度③容量④压强⑤刻度线⑥酸式或碱式这6项中的( )A.①④⑥ B.③⑤⑥C.①②④ D.①③⑤11.为确信某溶液的离子组成,进行如下实验:①测定溶液的pH,溶液显强碱性②取少量溶液加入稀盐酸至溶液呈酸性,产生无刺激性气味、能使澄清石灰水变浑浊的气体③在上述溶液中再滴加Ba(NO3)2溶液,产生白色沉淀④取上层清液继续滴加Ba(NO3)2溶液至无沉淀时,再滴加AgNO3溶液,产生白色沉淀依如实验以下推测正确的选项是( )A.必然有SO2-3B.必然有CO2-3C.不能确信是不是含有Cl-D.不能确信HCO-3是不是存在12.(2020·扬州调研)以下各图所示装置,确信不符合气密性要求的是( )13.以下表达中完全正确的一组是( )①常温常压下,1 mol甲基(—CH3)所含的电子数为10N A②由Cu、Zn和稀硫酸组成的原电池工作时,假设Cu极放出0.2 g H2,那么电路中通过电子0.2N A③在标准状况下,11.2 L NO与11.2 L O2混合后的气体分子数为0.75N A④常温常压下,16 g O3所含的原子数为N A⑤1 mol C10H22分子中共价键总数为31N A ⑥1 mol Cl2发生反映时,转移的电子数必然是2N A⑦标准状况下,22.4 L水中含分子数为N AA.①②③④⑤B.②④⑤⑥⑦C.②④⑤ D.①②⑤14.以下实验方案不合理的是( )A.用分液法分离苯和四氯化碳的混合液B.用焰色反映辨别NaCl和KClC.用饱和Na2SO4溶液除去乙酸乙酯中混有的乙酸和乙醇D.用KSCN溶液查验FeCl2是不是已被氧化而变质第Ⅱ卷(非选择题,共48分)三、非选择题(此题包括5个小题,共58分)15.(10分)某学生用质量分数为98%、密度为1.84 g·cm-3的浓硫酸,配制0.2 mol·L-1的硫酸溶液500 mL。
苏教版数学高一苏教版必修1单元检测第1章集合A
第1章集合单元检测(A 卷)一、填空题(本大题共12小题,每小题5分,共60分).1.若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B =________.2.下列说法正确的序号是________.①某校高一(1)班年龄较小的同学组成一个集合②集合{1,2,3}与{3,1,2}表示不同的集合③2010年广州亚运会的所有比赛项目组成一个集合④1,0.5,32,12组成的集合含有四个元素 ⑤包括“嫦娥二号”在内的所有人造卫星组成的集合是有限集3.下列关系中正确的个数是________.①0N ∉ ②π∈Q ③{}22x R x ∅⊆∈=-④{}0⊆∅ ⑤∅{0} ⑥{a ,b }∈{a ,b ,c } 4.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有________个.5.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩B =________.6.已知集合*6{,}5M a N a Z a=∈∈-且,则用列举法表示M =________. 7.设U ={1,2,3,4,5,6,7,8},A ={3,4,5},B ={4,7,8},则(A )∩(B )=________,(A )∪(B )=________.8.如图所示,U 是全集,M ,P ,S 是U 的3个子集,则阴影部分所表示的集合为________.9.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________.10.已知集合A ={x |x 2-4x +3=0},B ={x |ax -1=0}.若B A ,则实数a 的值为________.11.某班有学生55人,其中音乐爱好者30人,体育爱好者40人,还有4个既不爱好体育也不爱好音乐,则班级中既爱好体育又爱好音乐的有________人.12.定义集合*{,}A B x x A x B =∈∉且,若A ={1,3,5,7},B ={2,3,5},则(1)集合A*B的子集个数为________;(2)A*(A*B)=________.二、解答题(本大题共4小题,共40分,解答应写出必要的文字说明、解题步骤或证明过程).13.(9分)已知全集U为R,集合A={x|0<x≤2},B={x|x<-3,或x>1}.求:(1)A∩B;(2)(A∩(B);(3)(A∪B).14.(9分)已知全集U=R,集合A={x|x2+ax+12b=0},B={x|x2-ax+b=0},满足(A)∩B={2},(B)∩A={4},求实数a、b的值.15.(10分)设全集U=R,A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}. ,求实数a的取值范围;(1)若B A(2)若a=1,求A∪B,(A)∩B.16.(12分)设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∩B=B,求实数a的取值范围;(2)若A∪B=B,求实数a的值.参考答案与解析一、填空题1.{0,1,2,3,4}2.③⑤3.2 解析:∵0∈N ,∴①不正确;π是无理数,∴②不正确;∵{x |x 2=-2}=∅,③即∅⊆∅,由子集性质知,③正确;∵∅⊆{0}且∅{0}∴④不正确,⑤正确;⑥两个集合的关系是{a ,b }{a ,b ,c },而不是“∈”关系,∴⑥不正确.4.2 解析:M ={x |-2≤x -1≤2}={x |-1≤x ≤3},N ={1,3,5,…},所以M ∩N ={1,3}.故阴影部分共有2个元素.5.{x |-1≤x <1} 解析:A ={x |-1≤x ≤2},B ={x |x <1},在数轴上画出图形就可以得到答案A ∩B ={x |-1≤x <1}.6.{-1,2,3,4} 解析:a ∈Z ,*65N a∈-,∴5-a =1,2,3,6,∴a =4,3,2,-1.∴M ={-1,2,3,4}.7.{1,2,6} {1,2,3,5,6,7,8} 解析:由题设知,A ={1,2,6,7,8},B ={1,2,3,5,6},∴(A )∩(B )={1,2,6},(A )∪(B )={1,2,3,5,6,7,8}.8.(M ∩P )∩(S ) 解析:∵x ∈M 且x ∈P ,但x S ,∴可用(M ∩P )∩(S )表示.9.1 解析:∵A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},由题意得a +2=3,∴a =1,又由a 2+4=3无解,不符合题意;经检验得a =1.10.1或0或13解析:∵A ={x |x 2-4x +3=0}={1,3},B A ,∴(1)当B =∅时,a =0;(2)当B ≠∅时,11a =或13a =,∴a =1或13.综上知满足题意的a 值为1或0或13. 11.19 解析:如图所示,设既爱好体育又爱好音乐的人数为n .则由集合运算关系,有30-n +n +40-n +4=55,解得n =19(人).12.(1)4 (2){3,5} 解析:(1)∵A ={1,3,5,7},B ={2,3,5},由定义得A *B ={1,7},∴其子集个数为22=4,分别为∅,{1},{7},{1,7}.(2)∵A *B ={1,7},∴A *(A *B )={x |x ∈A ,且x ∉(A *B )}={3,5}.二、解答题13.解:结合数轴可得,A ={x |x ≤0,或x >2},B ={x |-3≤x ≤1}.A ∪B ={x |x <-3,或x >0}.(1)A ∩B ={x |1<x ≤2};(2)(A )∩(B )={x |-3≤x ≤0};(3)(A ∪B )={x |-3≤x ≤0}.14.解:∵(A )∩B ={2},∴2∈B 且2∉A ,由此可得4-2a +b =0 ①, ∵(B )∩A ={4},∴4∈A 且4∉B ,由此可得16+4a +12b =0,即4+a +3b =0 ② 解①②组成的方程组可得87a =,127b =-. 15.解:(1)B ={x ∈R |x ≤2,且23x ≥}={x |223x ≤≤}. ∵B A ,∴23a ≤. (2)若a =1,则A ={x |1≤x ≤2}.此时A ∪B ={x |1≤x ≤2}∪{x |223x ≤≤}={x |223x ≤≤}. ∵A ={x |x <1,或x >2},∴(A )∩B ={x |x <1,或x >2}∩{x |223x ≤≤}={x |213x ≤≤}. 16.解:易知A ={-4,0}.(1)若A ∩B =B ,则B A ,∴B =或{0}或{-4}或{-4,0}.①若B =∅,则方程x 2+2(a +1)x +a 2-1=0无实数解,∴Δ=4(a +1)2-4(a 2-1)<0,即8+8a <0,解得a <-1;②若B ={0},则方程x 2+2(a +1)x +a 2-1=0有两个相等的实数根,∴20,10.a ∆=⎧⎨-=⎩解得a =-1,此时满足题意;③若B ={-4},则方程x 2+2(a +1)x +a 2-1=0.有两个相等的实数根. ∴20,870.a a ∆=⎧⎨-+=⎩此方程组无解,∴B ≠{-4}; ④若B ={-4,0},则方程x 2+2(a +1)x +a 2-1=0有两个不相等的实数根-4,0,∴2210,870.a a a ⎧-=⎪⎨-+=⎪⎩解得a =1, 此时B ={x |x 2+4x }=A ={-4,0},满足题意,∴a =1.综上可知,实数a 的取值范围是a =1,或a ≤-1.(2)若A ∪B =B ,则A B .又∵B 为二次方程的解集,∴B 中至多有两个元素.∵A ={-4,0},∴B ={-4,0}=A ,即方程x 2+2(a +1)x +a 2-1=0有两个不相等的实数根为-4和0.由(1)知,a =1. 注:本题在讨论一元二次方程的解时,也可以用根与系数的关系求a 的值.。
新教材苏教版高中数学选择性必修一章末检测卷(一)
章末检测卷(一)(时间:120分钟满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列四个关系式:①7∈R;②Z∈Q;③0∈∅;④∅⊆{0},其中正确的个数是()A.1B.2C.3D.4答案 B解析①④正确;对于②,Z与Q的关系是集合间的包含关系,不是元素与集合的关系;对于③,∅是不含任何元素的集合,故0∉∅,选B.2.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=UD.(∁U M)∩N=N答案 B解析由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6}知,M∪N =U,故选B.3.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析易知P=M∩N={1,3},故P的子集共有22=4个.4.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 B解析a=3⇒A⊆B,但A⊆B⇒/ a=3,∴“a=3”是“A⊆B”的充分不必要条件.5.已知M={y∈R|y=|x|},N={x∈R|x=m2},则下列关系中正确的是()A.M NB.M=NC.M≠ND.N M答案 B解析∵M={y∈R|y=|x|}={y∈R|y≥0},N={x∈R|x=m2}={x∈R|x≥0},∴M=N.6.命题p:ax2+2x+1=0有实数根,若綈p是假命题,则实数a的取值范围为()A.{a|a<1}B.{a|a≤1}C.{a|a>1}D.{a|a≥1}答案 B解析因为綈p是假命题,所以p为真命题,即方程ax2+2x+1=0有实数根.,满足条件.当a≠0时,若使方程ax2+2x 当a=0时,方程为2x+1=0,x=-12+1=0有实数根,则Δ=4-4a≥0,即a≤1且a≠0.综上,a≤1.7.已知p:-4<x-a<4,q:2<x<3,若綈p是綈q的充分条件,则实数a的取值范围是()A.{a|-1≤a≤6}B.{a|a≤-1}C.{a|a≥6}D.{a|a≤-1,或a≥6}答案 A解析p:-4<x-a<4,即a-4<x<a+4;q:2<x<3.∴綈p:x≤a-4或x≥a+4,綈q:x≤2或x≥3;而綈p 是綈q 的充分条件,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.8.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A.4B.5C.19D.20答案 C解析 由题意知集合P *Q 的元素为点,当a =1时,集合P *Q 的元素为(1,4),(1,5),(1,6),(1,7),(1,8),共5个元素.同样当a =2,3时集合P *Q 的元素个数都为5个,当a =4时,集合P *Q 中元素为(4,5),(4,6),(4,7),(4,8),共4个.因此P *Q 中元素的个数为19个,故选C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.已知M ={x ∈R |x ≥22},a =π,则下列四个关系式中正确的是( )A.a ∈MB.{a }⊆MC.a ⊆MD.{a }∩M =π 答案 AB解析 由M ={x ∈R |x ≥22},知构成集合M 的元素是大于等于22的所有实数,因为a =π>22,所以元素a ∈M ,且{a }M ,同时{a }∩M ={π},所以A 和B 正确,故选AB.10.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 可能为( )A.2B.-2C.-3D.1答案 AC 解析 由题意,得2=3x 2+3x -4或2=x 2+x -4,若2=3x 2+3x -4,即x 2+x -2=0,∴x =-2或x =1,检验:当x =-2时,x 2+x -4=-2,与元素互异性矛盾,舍去;当x =1时,x 2+x -4=-2,与元素互异性矛盾,舍去.若2=x 2+x -4,即x 2+x -6=0,∴x =2或x =-3,经验证x =2或x =-3为满足条件的实数x .故选AC.11.不等式1≤|x |≤4成立的充分不必要条件为( )A.[-4,-1]B.[1,4]C.[-4,-1]∪[1,4]D.[-4,4] 答案 AB解析 由不等式1≤|x |≤4,解得-4≤x ≤-1,或1≤x ≤4.∴不等式1≤|x |≤4成立的充分不必要条件为A ,B.故选AB.12.已知集合A ={x |x =3a +2b ,a ,b ∈Z },B ={x |x =2a -3b ,a ,b ∈Z },则( )A.A ⊆BB.B ⊆AC.A =BD.A ∩B =∅ 答案 ABC解析 已知集合A ={x |x =3a +2b ,a ,b ∈Z },B ={x |x =2a -3b ,a ,b ∈Z },若x 属于B ,则x =2a -3b =3(2a -b )+2(-2a );2a -b ,-2a 均为整数,x 也属于A ,所以B 是A 的子集;若x 属于A ,则x =3a +2b =2(3a +b )-3(a );3a +b ,a 均为整数,x 也属于B ,所以A 是B 的子集;所以A =B ,故选ABC.三、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N |y =12x +3∈Z ,则列举法表示集合A =________,集合A 的真子集有________个.(第一个空2分,第二个空3分)答案 {0,1,3,9} 15解析 ∵集合A =⎩⎨⎧⎭⎬⎫x ∈N |y =12x +3∈Z ,∴列举法表示集合A ={0,1,3,9},集合A 的真子集有24-1=15个.14.命题:存在一个实数对(x ,y ),使2x +3y +3<0成立的否定是____________________________________.答案 对任意实数对(x ,y ),2x +3y +3≥0恒成立解析 存在量词命题的否定是全称量词命题.15.若A ,B 是非空集合,定义运算A -B ={x |x ∈A ,且x ∉B },若M ={x |x ≤1},N ={y |0≤y ≤1},则M -N =________.答案 {x |x <0}解析 画出数轴如图:∴M -N ={x |x ∈M ,且x ∉N }={x |x <0}.16.设集合S ={x |x >5,或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是________.答案 {a |-3<a <-1}解析 借助数轴可知⎩⎪⎨⎪⎧a <-1,a +8>5.∴-3<a <-1.四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知集合A ={x |-2≤x ≤2},B ={x |x >1}.求A ∩B ,A ∪B ,(∁R B )∩A .解 ∵集合A ={x |-2≤x ≤2},B ={x |x >1}.∴A ∩B ={x |1<x ≤2},A∪B={x|x≥-2},∁R B={x|x≤1},∴(∁R B)∩A={x|-2≤x≤1}.18.(12分)写出下列命题的否定,并判断所得命题的真假性.(1)∀x∈Z,|x|∈N;(2)每一个平行四边形都是中心对称图形;(3)∃x∈R,x+1≤0;(4)∃x∈R,x2+2x+3=0.解(1)∃x∈Z,|x|∉N,假命题.(2)有些平行四边形不是中心对称图形,假命题.(3)∀x∈R,x+1>0,假命题.(4)∀x∈R,x2+2x+3≠0,真命题.19.(12分)设p:实数x满足a<x<3a,其中a>0,q:实数x满足2<x≤3. 若綈p 是綈q的充分不必要条件,求实数a的取值范围.解綈p是綈q的充分不必要条件,即綈p⇒綈q且綈q綈p.设A={x|x≤a,或x≥3a},B={x|x≤2,或x>3},则A B.所以0<a≤2且3a>3,即1<a≤2.所以实数a的取值范围是{a|1<a≤2}.20.(12分)已知A={x|x2-ax+a2-12=0},B={x|x2-5x+6=0},且满足下列三个条件:①A≠B;②A∪B=B;③∅(A∩B),求实数a的值.解B={2,3},∵A∪B=B,∴A⊆B.∵A≠B,∴A B.又∵∅(A ∩B ),∴A ≠∅,∴A ={2}或A ={3},∴方程x 2-ax +a 2-12=0只有一解.由Δ=(-a )2-4(a 2-12)=0得a 2=16,∴a =4或a =-4.当a =4时,集合A ={x |x 2-4x +4=0}={2},符合题意;当a =-4时,集合A ={x |x 2+4x +4=0}={-2}(舍去).综上,a =4.21.(12分)求证:方程x 2-2x -3m =0有两个同号且不相等的实根的充要条件是 -13<m <0.证明 (1)充分性:∵-13<m <0,∴方程x 2-2x -3m =0的判别式Δ=4+12m >0,且-3m >0,∴方程x 2-2x -3m =0有两个同号且不相等的实根.(2)必要性:若方程x 2-2x -3m =0有两个同号且不相等的实根x 1,x 2,则有⎩⎪⎨⎪⎧Δ=4+12m >0,x 1x 2=-3m >0,解得-13<m <0.综合(1)(2)知,方程x 2-2x -3m =0有两个同号且不相等的实根的充要条件是-13<m <0.22.(12分)已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +(a -1)=0},C ={x |x 2-bx +2=0},问是否存在实数a ,b 同时满足B A ,A ∩C =C ?若存在,求出a ,b 的所有值;若不存在,请说明理由.解 存在实数a ,b 同时满足B A ,A ∩C =C .易知A ={1,2},∵B A ,∴B =∅或{1}或{2}.∵在x 2-ax +(a -1)=0中,Δ=a 2-4(a -1)=(a -2)2≥0,∴B ≠∅.若B ={1},由根与系数的关系得⎩⎪⎨⎪⎧1+1=a ,1×1=a -1,解得a =2; 若B ={2},由根与系数的关系得⎩⎪⎨⎪⎧2+2=a ,2×2=a -1,此时方程组无解. ∵A ∩C =C ,∴C ⊆A ,∴C =∅或{1}或{2}或{1,2}.∴当C =∅时,Δ=b 2-8<0,解得-22<b <22;当C ={1}时,1×1=2不成立;当C ={2}时,2×2=2不成立;当C ={1,2}时,⎩⎪⎨⎪⎧1+2=b ,1×2=2,解得b =3,符合题意. 综上所述,a =2,b =3或-22<b <22时满足要求.。
高中数学 第1章 集合章末知识整合 苏教版必修1
高中数学第1章集合章末知识整合苏教版必修1一、元素与集合的关系已知A={x|x=m+n·2,m,n∈Z}.(1)设x1=13-22,x2=9-42,x3=(1-32)2,试判断x1,x2,x3与A之间的关系;(2)任取x1,x2∈A,试判断x1+x2,x1·x2与A之间的关系;(3)能否找到x0∈A,使1x0∈A,且|x0|≠1?分析:分清楚集合A中元素具备什么形式.解析:(1)由于x1=13-22=3+22,则x1∈A,由于x2=9-42=1-222=-1+22,则x2∈A,由于x3=(1-32)2=19-62,则x3∈A.(2)由于x1,x2∈A,设x1=m1+n12,x2=m2+n2·2(其中m1,n1,m2,n2∈Z).则x1+x2=(m1+m2)+(n1+n2)2,其中m1+m2,n1+n2∈Z,则x1+x2∈A.由于x1x2=(m1+n12)(m2+n22)=(m1m2+2n1n2)+(m1n2+m2n1)·2,其中m1m2+2n1n2,m1n2+m2n1∈Z,则x1x2∈A.(3)假设能找到x0=m0+n02∈A(其中m0,n0∈Z)符合题意,则:1 x0=1m0+n0·2=m0m20-2n20+-n0m20-2n20·2∈A,则m0m20-2n20∈Z,-n0m20-2n20∈Z .于是,可取m0=n0=1,则能找到x0=-1+2,又能满足|x0|≠1,符合题意.点评:解决是否存在的问题主要采用假设法:假设存在某数使结论成立,以此为基础进行推理.若出现矛盾,则否定假设,得出相反的结论;若推出合理的结果,则说明假设正确.这种方法可概括为“假设—推理—否定(肯定)假设—得出结论”.►变式训练1.设集合A ={x |x =3k ,k ∈Z},B ={x |x =3k +1,k ∈Z},C ={x |x =3k +2,k ∈Z},任取x 1∈B ,x 2∈C ,则x 1+x 2∈________,x 1x 2∈________,x 1-x 2∈________,x 2-x 1∈________.(注:从A ,B ,C 中选一个填空)解析:设x 1=3m +1,x 2=3n +2,m ,n ∈Z,则x 1+x 2=3(m +n +1)∈A ;x 1x 2=9mn +6m +3n +2=3(3mn +2m +n )+2∈C ;x 1-x 2=3m -3n -1=3(m -n -1)+2∈C ;x 2-x 1=3n -3m +1=3(n -m )+1∈B .答案:A C C B2.已知集合A ={x |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 中只有一个元素,求实数a 的值,并把这个元素写出来.解析:(1)A =∅,则方程ax 2-3x +2=0无实根,即Δ=9-8a <0,∴a >98. ∴a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ a >98.(2)∵A 中只有一个元素,∴①a =0时,A =⎩⎨⎧⎭⎬⎫23满足要求. ②a ≠0时,则方程ax 2-3x +2=0有两个相等的实根.故Δ=9-8a =0,∴a =98,此时A =⎩⎨⎧⎭⎬⎫43满足要求. 综上可知:a =0或a =98.二、集合与集合的关系A ={x |x <-1或x >2},B ={x |4x +p <0},当B ⊆A 时,求实数p 的取值范围.分析:首先求出含字母的不等式,其次利用数轴解决.解析:由已知解得,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-p 4. 又∵A ={x |x <-1或x >2},且B ⊆A ,利用数轴.∴-p4≤-1. ∴p ≥4,即实数p 的取值范围为{p |p ≥4}.点评:在解决两个数集包含关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解.三、集合的综合运算已知集合A ={(x ,y )|x 2-y 2-y =4},B ={(x ,y )|x 2-xy -2y 2=0},C ={(x ,y )|x -2y =0},D ={(x ,y )|x +y =0}.(1)判断B 、C 、D 间的关系;(2)求A ∩B.分析:对集合B 进行分解因式,读懂集合语言.解析:(1)∵x 2-xy -2y 2=(x +y )(x -2y ),∴B ={(x ,y )|x 2-xy -2y 2=0}={(x ,y )|(x +y )(x -2y )=0}={(x ,y )|x -2y =0或x +y =0}={(x ,y )|x -2y =0}∪{(x ,y )|x +y =0}=C ∪D .(2)A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧ x 2-y 2-y =4,x 2-xy -2y 2=0 =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧ x 2-y 2-y =4,x -2y x +y =0 =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧ x 2-y 2-y =4,x +y =0 或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧ x 2-y 2-y =4,x -2y =0. =⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫83,43,-2,-1,4,-4.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合∁A (A ∩B )=________.分析:首先简化集合A 和B ,再借助数轴求解.解析:∵A ={x |-4<x <4},B ={x |x <1或x >3},∴A ∩B ={x |-4<x <1或3<x <4},∴∁A (A ∩B )={x |1≤x ≤3}.答案:{x |1≤x ≤3}点评:解集合问题,重要的是读懂集合语言,明确意义,用相关的代数或几何知识解决.►变式训练3.已知M ,N 为集合U 的非空真子集,且M ≠N ,若M ∩∁U N =∅,则M ∪N =( )A .MB .NC .UD .∅答案:B4.已知全集U ={实数对(x ,y )},A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪ y -4x -2=3,B ={(x ,y )|y =3x -2},求(∁U A )∩B.解析:A =⎩⎨⎧ x ,y ⎪⎪⎪⎭⎬⎫y -4x -2=3={(x ,y )|y =3x -2,且x ≠2},∴(∁U A )∩B ={(x ,y )|x =2,y =4}={(2,4)}.四、 空集的地位和作用已知集合A ={x |x 2+(m +2)x +1=0},若A ∩R +=∅,则实数m 的取值范围是________[其中R +=(0,+∞)].分析:从方程的观点来看,集合A 是关于x 的实系数一元二次方程x 2+(m +2)x +1=0的解集,而x =0不是该方程的解,所以由A ∩R +=∅可知该方程只有两个负根或无实数根,从而分别由判别式转化为关于m 的不等式,解出m 的范围即可.解析:由于A ∩R +=∅和该方程没有零根,所以该方程只有两个负根或无实数根,从而有⎩⎪⎨⎪⎧ Δ=m +22-4≥0,-m +2<0或Δ=(m +2)2-4<0, 解得m ≥0或-4<m <0,即m >-4.答案:{m |m >-4}点评:由于集合的联系性较强,应注意体会和提炼数学思想(如数形结合、方程思想和分类讨论思想).►变式训练5.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}(1)若A ∩B =B ,求实数m 的取值范围;(2)若A ∩B =∅,求实数m 的取值范围.解析:(1)A ∩B =B ⇔B ⊆A ,当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;当m +1≤2m-1时,要使B ⊆A ,则⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,m +1≤2m -1⇒2≤m ≤3.综上,m 的取值范围为{m |m ≤3}.(2)当m +1>2m -1,即m <2时,B =∅,满足A ∩B =∅.当B ≠∅时,要使A ∩B =∅,则必须⎩⎨⎧ m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧ m +1≤2m -1,2m -1<-2⇒m >4. 综上,m 的取值范围是{m |m <2或m >4}.五、 集合中的信息迁移题约定“⊕”与“⊗”是两个运算符号,其运算法则如下:对任意的a ,b ∈R,有a ⊕b =a -b ,a ⊗b =a +b a -b 2+1.设U ={c |c =(a ⊕b )+(a ⊗b ),-2<a ≤b <1,且a ,b ∈Z},A ={d |d =2(a ⊕b )+a ⊗b b,-1<a <b <2,且a ,b ∈Z},求∁U A.分析:本题的难点在接受题中临时约定的运算符号及其运算法则,关键是要按照规定,把符号“”与“⊗”表示的运算转化为通常的“+,-,×,÷,…”等运算.然后化简集合U 及A ,最后再由补集的定义求出∁U A.解析:由-2<a ≤b <1且a ,b ∈Z 可知,a =-1,b =-1或b =0;a =0,b =0.根据题中对符号“⊕”与“⊗”及其运算法则的约定,有:(1)若a =-1,b =-1,则c =(a ⊕b )+(a ⊗b )=(-1)-(-1)+-1+-1-1+12+1=-2; (2)若a =-1,b =0,则c =(a ⊕b )+(a ⊗b )=(-1)-0+-1+0-1-02+1=-32; (3)若a =0,b =0,则c =(a ⊕b )+(a ⊗b )=0-0+0+00-02+1=0. 由(1)、(2)、(3),可知U =⎩⎨⎧⎭⎬⎫-2,0,-32. 下面确定A :由-1<a <b <2,且a ,b ∈Z,可得,a =0,b =1,此时,d =2(a ⊕b )+a ⊗b b =2×(0-1)+0+10-12+1=-32,所以A =⎩⎨⎧⎭⎬⎫-32,所以∁U A ={0,-2}.点评:在近几年的高考试题和各地的高中模拟考试试题中频频出现新定义型集合,这类问题的求解并不是很难,只要按照其定义方式求解即可.这类题的目的在于培养学生的创新能力、接受临时性定义的能力.►变式训练6.设全集为U ,A 、B 是U 的子集,定义集合A 与B 的运算:A *B ={x |x ∈A ∪B 且x ∉A ∩B },则(A *B )*A 等于( )A .AB .BC .(∁U A )∩BD .A ∩∁U B解析:利用Venn图.答案:B7.在集合{a,b,c,d}上定义两种运算⊕和⊗如下:那么d⊗(a⊕c)=( )A.a B.b C.c D.d解析:有定义可得a⊕c=c,∴d⊗(a⊕c)=d⊗c=a.答案:A。
2019—2020年苏教版高中数学第1章《集合》章末检测B及解析.docx
(新课标)2018-2019学年度苏教版高中数学必修一第1章集合(B)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.下列各组对象中能构成集合的是________.(填序号)①北京尼赏文化传播有限公司的全体员工;②2010年全国经济百强县;③2010年全国“五一”劳动奖章获得者;④美国NBA的篮球明星.2.设全集U=R,集合A={x||x|≤3},B={x|x<-2或x>5},那么如图所示的阴影部分所表示的集合为________.3.设全集U=R,集合A={x|x2-2x<0},B={x|x>1},则集合A∩∁U B=________. 4.已知f(x)、g(x)为实数函数,且M={x|f(x)=0},N={x|g(x)=0},则方程[f(x)]2+[g(x)]2=0的解集是________.(用M、N表示).5.设集合A={x|-3≤x≤2},B={x|2k-1≤x≤2k+1},且A⊇B,则实数k的取值范围为________.6.定义两个数集A,B之间的距离是|x-y|min(其中x∈A,y∈B).若A={y|y=x2-1,x∈Z},B={y|y=5x,x∈Z},则数集A,B之间的距离为________.7.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x组成的集合为________.8.若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},B⊆A,则实数m的取值范围为____________.9.若集合A 、B 、C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系是________.10.设P 、Q 为两个非空实数集合,定义集合运算:P*Q ={z|z =ab(a +b),a ∈P ,b ∈Q},若P ={0,1},Q ={2,3},则P*Q 中元素之和为________.11.集合M 由正整数的平方组成,即M ={1,4,9,16,25,…},若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的.M 对下列运算封闭的是________.①加法 ②减法 ③乘法 ④除法12.设全集U ={(x ,y)|x ,y ∈R},集合M ={(x ,y)|y -3x -2=1},N ={(x ,y)|y ≠x +1},则∁U (M ∪N)=________.13.若集合A ={x|x ≥3},B ={x|x<m}满足A ∪B =R ,A ∩B =∅,则实数m =________.14.设集合A ={x|x 2+x -1=0},B ={x|ax +1=0},若B A ,则实数a 的不同取值个数为________个.三、解答题(本大题共6小题,共90分)15.(14分)已知全集U ={1,2,3,4,5},集合A ={x|x 2-5x +q =0,x ∈U},求q 的值及∁U A.16.(14分)已知全集U=R,集合M={x|x≤3},N={x|x<1},求M∪N,(∁U M)∩N,(∁U M)∪(∁U N).17.(14分)设集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}.(1)若m=4,求A∪B;(2)若B⊆A,求实数m的取值范围.18.(16分)已知集合A={x|ax2+2x+1=0,a∈R,x∈R}.(1)若A中只有一个元素,求a的值,并求出这个元素;(2)若A中至多只有一个元素,求a的取值范围.19.(16分)设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求实数a 的取值范围.20.(16分)已知两个正整数集合A={a1,a2,a3,a4},B={a21,a22,a23,a24},其中a1<a2<a3<a4.若A∩B={a1,a4},且a1+a4=10,A∪B的所有元素之和是124,求集合A和B.第1章集合(B)1.④解析根据集合中元素的确定性来判断是否构成集合.因为①、②、③中所给对象都是确定的,从而可以构成集合;而④中所给对象不确定,原因是没有具体的标准衡量一位美国NBA球员是否是篮球明星,故不能构成集合.2.[-2,3]解析化简集合A,得A={x|-3≤x≤3},集合B={x|x<-2或x>5},所以A∩B={x|-3≤x<-2},阴影部分为∁A(A∩B),即为{x|-2≤x≤3}.3.{x|0<x≤1}解析由x2-2x<0,得0<x<2,∁U B={x|x≤1},所以A∩∁U B={x|0<x≤1}.4.M∩N解析若[f(x)]2+[g(x)]2=0,则f(x)=0且g(x)=0,故[f(x)]2+[g(x)]2=0的解集是M∩N.5.[-1,12] 解析 由题意,得⎩⎪⎨⎪⎧ 2k -1≥-3,2k +1≤2,解得:⎩⎪⎨⎪⎧ k ≥-1,k ≤12.∴实数k 的取值范围为[-1,12]. 6.0解析 集合A 表示函数y =x 2-1的值域,由于x ∈Z ,所以y 的值为-1,0,3,8,15,24,….集合B 表示函数y =5x 的值域,由于x ∈Z ,所以y 的值为0,5,10,15,….因此15∈A ∩B. 所以|x -y|min =|15-15|=0.7.{-3,2}解析 ∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3和2符合集合中元素的互异性,故所求的集合为{-3,2}.8.[-1,+∞)解析 ∵B ⊆A ,当B =∅时,得2m -1>m +1,∴m>2, 当B ≠∅时,得⎩⎪⎨⎪⎧ 2m -1≤m +1,2m -1≥-3,m +1≤4.解得-1≤m ≤2.综上所述,m 的取值范围为m ≥-1.9.A ⊆C解析 ∵A ∩B =A ,∴A ⊆B ,∵B ∪C =C ,∴B ⊆C ,∴A ⊆C.10.18解析 ∵P ={0,1},Q ={2,3},a ∈P ,b ∈Q ,故对a ,b 的取值分类讨论.当a =0时,z =0;当a =1,b =2时,z =6;当a =1,b =3时,z =12.综上可知:P*Q ={0,6,12},元素之和为18.11.③解析 设a 、b 表示任意两个正整数,则a 2、b 2的和不一定属于M ,如12+22=5∉M ;a 2、b 2的差也不一定属于M ,如12-22=-3∉M ;a 2、b 2的商也不一定属于M ,如1222=14∉M ;因为a 、b 表示任意两个正整数,a 2·b 2=(ab)2,ab 为正整数,所以(ab)2属于M ,即a 2、b 2的积属于M.12.{(2,3)}解析 集合M 表示直线y =x +1上除点(2,3)外的点,即为两条射线上的点构成的集合,集合N 表示直线y =x +1外的点,所以M ∪N 表示直线y =x +1外的点及两条射线,∁U (M ∪N)中的元素就是点(2,3).13.314.3解析 注意B =∅的情况不要漏了.15.解 设方程x 2-5x +q =0的两根为x 1、x 2,∵x ∈U ,x 1+x 2=5,∴q =x 1x 2=1×4=4或q =x 1·x 2=2×3=6.当q =4时,A ={x|x 2-5x +4=0}={1,4},∴∁U A ={2,3,5};当q =6时,A ={x|x 2-5x +6=0}={2,3},∴∁U A ={1,4,5}.16.解 由题意得M ∪N ={x|x ≤3},∁U M ={x|x>3},∁U N ={x|x ≥1}, 则(∁U M)∩N ={x|x>3}∩{x|x<1}=∅,(∁U M)∪(∁U N)={x|x>3}∪{x|x ≥1}={x|x ≥1}.17.解 (1)当m =4时,A ={x ∈R|2x -8=0}={4},B ={x ∈R|x 2-10x +16=0}={2,8}, ∴A ∪B ={2,4,8}.(2)若B ⊆A ,则B =∅或B =A.当B =∅时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)<0,得m<-12; 当B =A 时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)=0,且--2(m +1)2=4,解得m 不存在. 故实数m 的取值范围为(-∞,-12). 18.解 A 中元素x 即为方程ax 2+2x +1=0(a ∈R ,x ∈R)的解.(1)∵A 中只有一个元素,∴ax 2+2x +1=0只有一解.当a =0时,方程为2x +1=0,解得x =-12符合题意; 当a ≠0且Δ=4-4a =0即a =1时,方程的解x 1=x 2=-1,此时A 中也只有一元素 -1.综上可得:当a =0时,A 中的元素为-12;当a =1时,A 中的元素为-1. (2)若A 中只有一个元素,由(1)知a =0或a =1,若A 中没有元素,即方程ax 2+2x +1=0无解,∴⎩⎪⎨⎪⎧a ≠0Δ=4-4a<0,解得a>1, 综上可得:a>1或a =0或a =1.19.解 A ={x|x 2+4x =0}={x|x =0或x =-4}={0,-4}. ∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}. 当B =∅时,即x 2+2(a +1)x +a 2-1=0无实根, 由Δ<0,即4(a +1)2-4(a 2-1)<0,解得a<-1; 当B ={0}时,由根与系数的关系:0+0=-2(a +1), 0×0=a 2-1⇒a =-1;当B ={-4}时,由根与系数的关系:-4-4=-2(a +1), (-4)×(-4)=a 2-1⇒无解;当B ={0,-4}时,由根与系数的关系:0-4=-2(a +1), 0×(-4)=a 2-1⇒a =1.综上所述,a =0或a ≤-1.20.解 ∵1≤a 1<a 2<a 3<a 4,∴a 21<a 22<a 23<a 24. ∵A ∩B ={a 1,a 4},∴只可能有a 1=a 21⇒a 1=1. 而a 1+a 4=10,∴a 4=9,∴a 24≠a 4.(1)若a 22=a 4,则a 2=3,∴A ∪B ={1,3,a 3,9,a 23,81},∴a 3+a 23+94=124⇒a 3=5; (2)若a 23=a 4,则a 3=3,同样可得a 2=5>a 3,与条件矛盾,不合题意. 综上所述,A ={1,3,5,9},B ={1,9,25,81}.。
2019-2020学年高一数学苏教版必修1同步练习:第一章 章末检测 Word版含答案
姓名,年级:时间:第一章 章末检测1、已知集合,?A B 均为全集{}1,2,3,4U =的子集,且(){}4U C A B ⋃=,{}1,2B =,则U A C B ⋂= ( )A 。
{}3B. {}4C 。
{}3,4D 。
∅2、已知集合,,则能使成立的实数的取值范围是( ) A.B.C.D 。
3、设集合{}(,)|,U x y x R y R =∈∈,{}(,)|20A x y x y m =-+>,{}(,)|0B x y x y n =+-≤,则点(2,3)P ∈的充要条件是( )A. 1,5m n >-<B. 1,5m n <-<C. 1,5m n >->D. 1,5m n -4、已知全集U R =,集合{}|1A x y x ==-,{}|02B x x =<<,则( )A. [)1,+∞B 。
()1,+∞C. [)0,+∞D. ()0,+∞5、已知全集U R =,集合|1{A x x =>或2}x <-,{}1|0B x x =-≤≤,则U A C B ⋃等于( ) A 。
{|1x x <-或0}x >B. {|1x x <-或1}x >C. {|2x x <-或1}x >D. {|2x x <-或0}x ≥6、已知集合{}()(){}24,|13|0A x x B x x x =<<=--<.则A B ⋂= ( )A 。
()1,3B 。
()1,4C 。
()2,3D 。
()2,47、下列四句话中:①{}0∅=;②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集。
其中正确的有( )A.0个B.1个 C 。
2个D 。
3个 8、若集合{}240,|4A x kx x x R =++=∈中只有一个元素,则实数k 的值为() A 。
苏教版数学必修1:第1章章末综合检测
(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列说法:①{0,1}与{1,0}是两个不同的集合;②{(1,1)}与{1}是相同的集合;③0∈N但0∉N *;④方程x 2-2x +1=0的解集是{1},其中正确的是________.(填序号)答案:③④2.给出下列5个集合,①{x |1<x <3,x ∈R};②{x |1<x <3,x ∈Q};③{(x ,y )|(x +1)2+(y -2)2=0};④{(x ,y )|y =2x -3};⑤{x |x ≥1且x ∈Z}∩{x |x ≤3且x ∈Z},其中,为有限集合的是________.(填序号)解析:③中集合为{(-1,2)};⑤中集合为{x |1≤x ≤3,x ∈Z}={1,2,3}.而①②④中元素都为无限个.答案:③⑤3.已知集合M ={x |-2<x <1},N ={x |x ≤-2},则M ∪N =________.解析:M ∪N ={x |-2<x <1或x ≤-2}={x |x <1}=(-∞,1).答案:(-∞,1)4.设A ={(x ,y )|y =-4x +6},B ={(x ,y )|y =5x -3},则A ∩B =________.解析:A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧y =-4x +6y =5x -3 =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x =1y =2={(1,2)}. 答案:{(1,2)}5.设集合U ={1,2,3,4,5},A ={1,2},B ={2,4},则∁U (A ∪B)=________. 解析:A ∪B ={1,2,4},∴∁U (A ∪B)={3,5}.答案:{3,5}6.若集合A ={0,1},A ∪B ={0,1,2},则满足条件的集合B 的个数是________. 解析:由A ={0,1},A ∪B ={0,1,2},可知2∈B ,但0,1可属于B 也可不属于B. ∴B 的取值集合为{2},{0,2},{1,2},{0,1,2},有4种可能.答案:47.设集合M ={x |f(x )=0},N ={x |g(x )=0},则方程f(x )·g(x )=0的解集为________. 解析:f(x )·g(x )=0⇔f(x )=0或g(x )=0,故所求的解集为{x |f(x )=0或g(x )=0}=M ∪N . 答案:M ∪N8.已知全集I(I ≠∅),子集合A 、B 、C ,且A =∁I B ,B =∁I C ,则A 与C 的关系是________. 解析:A =∁I B =∁I (∁I C)=C.答案:A =C9.设M ={3,6,9},若m ∈M ,且9-m ∈M ,那么m 的值是________.解析:当m =3时,9-m =9-3=6∈M ;当m =6时,9-m =9-6=3∈M ;当m =9时,9-m =9-9=0∉M .∴m =3或m =6.答案:3或610.已知集合U ={1,2,3,…,100},A ={被3整除的数},B ={被2整除的数},则A ∪B 中元素的个数有________.解析:集合A 中共有33个元素,集合B 中共有50个元素,又A ∩B 表示被6整除的数的集合,故A ∩B 有16个元素,作出V e nn 图可知A ∪B 中元素个数为33+50-16=67. 答案:6711.设集合M ={x |x =k 2+14,k ∈Z},N ={x |x =k 4+12,k ∈Z},则集合M 与N 的关系是________. 解析:M ={x |x =k 2+14,k ∈Z}={x |x =2k +14,k ∈Z},N ={x |x =k 4+12,k ∈Z}={x |x =k +24,k ∈Z},M 中元素为奇数乘以14,N 中元素为整数乘以14,故M N .答案:M N12.设P ,Q 为两个非空数集,定义集合P +Q ={x |x =a +b ,其中a ∈P ,b ∈Q},若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________.解析:由题意,P +Q ={1,2,6,3,4,7,8,11},因此共有8个元素.答案:813.若集合M ={x |x 2+x -6=0},N ={x |a x +2=0,a ∈R},且N M ,则a 的取值集合为________.解析:M ={2,-3}.若N =∅,则a =0;若N ={2},则a =-1;若N ={-3},则-3a +2=0,∴a =23.∴a 的取值集合为{-1,0,23}. 答案:{-1,0,23} 14.已知集合A ={x |-3<x ≤5},B ={x |a +1≤x <4a +1},若B A ,则满足条件的实数a 的取值集合是________.解析:(1)当B =∅时,则4a +1≤a +1,即a ≤0,此时有B A ;(2)当B ≠∅时,由题意可知⎩⎪⎨⎪⎧a +1<4a +1,a +1>-3,4a +1≤5,解得0<a ≤1.综上,a ≤1.答案:{a|a ≤1}二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知集合A ={1,2,3},若A ∪B =A ,求集合B.解:∵A ∪B =A ,∴B ⊆A.∴B 的取值集合为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.16.(本小题满分14分)已知集合U ={x |x 取不大于30的质数},并且A ∩(∁U B)={5,13,23},(∁U A)∩B ={11,19,29},(∁U A)∩(∁U B)={3,7},求A ,B.解:∵U ={2,3,5,7,11,13,17,19,23,29},由V e nn 图(图略),得A ∩B ={2,17},∴A ={2,5,13,17,23},B ={2,11,17,19,29}.17.(本小题满分14分)设集合A ={2,-1,x 2-x +1},B ={2y ,-4,x +4},且A ∩B ={-1,7},求x ,y 的值.解:∵A ∩B ={-1,7},∴7∈A ,即有x 2-x +1=7,解得x =-2或x =3.当x =-2时,x +4=2∈B ,与2∉A ∩B 矛盾,应舍去;当x =3时,x +4=7,这时2y =-1,即y =-12, 故得x =3,y =-12. 18.(本小题满分16分)已知集合A ={x |x 2+p x +q =0},B ={x |q x 2+p x +1=0},同时满足①A ∩B ≠∅,②A ∩(∁RB)={-2},pq ≠0.求p ,q 的值.解:设x 0∈A ,则有x 20+p x 0+q =0;两端同除以x 20,得1+p·1x 0+q ·1x 20=0, 则知1x 0∈B , 故集合A ,B 中元素互为倒数.由A ∩B ≠∅,一定有x 0∈A ,使得1x 0∈B ,且x 0=1x 0, 解得x 0=±1.又A ∩(∁RB)={-2},则-2∈A ,A ={1,-2}或{-1,-2}.由此得B =⎩⎨⎧⎭⎬⎫1,-12或B =⎩⎨⎧⎭⎬⎫-1,-12. 根据根与系数的关系有⎩⎪⎨⎪⎧1+(-2)=-p 1×(-2)=q 或⎩⎪⎨⎪⎧-1+(-2)=-p ,(-1)×(-2)=q. 得⎩⎪⎨⎪⎧p =1q =-2或⎩⎪⎨⎪⎧p =3,q =2. 19.(本小题满分16分)已知集合A ={a 1,a 2,a 3,a 4},B ={a 21,a 22,a 23,a 24},其中a 1,a 2,a 3,a 4为正整数,且a 1<a 2<a 3<a 4,若A ∩B ={a 1,a 4},a 1+a 4=10,A ∪B 中所有元素之和为124,求集合A.解:由题意得a 1,a 4为两正整数的平方,而a 1+a 4=10,故有a 1=1,a 4=9.由9∈B ,从而3∈A ,由9∈A ,从而81∈B.若a 2=3,则A ={1,3,a 3,9},B ={1,9,a 23,81},从而1+3+a 3+9+a 23+81=124,得a 3=5或a 3=-6(舍去),此时集合A ={1,3,5,9};若a 3=3,则a 2=2,此时A ={1,2,3,9},B ={1,4,9,81}不满足A ∪B 元素和为124,故不合题意.综上所述,集合A ={1,3,5,9}.20.(本小题满分16分)设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +a 2-5=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围;(3)若U =R ,A ∩(∁U B)=A ,求实数a 的取值范围.解:(1)由题意得A ={1,2}.若A ∩B ={2},则2∈B ,∴22+2(a +1)×2+a 2-5=0,解得a =-1或a =-3.①当a =-1时,B ={x |x 2-4=0}={-2,2},符合题意;②当a =-3时,B ={x |x 2-4x +4=0}={2},符合题意.综上可得a =-1或a =-3.(2)∵A ∪B =A ,∴B ⊆A.Δ=4(a +1)2-4(a 2-5)=8a +24.①当Δ<0即a<-3时,B =∅,符合题意;②当Δ=0即a =-3时,B ={2}⊆A ,符合题意;③当Δ>0即a>-3时,B ⊆A ,则1,2为x 2+2(a +1)x +a 2-5=0的两根,∴⎩⎪⎨⎪⎧-2(a +1)=1+2,a 2-5=1×2,无解. 综上可得a ≤-3.(3)由题意得A ∩B =∅,即1,2∉B ,∴⎩⎪⎨⎪⎧1+2(a +1)+a 2-5≠0,22+2(a +1)×2+a 2-5≠0, 解得a ≠-1或-3或-1±3.∴a 的取值范围是{a|a ≠-1或-3或-1±3,a ∈R}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 集 合(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.下列各组对象中能构成集合的是________.(填序号)①北京尼赏文化传播有限公司的全体员工;②2010年全国经济百强县;③2010年全国“五一”劳动奖章获得者;④美国NBA 的篮球明星.2.设全集U =R ,集合A ={x ||x |≤3},B ={x |x <-2或x >5},那么如图所示的阴影部分所表示的集合为________.3.设全集U =R ,集合A ={x |x 2-2x <0},B ={x |x >1},则集合A ∩∁U B =________.4.已知f (x )、g (x )为实数函数,且M ={x |f (x )=0},N ={x |g (x )=0},则方程[f (x )]2+[g (x )]2=0的解集是________.(用M 、N 表示).5.设集合A ={x |-3≤x ≤2},B ={x |2k -1≤x ≤2k +1},且A ⊇B ,则实数 k 的取值范围为________.6.定义两个数集A ,B 之间的距离是|x -y |min (其中x ∈A ,y ∈B ).若A ={y |y =x 2-1,x ∈Z },B ={y |y =5x ,x ∈Z },则数集A ,B 之间的距离为________.7.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.8.若A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},B ⊆A ,则实数m 的取值范围为____________.9.若集合A 、B 、C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系是________.10.设P 、Q 为两个非空实数集合,定义集合运算:P *Q ={z |z =ab (a +b ), a ∈P ,b ∈Q },若P ={0,1},Q ={2,3},则P *Q 中元素之和为________.11.集合M 由正整数的平方组成,即M ={1,4,9,16,25,…},若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的.M 对下列运算封闭的是________.①加法 ②减法 ③乘法 ④除法12.设全集U ={(x ,y )|x ,y ∈R },集合M ={(x ,y )|y -3x -2=1},N ={(x ,y )|y ≠x +1},则∁U (M ∪N )=________.13.若集合A ={x |x ≥3},B ={x |x <m }满足A ∪B =R ,A ∩B =∅,则实数m =________.14.设集合A ={x |x 2+x -1=0},B ={x |ax +1=0},若B A ,则实数a 的不同取值个数为________个.二、解答题(本大题共6小题,共90分)15.(14分)已知全集U={1,2,3,4,5},集合A={x|x2-5x+q=0,x∈U},求q的值及∁U A.16.(14分)已知全集U=R,集合M={x|x≤3},N={x|x<1},求M∪N,(∁U M)∩N,(∁U M)∪(∁U N).17.(14分)设集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}.(1)若m=4,求A∪B;(2)若B⊆A,求实数m的取值范围.18.(16分)已知集合A={x|ax2+2x+1=0,a∈R,x∈R}.(1)若A中只有一个元素,求a的值,并求出这个元素;(2)若A中至多只有一个元素,求a的取值范围.19.(16分)设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求实数a的取值范围.20.(16分)已知两个正整数集合A={a1,a2,a3,a4},B={a21,a22,a23,a24},其中a1<a2<a3<a4.若A∩B={a1,a4},且a1+a4=10,A∪B的所有元素之和是124,求集合A和B.第1章 集 合(B)1.④解析 根据集合中元素的确定性来判断是否构成集合.因为①、②、③中所给对象都是确定的,从而可以构成集合;而④中所给对象不确定,原因是没有具体的标准衡量一位美国NBA 球员是否是篮球明星,故不能构成集合.2.[-2,3]解析 化简集合A ,得A ={x |-3≤x ≤3},集合B ={x |x <-2或x >5},所以A ∩B ={x |-3≤x <-2},阴影部分为∁A (A ∩B ),即为{x |-2≤x ≤3}.3.{x |0<x ≤1}解析 由x 2-2x <0,得0<x <2,∁U B ={x |x ≤1},所以A ∩∁U B ={x |0<x ≤1}.4.M ∩N解析 若[f (x )]2+[g (x )]2=0,则f (x )=0且g (x )=0,故[f (x )]2+[g (x )]2=0的解集是M ∩N .5.[-1,12] 解析 由题意,得⎩⎪⎨⎪⎧ 2k -1≥-3,2k +1≤2,解得:⎩⎪⎨⎪⎧ k ≥-1,k ≤12.∴实数k 的取值范围为[-1,12]. 6.0解析 集合A 表示函数y =x 2-1的值域,由于x ∈Z ,所以y 的值为-1,0,3,8,15,24,….集合B 表示函数y =5x 的值域,由于x ∈Z ,所以y 的值为0,5,10,15,….因此15∈A ∩B . 所以|x -y |min =|15-15|=0.7.{-3,2}解析 ∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3和2符合集合中元素的互异性,故所求的集合为{-3,2}.8.[-1,+∞)解析 ∵B ⊆A ,当B =∅时,得2m -1>m +1,∴m >2,当B ≠∅时,得⎩⎪⎨⎪⎧ 2m -1≤m +1,2m -1≥-3,m +1≤4.解得-1≤m ≤2.综上所述,m 的取值范围为m ≥-1.9.A ⊆C解析 ∵A ∩B =A ,∴A ⊆B ,∵B ∪C =C ,∴B ⊆C ,∴A ⊆C .10.18解析 ∵P ={0,1},Q ={2,3},a ∈P ,b ∈Q ,故对a ,b 的取值分类讨论.当a =0时,z =0;当a =1,b =2时,z =6;当a =1,b =3时,z =12.综上可知:P *Q ={0,6,12},元素之和为18.11.③解析 设a 、b 表示任意两个正整数,则a 2、b 2的和不一定属于M ,如12+22=5∉M ;a 2、b 2的差也不一定属于M ,如12-22=-3∉M ;a 2、b 2的商也不一定属于M ,如1222=14∉M ;因为a 、b 表示任意两个正整数,a 2·b 2=(ab )2,ab 为正整数,所以(ab )2属于M ,即a 2、b 2的积属于M .12.{(2,3)}解析 集合M 表示直线y =x +1上除点(2,3)外的点,即为两条射线上的点构成的集合,集合N 表示直线y =x +1外的点,所以M ∪N 表示直线y =x +1外的点及两条射线,∁U (M ∪N )中的元素就是点(2,3).13.314.3解析 注意B =∅的情况不要漏了.15.解 设方程x 2-5x +q =0的两根为x 1、x 2,∵x ∈U ,x 1+x 2=5,∴q =x 1x 2=1×4=4或q =x 1·x 2=2×3=6.当q =4时,A ={x |x 2-5x +4=0}={1,4},∴∁U A ={2,3,5};当q =6时,A ={x |x 2-5x +6=0}={2,3},∴∁U A ={1,4,5}.16.解 由题意得M ∪N ={x |x ≤3},∁U M ={x |x >3},∁U N ={x |x ≥1},则(∁U M )∩N ={x |x >3}∩{x |x <1}=∅,(∁U M )∪(∁U N )={x |x >3}∪{x |x ≥1}={x |x ≥1}.17.解 (1)当m =4时,A ={x ∈R |2x -8=0}={4},B ={x ∈R |x 2-10x +16=0}={2,8}, ∴A ∪B ={2,4,8}.(2)若B ⊆A ,则B =∅或B =A .当B =∅时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)<0,得m <-12; 当B =A 时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)=0,且--2(m +1)2=4,解得m 不存在. 故实数m 的取值范围为(-∞,-12). 18.解 A 中元素x 即为方程ax 2+2x +1=0(a ∈R ,x ∈R )的解.(1)∵A 中只有一个元素,∴ax 2+2x +1=0只有一解.当a =0时,方程为2x +1=0,解得x =-12符合题意; 当a ≠0且Δ=4-4a =0即a =1时,方程的解x 1=x 2=-1,此时A 中也只有一元素 -1.综上可得:当a =0时,A 中的元素为-12;当a =1时,A 中的元素为-1. (2)若A 中只有一个元素,由(1)知a =0或a =1,若A 中没有元素,即方程ax 2+2x +1=0无解,∴⎩⎪⎨⎪⎧a ≠0Δ=4-4a <0,解得a >1, 综上可得:a >1或a =0或a =1.19.解 A ={x |x 2+4x =0}={x |x =0或x =-4}={0,-4}.∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}.当B =∅时,即x 2+2(a +1)x +a 2-1=0无实根,由Δ<0,即4(a +1)2-4(a 2-1)<0,解得a <-1;当B ={0}时,由根与系数的关系:0+0=-2(a +1),0×0=a 2-1⇒a =-1;当B ={-4}时,由根与系数的关系:-4-4=-2(a +1),(-4)×(-4)=a 2-1⇒无解;当B ={0,-4}时,由根与系数的关系:0-4=-2(a +1),0×(-4)=a2-1⇒a=1.综上所述,a=0或a≤-1.20.解∵1≤a1<a2<a3<a4,∴a21<a22<a23<a24.∵A∩B={a1,a4},∴只可能有a1=a21⇒a1=1.而a1+a4=10,∴a4=9,∴a24≠a4.(1)若a22=a4,则a2=3,∴A∪B={1,3,a3,9,a23,81},∴a3+a23+94=124⇒a3=5;(2)若a23=a4,则a3=3,同样可得a2=5>a3,与条件矛盾,不合题意.综上所述,A={1,3,5,9},B={1,9,25,81}.。