南京师范大学附属中学2017届高三期中考试数学试题Word版含答案.doc
江苏省南师附中高2020届高2017级高三年级第二学期期初检测试卷数学参考答案及评分标准
南师附中2020届高三年级第二学期期初检测试卷数学试题参考答案及评分标准第Ⅰ卷(必做题,160分)一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.[]2,4-2.二3.64.55.()2,06.58 7.38.252 9.12 10.120,5⎡⎤⎢⎥⎣⎦11.[)4,+∞ 12.19 13.[]1,11- 14.3ln 2,02⎛⎫-- ⎪⎝⎭二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分) 解:(1)由正弦定理a sin A =b sin B =c sin C=2R ,得a =2R sin A ,b =2R sin B ,c =2R sin C , 代入a cos B +b cos A =c cos Acos C ,得 (sin A cos B +sin B cos A ) cos C =sin C cos A ,…………2分即sin(A +B )cos C =sin C cos A .因为A +B =π-C ,所以sin(A +B )=sin C , 所以sin C cos C =sin C cos A ,…………4分因为C 是△ABC 的内角,所以sin C ≠0,所以cos C =cos A .又因为A ,C 是△ABC 的内角,所以A =C .…………6分(2)由(1)知,因为A =C ,所以a =c ,所以cos B =a 2+c 2-b 22ac =a 2-2a 2.…………8分因为BA →·BC →=1,所以a 2cos B =a 2-2=1,所以a 2=3.…………10分 所以cos B =13.…………12分因为B △(0,π),所以sin B =1-cos 2B =223.…………14分16.(本小题满分14分)解:(1)因为AD △平面BCC 1B 1,AD ⊂平面ABCD ,平面BCC 1B 1∩平面ABCD =BC , 所以AD △BC .…………4分又因为BC ⊄平面ADD 1A 1,AD ⊂平面ADD 1A 1, 所以BC △平面ADD 1A 1.…………6分(2)由(1)知AD △BC ,因为AD △DB ,所以BC △DB ,…………8分 在直四棱柱ABCD -A 1B 1C 1D 1中DD 1△平面ABCD ,BC ⊂底面ABCD , 所以DD 1△BC ,…………10分又因为DD 1⊂平面BDD 1B 1,DB ⊂平面BDD 1B 1,DD 1∩DB =D , 所以BC △平面BDD 1B 1,…………12分 因为BC ⊂平面BCC 1B 1,所以平面BCC 1B 1△平面BDD 1B 1.…………14分 17.(本小题满分14分)解:(1)连接AB ,因为正方形边长为10米,所以10OA OB AB ===,则3AOB π∠=,所以»103AB π=,…………2分所以广场的面积为2211050(1010)10100233ππ⋅⋅+=+-答:广场的面积为501003π+-.…………6分 (2)作OG CD ⊥于G ,OK AD ⊥于K G ,记OAK α∠=, 则2220sin AD DG OK α===,…………8分 由余弦定理得2222cos OD OA AD OA AD α=+-⋅221cos 210(20sin )21020sin cos 100400200sin 22ααααα-=+-⨯⨯=+⨯-230045)1)α=-+≥o ,…………12分所以1)OD ≥,当且仅当22.5α=o时取等号,所以201)OA OB OC OD +++≤+=因此求4条小路的总长度的最小值为.答:4条小路的总长度的最小值为.…………14分 18.(本小题满分14分)解:(1)设椭圆的焦距为2c (c >0). 依题意,c a =12,且a 2c =4,解得a =2,c =1.故b 2=a 2-c 2=3.所以椭圆C 的标准方程为x 24+y 23=1.…………4分(2)设点M (x 1,y 1),N (x 2,y 2),则x 124+y 123=1,x 224+y 223=1.两式相减,得(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)3=0,14+13·y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=0,所以14+13·k ·(-12)=0,得k =32.…………8分(3)由题意,S 1S 2=32,即12·|AF |·|y 1|12·|BF |·|y 2|=32,整理可得|y 1||y 2|=12,…………10分所以→NF =2→FM .代入坐标,可得⎩⎨⎧1-x 2=2(x 1-1)-y 2=2y 1,即⎩⎨⎧x 2=3-2x 1y 2=-2y 1.…………12分又点M ,N 在椭圆C 上,所以⎩⎨⎧x 124+y 123=1 (3-2x 1)24+(-2y 1)23=1,解得⎩⎨⎧x 1=74y =38 5.所以M 的坐标为(74,358).…………16分19.(本小题满分16分)解:(1)f ′(x )=1x -a x 2,则f ′(1)=1-a =2,解得a =-1,则f (x )=ln x -1x +1,此时f (1)=ln1-1+1=0,则切点坐标为(1,0), 代入切线方程,得b =-2, 所以a =-1,b =-2.…………2分(2)g (x )=f (x )+ax =ln x +a x +ax +1,g ′(x )=1x -ax 2+a =ax 2+x -a x 2.△当a =0时,g ′(x )=1x >0,则g (x )在区间(0,12)上为增函数,则g (x )在区间(0,12)上无最小值.…………4分△当a ≠0时,方程ax 2+x -a =0的判别式Δ=1+4a 2>0, 则方程有两个不相等的实数根,设为x 1,x 2,由韦达定理得x 1x 2=-1,则两根一正一负,不妨设x 1<0<x 2. 设函数m (x )=ax 2+x -a (x >0), (i )若a >0,若x 2△(0,12) ,则m (0)=-a <0 ,m (12)=a 4+12-a >0 ,解得0<a <23.此时x △(0,x 2)时,m (x )<0,则g (x )递减;x △(x 2,12)时,m (x )>0,则g (x )递增,当x =x 2时,g (x )取极小值,即为最小值.若x 2≥12,则x △(0,12),m (x )<0,g (x )在(0,12)单调减,无最小值.…………6分(ii )若a <0,此时x △(0,x 2)时,m (x )>0,则g (x )递增;x △(x 2,+∞)时,m (x )<0,则g (x )递减, 在区间(0,12)上,g (x )不会有最小值.所以a <0不满足条件.综上,当0<a <23时,g (x )在区间(0,12)上有最小值.…………8分(3)当a =0时,由方程f (x )=bx 2,得ln x +1-bx 2=0,记h (x )=ln x +1-bx 2,x >0,则h ′(x )=1x -2bx =-2bx 2+1x.△当b ≤0时,h ′(x )>0恒成立,即h (x )在(0,+∞)上为增函数,则函数h (x )至多只有一个零点,即方程f (x )=bx 2至多只有一个实数根, 所以b ≤0不符合题意.…………10分△当b >0时,当x △(0,12b)时,h ′(x )>0,所以函数h (x )递增; 当x △(12b,+∞)时,h ′(x )<0,所以函数h (x )递减, 则h (x )max =h (12b)=ln 12b +12. 要使方程f (x )=bx 2有两个不相等的实数根,则h (12b)=ln 12b +12>0,解得0<b <e2.…………12分 (i )当0<b <e 2时,h (1e )=-be 2<0.又(1e)2-(12b )2=2b -e 22b e 2<0,则1e<12b, 所以存在唯一的x 1△(1e ,12b),使得h (x 1)=0.…………14分 (ii )h (1b )=ln 1b +1-1b =-ln b +1-1b ,记k (b )=-ln b +1-1b ,0<b <e2,因为k ′(b )=-1b +1b 2=1-b b 2,则k (b )在(0,1)上为增函数,在(1,e2)上为减函数,则k (b )max =k (1)=0,则h (1b )≤0.又(1b)2-(12b )2=2-b 2b 2>0,即1b>12b, 所以存在唯一的x 2△(12b ,1b],使得h (x 2)=0, 综上,当0<b <e2时,方程f (x )=bx 2有两个不相等的实数根.…………16分20.(本小题满分16分)解:(1)△若1λ=,因为111n n n n n n a S a S a a λ+++-=-,则()()1111n n n n S a S a +++=+,111a S ==. 又△0n a >,0n S >,△1111n n n nS a S a +++=+,△3131221212111111n n n nS S a a S a S S S a a a +++++⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+++, 化简,得1112n n S a +++=.△ △当2n ≥时,12n n S a +=.△△-△,得12n n a a +=,即()122n na n a +=≥. △当1n =时,22a =,1n =时上式也成立,△数列{}n a 是首项为1,公比为2的等比数列,12n n a -=.…………4分△因为()1n n b n a =+,△()112n n b n -=+⋅.所以012212232422(1)2n n n T n n --=⨯+⨯+⨯++⨯++⨯L ,所以123122232422(1)2n nn T n n -=⨯+⨯+⨯++⨯++⨯L ,所以1212222(1)2n nn T n --=++++-+⨯L 12(12)2(1)2212n n n n n --=+-+⨯=-⨯-,所以2nn T n =⋅.…………8分(2)令1n =,得21a λ=+.令2n =,得()231a λ=+.要使数列{}n a 是等差数列,必须有2132a a a =+,解得0λ=. 当0λ=时,()111n n n n S a S a ++=+,且211a a ==.…………10分 当2n ≥时,()()()1111n n n n n n S S S S S S +-+-=+-,整理,得2111n n n n n S S S S S +-++=+,1111n n n nS S S S +-+=+, 从而3312412123111111n n n nS S S S S S S S S S S S +-+++⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+++, 化简,得11n n S S ++=,所以11n a +=.…………14分综上所述,()*1Nn a n =∈,所以0λ=时,数列{}n a 是等差数列.…………16分第△卷(选做题,40分)21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. A.选修4—2:矩阵与变换解:(1) M 2=⎣⎡⎦⎤ 2 1 1 2 ⎣⎡⎦⎤ 2 1 1 2 =⎣⎡⎦⎤5445 .…………4分 (2)矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -1-1 λ-2=(λ-1)(λ-3).令f (λ)=0,解得M 的特征值为λ1=1,λ2=3.…………6分 △当λ=1时,⎣⎡⎦⎤ 2 1 1 2 ⎣⎡⎦⎤x y =⎣⎡⎦⎤x y ,得⎩⎨⎧x +y =0,x +y =0.令x =1,则y =-1,于是矩阵M 的一个特征向量为⎣⎡⎦⎤1-1.…………8分△当λ=3时,⎣⎡⎦⎤ 2 1 1 2 ⎣⎡⎦⎤x y =3⎣⎡⎦⎤xy ,得⎩⎨⎧x -y =0,x -y =0.令x =1,则y =1,于是矩阵M 的一个特征向量为⎣⎡⎦⎤11. 因此,矩阵M 的特征值为1,3,分别对应一个特征向量为⎣⎡⎦⎤1-1,⎣⎡⎦⎤11.…………10分 B.选修4—4:坐标系与参数方程解:分别化为普通方程得直线1x =与圆22(1)1x y +-=,…………4分易得直线1x =与圆22(1)1x y +-=切于点Q ()1 1,,…………6分 所以交点Q 的极坐标是)π4,.…………10分【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)因为l 过M (2,0),且当l 垂直于x 轴时,AB =4, 所以抛物线经过点(2,2),代入抛物线方程,得4=2p ×2,解得p =1.…………2分 (2)设直线l 方程为:y =k (x -2)(k ≠0),A (x 1,y 1),B (x 2,y 2).联立⎩⎨⎧y 2=2x ,y =k (x -2),消去x ,得ky 2-2y -4k =0,则y 1+y 2=2k ,y 1y 2=-4.…………4分因为C 为AB 中点,所以y C =y 1+y 22=1k, 则直线l 1方程为:y =1k.…………6分因为直线l 2过点M 且与l 垂直,则l 2方程为:y =-1k(x -2),联立⎩⎨⎧y =1k ,y =-1k (x -2),…………8分解得⎩⎪⎨⎪⎧x =1,y =1k ,即P (1,1k),所以,点P 在定直线x =1上.…………10分 23.(本小题满分10分)解:(1)0111111101=-=+=a a S ;231121111112102=+-=++=a a a S ;011313111111132103=-+-=+++=a a a a S ;35114161411111111432104=+-+-=++++=a a a a a S .…………4分(2)由二项式定理得,(1),,k kk na k n k =-∈C N ≤, 因为!()!1!C k nk n k n -=)!1(])!(!)][1()1[(21+-+++-⋅++=n k n k k k n n n )!1()!()!1()!1(!21+-+++-⋅++=n k n k k n k n n ⎥⎦⎤⎢⎣⎡+-++++-⋅++=)!1()!()!1()!1()!1(!21n k n k n k n k n n ⎥⎦⎤⎢⎣⎡+⋅++=+++111C 1C 121k n k n n n ,…………8分 所以∑==nk kn a S 01011211111111111111(1)2C C C C C C n n n n n n n n n n n +++++++⎡⎤⎛⎫⎛⎫⎛⎫+=⋅+-+++-+⎢⎥ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦L高三数学参考答案 第 11 页 共 11 页 0111111(1)2C C n n n n n n +++⎛⎫+=⋅+- ⎪+⎝⎭()n n n )1(121-+⋅++=.…………10分。
南京师范大学附属中学-上学期高三数学期中试卷
南师大附中2007-2008学年度高三第一学期期中考试数学试题(满分160分,考试用时120分钟)一、填空题:本大题共14小题,每小题5分,共70分1已知a与b均为单位向量,它们的夹角为60°,那么|a+b|等于____________.2向量OA=(1,2),OB=(2,-1),OC=(1+m,3),若点A、B、C三点共线,则实数m应满足的条件为___. 3条件p:a>1;条件q:存在x∈[0,2],使a>x.p是q的_______________条件(填“充要”、“充分不必要”、“必要不充分”或“既不充分也不必要”)4若-π/3<x<π/6,要使cos x=2m-1成立,则实数m的取值范围是___________5A={x||x-1|<2},B={x|(x+1)(x-a)<0},且A∩B=B,则实数a的取值范围是_________ 6等比数列{a n}的前n项和为S n=x·3n-1/6,则常数x的值为_________7已知函数f(x)=lg(1-x)/(1+x),若f(a)=1/2,则f(-a)=____________8设x≥1,则函数y=(x+2)(x+3)/(x+1)的最小值是______________9函数f(x)=√3·sinωx cosωx+cos2ωx(其中0<ω<2),若函数f(x)图像的一条对称轴为x=π/3,那么ω=____________10已知数列{a n}中,a1=1,a2=2,a n=a n-1-a n-2(n∈N*n≥3),则a2007=__________11已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是___________a,(a≤b)12定义运算a*b=b,(a>b) ,例如,1*2=1,则函数f(x)=x2*(1-|x|)的最大值为________ 13估测函数f(x)=e x-1/x的零点所在的区间是_________(要求区间长度不超过0.25,e ≈2.71)14数列{a n}是正项等差数列,若b n=(a1+2a2+3a3+…+na n)/(1+2+3+…+n),则数列{b n}也为等差数列.类比上述结论,若{c n}为正项等比数列,写出d n=________,则数列{d n}也为等比数列.二、解答题:本大题共6小题,共90分15(本小题满分12分)解关于x的不等式:(1-a)/(x-1)>a(a≥0)16(本小题满分14分)已知A、B、C的坐标分别为A(3,0),B(0,3),C(cosα,sinα),α∈(π/2,3π/2) .(1)若|AC|=|BC|,求角α的值;(2)若AC·BC=-1,求(2sin2α+sin2α)/(1+tanα)的值.17(本小题满分14分)已知数列{a n}的前n项和S n=9-6n,且a n+1=2n·b n(n∈N*(1)求数列{a n}与{b n}的通项公式;1(2)求数列{n(2-log2|b n|) }的前n项和T n3某市原水价为1.5元/吨,从2006年5月1日起执行新的水价标准,实行分段计量水价:当家庭人口数不超过4人时,月用水量如表1所示;当家庭人口数超过4人时,人均月用水量如表2所示,水费由第一级别开始逐级计算,月用水量超出第一级别的部分按第二级别水价收取水费,月用水量超出第二级别的3所示.表1:表2:表3:(1)某家庭有3口人,5月份的用水量为35吨,求该家庭在5月份的水费比实施新的水价标准之前多少元?(2)如果按新的水价标准收费,试写出某人口数为n(n∈N*且n≥4)的家庭某月的用水水费总额y(元)关于月用水量x(吨)的函数设函数f(x)的定义域是(0,+∞),对任意正实数m,n恒有f(mn)=f(m)+f(n)x>1时,f(x)>0.f(2)=1 (1)求f(1/2)的值;(2)求证:f(x)在(0,+∞)上是增函数;(3)求方程4sinx=f(x)的根的个数20(本小题满分18分)已知数列{a n}、{b n}、{c n}的通项公式满足b n=a n+1-a n,c n=b n+1-b n(n∈N*b n}是一个非零常数列,则称数列{a n}是一阶等差数列;若数列{c n}是一个非零常数列,则称数列{a n}是二阶等差数列(1)试写出满足条件a 1=1,b1=1,c n=1(n∈N*a n}的前五项;(2)求满足条件(1)的二阶等差数列{a n}的通项公式a n;(3)若数列{a n}首项a1=2,且满足c n-b n+1+3a n=-2n+1(n∈N*a n}的通项公式数学参考答案一、填空题:本大题共14小题,每小题5分,共70分1.√32.m=-1/33.充分不必要条件4.(3/4,1 ]5.[-1,3]6. 1/67. -1/28. 69. 1/2 10. 1 11.b<-1或b>2 12.(3-√5)/2 13.(0.5,0.75)不唯一14.(c1·c22·c33·…·c n n)1/(1+2+3+…+n)二、解答题:本大题共6小题,共90分15(本小题满分12分)不等式可化为(ax-1)/(x-1)<0,即(x-1)(ax-1)<0,(2分)(1)若a=0,则不等式的解集是{x|x>1}.(4分)(2)若a>0,则不等式可化为(x-1)(x-1/a)<0,(6分)①当0<a<1时,1<1/a,不等式的解集为{x|1<x<1/a};(8分)②当a>1时,1>1/a,不等式的解集为{x|1/a<x<1};(10分)③当a=1时,不等式的解集为∮(12分)16(本小题满分14分)(1)∵AC=(cosα-3,sinα),BC=(cosα,sinα-3),(2分)∴|AC|=√(cosα-3)2+sin2α=√10-6cosα,|BC|=√cosα2+(sinα-3)2=√10-6sinα4分)由|AC|=|BC|得sinα=cosα又∵α∈(π/2,3π/2),∴α=5π/4.(6分)(2)由AC·BC=-1,得(cosα-3)cosα+sinα(sinα-3)=-1∴sinα+cosα=2/39分)又(2sin2α+sin2α)/(1+tanα)=(2sin2α+2sinαcosα)/(1+sinα/cosα)=2sinαcosα12分)由①式两边平方得1+2sinαcosα=4/9,∴2sinαcosα=-5/9∴(2sin2α+sin2α)/(1+tanα)=-5/914分)17(本小题满分14分)(1)当n=1时,a1=S1=3,(2分)当n≥2时,a n=S n-S n-1=-6,(4分)即数列的通项公式为a n=3(n=1),-6(n≥2).(6分)b n=a n+1/2n=-6/2n.(8分)(2)1/{n〔2-log2(|b n|/3) 〕}=1/〔n(n+1)〕=1/n-1/(n+1)11分)故T n=(1-1/2)+(1/2-1/3)+…+(1/n-1/n+1)=n/(n+1)14分)18(本小题满分16分)(1)如果按原来的水价,水费为35×1.5=52.5元,(3分)如果按新标准则∵35>25,∴水费按三个级别来收取,25×1.9+(33-25)×2.5+(35-33)×3=73.5元,(6分)相差73.5-52.5=21元答:该家庭在5月份的水费比实施新的水价标准之前多21元8分)(2)若n≥5时,当月用水量0≤x≤6n时,水费y=1.9x;(10分)当月用水量6n<x≤8n时,水费y=1.9×6n+2.5×(x-6n);(12分)当月用水量x>8n时,y=1.9×6n+2.5×(8n-6n)+3(x-8n),(14分)综上所述:若n≥5时,某家庭某月的用水水费总额y(元)关于月用水量x(吨)的函数为1.9x 0≤x≤6n,y= 2.5x-3.6n 6n<x≤8n,(16分)3x-7.6n x>8n.19(本小题满分16分)(1)令m=n=1,则f(1×1)=f(1)+f(1(1)=0令m=2,n=1/2,则f(1)=f(2×1/2)=f(2)+f(1/2)2分)∴f(1/2)=f(1)-f(2)= -14分)(2)设0<x1<x2,则x2/x1>1,∵当x>1时,f(x)>0,∴f(x2/x1)>06分)f(x2)=f(x1×x2/x1)=f(x1)+f(x2/x1)>f(x1).(8分)∴f(x)在(0,+∞)上是增函数10分)(3)∵y=4sinx的图像如下所示,由图可知y最大值为4,又∵f(4)=f(2×2)=2f(2)=2,f(16)=f(4×4)=2f(4)=412分)由y=f(x)在x>0单调递增,且f(1)=0,f(16)=4可得f(x)的图像大致形状如上所示,由图可知,y=4sinx的图像与y=f(x)的图像在[0,2π]内有一个交点,在(2π,4π]内有两个交点,在(4π,5π]内有两个交点,又5π<16<6π,所以总共有5个交点∴方程4sinx=f(x)的根的个数是516分)20(本小题满分18分)(1)a1=1,a2=2,a3=4,a4=7,a5=114分)(2)依题意b n+1-b n=c n=1,n=1,2,3,…所以b n=(b n-b n-1)+(b n-1-b n-2)+(b n-2-b n-3)+…+(b2-b1)+b1=1+1+1+…+1=n6分)又a n+1-a n=b n=n,n=1,2,3,…所以a n=(a n-a n-1)+(a n-1-a n-2)+(a n-2-a n-3)+…+(a2-a1)+a1=(n-1)+(n-2)+…+2+1+1=n(n-1)/2+1=(n2-n+2)/210分)(3)由已知c n-b n+1+3a n= -2n+1,可得b n+1-b n-b n+1+3a n=-2n+1,即b n-3a n=2n+1,∴a n+1=4a n+2n+1.(12分)解法一:整理得:a n+1+2n+1=4(a n+2n),(15分)因而数列{a n+2n}是首项为a1+2=4,公比为4的等比数列,∴a n+2n=4·4n-1=4n,即a n=4n-2n.(18分)解法二:在等式a n+1=4a n+2n+1两边同时除以2n+1得:a n+1/2n+1=2·a n/2n+1.(15分)令k n=a n/2n,则k n+1=2k n+1,即k n+1+1=2(k n+1)故数列{k n+1}是首项为2,公比为2的等比数列所以k n+1=2·2n-1=2n,即k n=2n-1.∴a n=2n k n=2n(2n-1)=4n-2n.(18分)解法三:∵a1=2,∴a2=12=22×(22-1),a3=56=23×(23-1),a4=32=24×(24-1)猜想:a n=2n(2n-1)=4n-2n.(15分)下面用数学归纳法证明如下:(i)当n=1时,a1=2=4-2,猜想成立;(ii)假设n=k时,猜想成立,即a k=4k-2k.那么当n=k+1时,a k+1=4a k+2k+1=4(4k-2k)+2k+1=4 k+1-2 k+1,结论也成立∴由(i)、(ii)可知,a n=4n-2n.(18分)。
南师大附中数学答案
1 1 AB , 由 题 意 CD// AB , 2 2
a 2 b 2 c 2 a 5 3 5 (1) 由题意,得 2 1 b 1 2 4b 4a c 2 c 2 5 5 a
所以椭圆 C 的标准方程为
………………
3分
MN //CD 所以四边形 MNDC 是平行四边形,所以 CM//DN,
……………………12 分
又S
当r
S ( ) 在 [45, ) 上单调减,当 r 45 时,S 最大 337.5 平方米,此时
18.(本小题满分 16 分)
1 . ……………14 分 3
S
1 7 ac sin B 2 4
………14 分
16.(本小题满分 14 分) (1)取 AP 的中点 N,连结 MN 和 DN,由因为 M 是 PB 的中点, 所 以 MN 是 △ PAB 的 中 位 线 , 所 以 MN //
②当直线 AB 的斜率存在时,设 A( x1 , y1 ) , B( x2 , y 2 ) 直线 AB 为 y k ( x 2)
试卷第 1 页 共 8 页
试卷第 2 页 共 8 页
y k ( x 2) 由 2 2 x 5 y 5
消去 y 后整理得 (1 5k ) x 20k x 20k 5 0
② …………11 分
2 (c a ) b c a 1 c a 1 a 1 (2) b 2 ……8 分 a2 c2 b2 3 2 2 a c 5 c 2 ca 3 2ac 2 BA BC ca cos B 2 cos B 3 7 sin B , 4 4
2017-2018学年江苏省南京师大附中高一(上)期中数学试卷
2017-2018学年江苏省南京师大附中高一(上)期中数学试卷一、填空题:本大题共14分,每小题3分,共42分.1.(3分)已知集合A={2,m},B={2m,2}.若A=B,则实数m=.2.(3分)若幂函数f(x)=x a的图象过点(2,4),则实数a=.3.(3分)函数y=的定义域为.4.(3分)设A={1,2,3},则集合A的子集有个.5.(3分)若函数f(x)=x2﹣ax是偶函数,则a=.6.(3分)已知lg2=a,lg3=b,则log36=(用含a,b的代数式表示).7.(3分)已知函数f(x)是定义在R上的奇函数,若x>0时,f(x)=x+1,则f(﹣2)=.8.(3分)已知函数f(x)=x2+2x﹣1,函数y=g(x)为一次函数,若g(f(x))=2x2+4x+3,则g(x)=.9.(3分)若函数f(x)=,则方程f(x)=2所有的实数根的和为.10.(3分)设a=log37,b=21.1,c=0.81.1,则a,b,c三者的大小关系是.(用“<”连接)11.(3分)已知函数f(x)=xlog2x﹣3的零点为x0,若x0∈(n,n+1),n∈Z,则n=.12.(3分)已知函数f(x)=|x+1|在区间[a,+∞)是增函数,则实数a的取值范围是.13.(3分)已知函数y=f(x)是定义在区间[﹣3,3]上的偶函数,它在区间[0,3]上的图象是如图所示的一条线段,则不等式f(x)+f(﹣x)>x的解集为.14.(3分)如图,过原点O的直线AB与函数y=log9x的图象交于A、B两点,过A、B分别作x轴的垂线,与函数y=log3x的图象分别交于D、C两点,若BD 平行于x轴,则四边形ABCD的面积为.二.解答题:本大题共6小题,共计58分.15.(8分)已知全集U=R,集合A={x|x<3},B={x|log2x≥1}.(1)求A∩B.(2)求(∁U A)∪(∁U B).16.(8分)求值:(1)()﹣2+()﹣(﹣)0(2)log32×log49+2.17.(10分)已知函数f(x)=(a x﹣1)(a x+2a﹣1),其中a>0且a≠1,又f(1)=5.(1)求实数a的值.(2)若x∈[﹣1,3],求函数f(x)的值域.18.(10分)某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过30吨时,按每吨3元收取;当该用户用水量超过30吨时,超出部分按每吨4元收取.(1)记某用户在一个收费周期的用水量为x吨,所缴水费为y元,写出y关于x 的函数解析式.(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为260元,且甲、乙两用户用水量之比为3:2,试求出甲、乙两用户在该收费周期内各自的用水量和水费.19.(10分)已知函数f(x)=log a(a x﹣1)(a>0,a≠1 )(1)讨论函数f(x)的定义域;(2)当a>1时,解关于x的不等式:f(x)<f(1);(3)当a=2时,不等式f(x)﹣log2(1+2x)>m对任意实数x∈[1,3]恒成立,求实数m的取值范围.20.(12分)已知函数f(x)=x|x﹣1|,x∈R.(1)求不等式f(x)<6的解集.(2)记f(x)在[0,a]上最大值为g(a),若g(a)<2,求正实数a的取值范围.2017-2018学年江苏省南京师大附中高一(上)期中数学试卷参考答案与试题解析一、填空题:本大题共14分,每小题3分,共42分.1.(3分)已知集合A={2,m},B={2m,2}.若A=B,则实数m=0.【分析】由集合相等的性质,有m=2m,由此能求出m的值.【解答】解:∵集合A={2,m},B={2m,2}.A=B,∴由集合相等的性质,有m=2m,解得m=0.故答案为:0.【点评】本题考查实数值的求法,考查集合相等的定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.(3分)若幂函数f(x)=x a的图象过点(2,4),则实数a=2.【分析】把点的坐标代入函数解析式进行求解即可.【解答】解:将点坐标代入f(x)=x a,得2a=4,∴a=2.故答案为:2【点评】本题主要考查幂函数的应用,利用代入法是解决本题的关键.3.(3分)函数y=的定义域为[,+∞).【分析】根据函数成立的条件进行求解即可.【解答】解:要使函数有意义,则2x﹣1≥0,得x≥,即函数的定义域为[,+∞),故答案为:[,+∞)【点评】本题主要考查函数定义域的求解,根据函数成立的条件建立不等式关系是解决本题的关键.4.(3分)设A={1,2,3},则集合A的子集有8个.【分析】根据集合子集的定义和公式即可得到结论.【解答】解:集合含有3个元素,则子集的个数为23=8个,故答案为:8【点评】本题主要考查集合子集个数的求解,含有n个元素的子集个数为2n个,真子集的个数为2n﹣1个.5.(3分)若函数f(x)=x2﹣ax是偶函数,则a=0.【分析】解法一是利用偶函数的定义f(﹣x)=f(x),求出a的值;解法二是求出二次函数的对称轴方程,再利用偶函数图象的对称轴为y轴,从而建立方程求出a的值.【解答】解法一:由于函数f(x)=x2﹣ax是偶函数,则f(﹣x)=f(x),即(﹣x)2﹣a(﹣x)=x2﹣ax,化简得2ax=0,对任意的x∈R恒成立,则a=0,故答案为:0.解法二:二次函数f(x)=x2﹣ax的对称轴方程为,由于函数f(x)为偶函数,则该函数的对称轴为y轴,所以,,因此,a=0,故答案为:0.【点评】本题考查偶函数的定义,考查对定义的理解以及基本运算能力,属于基础题.6.(3分)已知lg2=a,lg3=b,则log36=(用含a,b的代数式表示).【分析】由换底公式,可得log36=,由此能够准确地利用a,b表示log36.【解答】解:∵lg2=a,lg3=b,∴log36==.故答案:.【点评】本题考查换底公式的运用,解题时要注意公式的灵活运用.7.(3分)已知函数f(x)是定义在R上的奇函数,若x>0时,f(x)=x+1,则f(﹣2)=﹣3.【分析】根据函数的奇偶性进行转化求解即可.【解答】解:∵函数f(x)是定义在R上的奇函数,若x>0时,f(x)=x+1,∴f(﹣2)=﹣f(2)=﹣(2+1)=﹣3,故答案为:﹣3【点评】本题主要考查函数值的计算,结合函数奇偶性的性质进行转化是解决本题的关键.8.(3分)已知函数f(x)=x2+2x﹣1,函数y=g(x)为一次函数,若g(f(x))=2x2+4x+3,则g(x)=2x+5.【分析】设出函数的解析式,利用待定系数法转化求解即可.【解答】解:由题意,函数y=g(x)为一次函数,由待定系数法,设g(x)=kx+b,k≠0,g(f(x))=k(x2+2x﹣1)+b=2x2+4x+3,即kx2+2kx+b﹣k=2x2+4x+3由对应系数相等,得k=2,b=5.则g(x)=2x+5.故答案为:2x+5.【点评】本题考查函数的解析式的求法,是基本知识的考查.9.(3分)若函数f(x)=,则方程f(x)=2所有的实数根的和为.【分析】利用分段函数,求解方程的解即可.【解答】解:函数f(x)=,则方程f(x)=2,可得4x=2,解得x=,5﹣x=2,解得x=3,则方程f(x)=2所有的实数根的和为:3+=.故答案为:.【点评】本题考查分段函数的应用,函数的零点的求法,考查计算能力.10.(3分)设a=log37,b=21.1,c=0.81.1,则a,b,c三者的大小关系是c<a<b.(用“<”连接)【分析】利用对数函数、指数函数的单调性直接求解.【解答】解:∵1<a=log37<2,b=21.1>21=2,c=0.81.1<0.80=1,∴c<a<b.故答案为:c<a<b.【点评】本题考查三个数的大小的比较,考查对数函数、指数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.(3分)已知函数f(x)=xlog2x﹣3的零点为x0,若x0∈(n,n+1),n∈Z,则n=2.【分析】由函数的解析式判断单调性,求出f(2),f(3)的值,可得f(2)•f (3)<0,再利用函数的零点的判定定理可得函数f(x)=2x+x﹣7的零点所在的区间【解答】解:由零点定理,∵f(2)=2log22﹣3=﹣1<0,f(3)=3log23﹣3>0,∴f(2)•f(3)<0,根据函数的零点的判定定理可得:函数f(x)=xlog2x﹣3的零点所在的区间是(2,3),所以n=2.故答案为:2.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.12.(3分)已知函数f(x)=|x+1|在区间[a,+∞)是增函数,则实数a的取值范围是[﹣1,+∞).【分析】当x≥﹣1时,f(x)是增函数;当x<﹣1时,f(x)是减函数,从而区间[a,+∞)左端点a应该在﹣1的右边,由此能求出实数a的取值范围.【解答】解:∵函数f(x)=|x+1|=,函数f(x)=|x+1|在区间[a,+∞)是增函数,当x≥﹣1时,f(x)是增函数;当x<﹣1时,f(x)是减函数,∴区间[a,+∞)左端点a应该在﹣1的右边,即a≥﹣1,∴实数a的取值范围是[﹣1,+∞).故答案为:[﹣1,+∞).【点评】本题考查实数值的取值范围的求法,考查函数性质等基础知识,考查运算求解能力,考查数形结合思想、函数与方程思想,是基础题.13.(3分)已知函数y=f(x)是定义在区间[﹣3,3]上的偶函数,它在区间[0,3]上的图象是如图所示的一条线段,则不等式f(x)+f(﹣x)>x的解集为{x|﹣3≤x≤} .【分析】由函数f(x)过点(0,2),(3,0),y=﹣+2.作出函数f(x)在[﹣3,3]上的图象,当x∈[﹣3,0)的时候,y=2f(x)的图象恒在y=x的上方,当x∈[0,3]时,令2f(x)=x,得x=,由此能求出f(x)+f(﹣x)>x的解集.【解答】解:由题意,函数f(x)过点(0,2),(3,0),∴y=﹣+2.又∵f(x)是偶函数,关于y轴对称,∴f(x)=f(﹣x),∴2f(x)>x.又作出函数f(x)在[﹣3,3]上的图象,当x∈[﹣3,0)的时候,y=2f(x)的图象恒在y=x的上方,当x∈[0,3]时,令2f(x)=x,得x=,即当x∈[﹣3,)时,满足2f(x)>x,故f(x)+f(﹣x)>x的解集为{x|﹣3≤x≤}.故答案为:{x|﹣3≤x≤}.【点评】本题考查不等式的解集的求法,考查函数的图象及性质等基础知识,考查运算求解能力,考查数形结合思想、函数与方程思想,是中档题.14.(3分)如图,过原点O的直线AB与函数y=log9x的图象交于A、B两点,过A、B分别作x轴的垂线,与函数y=log3x的图象分别交于D、C两点,若BD平行于x轴,则四边形ABCD的面积为.【分析】点D和点B的纵坐标相等,设点D的横坐标为a,点B的横坐标为b,则有log3a=log9b.推出b=a2.又A,B在一条过原点的直线上,求出a,然后转化求解四边形的面积即可.【解答】解:因为点D和点B的纵坐标相等,设点D的横坐标为a,点B的横坐标为b,则有log3a=log9b..∵,∴b=a2.又A(a,log9a),B(a2,)在一条过原点的直线上,∴==2,∴a2=2a,∴a=2.A(2,log92),B(4,),C(4,log34),D(2,log32),所以=.故答案为:.【点评】本题考查函数与方程的应用,考查分析问题解决问题的能力.二.解答题:本大题共6小题,共计58分.15.(8分)已知全集U=R,集合A={x|x<3},B={x|log2x≥1}.(1)求A∩B.(2)求(∁U A)∪(∁U B).【分析】(1)根据题意,解log2x≥1可得集合B,由交集的定义可得集合A∩B,(2)根据题意,(∁U A)∪(∁U B)=∁U(A∩B),由(1)的结论,计算可得答案.【解答】解:(1)根据题意,B={x|log2x≥1}={x|x≥2},则A∩B={x|2≤x<3};(2)根据题意,由(1)的结论,A∩B={x|2≤x<3},则(∁U A)∪(∁U B)=∁U(A∩B)={x|x<2或x≥3}.【点评】本题考查集合间的混合运算,关键是掌握集合交、并、补的定义,属于基础题.16.(8分)求值:(1)()﹣2+()﹣(﹣)0(2)log32×log49+2.【分析】(1)利用指数性质、运算法则直接求解.(2)利用对数性质、运算法则、换底公式直接求解.【解答】解:(1)()﹣2+()﹣(﹣)0=(2)﹣2+[()3]﹣1==.(2)log32×log49+2=log32×log23+=1+4=5.【点评】本题考查指数式、对数式化简求值,考查指数、对数性质、运算法则等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.17.(10分)已知函数f(x)=(a x﹣1)(a x+2a﹣1),其中a>0且a≠1,又f(1)=5.(1)求实数a的值.(2)若x∈[﹣1,3],求函数f(x)的值域.【分析】(1)根据f(1)=5建立方程关系进行求解即可.(2)利用换元法结合一元二次函数的性质求函数的最值即可求函数的值域.【解答】解:(1)由f(1)=5,得(a﹣1)(a+2a﹣1)=5,即(a﹣1)(3a﹣1)=5,得3a2﹣4a﹣4=0即(a﹣2)(3a+2)=0,解得a=2或a=﹣又∵a>0且a≠1,∴a=2.(2)由(1)知f(x)=(2x﹣1)(2x+3),设t=2x,x∈[﹣1,3],∴t∈[,8],则y=g(t)=(t﹣1)(t+3)=t2+2t﹣3=(t+1)2﹣4,易知g(t)在t∈[,8]内单调递增,故最小值为y=g()=﹣,最大值为g(8)=77.故f(x)的值域为[﹣,77].【点评】本题主要考查函数解析式的求解以及函数值域的计算,利用换元法转化为一元二次函数是解决本题的关键.18.(10分)某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过30吨时,按每吨3元收取;当该用户用水量超过30吨时,超出部分按每吨4元收取.(1)记某用户在一个收费周期的用水量为x吨,所缴水费为y元,写出y关于x 的函数解析式.(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为260元,且甲、乙两用户用水量之比为3:2,试求出甲、乙两用户在该收费周期内各自的用水量和水费.【分析】(1)分别求得x≤30时,x>30时,函数的解析式,可得所求函数y的解析式;(2)假设乙用户用水量为30吨,则甲用户水量为45吨,得到甲乙两用户用水超过30吨,设为3a,2a,代入函数式可得a的方程,解方程即可得到所求值.【解答】解:(1)由题意知,当x≤30时,y=3x;当x>30时,y=90+4(x﹣30),则y=;(2)假设乙用户用水量为30吨,则甲用户水量为45吨,则甲乙所交水费所缴水费之和为90+90+60=240<260,∴甲乙两用户用水量都超过30吨.设甲用水3a吨,乙用水2a吨,则有90+4(3a﹣30)+90+4(2a﹣30)=260,解得a=16,故甲用水48吨,水费为162元;乙用水32吨,水费为98元.【点评】本题考查分段函数的解析式和应用,考查方程思想和运算能力,属于中档题.19.(10分)已知函数f(x)=log a(a x﹣1)(a>0,a≠1 )(1)讨论函数f(x)的定义域;(2)当a>1时,解关于x的不等式:f(x)<f(1);(3)当a=2时,不等式f(x)﹣log2(1+2x)>m对任意实数x∈[1,3]恒成立,求实数m的取值范围.【分析】(1)由a x﹣1>0,得a x>1 下面分类讨论:当a>1时,x>0;当0<a <1时,x<0即可求得f(x)的定义域(2)根据函数的单调性解答即可;(3)令g(x)=f(x)﹣log2(1+2x)=log2(1﹣在[1,3]上是单调增函数,只需求出最小值即可.【解答】解:(1)由a x﹣1>0,得a x>1.(1分)当a>1时,x>0;(2分)当0<a<1时,x<0.(3分)所以f(x)的定义域是当a>1时,x∈(0,+∞);当0<a<1时,x∈(﹣∞,0).(4分)(2)当a>1时,任取x1、x2∈(0,+∞),且x1<x2,(5分)则ax1<ax2,所以ax1﹣1<ax2﹣1.(6分)因为a>1,所以loga(ax1﹣1)<loga(ax2﹣1),即f(x1)<f(x2).(8分)故当a>1时,f(x)在(0,+∞)上是增函数.∵f(x)<f(1);∴a x﹣1<a﹣1,∵a>1,∴x<1;(3)∵令g(x)=f(x)﹣log2(1+2x)=log2(1﹣在[1,3]上是单调增函数,∴g(x)min=﹣log23,∵m<g(x),∴m<﹣log23.【点评】本题主要考查对数函数有关的定义域、单调性、值域的问题,属于中档题.20.(12分)已知函数f(x)=x|x﹣1|,x∈R.(1)求不等式f(x)<6的解集.(2)记f(x)在[0,a]上最大值为g(a),若g(a)<2,求正实数a的取值范围.【分析】(1)由题意知,f(x)=,分段解不等式即可.(2)①当x≥1时,令f(x)<2,解得1≤x<2.②当0≤x<1时,令f(x)<2,解得0≤x<1.即可求解.【解答】解:(1)由题意知,f(x)=,①当x≥1时,令f(x)<6,解得1≤x<3.②当x<1时,令f(x)<6,解得x<1.综上所述不等式f(x)<6的解集(﹣∞,3).(2)①当x≥1时,令f(x)<2,解得1≤x<2.②当0≤x<1时,令f(x)<2,解得0≤x<1.故x∈[0,2)时,f(x)<2,故正实数a的取值范围为(0,2).【点评】本题考查了绝对值不等式的解法,属于中档题.。
南京师范大学附属中学2017届高三期中考试数学试题Word版含答案
高三年级期中考试 数学试卷一、填空题:本大题共14个小题,每小题5分,共70分. 请把答案填在答卷纸相应位置上.1.已知集合{1,2,3,4}U =,{1,3}A =,{1,3,4}B =,则()U A C B = .2.若复数z 满足1zi i =+,则z 的共轭复数是 .3.已知一组数据3,5,4,7,6,那么这组数据的方差为 .4.袋中有形状、大小都相同的4只球,其中有2只红球,2只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为 .5.如下图,矩形ABCD 由两个正方形拼成,则CAE ∠的正切值为 .6.下图是一个算法流程图,则输出的k 的值是 .7.若实数,x y 满足条件2003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则目标函数34z x y =-的最大值是 .8.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(3,4)-,则此双曲线的离心率为 .9.若cos()63πθ-=,则25cos()sin ()66ππθθ+--= . 10.在等腰梯形ABCD 中,已知//AB DC ,2AB =,1BC =,60ABC ∠=,点E 和点F分别在线段BC 和DC 上,且23BE BC =,16DF DC =,则AE AF •的值为 . 11.等比数列{}n a 的首项为2,公比为3,前n 项的和为n S ,若341log [(1)]92n m a S +=,则14n m+的最小值为 . 12.在平面直角坐标系xOy 中,点(1,0)A ,(4,0)B ,若直线0x y m -+=上存在点P ,使得2PA PB =,则实数m 的取值范围是 .13.已知函数,1()(1),1x e x f x f x x ⎧≤=⎨->⎩,()1g x kx =+,若方程()()0f x g x -=有两个不同的实根,则实数k 的取值范围是 .14.已知不等式2(3)()0ax x b +-≤对于任意的(0,)x ∈+∞恒成立,其中,a b 是整数,则a b +的取值集合为 .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. (本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos cos b c Ca A-=. (1)求角A 的值;(2)若ABC ∆的面积为2,且a =ABC ∆的周长. 16. (本小题满分14分)在四棱锥P ABCD -中,90ACD ∠=,BAC CAD ∠=∠,PA ⊥平面ABCD ,点E 为PD 的中点.(1)求证:平面PAC ⊥平面PCD ;(2)求证://CE 平面PAB .17. (本小题满分14分)如图,在半径为30cm 的半圆形铁皮上截取一块矩形材料ABCD (点,A B 在直径上,点,C D 在半圆周上),并将其卷成一个以AD 为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗). (1)若要求圆柱体罐子的侧面积最大,应如何截取? (2)若要求圆柱体罐子的体积最大,应如何截取?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知,,A B C 是椭圆22221(0)x y a b a b +=>>上不同的三点,10(10,)2A ,(2,2)B --,C 在第三象限,线段BC 的中点在直线OA 上. (1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点,,A B C )且直线,PB PC 分别交直线OA 于,M N 两点,证明:OM ON •为定值并求出该定值.19. (本小题满分16分)已知数列{}n a 和{}n b 满足*123(()n b n a a a a n N ••••=∈,若{}n a 为等比数列,且12a =,326b b =+.(1)求n a 与n b ; (2)设*11()n n nc n N a b =-∈,记数列{}n c 的前n 项和为n S . (Ⅰ)求n S ;(Ⅱ)求正整数k ,使得对任意*n N ∈均有k n S S ≥.20. (本小题满分16分)已知函数2()2ln ()f x x a x a R =-∈,()2g x ax =. (1)求函数()f x 的极值;(2)若0a >时,函数()()()h x f x g x =-有且仅有一个零点,求实数a 的值; (3)若01a <<,对于区间[1,2]上的任意两个不相等的实数12,x x 都有1212|()()||()()|f x f x g x g x ->-成立,求a 的取值范围.试卷答案一、填空题:1.{1,2,3} 2.i +1 3.2 4.32 5. 31 6.5 7.1- 8.35 9.3233--10.1829 11.25 12.]22,22[- 13.]1,1()1,21(--e e 14.}8,2{- 二、解答题:本大题共6小题,共计90分.请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 解:(1)因为ACa cb cos cos 2=- (2)cos cos b c A a C -=,由正弦定理得 (2sin sin )cos sin cos B C A A C -=, ………………2分即2sin cos sin cos sin cos B A A C C A =+=sin(A +C ) . ………………4分 因为B =π-A -C ,所以sin B =sin(A +C ), 所以2sin cos sin B A B =. 因为B ∈(0,π),所以sin B ≠0,所以1cos 2A =,因为0A π<<,所以3A π=. ………………7分(2)△ABC 的面积为23,且5=a周长 511a b c ++ ………………14分 16.(本小题满分14分)证明: (1)因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD , ………………2分 又∠ACD =90°,则CD AC ⊥,而PA ∩AC =A ,所以CD ⊥平面PAC ,因为CD ⊂平面ACD ,………………4分所以,平面PAC⊥平面PCD.………………7分(2)证法一:取AD中点M,连EM,CM,则EM∥PA.因为EM ⊄平面PAB,PA⊂平面PAB,所以EM∥平面PAB.………………9分在Rt△ACD中,AM=CM,所以∠CAD=∠ACM,又∠BAC=∠CAD,所以∠BAC=∠ACM,则MC∥AB.因为MC ⊄平面PAB,AB⊂平面PAB,所以MC∥平面PAB.………………12分而EM∩MC=M,所以平面EMC∥平面PAB.由于EC⊂平面EMC,从而EC∥平面PAB.………14分证法二:延长DC,AB交于点N,连PN.因为∠NAC=∠DAC,AC⊥CD,所以C为ND的中点.而E为PD中点,所以EC∥PN.因为EC ⊄平面PAB,PN ⊂平面PAB,所以EC∥平面PAB………………14分17.(本小题满分14分)解:(1)如图,设圆心为O ,连结OC ,设BC =x ,法一易得AB =(0 30)x ∈,,故所求矩形ABCD 的面积为()2S x = ………3分=()22900x x +-≤900=(2cm )(当且仅当22900x x =-,x =cm)时等号成立) 此时BC =cm ; ……6分 法二 设COB θ∠=,()0 θπ∈2,; 则30sin BC θ=,30cos OB θ=, 所以矩形ABCD 的面积为()230sin 30cos 900sin 2S θθθθ=⨯⨯=, ………3分 当sin21θ=,即θπ=4时,max ()900S θ=(2cm )此时BC =cm ; ………6分(2)设圆柱的底面半径为r,体积为V ,由2AB r =π得,r =, 所以()231900V r x x x =π=-π,其中(0 30)x ∈,, ………9分由()2190030V x '=-=π得x =,此时,()31900V x x =-π在(0,上单调递增,在()上单调递减, 故当x =cm 3cm ,………13分答:(1)当截取的矩形铁皮的一边BC 为cm 为时,圆柱体罐子的侧面积最大. (2)当截取的矩形铁皮的一边BC 为cm 为时,圆柱体罐子的体积最大.………14分 18.(本小题满分16分)解:(1)由已知,得2222101041,441,a bab ⎧⎪+=⎪⎨⎪+=⎪⎩ 解得2220,5.a b ⎧=⎨=⎩ 所以椭圆的标准方程为221205x y +=. ………………4分(2)设点(,)C m n (0,0)m n <<,则BC 中点为22(,)22m n --. 由已知,求得直线OA 的方程为20x y -=,从而22m n =-.① 又∵点C 在椭圆上,∴22420m n +=.②由①②,解得2n =(舍),1n =-,从而4m =-. 所以点C 的坐标为(4,1)--.…8分 (3)设00(,)P x y ,11(2,)M y y ,22(2,)N y y .∵,,P B M 三点共线,∴011022222y y y x ++=++,整理,得001002()22x y y y x -=+-.………………10分 ∵,,P C N 三点共线,∴22011244y y y x ++=++,整理,得00200422x y y y x -=--.………………12分 ∵点C 在椭圆上,∴2200420x y +=,2200204x y =-.从而2200000012220000002(45)2(205)55244416442x y x y x y y y x y x y x y +--===⨯=+---. …………………14分 所以122552OM ON y y ⋅==.∴OM ON ⋅为定值,定值为252. ………………16分 19.(本小题满分16分)解:(1)由题意a 1a 2a 3…a n=n b ,b 3-b 2=6,知a 3=(2)b 3-b 2=8. 设数列{a n }的公比为q,又由a 1=2,得4132==a a q ,q =2(q =-2舍去),所以数列{a n }的通项为a n =2n (n ∈N *).…3分所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). …………6分(2)(i)由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *).所以S n =1n +1-12n (n ∈N *). …10分 (ii)因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n≤5×(5+1)25<1,所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4. …………16分 20.(本小题满分16分)(1)xax x a x x f 2222)('2-=-= 当0≤a 时,0)('>x f ,f (x )在),0(+∞上递增,f (x )无极值 …………2分当0>a 时,),0(a x ∈时,0)('<x f ,f (x )递减;),(+∞∈a x 时,0)('>x f ,f (x )递增,所以f (x )有极小值a a a a f ln )(-=综上,当0≤a 时,f (x )无极值;当0>a 时,f (x )有极小值a a a a f ln )(-=,无极大值 …………4分(2)ax x a x x h 2ln 2)(2--=,则xa ax x a x a x x h 222222)('2--=--= 因为0>a ,令0)('=x h ,得2420aa a x ++=,故h (x )在),0(0x 上递减,在),(0+∞x 上递增,所以h (x )有极小值0)(0=x h 02ln 20020=--ax x a x …………6分 且0222020=--a ax x 联立可得01ln 200=-+x x 令1ln 2)(-+=x x x m ,得112)('>+=xx m ,故m (x )在),0(+∞上递增 又m (1) = 0,所以10=x ,即211242=⇒=++a a a a …………10分 (3)不妨令2121≤<≤x x ,因为0 < a < 1,则)()(21x g x g < 由(1)可知)()(21x f x f <,因为)()()()(2121x g x g x f x f ->- 所以)()()()()()()()(11221212x g x f x g x f x g x g x f x f ->-⇒->- 所以ax x a x x g x f x h 2ln 2)()()(2--=-=在[1,2]上递增 所以0222)('≥--=a xax x h 在[1,2]上恒成立, …………12分 即12+≤x x a 在[1,2]上恒成立 令]3,2[1∈+=x t ,则212112≥-+=+t t x x , ……14分 所以]21,0(∈a …………16分。
南京市2017~2018学年度第一学期期中考试·数学参考答案
(这是边文,请据需要手工删加)南京市2017~2018学年度第一学期期中考试数学参考答案1. {2,3}2. -1-i3. 35 4. 600 5.2或5 6. 12 7. -2 8. 2-1 9. -4 10. -1411. 9 12. -4 13. ⎝⎛⎦⎤0,1e +1 14. y=22x15. (1) a +b =(sin x -1,3cos x +1). 因为(a +b )∥c ,所以sin x -1=3cos x +1,则sin x -3cos x =2, 可得2⎝⎛⎭⎫12sin x -32cos x =2,故sin ⎝⎛⎭⎫x -π3=1.因为x ∈[0,π],所以x -π3∈⎣⎡⎦⎤-π3,2π3,故x -π3=π2,解得x =5π6.(2) 因为a ·b =12,所以-sin x +3cos x=12,即sin x -3cos x =-12, 可得2⎝⎛⎭⎫12sin x -32cos x =-12,故sin ⎝⎛⎭⎫x -π3=-14.因为⎝⎛⎫x +π6-⎝⎛⎭⎫x -π3=π2,所以sin ⎝⎛⎭⎫x +π6=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫x -π3=cos ⎝⎛⎭⎫x -π3. 由x ∈[0,π],可得x -π3∈⎣⎡⎦⎤-π3,2π3,又sin ⎝⎛⎭⎫x -π3=-14<0,则x -π3∈⎣⎡⎦⎤-π3,0,故可得cos ⎝⎛⎭⎫x -π3>0. 因为sin 2⎝⎛⎭⎫x -π3+cos 2⎝⎛⎭⎫x -π3=1,所以cos ⎝⎛⎭⎫x -π3=1-⎝⎛⎭⎫-142=154.16. (1) 如图,连结OE.由四边形ABCD 是正方形知O 为BD 的中点.因为PD ∥平面ACE ,PD ⊂平面PBD ,平面PBD ∩平面ACE =OE ,所以PD ∥OE.在△PBD 中,PD ∥DE ,O 为BD 为中点,所以E 为PB 的中点.(2) 在四棱锥PABCD 中,AB =2PC , 因为四边形ABCD 是正方形, 所以AC =2AB =2OC ,则AB =2OC ,所以PC =OC.在△CPO 中,PC =OC ,G 为PO 的中点,所以CG ⊥PO.因为PC ⊥底面ABCD ,BD ⊂底面ABCD ,所以PC ⊥BD.因为四边形AC ⊥BD ,因为AC ,PC ⊂所以BD ⊥平面因为CG ⊂平面因为PO ,BD ⊂O ,所以CG ⊥平面17. (1) =DB 1=h ,则AC =12(AB -h =AC·tan 60故V(x)=Sh =694x 2(30-x),0<x<30. (2) V′(x)=94(60x x =20.当x ∈(0,20)30)时,V ′(x)>0,所以V(x)在(030)单调递减, 所以当且仅当x 值9 000. cm 时,容318. (1) 316, 所以3a 4-16a 2a 2=43.所以椭圆C y 2=1.(2) 设F 2(c ,0)0),B(-x 1,-y 1),故M ⎝⎛⎭⎫x 1-c 2,y 12①由题意,得→因为函数h(x)的最小值为-1e ,所以x =-1是不等式f(x)≤g(x)的解, 所以-1+a ≤-1e ,即a ≤1-1e .故实数a 的取值范围是⎝⎛⎦⎤-∞,1-1e . (3) 因为h(x)=g(x),所以g(x)≥f(x)恒成立,即x e x ≥x 3-ax 对一切x ∈R 恒成立.令p (x )=x 2-e x ,即p ′=2x -e x ,p ″(x )=2-e x ,当x >ln 2,p ″(x )<0;当x <ln 2,p ″(x )>0, 所以p ′(x )max =2ln 2-2<0,所以p (x )=x 2-e x 在R 上单调递减. x e x ≥x 3-ax 对一切x ∈R 恒成立等价于 ①当x >0时,问题转化为a ≥p (x )在R 上恒成立;②当x =0时,不等式恒成立,则a ∈R ; ③当x <0时,问题转化为a ≤p (x )在R 上恒成立.因为p (x )=x 2-e x 是R 上的单调减函数, 所以当x >0时,p (x )<p (0)=-1,所以a ≥-1;当x <0时,p (x )>p (0)=-1,所以a ≤-1.综上所述,a =-1.20. (1) 由g ⎝⎛⎭⎫-12-g(1)=f(0),得(-2b +4c)-(b +c)=-3,故b 、c 所满足的关系式为b -c -1=0. (2) 方法一:由b =0,b -c -1=0,可得c =-1.方程f(x)=g(x),即ax -3=-x -2,可转化为ax 3-3x 2+1=0在(0,+∞)上有唯一解.令h(x)=ax 3-3x 2+1,则h′(x)=3ax 2-6x =3x(ax -2).当a ≤0时,h ′(x)<0,h(x)在(0,+∞)上单调递减.又h(0)=1>0,h(1)=a -2<0,h(x)在(0,+∞)上连续,由零点存性定理,知h(x)在(0,1)内存在唯一零点,即h(x)在(0,+∞)上有唯一的零点;当a>0时,令h′(x)=0,得x =0或x =2a ,所以h(x)在⎝⎛⎭⎫0,2a 上单调递减,在(2a ,+∞)上单调递增,所以h(x)min =h ⎝⎛⎭⎫2a =1-4a 2. 若h ⎝⎛⎭⎫2a =0,即a =2,则当x ∈(0,+∞)时,h(x)≥0,当且仅当x =2a 时,h(x)=0,即h(x)在(0,+∞)上有唯一的零点;若h ⎝⎛⎭⎫2a >0,则当x ∈(0,+∞)时,h(x)>0恒成立,即h(x)在(0,+∞)上不存在零点;若h ⎝⎛⎭⎫2a <0,因为h(0)=1>0,h ⎝⎛⎭⎫3a =1>0, 所以h(x)在⎝⎛⎭⎫0,2a 和⎝⎛⎭⎫2a ,3a 内各有一个零点,即函数h(x)的零点不唯一.综上所述,实数a 的取值范围是(-∞,0)∪{2}.方法二:由方法一可知a =3x -1-x -3.令x -1=t ,则由题意可得a =3t -t 3在(0,+∞)上有唯一解.令h(t)=3t -t 3(t>0),则由h′(t)=3-3t 2=0,可得t =1,当0<t<1时,由h′(t)>0,可知h(t)在(0,1)上是单调增函数;当t>1时,由h′(t)<0,可知h(t)是在(1,+∞)上是单调减函数,故当t =1时,h(t)取得最大值2; 当0<t<1时,h(t)>h(0)=0, 所以f(x)=g(x)在(0,1)无解; 当t>1时,因为h(3)=0,所以当t>3时,h(t)<0,由零点存在性定理可知h(t)在(1,+∞)只有一个零点.故当a =2或a ≤0时,方程f(x)=g(x)在(0,+∞)有唯一解.从而所求a 的取值范围是{a|a =2或a ≤0}.(3) 由b =1,b -c -1=0,可得c =0. 由A ={x|f(x)>g(x)且g(x)<0}得ax -3>1x 且x<0,即ax 2-3x -1<0且x<0.当a>0时,A =⎝⎛⎭⎪⎫3-9+4a 2a ,0;当a =0时,A =⎝⎛⎭⎫-13,0; 当a<-94时,A =(-∞,0);当-94≤a<0时,A =(-∞,3+9+4a 2a )∪(3-9+4a2a,0). 数学附加题21. B. 由题意知M ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤45,则⎣⎢⎡⎦⎥⎤2+a 2b -1=⎣⎢⎡⎦⎥⎤45,所以⎩⎪⎨⎪⎧2+a =4,2b -1=5,解得⎩⎪⎨⎪⎧a =2,b =3,所以M =⎣⎢⎡⎦⎥⎤123-1.由|M |=⎪⎪⎪⎪⎪⎪123-1=-7得M -1=⎣⎢⎡⎦⎥⎤172737-17. C. 因为ρ=2cos θ-2sin θ, 即ρ2=2ρcos θ-2ρsin θ, 所以圆C 的直角坐标方程为x 2+y 2-2x +2y =0,即⎝⎛⎭⎫x -222+⎝⎛⎭⎫y +222=1, 所以圆心的直角坐标为⎝⎛⎭⎫22,-22. 因为直线的普通方程为x -y +42=0,所以圆心C 到直线l 距离是⎪⎪⎪⎪22+22+422=5,故直线l 上的点向圆C 引的切线长的最小值是52-12=2 6.22. (1) 如图,以A 为原点建立如图所示的空间直角坐标系Axyz ,则A(0,0,0),B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设平面A 1BC 1的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·A 1C 1→=0,即⎩⎪⎨⎪⎧3y -4z =0,4x =0.取z =3,则x =0,y =4,所以平面A 1BC 1的一个法向量为n 1=(0,4,3).同理可得平面BB 1C 1的一个法向量为n 2=(3,4,0),所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1625.因为〈n 1,n 2〉∈[0,π],所以二面角A 1BC 1B 1的正弦值为34125.(2) 假设存在.设D (x ,y ,z )是线段BC 1上一点,且BD →=λBC 1→,0≤λ≤1,则(x ,y -3,z )=λ(4,-3,4),所以x =4λ,y =3-3λ,z =4λ,所以AD →=(4λ,3-3λ,4λ). 因为AD ⊥A 1B ,所以AD →·A 1B →=0, 即9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B ,此时BD BC 1=λ=925.23. (1) 从7个顶点中随机选取3个点构成三角形,共有C 37=35(种)取法.其中X =3的三角形如△ABF ,这类三角形共有6个,所以P(X=3)=6 35.(2)由题意,X的可能取值为3,223,3 3.其中X=3的三角形如△ABF,角形共有6个;其中X=2的三角形有两类,如△个),△PAB(6个),共有9个;其中X=6的三角形如△PBD,角形共有6个;其中X=23的三角形如△CDF 三角形共有12个;其中X=33的三角形如△BDF。
2017届南京师大附中高三年级校模数学试卷(学生版)5.22
(第3题图)2017届南京师大附中高三年级模拟考试数 学 2017.05注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试 卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在 答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}1,2,3,4A =,{}220B x x x =-->,则A B = ▲________.2.已知复数z 满足(1i)3i z +=-,其中i 为虚数单位,则复数z 的模z = ▲ .3.某时段内共有100辆汽车经过某一雷达测速区域,将测得的汽车时速绘制成如图所示的频率分布 直方图.根据图形推断,该时段时速超过50km/h 的汽车辆数为 ▲ 辆. 4.如右图所示的流程图中,输出的S 为▲________.(第3题)5.函数)32(log )(21-=x x f 的定义域是 ▲ . (第4题)6.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2 只球,则这2只球颜色不同的概率为 ▲ .7.已知正四棱锥的底面边长为4cm ,高为5cm ,则该正四棱锥的侧面积是▲________cm 2.8.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,若目标函数z =ax +y 的最小值为2-,则a =▲________.9.设函数2()sin cos (0)f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最 近的对称轴的距离为4π,则()f x 在区间]0,4[π-上的最大值为▲________.10.设S n 是等比数列{a n }的前n 项和,若满足a 4 + 3a 11= 0,则1421S S =▲________. 11.若1>>a b 且11log 6log 3=+a b b a ,则123-+b a 的最小值为▲________. 12.已知P 是圆122=+y x 上一动点,AB 是圆4)12()5(22=-+-y x 的一条动弦(A 、B 是直径的两个端点),则⋅的取值范围是▲________.13.设34)(x ax x f -=,对]1,1[-∈∀x 总有f (x )≤1,则a 的取值集合为 ▲ . 14.在△ABC 中,已知边a 、b 、c 所对应的角分别为A 、B 、C ,若A CB AC B 222s i n s i n s i n s i n 2s i n 3s i n 2+=+,则A tan =▲________.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把 答案写在答题纸的指定区域内) 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知B A C sin )sin (sin 2=-. (1)求ac b-的值; (2)若2=b ,23=⋅BC BA ,求△ABC 的面积.16.(本小题满分14分)如图,在四棱锥P-ABCD 中,CD ∥AB ,AB DC AD 21==. (1)若M 是PB 的中点,求证:CM //平面P AD ;(2)若AD ⊥AB ,BC ⊥PC ,求证:平面P AC ⊥平面PBC .17.(本小题满分14分)园林管理处拟在公园某区域规划建设一半径为r 米圆心角为θ(弧度)的扇形景观水池,其中O 为扇形AOB 的圆心,同时紧贴水池周边建一圈理想的无宽度步道.要求总预算费用不超过24万.元.,水池造价为每平方米400元.,步道造价为每米1000元.. (1)当r 和θ分别为多少时,可使水池面积最大,并求出最大面积; (2)若要求步道长为105米,则可设计出的水池最大面积是多少.18.(本小题满分16分)平面直角坐标系中,椭圆C :)0(12222>>=+b a b y a x 过点)23,25(,离心率为552. (1)求椭圆C 的标准方程;(2)过点K (2,0)作一直线与椭圆C 交于A 、B 两点,过A 、B 点作椭圆右准线的垂线,垂足分 别为A 1、B 1.试问直线AB 1与A 1B 的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.19.(本小题满分16分)设ax x e x f x+⋅=sin )(,]2,0[π∈x (a 为常数). (1)当a = 0时,求f (x )的单调区间;(2)若f (x )在区间)2,0(π的极大值、极小值各有一个,求实数a 的取值范围.20.(本小题满分16分)设{a n }为各项均不相等的数列,S n 为它的前n 项和.满足),(11R N n S na n n ∈∈+=*+λλ. (1)若11=a ,且a 1、a 2、a 3成等差数列,求λ的值;(2)若{a n }的各项均不为零,问当且仅当λ为何值时,a 2,a 3,a 4,……,a n ,……成等差数列? 试说明理由.。
师大附中高三期中考试数学试卷及答案
命题人:江卫兵 审题人:孙居国一、填空题:(本大题共14小题,每小题5分,共70分)1.设集合{}{}{}1,2,3,4,5,1,2,1,3U A B ===,则()U A B =U ð ▲ ; 2.已知α为第三象限角,则2tanα的符号为 ▲ (填“正”或“负”);3.设ABC ∆的三个内角A 、B 、C 所对边的长分别是a 、b 、c ,且CcA a sin cos =, 那么A ∠= ▲ ;4.在等差数列{}n a 中,1815360a a a ++=,则9102a a -的值为 ▲ ; 5.若函数)0)(sin(3)(>+=ωϕωx x f 的图象的相邻两条对称轴的距离是π2,则ω的值为 ▲ ;6.若函数2()lg(1)f x mx mx =++的定义域为R ,则m 的取值范围是 ▲ ;7.设复数2(,)1i a bi a b R i-=+∈+,则a b += ▲ ;8.已知变量x 、y 满足条件⎪⎩⎪⎨⎧≤-+≤-≥09201y x y x x 则z x y =+的最大值是 ▲ ;9.函数2sin y x x =-在(0,π2)内的单调增区间为 ▲ ;10.若ΔABC 的三个内角C B A 、、所对边的长分别为c b a 、、,向量()a b c a m -+=,,),(b c a n -=,若⊥,则∠C 等于 ▲ ; 11.已知等比数列{}n a 中,363,24a a ==,则该数列的通项n a = ▲ ; 12.已知函数)(x f 是R 上的减函数,)2,3(),2,0(--B A 是其图象上的两点,那么不等式|2|)2(>-x f 的解集是 ▲ ;13.若()f n 为21n +*()n N ∈的各位数字之和,如2141197+=,19717++=,则(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,*k N ∈,则2008(8)f = ▲ ;14请将错误的一个改正为lg ▲ = ▲ ;南京师大附中2008—2009学年度第1学期高三年级期中考试数学答题卷班级 学号 ______ 姓名 得分 一、填空题:(本大题共14小题,每小题5分,共70分) 1. ;2. ;3. ;4. ; 5. ;6. ;7. ;8. ; 9. ;10. ;11. ;12. ; 13. ;14.lg = .二、解答题:(本大题共6小题,共90分) 15.(本小题满分14分)已知20πα<<,且3sin 5α=(1)求αααα2cos cos 2sin sin 22++的值; (2)求⎪⎭⎫⎝⎛-πα45tan 的值.16.(本小题满分14分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =o ∠,BD 交AC 于E ,2AB =.BAC DE(Ⅰ)求CBE ∠cos 的值; (Ⅱ)求AE .17.(本小题满分14分)已知函数421,0()3,1c ccx x c f x x x c x +<<⎧=⎨+≤<⎩ 满足29()8f c =; (1)求常数c 的值; (2)解不等式()2f x <.18.(本题满分16分)某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x ()01x <<,那么月平均销售量减少的百分率为2x . 记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元).(1)写出y与x的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.19. (本小题满分16分)把自然数按上小下大、左小右大的原则排成如图的三角形数表(每行比上一行多一个数).设(,)ij a i j N *∈是位于这个三角形数表中从上往下数第i 行、从左往右数的第j 个数(如428a =).⑴试用i 表示ii a (不要求证明); ⑵若2008ij a =,求,i j 的值;⑶记三角形数表从上往下数第n 行的各数之和为n b ,令1,(1),(2)n n n c n n b n=⎧⎪=⎨≥⎪-⎩,若数列{}n c 的前n 项和为n T ,求n T .1 2 3 4 5 6 7 8 9 10…………20.(本题满分16分)已知函数()ln f x x =,)0(21)(2≠+=a bx ax x g (I )若2-=a 时,函数)()()(x g x f x h -=在其定义域内是增函数,求b 的取值范围;(II )在(I )的结论下,设]2ln ,0[,)(2∈+=x be e x x x ϕ,求函数)(x ϕ的最小值; (III )设函数)(x f 的图象1C 与函数)(x g 的图象2C 交于点P 、Q ,过线段PQ 的中点R 作x 轴的垂线分别交1C 、2C 于点M 、N ,问是否存在点R ,使1C 在M 处的切线与2C 在N 处的切线平行?若存在,求出R 的横坐标;若不存在,请说明理由.南京师大附中2008—2009学年度第1学期 高三年级期中考试数学试卷(解答)一、填空题:(本大题共14小题,每小题5分,共70分)1.设集合{}{}{}1,2,3,4,5,1,2,1,3U A B ===,则()U C A B =U ▲ ;{4,5}2.已知α为第三象限角,则2tan α的符号为 ▲ (填“正”或“负”);负3.设ABC ∆的三个内角A 、B 、C 所对边的长分别是a 、b 、c ,且CcA a sin cos =, 那么=A ▲ ;4π 4.在等差数列{}n a 中,1815360a a a ++=,则9102a a -的值为 ▲ ; 12 5.若函数)0)(sin(3)(>+=ωϕωx x f 的图象的相邻两条对称轴的距离是π2,则ω的值为 ▲ ;216.若函数2()lg(1)f x mx mx =++的定义域为R ,则m 的取值范围是 ▲ ;[0,4)7.设复数2(,)1i a bi a b R i-=+∈+,则a b += ▲ ; 18.已知变量x 、y 满足条件⎪⎩⎪⎨⎧≤-+≤-≥09201y x y x x 则z x y =+的最大值是 ▲ ; 69.函数2sin y x x =-在(0,π2)内的单调增区间为 ▲ ;)35,3(ππ10.若ΔABC 的三个内角C B A 、、所对边的长分别为c b a 、、,向量()a b c a -+=,,),(b c a -=,若n m ⊥,则∠C 等于 ▲ ;π311.已知等比数列{a n }中,a 3=3,a 6=24,则该数列的通项a n =______3·2n -3________.12.已知函数)(x f 是R 上的减函数,)2,3(),2,0(--B A 是其图象上的两点,那么不等式|2|)2(>-x f 的解集是 ▲ ; ),2()1,(+∞--∞Y13.若()f n 为21n +*()n N ∈的各位数字之和,如2141197+=,19717++=, 则(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,*k N ∈,则2008(8)f = ▲ ; 1114.下列表中的对数值有且仅有一个是错误的:15 = 3a-b+c二、解答题:(本大题共6小题,共90分) 15.(本小题满分14分)已知20πα<<,且3sin 5α=(1)求αααα2cos cos 2sin sin 22++的值;(2)求⎪⎭⎫ ⎝⎛-πα45tan 的值.解:(1)由sin α=53又 0<α<2π ∴cos α=54,tan α=43∴ααααααααα22222sin cos 2cos sin 2sin 2cos cos 2sin sin -⋅+=++ =2333)43(2432)43(tan 2tan 2tan 2222=-⨯+=-+ααα (2)tan(71431143tan 11tan 45tan tan 145tan tan )45-=+-=+-=⋅+-=-ααπαπαπα16.(本小题满分14分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =o ∠,BD 交AC于E ,2AB =.(Ⅰ)求CBE ∠cos 的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD=+=o o o ∠,CB AC CD ==,所以15CBE=o ∠.所以cos cos(4530)CBE =-=o o ∠. (Ⅱ)在ABE △中,2AB =,由正弦定理2sin(4515)sin(9015)AE =-+o o o o. 故2sin 30cos15AE =oo 124⨯== 17.(本小题满分14分)已知函数421,0()3,1c ccx x c f x x x c x +<<⎧=⎨+≤<⎩ 满足29()8f c =; (1)求常数c 的值; (2)解不等式()2f x <.B AC DE解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c = (2)由(1)得211122()31x x f x x x x ⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()2f x <得,当102x <<时,解得102x <<,当112x <≤时,2320x x +-<解得1223x <≤, 所以()2f x <的解集为203x x ⎧⎫<<⎨⎬⎩⎭.18.(本题满分16分)某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x ()01x <<,那么月平均销售量减少的百分率为2x .记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元).(1)写出y 与x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大. 18、(1)改进工艺后,每件产品的销售价为()201x +,月平均销售量为()21a x -件,则月平均利润()()2120115y a x x =-⋅+-⎡⎤⎣⎦(元),∴y 与x 的函数关系式为()235144y a x x x =+-- ()01x << (2)由()2542120y a x x '=--=得112x =,23x =-(舍) 当102x <<时0y '>;112x <<时0y '<,∴函数()235144y a x x x =+-- ()01x <<在12x =取得最大值.故改进工艺后,产品的销售价为12012⎛⎫+ ⎪⎝⎭30=元时,旅游部门销售该纪念品的月平均利润最大.19. (本小题满分16分)把自然数按上小下大、左小右大的原则排成如图的三角形数表(每行比上一行多一个数).设(,)ij a i j N *∈是位于这个三角形数表中从上往下数第i 行、从左往右数的第j 个数(如428a =).12 3 4 5 6 7 8 9 10…………⑴试用i 表示ii a (不要求证明); ⑵若2008ij a =,求,i j 的值;⑶记三角形数表从上往下数第n 行的各数之和为n b ,令1,(1),(2)n n n c n n b n=⎧⎪=⎨≥⎪-⎩,若数列{}n c 的前n 项和为n T ,求n T .解:(1)∵三角形数表中前n 行共有(1)122n n n ++++=L 个, 即第i 行的最后一个数是(1)2i i + ∴ii a =(1)2i i + (2)由题意,先求使得i 是不等式(1)20082i i +≥的最小正整数解.由(1)20082i i +≥,得240160i i +-≥∵*i N ∈,∴11112662.5222i -+-+-+≥>==,∴63i = (另解:∵626363641953,201622⨯⨯== ∴63i =)于是,第63行的第一个数是6263119542⨯+=, 故(20081954)155j =-+=(3)前n 行的所有自然数的和为21(1)(1)(1)(2)[1]2222n n n n n n n n n S +++++=⨯+=则21(1)2n n n n n b S S -+=-=,所以,当2n ≥时,2211111n n n c b n n n n ===----+, 111111111()()()()132435111115115211121212(1)n T n n n n n n n n n =+-+-+-++--++=++--=--=-+++L当1n =时,1n T =也适合,521()2(1)n n T n N n n *+∴=-∈+ 20.(本题满分16分)已知函数()ln f x x =,)0(21)(2≠+=a bx ax x g(I )若2-=a 时,函数)()()(x g x f x h -=在其定义域内是增函数,求b 的取值范围;(II )在(I )的结论下,设]2ln ,0[,)(2∈+=x be e x x x ϕ,求函数)(x ϕ的最小值; (III )设函数)(x f 的图象1C 与函数)(x g 的图象2C 交于点P 、Q ,过线段PQ 的中点R 作x 轴的垂线分别交1C 、2C 于点M 、N ,问是否存在点R ,使1C 在M 处的切线与2C 在N 处的切线平行?若存在,求出R 的横坐标;若不存在,请说明理由.解:(I )依题意:.ln )(2bx x x x h -+=()h x Q 在(0,+∞)上是增函数,1()20h x x b x '∴=+-≥对x ∈(0,+∞)恒成立, 12,0b x x x ∴≤+>Q ,则12x x+≥ b ∴的取值范围是(,-∞.(II )设].2,1[,,2∈+==t bt t y e t x 则函数化为 22().24b b y t =+-∴Q 当12b-≤,即2b -≤≤y 在[1,2]上为增函数,当1t =时,min 1y b =+;,]2,1[4,22;42,24,2212min 上是减函数在函数时即当时当时即当y ,b bb ,y b t b b -≤≥--=-=-<<-<-< 当2t =时,min 42y b =+.综上所述:21,2(),42442, 4.b b bx b b b ϕ⎧+-≤≤⎪⎪=--<<-⎨⎪+≤-⎪⎩(III )设点P 、Q 的坐标是.0),,(),,(212211x x y x y x <<且则点M 、N 的横坐标为.221x x x += C 1在点M 处的切线斜率为.2|1212121x x x k x x x +==+= C 2在点N 处的切线斜率为.2)(|212221b x x a b ax k x x x ++=+=+= 假设C 1在点M 处的切线与C 2在点N 处的切线平行,则.21k k =即1212()2.2a x xb x x +=++则 22222121212211122212112()()()()()222ln ln ln,x x a x x a ab x x x bx x bx x x x y y x x x --=+-=+-++=-=-=22211211212(1)2()ln 1x x x x x x x x x x --∴==++ 设211,x u x =>则2(1)ln ,1,1u u u u -=>+ (1)令2(1)()ln ,11u r u u u u-->+,则22214(1)()(1)(1)u r u u u u u -'=-=++,1,()0u r u '>∴>Q ,所以 ()r u 在[1,)+∞上单调递增,故()(1)0r u r >=,则2(1)ln 1u u u ->+,与(1)矛盾!。
南京市南京师范大学附属中学2017届高三数学考前模拟考试试题(含解析)
2017届南京师范大学附中高三考前模拟考试数学第Ⅰ卷(共60分)一、填空题:本大题共14个小题,每小题5分,共70分。
不需要写出解答过程,请把答案写在答题纸指定的位置上。
1。
已知集合,则______________【答案】【解析】,所以2. 已知复数满足,其中为虚数单位,则复数的模______________【答案】【解析】因为,所以3. 某时段内共有100辆汽车经过某一雷达测速区域,将测得的汽车时速绘制成如图所示的频率分布直方图,根据图形推断,该时段的时速超过的车辆数为______________辆。
【答案】【解析】试题分析:根据频率分布直方图,得时速超过的汽车的频率为;所以时速超过的汽车辆数为.所以答案应填:77.考点:频率分布直方图.4。
如图所示的流程图中,输出的为______________【答案】【解析】由题意输出点睛:算法与流程图的考查,侧重于对流程图循环结构的考查。
先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项。
5。
函数的定义域是______________【答案】【解析】由题意得,即定义域是6. 袋中有形状、大小相同的只球,其中只白球,只红球,只黄球,从中一次随机摸出只球,则这只球颜色不同的概率为______________【答案】【解析】试题分析:根据题意,记白球为A,红球为B,黄球为,则一次取出2只球,基本事件为、、、、、共6种,其中2只球的颜色不同的是、、、、共5种;。
.所以所求的概率是.考点:古典概型概率7. 已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________【答案】【解析】四棱锥的侧面积是8。
设变量满足约束条件,若目标函数的最小值为,则___________【答案】【解析】可行域为一个三角形ABC及其内部,其中,因为目标函数的最小值为,所以,因此,解得点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得。
江苏省南京师范大学附属中学2016-学年高一上学期期中考试数学试题word版含答案.doc
江苏省南京师范大学附属中学2016-2017学年高一上学期期中考试数学试题W o r d版含答案.d o cwork Information Technology Company.2020YEAR南京师大附中2016-2017学年度第1学期高一年级期中考试数学试卷一、填空题1.设集合A = {1,2,3} , B = {2,3,5},则 A U B = .2.函数11)(-=x x f 的定义域是 .3.若函数x a x f )1()(-=在(-∞,+∞)上单调递增,则实数a 的取值范围是 .4.若幂函数)(x f y =的图象过点(4,2),则)16(f 的值是. 5.若3log ,4,3log 5.0232===c b a ,则将a,b,c 按从小到大的的顺序排列是 .6.己知)(x f y =是定义在R 上的偶函数,若x≥0时,1)(-=x x f ,则x < 0时,)(x f = .7.若函数32)(+=x x f ,函数))27((,)(31g f x x g =的值是 .8.已知函数⎩⎨⎧-≤=1>,1,)(x x x e x f x ,若2)(=x f ,则x 的值是. 9.已知函数b a x f x +=)( (a > 0,a≠1)的图象如图所示,则a b 的值是 .10.若集合A = [-2,2],B = (a, +∞),A ∩B = A ,则实数a 的取值范围是 .11.函数12141)(+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=X X x f 在[-3,2]的最大值是 .12.若二次函数)(x f 满足)()0(<1),2()2(a f f f x f x f ≤-=+)(且,则实数a 的取值范围是. 13.已知函数X X x f --=22)(,若对任意的x ∈[1,3],不等式0>)4()(2x f tx x f -++恒成立,则实数t 的取值范围是 . 14.已知函数)(||12)(R x x x x f ∈+-=,区间M = [a,b](a < b),集合N = {y|y = f (x),x ∈M}.若M = N ,则b-a 的值是 .二、解答题15.(本题满分8分)己知全集 U = R ,集合 A = {x|3 ≤ x < 7}, B = {x | 2 < log 2 x < 4}.(1)求A U B ;(2)求(CuA )∩B.16.(本题满分8分)计算:(1);)827()3()32(3202--+- (2)3log 34222log 3log -⨯17.(本题满分10分)某旅游景区的景点A 处和B 处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车, 现有一名游客从A 处出发,以50m/min 的速度匀速步行,30min 后到达B 处,在B 处停留20min 后, 再乘坐缆车回到A 处.假设缆车匀速直线运动的速度为150m/mm . ⑴求该游客离景点A 的距离y(m)关于出发后的时间x(mm)的函数解析式,并指出该函数的定义域;⑵做出(1)中函数的图象,并求该游客离景点A 的距离不小于1000m 的总时长.18.(本题满分10分)己知 a > 0 且 a ≠1,若函数)1(log )(-=x x f a ,)5(log )(x x g a -=.(1)求函数)()()(x g x f x h -=的定义域;(2)讨论不等式)()(x g x f ≥成立时x 的取值范围.19.已知 a ∈ R ,函数 121)(+-=x a x f . (1)用函数单调性定义证明:)(x f 在(-∞,+∞)上单调递增;(2)若)(x f 为奇函数,求:①a 的值;②)(x f 的值域.20.(本题满分12分)对于两个定义域相同的函数)(x f 、)(x g ,若存在实数m,n ,使)()()(x ng x mf x h +=,则称函数)(x f 是由“基函数)(x f ,)(x g ”生成的.(1)若x x x f 3)(2+=和43)(+=x x g 生成一个偶函数)(x h ,求)2(h 的值;(2)若132)(2-+=x x x h 是由ax x x f +=2)(和b x x g +=)(生成,其中a,b ∈R 且a b≠0,求ba 的取值范围; (3)利用“基函数)14(log )(4+=x x f ,)1)(-=x x g ”生成一个函数)(x h ,使得)(x h 满足:①是偶函数,②有最小值1,求)(x h 的解析式.。
师大附中高三期中考试数学试卷及答案
江苏省南京师大附中2008—2009学年度第1学期高三期中考试数学试卷命题人:江卫兵审题人:孙居国一、填空题:(本大题共14小题,每小题5分,共70分)1.设集合,则▲;2.已知为第三象限角,则的符号为▲ (填“正”或“负”);3.设的三个内角、、所对边的长分别是、、,且,那么▲;4.在等差数列中,,则的值为▲;5.若函数的图象的相邻两条对称轴的距离是,则的值为▲;6.若函数的定义域为,则的取值范围是▲;7.设复数,则▲;8.已知变量、满足条件则的最大值是▲;9.函数在(0,)内的单调增区间为▲;10.若ΔABC的三个内角所对边的长分别为,向量,,若,则∠等于▲;11.已知等比数列中,,则该数列的通项= ▲;12.已知函数是上的减函数,是其图象上的两点,那么不等式|的解集是▲;13.若为的各位数字之和,如,,则;记,,…,,,则▲;14.下列表中的对数值有且仅有一个是错误的:358915请将错误的一个改正为▲= ▲;南京师大附中2008—2009学年度第1学期高三年级期中考试数学答题卷班级学号______姓名得分一、填空题:(本大题共14小题,每小题5分,共70分)1.;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.= .二、解答题:(本大题共6小题,共90分)15.(本小题满分14分)已知,且(1)求的值;(2)求的值.16.(本小题满分14分)如图,是等边三角形,是等腰直角三角形,,交于,.(Ⅰ)求的值;(Ⅱ)求.BAC DE17.(本小题满分14分)已知函数满足;(1)求常数的值;(2)解不等式.18.(本题满分16分)某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为. 记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).(1)写出与的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.19. (本小题满分16分)把自然数按上小下大、左小右大的原则排成如图的三角形数表(每行比上一行多一个数).设是位于这个三角形数表中从上往下数第行、从左往右数的第个数(如).⑴试用表示(不要求证明);⑵若,求的值;⑶记三角形数表从上往下数第行的各数之和为,令,若数列的前项和为,求.12345678910…………20.(本题满分16分)已知函数,(I)若时,函数在其定义域内是增函数,求b的取值范围;(II)在(I)的结论下,设,求函数的最小值;(III)设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.南京师大附中2008—2009学年度第1学期高三年级期中考试数学试卷(解答)一、填空题:(本大题共14小题,每小题5分,共70分)1.设集合,则▲;{4,5}2.已知为第三象限角,则的符号为▲ (填“正”或“负”);负3.设的三个内角、、所对边的长分别是、、,且,那么▲;4.在等差数列中,,则的值为▲ ; 12 5.若函数的图象的相邻两条对称轴的距离是,则的 值为 ▲ ;6.若函数的定义域为,则的取值范围是 ▲ ;7.设复数,则▲ ; 18.已知变量、满足条件则的最大值是▲ ; 6 9.函数在(0,)内的单调增区间为 ▲ ;10.若ΔABC 的三个内角所对边的长分别为,向量,,若,则∠等于▲ ;π311.已知等比数列{a n }中,a 3=3,a 6=24,则该数列的通项a n =______3·2n -3________.12.已知函数是上的减函数,是其图象上的两点,那么不等式|的解集是 ▲ ;13.若为的各位数字之和,如,, 则;记,,…,,,则▲ ; 1114.下列表中的对数值有且仅有一个是错误的:358915请将错误的一个改正为 15 = 3a-b+c二、解答题:(本大题共6小题,共90分)15.(本小题满分14分)已知,且(1)求的值;(2)求的值.解:(1)由sin=又0<<∴cos=,tan=∴=(2)tan(16.(本小题满分14分)如图,是等边三角形,是等腰直角三角形,,交于,.(Ⅰ)求的值;(Ⅱ)求.解:(Ⅰ)因为,,所以.所以.(Ⅱ)在中,,由正弦定理BACDE.故.17.(本小题满分14分)已知函数满足;(1)求常数的值;(2)解不等式.解:(1)因为,所以;由,即,(2)由(1)得由得,当时,解得,当时,解得,所以的解集为.18.(本题满分16分)某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).(1)写出与的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.18、(1)改进工艺后,每件产品的销售价为,月平均销售量为件,则月平均利润(元),∴与的函数关系式为(2)由得,(舍)当时;时,∴函数在取得最大值.故改进工艺后,产品的销售价为元时,旅游部门销售该纪念品的月平均利润最大.19. (本小题满分16分)把自然数按上小下大、左小右大的原则排成如图的三角形数表(每行比上一行多一个数).设是位于这个三角形数表中从上往下数第行、从左往右数的第个数(如).⑴试用表示(不要求证明);⑵若,求的值;⑶记三角形数表从上往下数第行的各数之和为,令,若数列的前项和为,求.解:(1)∵三角形数表中前行共有个,即第行的最后一个数是 ∴=(2)由题意,先求使得是不等式的最小正整数解. 由,得∵,∴,∴12 3 4 5 6 7 8 9 10…………(另解:∵∴)于是,第63行的第一个数是,故(3)前行的所有自然数的和为则,所以,当时,,当时,也适合,20.(本题满分16分)已知函数,(I)若时,函数在其定义域内是增函数,求b的取值范围;(II)在(I)的结论下,设,求函数的最小值;(III)设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.解:(I)依题意:在(0,+)上是增函数,对∈(0,+)恒成立,,则的取值范围是.(II)设当,即时,函数在[1,2]上为增函数,当时,;当时,.综上所述:(III)设点P、Q的坐标是则点M、N的横坐标为C1在点M处的切线斜率为C2在点N处的切线斜率为假设C1在点M处的切线与C2在点N处的切线平行,则即则设则 (1)令,则,,所以在上单调递增,故,则,与(1)矛盾!。
江苏省南京师大附中2017-2018学年高一上学期期中考试数学试卷 Word版含解析
2017-2018学年江苏省南京师大附中高一(上)期中数学试卷一、填空题1.已知集合A={1,2,3},B={2,3,5},则A∪B=.2.函数y=的定义域是.3.若函数f(x)=(a﹣1)x在(﹣∞,+∞)上单调递增,则实数a的取值范围是.4.若幂函数y=f(x)的图象过点(4,2),则f(16)=.5.若a=log23,b=,c=log0.53,则将a,b,c按从小到大的顺序排列是.6.己知y=f(x)是定义在R上的偶函数,若x≥0时,f(x)=x﹣1,则x<0时,f(x)=.7.若函数f(x)=2x+3,函数g(x)=,f(g(27))的值是.8.已知函数f(x)=,若f(x)=2,则x的值是.9.已知函数f(x)=a x+b(a>0,a≠1)的图象如图所示,则a﹣b的值为.10.若集合A=[﹣2,2],B=(a,+∞),A∩B=A,则实数a的取值范围是.11.函数f(x)=+1在[﹣3,2]的最大值是.12.若二次函数f(x)满足f(2+x)=f(2﹣x),且f(1)<f(0)≤f(a),则实数a的取值范围是.13.已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是.14.已知函数f(x)=﹣(x∈R),区间M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,则b﹣a的值是.二、解答题15.(8分)己知全集U=R,集合A={x|3≤x<7},B={x|2<log2 x<4}.(1)求A∪B;(2)求(∁U A )∩B.16.(8分)计算:(1);(2)log43×log32﹣.17.(10分)某旅游景区的景点A处和B处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从A处出发,以50m/min的速度匀速步行,30min后到达B处,在B处停留20min后,再乘坐缆车回到A处.假设缆车匀速直线运动的速度为150m/mm.(1)求该游客离景点A的距离y(m)关于出发后的时间x(mm)的函数解析式,并指出该函数的定义域;(2)做出(1)中函数的图象,并求该游客离景点A的距离不小于1000m的总时长.18.(10分)己知a>0 且a≠1,若函数f(x)=log a(x﹣1),g(x)=log a(5﹣x).(1)求函数h(x)=f(x)﹣g(x)的定义域;(2)讨论不等式f(x)≥g(x)成立时x的取值范围.19.(12分)已知a∈R,函数f(x)=a﹣.(1)证明:f(x)在(﹣∞,+∞)上单调递增;(2)若f(x)为奇函数,求:①a的值;②f(x)的值域.20.(12分)对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf (x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求的取值范围;(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1)”生成一个函数h(x),使得h(x)满足:①是偶函数,②有最小值1,求h(x)的解析式.2016-2017学年江苏省南京师大附中高一(上)期中数学试卷参考答案与试题解析一、填空题1.(2016秋•建邺区校级期中)已知集合A={1,2,3},B={2,3,5},则A∪B={1,2,3,5} .【考点】并集及其运算.【专题】集合.【分析】利用并集定义求解.【解答】解:∵集合A={1,2,3},B={2,3,5},∴A∪B={1,2,3,5}.故答案为:{1,2,3,5}.【点评】本题考查并集的求法,解题时要认真审题,是基础题.2.(2016春•普陀区期末)函数y=的定义域是(1,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数的解析式,应满足分母不为0,且二次根式的被开方数大于或等于0即可.【解答】解:∵函数y=,∴>0,即x﹣1>0,解得x>1;∴函数y的定义域是(1,+∞).故答案为:(1,+∞).【点评】本题考查了求函数的定义域的问题,解题时应使函数的解析式有意义,列出不等式(组),求出自变量的取值范围,是容易题.3.(2016秋•建邺区校级期中)若函数f(x)=(a﹣1)x在(﹣∞,+∞)上单调递增,则实数a的取值范围是(2,+∞).【考点】指数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】根据指数函数的单调性求出a的范围即可.【解答】解:若函数f(x)=(a﹣1)x在(﹣∞,+∞)上单调递增,则a﹣1>1,解得:a>2,故答案为:(2,+∞).【点评】本题考查了指数函数的性质,考查函数的单调性问题,是一道基础题.4.(2016秋•建邺区校级期中)若幂函数y=f(x)的图象过点(4,2),则f(16)=4.【考点】幂函数的概念、解析式、定义域、值域.【专题】计算题;方程思想;函数的性质及应用.【分析】根据已知求出函数的解析式,将x=16代入可得答案.【解答】解:设幂函数y=f(x)=x a,∵幂函数y=f(x)的图象过点(4,2),∴4a=2,解得:a=,∴y=f(x)=∴f(16)=4,故答案为:4【点评】本题考查的知识点是幂函数的解析式,函数求值,难度不大,属于基础题.5.(2016秋•建邺区校级期中)若a=log23,b=,c=log0.53,则将a,b,c按从小到大的顺序排列是c<a<b.【考点】对数值大小的比较.【专题】转化思想;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:a=log23∈(1,2),b==23=8,c=log0.53<0,∴c<a<b.故答案为:c<a<b.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.6.(2016秋•建邺区校级期中)己知y=f(x)是定义在R上的偶函数,若x≥0时,f(x)=x﹣1,则x<0时,f(x)=﹣x﹣1.【考点】函数奇偶性的性质.【专题】函数思想;转化法;函数的性质及应用.【分析】先由函数是偶函数得f(﹣x)=f(x),然后将所求区间利用运算转化到已知区间上,代入到x>0时,f(x)=x﹣1,可得x<0时,函数的解析式.【解答】解:若x≥0时,f(x)=x﹣1,不妨设x<0,则﹣x>0,则f(﹣x)=﹣x﹣1=f(x),故x<0时,f(x)=﹣x﹣1,故答案为:﹣x﹣1.【点评】本题考查了函数奇偶性的性质,以及将未知转化为已知的转化化归思想,是个基础题.7.(2016秋•建邺区校级期中)若函数f(x)=2x+3,函数g(x)=,f(g(27))的值是9.【考点】函数的值.【专题】计算题;方程思想;定义法;函数的性质及应用.【分析】先求出g(27)==3,从而f(g(27))=f(3),由此能求出结果.【解答】解:∵f(x)=2x+3,函数g(x)=,∴g(27)==3,f(g(27))=f(3)=2×3+3=9.故答案为:9.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.8.(2016秋•建邺区校级期中)已知函数f(x)=,若f(x)=2,则x的值是ln2.【考点】函数的值.【专题】计算题;分类讨论;分类法;函数的性质及应用.【分析】当x≤1时,e x=2;当x>1时,﹣x=2.由此能求出x的值.【解答】解:∵函数f(x)=,f(x)=2,∴当x≤1时,e x=2,解得x=ln2;当x>1时,﹣x=2,解得x=﹣2,(舍).∴x=ln2.故答案为:ln2.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9.(2013秋•鼓楼区校级期末)已知函数f(x)=a x+b(a>0,a≠1)的图象如图所示,则a ﹣b的值为4.【考点】指数函数的图象与性质.【专题】函数的性质及应用.【分析】由已知中函数y=a x+b的图象经过(0,﹣1)点和(1,0)点,代入构造关于a,b 的方程,解方程可得答案.【解答】解:∵函数y=a x+b的图象经过(0,﹣1)点和(1,0)点,故1+b=﹣1,且a+b=0,解得:b=﹣2,a=2,故a﹣b=4,故答案为:4【点评】本题考查的知识点是待定系数法,求函数的解析式,指数函数图象的变换,难度不大,属于基础题.10.(2016秋•建邺区校级期中)若集合A=[﹣2,2],B=(a,+∞),A∩B=A,则实数a的取值范围是a<﹣2.【考点】集合的包含关系判断及应用.【专题】计算题;集合思想;集合.【分析】根据A∩B=A,A是B的子集可得.【解答】解:∵集合A=[﹣2,2],B=(a,+∞),A∩B=A,∴a<﹣2,故答案为:a<﹣2.【点评】本题考查交集及其运算,考查集合间的关系,是基础题11.(2016秋•建邺区校级期中)函数f(x)=+1在[﹣3,2]的最大值是57.【考点】函数的最值及其几何意义.【专题】综合题;函数思想;换元法;函数的性质及应用.【分析】设()x=t,转为为f(t)=t2﹣t+1=(t﹣)2+在t∈[,8]的最值问题,根据二次函数的性质即可求出.【解答】解:设()x=t,∵x∈[﹣3,2],∴t∈[,8],∴f(t)=t2﹣t+1=(t﹣)2+,∴f(t)在[,]上单调递减,在(,8)单调递增,∴f(t)max=f(8)=64﹣8+1=57,故函数f(x)=+1在[﹣3,2]的最大值是57,故答案为:57.【点评】本题考查了指数函数的和二次函数的性质,以及函数的最值问题,属于中档题.12.(2016秋•建邺区校级期中)若二次函数f(x)满足f(2+x)=f(2﹣x),且f(1)<f (0)≤f(a),则实数a的取值范围是a≤0,或a≥4.【考点】二次函数的性质.【专题】转化思想;转化法;函数的性质及应用.【分析】若二次函数f(x)满足f(2+x)=f(2﹣x),则函数f(x)的图象关于直线x=2对称,结合二次函数的图象和性质,可得实数a的取值范围.【解答】解:∵二次函数f(x)满足f(2+x)=f(2﹣x),∴函数f(x)的图象关于直线x=2对称,若f(1)<f(0)≤f(a),则a≤0,或a≥4,故答案为:a≤0,或a≥4.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.13.(2016秋•建邺区校级期中)已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是(﹣3.+∞).【考点】函数恒成立问题.【专题】转化思想;综合法;函数的性质及应用.【分析】通过判定函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增、奇函数,脱掉”f“,转化为恒成立问题,分离参数求解.【解答】解:∵函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增,又∵f(﹣x)=﹣(2x﹣2﹣x)=﹣f(x),故f(x)是奇函数,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,⇒对任意的x∈[1,3],不等式f(x2+tx)>f(﹣4+x)恒成立,⇒对任意的x∈[1,3],x2+(t﹣1)x+4>0⇒(t﹣1)x>﹣x2﹣4⇒t﹣1>﹣(x+,∵,∴t﹣1>﹣4,即t>﹣3.故答案为:(﹣3.+∞)【点评】本题考查了函数的单调性、奇函数,恒成立问题,分离参数法,属于中档题.14.(2016秋•建邺区校级期中)已知函数f(x)=﹣(x∈R),区间M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,则b﹣a的值是2.【考点】函数的值域;函数的定义域及其求法.【专题】函数思想;定义法;函数的性质及应用.【分析】由题设知对于集合N中的函数f(x)的定义域为[a,b],对应的f(x)的值域为N=M=[a,b].根据M=N,找到a,b关系,可求b﹣a的值.【解答】解:函数f(x)=﹣(x∈R),化简得:f(x)=,可知函数f(x)是单调递减,∵x∈M,M=[a,b],则对于集合N中的函数f(x)的定义域为[a,b],故得N=[,]对应的f(x)的值域为N=M=[a,b].则有:=a,=b,解得:b=1,a=﹣1,故得b﹣a=2,故答案为:2.【点评】本题考查集合相等的概念,解题时要注意绝对值的性质和应用二、解答题15.(8分)(2016秋•建邺区校级期中)己知全集U=R,集合A={x|3≤x<7},B={x|2<log2 x<4}.(1)求A∪B;(2)求(∁U A )∩B.【考点】交、并、补集的混合运算;并集及其运算.【专题】集合思想;定义法;集合.【分析】(1)化简求得B,再由并集的运算即可得到;(2)求得A的补集,再求B的交集,即可得到.【解答】解:(1)全集U=R,集合A={x|3≤x<7},B={x|2<log2 x<4}={x|4<x<16|,则A∪B={x|3≤x<16};(2)(∁U A )∩B={x|x<3或x≥7}∩{x|4<x<16|={x|7≤x<16}.【点评】本题考查集合的运算,主要是交、并和补集的运算,考查运算能力,属于基础题.16.(8分)(2016秋•建邺区校级期中)计算:(1);(2)log43×log32﹣.【考点】对数的运算性质.【专题】转化思想;函数的性质及应用.【分析】(1)利用指数的运算性质即可得出.(2)利用对数的运算性质即可得出.【解答】解:(1)原式=+1﹣=+1﹣=1.(2)原式=﹣3=﹣3=﹣.【点评】本题考查了指数与对数的运算法则,考查了推理能力与计算能力,属于基础题.17.(10分)(2016秋•建邺区校级期中)某旅游景区的景点A处和B处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从A处出发,以50m/min 的速度匀速步行,30min后到达B处,在B处停留20min后,再乘坐缆车回到A处.假设缆车匀速直线运动的速度为150m/mm.(1)求该游客离景点A的距离y(m)关于出发后的时间x(mm)的函数解析式,并指出该函数的定义域;(2)做出(1)中函数的图象,并求该游客离景点A的距离不小于1000m的总时长.【考点】函数的图象.【专题】转化思想;分类法;函数的性质及应用.【分析】(1)由题意利用利用分段函数求得函数的解析式.(2)根据函数的解析式,画出函数的图象,数形结合求得该游客离景点A的距离不小于1000m的总时长.【解答】解:(1)由题意可得50m/min=m/mm,AB=50×30=1500(m),乘坐缆车回到A处用的时间为=10(mm),该游客离景点A的距离y(m)关于出发后的时间x(mm)的函数解析式为y=,(2)(1)中函数的图象如图所示:令=1000,求得x=12000(mm),令1500﹣150x=1000,求得x=3000+=(mm),﹣1200=(mm),即该游客离景点A的距离不小于1000m的总时长为mm.【点评】本题主要考查利用分段函数求函数的解析式、函数的图象,属于中档题.18.(10分)(2016秋•建邺区校级期中)己知a>0 且a≠1,若函数f(x)=log a(x﹣1),g(x)=log a(5﹣x).(1)求函数h(x)=f(x)﹣g(x)的定义域;(2)讨论不等式f(x)≥g(x)成立时x的取值范围.【考点】对数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】(1)根据对数函数的性质,得到关于x的不等式组,解出即可;(2)通过讨论a的范围,得到函数f(x)的单调性,解关于x的不等式组即可.【解答】解:(1)h(x)=f(x)﹣g(x)=log a(x﹣1)﹣log a(5﹣x),根据对数函数的性质得:,解得:1<x<5,故函数h(x)的定义域是(1,5);(2)若不等式f(x)≥g(x)成立,则log a(x﹣1)≥log a(5﹣x),0<a<1时,,解得:1<x≤3,a>1时,解得:3≤x<5.【点评】本题考查了对数函数的性质,考查函数的单调性以及分类讨论思想,是一道基础题.19.(12分)(2016秋•建邺区校级期中)已知a∈R,函数f(x)=a﹣.(1)证明:f(x)在(﹣∞,+∞)上单调递增;(2)若f(x)为奇函数,求:①a的值;②f(x)的值域.【考点】利用导数研究函数的单调性;函数的值域;函数单调性的判断与证明.【专题】证明题;转化思想;函数的性质及应用.【分析】(1)证法一:设x1<x2,作差比较作差可得f(x1)<f(x2),根据函数单调性的定义,可得:f(x)在(﹣∞,+∞)上单调递增;证法二:求导,根据f′(x)>0恒成立,可得:f(x)在(﹣∞,+∞)上单调递增.(2)①若f(x)为奇函数,则f(0)=0,解得a的值;②根据①可得函数的解析式,进而可得f(x)的值域.【解答】证明:(1)证法一:设x1<x2,则,,则f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=<0.∴f(x1)﹣f(x2)<0,∴f(x1)<f(x2),故f(x)在(﹣∞,+∞)上单调递增;证法二:∵函数f(x)=a﹣.∴f′(x)=,∵f′(x)>0恒成立,故f(x)在(﹣∞,+∞)上单调递增;(2)①若f(x)为奇函数,则f(0)=a﹣=0,解得:a=,②f(x)=﹣,∵2x+1>1,∴0<<1,故﹣<f(x)<,故函数的值域为:(﹣,).【点评】本题考查的知识点是函数的单调性,函数的奇偶性,函数的值域,难度中档.20.(12分)(2016秋•建邺区校级期中)对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf(x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求的取值范围;(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1)”生成一个函数h(x),使得h(x)满足:①是偶函数,②有最小值1,求h(x)的解析式.【考点】函数解析式的求解及常用方法;函数的最值及其几何意义.【专题】新定义;待定系数法;函数的性质及应用.【分析】(1)(1)先用待定系数法表示出偶函数h(x),再根据其是偶函数这一性质得到引入参数的方程,求出参数的值,即得函数的解析式,代入自变量求值即可.(2)设h(x)=2x2+3x﹣1=m(x2+ax)+n(x+b),展开后整理,利用待定系数法找到a,b 的关系,由系数相等把a,b用n表示,然后结合n的范围求解的取值范围;(3)设h(x)=m(log4(4x+1))+n(x﹣1),h(x)是偶函数,则h(﹣x)﹣h(x)=0,可得m与n的关系,h(x)有最小值则必有n<0,且有﹣2n=1,求出m和n值,可得解析式.【解答】解:(1)f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),则有h(x)=mx2+3(m+n)x+4n,h(﹣x)=mx2﹣3(m+n)x+4n=mx2+3(m+n)x+4n,∴m+n=0,故得h(x)=mx2﹣4m,∴h(2)=0.(2)设h(x)=2x2+3x﹣1=m(x2+ax)+n(x+b)=mx2+(am+n)x+nb.∴m=2,am+n=3,nb=﹣1,则a=,b=.所以:==,∵a,b∈R且ab≠0,∴的取值范围为[﹣,0)∪(0,+∞).(3)设h(x)=m(log4(4x+1))+n(x﹣1),∵h(x)是偶函数,∴h(﹣x)﹣h(x)=0,即m(log4(4﹣x+1))+n(﹣x﹣1)﹣m(log4(4x+1))﹣n(x﹣1)=0,∴(m+2n)x=0,可得:m=﹣2n.则h(x)=﹣2n(log4(4x+1))+n(x﹣1)=﹣2n[log4(4x+1)﹣]=﹣2n[log4(2x+)+],∵h(x)有最小值1,则必有n<0,且有﹣2n=1,∴m=1,n=,故得h(x)=log4(4x+1)(x﹣1).【点评】本题考查了函数恒成立问题,考查了数学转化思想方法,会求利用函数的最值,关键是对题意的理解与合理转化.。
【南京师范大学附属中学】2017届期中考试数学试卷-答案
南京师范大学附属中学2017届期中考试数学试卷答 案1.{1,2,3}2.1i +3.24.235.136.5 7.1-8.539.2310.291811.5212.[-13.e 1(,1)(1,e 1]2-- 14.{2,8}- 15.(本小题满分14分)解:(1)因为2cos cos b c C a A-=(2)cos cos b c A a C -=,由正弦定理得: (2sin sin )cos sin cos B C A A C -=,………………2分即2sin cos sin cos sin cos B A A C C A =+=()sin A C +.………………4分因为πB A C --=,所以()sin sin B A C =+,所以2sin cos sin B A B =.因为π()0,B ∈,所以sin 0B ≠, 所以1cos 2A =,因为0πA <<,所以3A π=.………………7分(2)ABC △,且a =由22222131sin 2212cos 522bc S bc A a b c bc A b c bc ⎧==⎪⇒⎨⎨⎪⎪=+-=+-⎩⎪⎩2222(b c)7417bc b c =⎧⇒+=+=⎨+=⎩. 所以b c +a b c ++=14分16.(本小题满分14分)证明:(1)因为PA ABCD ⊥平面,CD ABCD ⊥平面,所以PA CD ⊥,………………2分 又90ACD ︒∠=,则CD AC ⊥,而PA AC A =,所以CD PAC ⊥平面,因为CD ACD ⊥平面,………………4分所以,平面PAC PCD ⊥平面.………………7分证法一:取AD 中点M ,连EM ,CM ,则EM ∥PA .因为EM ⊄平面PAB ,PA ⊂PAB 平面,所以EM PAB ∥平面.………………9分在Rt ACD △中,AM CM =,所以CAD ACM ∠=∠,又BAC CAD ∠∠=,所以BAC ACM ∠∠=,则MC AB ∥.因为MC ⊄平面PAB ,AB ⊂平面PAB ,所以MC PAB ∥平面.………………12分而EM MC M =,所以平面EMC PAB ∥平面.由于EC ⊂平面EMC ,从而EC PAB ∥平面.………14分证法二:延长DC ,AB 交于点N ,连PN .因为NAC DAC ∠∠=,AC CD ⊥,所以C ND 为的中点.而E PD 为中点,所以EC PN ∥.因为EC ⊄平面PAB ,PN ⊂平面PAB ,所以EC PAB ∥平面………………14分17.(本小题满分14分)解:(1)如图,设圆心为O ,连结OC ,设BC =x ,法一:易得AB =(0,30)x ∈,故所求矩形ABCD 的面积为()2S x =3分=()22900x x ≤+-900=(2cm )(当且仅当22900x x =-,x =(cm )时等号成立)此时BC =;……6分 法二设COB θ∠=,0 θπ⎛⎫∈ ⎪2⎝⎭,;则30sin BC θ=,30cos OB θ=, 所以矩形ABCD 的面积为()230sin 30cos 900sin 2S θθθθ=⨯⨯=,………3分当sin 21θ=,即θπ=4时,max ()900S θ=(2cm )此时BC =;………6分(2)设圆柱的底面半径为r ,体积为V ,由2AB r ==π得,r =所以()231900V r x x x =π=-π,其中(0,30)x ∈,………9分由()2190030V x '=-=π得x =()31900V x x =-π在(上单调递增,在()上单调递减,故当x =3cm ,………13分答:(1)当截取的矩形铁皮的一边BC 为为时,圆柱体罐子的侧面积最大.(2)当截取的矩形铁皮的一边BC为为时,圆柱体罐子的体积最大.………14分 18.(本小题满分16分)解:(1)由已知,得2222101041,441,a b ab ⎧⎪+=⎪⎨⎪+=⎪⎩解得2220,5.a b ⎧=⎨=⎩ 所以椭圆的标准方程为221205x y +=.………………4分 (2)设点(,)C m n (0,0)m n <<,则BC 中点为22(,)22m n --. 由已知,求得直线OA 的方程为20x y -=,从而22m n =-.①又∵点C 在椭圆上,∴22420m n +=.②由①②,解得2n =(舍),1n =-,从而4m =-.所以点C 的坐标为(4,1)--.…8分 (3)设00(,)P x y ,11(2,)M y y ,22(2,)N y y .∵,,P B M 三点共线,∴011022222y y y x ++=++,整理,得001002()22x y y y x -=+-.………………10分 ∵,,P C N 三点共线,∴022011244y y y x ++=++,整理,得00200422x y y y x -=--.………………12分 ∵点C 在椭圆上,∴2200420x y +=,2200204x y =-. 从而2200000012220000002(45)2(205)55244416442x y x y x y y y x y x y x y +--===⨯=+---.…………………14分 所以122552OM ON y y ==.∴OM ON 为定值,定值为252.………………16分 19.(本小题满分16分) 解:(1)由题意123n a a a a=n b ,326b b -=,知3328a b b -==.设数列{}n a 的公比为q ,又由 1a =2,得2314a q a ==,)22(q q -==舍去,所以数列{}n a 的通项为(2)n a n n *∈N =.…3分 所以,123n a a a a ⋯=(1)22n n +=()1n n +. 故数列{}bn 的通项为1()()n b n n n *∈N =+.…………6分 (2)(i )由(1)知11111()21n n n n c n a b n n *⎛⎫---∈ ⎪+⎝⎭N ==.所以1112()n S n n n*-∈+N =.…10分(ii )因为12300040c c c c >>>=,,,,当5n ≥时,1(1)1(1)2n n n c n n n +⎡⎤=-⎢⎥+⎣⎦, 而(1)(1)(2)(1)(2)022121n n n n n n n n n ++++--=>++, 得(1)5(51)1225n n n +⨯+≤<,所以,当5n ≥时,0n c <. 综上,若对任意n *∈N 恒有k n S S ≥,则4k =.…………16分20.(本小题满分16分)(1)2222()2a x a f x x x x-'=-= 当0a ≤时,()0f x '>,()f x 在(0,)+∞上递增,()f x 无极值…………2分当0a >时,x ∈时,()0f x '<,()f x 递减;)x ∈+∞时,()0f x '>,()f x 递增,所以()f x 有极小值ln f a a a =- 综上,当0a ≤时,()f x 无极值;当0a >时,()f x 有极小值ln f a a a =-,无极大值…………4分(2)2()2ln 2h x x a x ax =--,则22222'()22a x ax a h x x a x x --=--=因为0a >,令()0h x '=,得0x =,故()h x 在0(0,)x 上递减,在0(,)x +∞上递增,所以()h x 有极小值0()0h x =,20002ln 20x a x ax --=…………6分且2002220x ax a --=联立可得002ln 10x x +-=令()2ln 1m x x x =+-,得2()11m x x'=+>,故()m x 在(0,)+∞上递增又(1)0m =,所以01x =112a =⇒=…………10分 (3)不妨令1212x x ≤<≤,因为01a <<,则12()()g x g x <由(1)可知12()()f x f x <,因为1212()()()()f x f x g x g x ->-所以21212211()()()()()()()()f x f x g x g x f x g x f x g x ->-⇒->-所以2()()()2ln 2h x f x g x x a x ax =-=--在[1]2,上递增所以2()220ah x x ax'=--≥在[1]2,上恒成立,…………12分即21xax≤+在[1]2,上恒成立令1[2,3]t x=+∈,则211212xtx t=+-≥+,……14分所以1(0,]2a∈…………16分。
南京师范大学附属中学2017届高三考前模拟考试数学试题(附答案)
2017届南京师范大学附中高三考前模拟考试数学第Ⅰ卷(共60分)一、填空题:本大题共14个小题,每小题5分,共70分.不需要写出解答过程,请把答案写在答题纸指定的位置上.1.已知集合2{1,2,3,4},{|20}A B x x x ==-->,则AB =2. 已知复数z 满足(1)3z i i +=-,其中i 为虚数单位,则复数z 的模z =3.某时段内共有100辆汽车经过某一雷达测速区域,将测得的汽车时速绘制成如图所示的频率分布直方图,根据图形推断,该时段的时速超过50/km h 的车辆数为 辆. ( )4. 如下图所示的流程图中,输出的S 为5.函数()f x =的定义域是6. 袋中有形状、大小相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为7.已知正四棱锥的底面边长为4cm,则该四棱锥的侧面积是2cm8. 设变量,x y 满足约束条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,若目标函数z ax y =+的最小值为2-,则a =9. 设函数()2sin cos (0)f x wx wx wx w =->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π,则()f x 在区间[,0]4π-上的最大值为10. 设n S 是等比数列{}n a 的前n 项和,若满足41130a a +=,则2114S S = 11. 若1b a >>且3log 6log 11a b b a +=,则321a b +-的最小值为 12.已知P 是圆221x y +=上的一动点,AB 是圆22(5)(12)4x y -+-=的一条动弦(,A B 是直径的两个端点),则PA PB ⋅的取值范围是13. 设()34f x ax x =-,对[1,1]x ∀∈-总有()1f x ≤,则a 的取值范围是14.在ABC ∆中,已知边,,a b c 所对的角分别为,,A B C ,若2222sin 3sin 2sin sin sin sin B C A B C A +=+,则tan A =第Ⅱ卷(共80分)二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15. 在ABC ∆中,角,,A B C 的对边分别为,,a b csin )sin C A B -=. (1)求bc a-的值; (2)若32b BA BC =⋅=,求ABC ∆的面积. 16. 如图,在四棱锥P ABCD -中,1//,2CD AB AD DC AB ==.(1)若M 是PB 的中点,求证://CM 平面PAD ; (2)若,CD AB BC PC ⊥⊥,求证:平面PAC ⊥平面PBC .17.园林管理处拟在公园某区域规划建设一半径为r 米圆心角为θ(弧度)的扇形景观水池,其中O 为扇形AOB 的圆心,同时紧贴水池周边建一圈理想的无宽度步道,要求总预算费用不超过24万元,水池造价为每平方米400元,步道造价为每米1000元. (1)当r 和θ分别为多少时,可使广场面积最大,并求出最大值; (2)若要求步道长为105米,则可设计出水池最大面积是多少.18. 平面直角坐标系中,椭圆2222:1(0)x y C a b a b +=>>过点(1)求椭圆C 的标准方程;(2)过点(2,0)K 作一直线与椭圆C 交于,A B 两点,过,A B 点作椭圆右准线的垂线,垂足分别为11,A B ,试问直线1AB 与1A B 的交点是否为定点,若是,求出定点的坐标;若不是,请说明理由.19.设()sin ,[0.2](xf x e x ax x a π=⋅+∈为常数).(1)当0a =时,求()f x 的单调区间;(2)若()f x 在区间(0.2)π的极大值、极小值各有一个,求实数a 的取值范围. 20.设{}n a 是各项均不相等的数列,n S 为它的前n 项和,满足11(,)n n na S n N R λλ++=+∈∈.(1)若11a =,且123,,a a a 成等差数列,求λ的值; (2)若{}n a 的各项均不相等,问当且仅当λ为何值时,23,,,,n a a a 成等差数列?试说明理由. 21.选做题A.如图,AB 为O 的直径,D 为O 上一点,过D 作O 的切线交AB 的延长线于点C , 若DA DC = ,求证:2AB BC =.B.已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点(1,1)P 在矩阵A 的变换下得到点(0,1)P -, 求矩阵A 的两个特征值. C.已知点P是曲线2cos :(x C y θθθ=⎧⎪⎨=⎪⎩为参数,2πθπ≤≤)上一点,O 为原点,若直线OP 的倾斜角3π,求点P 的直角坐标. D.已知实数,,x y z 满足2x y z ++=,求22223x y z ++的最小值.[必做题]第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤.22.某小组共10人,利用暑假参加义工活动,已知参加义工活动此时为1,2,3的人数分别为3,3,4,现从10人中学车2人作为该组参加座谈会.(1)记“选出2人参加义工活动的次数之和为4”为事件A ,求事件A 的发生的概率; (2)设X 为选出2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.23.(1)设23260126(1)x x a a x a x a x ++=++++,求23,a a .(2)设2017(25(25x =+++,其x 的整数部分的个位数字.试卷答案一、填空题1. {}3,43 .774 .25125 .3(,2]26 .567 .248 .2- 9.1 10 7611.112 .[]140,192 13{}3 14.1- 二、解答题15.解:(1)bc a b c a-=⇒=- (2)22222)111325322cos 2c a b c a c a a b a c b c a c ca ac BA BC ca B -=-=⎧-==⎧⎧⎪=⇒⇒⇒⎨⎨⎨⎨+-=+=⋅=⎩⎩⎪⎪⎩⎪⋅==⎩,所以3cos sin 44B B =⇒=,所以1sin 24S ac B ==. 16.解(1)取AP 的中点N ,连接MN 和DN ,由因为M 是PB 的中点, 所以MN 是PAB ∆的中位线,所以1//,2MN AB MN AB =, 由题意1//,2CD AB CD AB =,所以,//MN CD MN CD =, 所以四边形MNDC 是平行四边形,所以//CM DN .(2)由题意,在直角梯形ABCD 中,经计算可证得BC AC ⊥,又,,BC PC AC PC ⊥⊂面ACP , ACPC C =,BC ⊥面ACP ,又BC ⊂面PBC ,所以平面PAC ⊥平面PBC.17.解:(1)由题意,输出弧长AB 为r θ,扇形面积为212S r θ=, 由题意2414001000(2)24102r r r θθ⨯++≤⨯,即25(2)1200r r r θθ++≤,即2r r θ+≥所以21200r θ+≤,所以t 0t >,则2101200402t t t +≤⇒≤,所以当240r r θ==时,面积212S r θ=的最大值为400. (2)即105210522r r rθθπ+=⇒=-<,1052r r θ=-代入可得 215(1052)51051200210567502r r r r r -+⨯≤⇒-+≥⇒≤或45r ≥,又222211105105105(1052)()222416S r r r r r r θ==-=-+=--+,当1510510522122152()2r r θπ≤=-≥-=>与2θπ<不符,()S θ在[45,)+∞上单调,当45r =时,S 最大337.5平方米,此时13θ=. 18.解(1)由题意得2222253114425a b c a b a b c c a⎧⎪=+⎧=⎪⎪⎪+=⇒=⎨⎨⎪⎪=⎩⎪=⎪⎩,所以椭圆的标准方程为2215x y +=. (2)①当直线AB 的斜率不存在时,准线15:,2l x AB =与1A B 的交点是9(,0)4; ②当直线AB 的斜率存在时,设1122(,),(,)A x y B x y ,直线AB 为(2)y k x =-, 由222222(2)(15)20205055y k x k x k x k x y =-⎧⇒+-+-=⎨+=⎩,所以2212122220205,1515k k x x x x k k-+==++,1255(,),(,)22A y B y , 所以121215:()522AB y y l y x y x -=-+- ,121125:()522A B y y l y x y x -=-+- 联立解得2212222122205252545(1)9154420520(1)4515k x x k k x k x x k k----++====+--+-+, 代入上式可得222221122121112020594()9()42015150104410410k k k k k x x k x x kx x k k k y y x x x --⋅+⋅--+++++=+===-+--,综上,直线1AB 与1A B 过定点9(,0)4.19.解:(1)当0a =时,()(sin cos )sin()4xx f x e x x x π'=+=+,令()0f x '>,则()370,2,44x x f x πππ<<<<单调增; 令()0f x '<,则()37,44x f x ππ<<单调增, 所以()f x 的单调递增区间为37(0,),(,2)44πππ,单调递减区间为37(,)44ππ. (2)设()()(sin cos )xg x f x e x x a '==++,则()22cos g x e x '=,令()0g x '>,则3cos 0,0,222x x x πππ><<<<,令()0g x '<,则3cos 0,22x x ππ<<<,所以()g x 的单调递增区间为3(0,),(,2)22πππ,单调递减区间为3(,)22ππ. 故()g x 在2x π=处取得极大值,在32x π=处取得极小值,()3222301,(),(),(2)22g a g a e g a e g a e ππππππ=+=+=-=+,所以()32()(0)()22g g g g πππ>>> ①若3()02g π≥,则()()0,f x f x '≥在(0,2)π上单调增,故()f x 在(0,2)π无极值,所以3()02g π<; ②若3()02g π≤,则()f x 在(0,2)π内至多有一个极值点,从而()20,()02g g ππ>>,于是在区间33(,),(,2)222ππππ内()f x 分别有极大值、极小值各一个, 则在(0,)2π内无极值点,从而()00g ≥3223210(0)0()001230()02a g g a e a e a e g πππππ⎧+≥⎧⎪≥⎪⎪⎪⎪>⇒+>⇒-≤<⎨⎨⎪⎪⎪⎪-<⎩<⎪⎩ ,所以的取值范围是321a e π-≤<. 20.解:(1)令1,2n =,得21321212211a a a S a a λλ=+=⎧⎨=+=++⎩,又由123,,a a a 成等差数列,所以213321a a a a =+=+,解得λ=. (2)当且仅当12λ=时,23,,,,n a a a 成等差数列,证明如下:由已知11n n na S λ+=+,当2n ≥时,1(1)1n n n a S λ--=+,两式相减得1n n n n n na na na a a λλλλ+-++=,即1()(1)n n n n a a a λλ+-=-, 由于{}n a 个各项均不相等,所以1,(2)1n n na n n a a λλ+=≥--, 当3n ≥时,所以11(1)1n n n a n a a λλ---=-- 两式相减可得1111n n n n n n a a a a a a λλ-+-=----, ①当12λ=,得111n n n n n n a a a a a a -+-=--,当3n ≥时,所以11111n n nn n n n n n a a a a a a a a a -+--=+=---, 0n a ≠,所以11112(3)n n n n n n n a a a a a a a n +-+--=-⇒=+≥,故23,,,,n a a a 成等差数列.②再证当23,,,,n a a a 成等差数列,时,12λ=,因为23,,,,n a a a 成等差数列,所以11(3)n n n n a a a a n +--=-≥,可得11111111n n n n n n n n n n n n a a a a a a a a a a a a λλ--+----=-==-----, 所以12λ=, 所以当且仅当12λ=时,23,,,,n a a a 成等差数列.22.A 解:连接OD ,因为DC 为切线且点D 为切点,所以BDC BAD ∠=∠, 因为OA OD =, 所以OAD ODA ∠=∠ 又因为AD DC = 所以BCD OAD ∠=∠故OAD BDC ∆≅∆,所以BC OD R ==,从而2AB BC =. B.解:111001111a a -⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦,所以11a +=,即2a =-, 特征方程211(1)2021λλλ-⎡⎤=--=⎢⎥-⎣⎦,因此1λ=C.解:由题意得,曲线C 的普通方程为22143x y +=, 2sin 00y πθπθ≤≤⇒≤⇒≤,直线OP的方程为y =,联立得x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)或5x y ⎧=⎪⎪⎨⎪=-⎪⎩,所以点P的坐标为(. D.解:由柯西不等式可知:2222221)1](23)z x y z ++⋅≤++++,所以2222()24231111123x y z x y z ++++≥=++,当且仅当6412,,111111x y z ===时取等号. 22.解:(1)有已知得1123432101()3C C C P A C +==,所以事件A 的发生的概率为13. (2)随机变量X 的所有可能的取值为0,1,2,2221111334333422101047(0),(1)1515C C C C C C C P X P X C C +++======, 11342104(2)15C C P X C ===, 所以随机变量X 的分布列为数学期望为()1E X =.23.解:(1)因为23230312224333333(1)((1))(1)(1)(1)x x x x C x C x x C x x C x ++=++=++++++, 所以2121123313326,7a C C a C C C =+==+=.(2)令2017(25(25y =-+-,则20172017(25(25(25(25x y y +==++++-+-20201717[(25(25][(25(25]=++-+++-201818202017215168202017172(2525620(620)2(2525620(620))C C C C =+⨯++++⨯++,已知x y +为整数且个位数为0,而50250.225<-=<=,所以201720170(25(250.20.21<-+-<+<,所以x 的各位为9.。
江苏南京师范大学附属中学届高三考前模拟考试数学试题
江苏南京师范大学附属中学届高三考前模拟考试数学试题This model paper was revised by the Standardization Office on December 10, 20202017届南京师大附中高三年级模拟考试数学试题一、填空题:(本大题共14小题,每小题5分,共70分)1. 已知集合{}{}21,2,3,4,|20A B x x x ==-->,则A B = .2. 已知复数z 满足()13z i i +=-,其中i 是虚数单位,则复数z 的模z = .3.某时段内共有100辆汽车经过某一雷达测速区域,将测得的汽车的时速绘制成如图所示的频率分布直方图,根据图形推断,该时段时速超过50km/h 的汽车的辆数为 .4.如右图所示的流程图中,输出S 的为 .5.函数()()12log 23f x x =-的定义域是 .6.袋中装有大小、形状完全相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 .7.已知正四棱锥的底面边长为4cm 5cm ,则该四棱锥的侧面积是 2cm .8.设变量,x y 满足约束条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,若目标函数z ax y =+的最小值为-2,则a = .9.设函数()()233sin cos 0f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π,则()f x 在区间,04π⎡⎤-⎢⎥⎣⎦上的最大值为 .10.设n S 是等比数列{}n a 的前n 项和,若满足41130a a +=,则2114S S = . 11.若1b a >>,且3log 6log 11a b b a +=,则321a b +-的最小值为 . 12.已知P 是圆221x y +=上一动点,AB 是圆()()225124x y -+-=的一条动弦(A,B是直径的两个端点),则PA PB ⋅的取值范围为 .13.设()34f x ax x =-,对[]1,1x ∀∈-总有()1f x ≤,则a 的取值集合为 .14.在ABC ∆中,已知边a,b,c 的对应角分别为A,B,C ,若2222sin 3sin 2sin sin sin sin B C A B C A +=+,则tan A = .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.(本题满分14分)在ABC ∆中,角A,B,C 的对边分别为a,b,c,已知)sin sin sin .C A B -=(1)求b c a-的值; (2)若32b BA BC =⋅=,求ABC ∆的面积.16.(本题满分14分)如图,在四棱锥P ABCD -中,1//,.2CD AB AD DC AB == (1)若M 是PB 的中点,求证://CM 平面PAD ;(2)若,AD AB BC PC ⊥⊥,求证:平面PAC ⊥平面PBC .17.(本题满分14分)园林管理处拟在公园某区域规划建设一半径为r 米,圆心角为θ(弧度)的扇形观景水池,其中O 为扇形AOB 的圆心,同时紧贴水池周边建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平米400元,步道造价为每米1000元.(1)当r 和θ分别为多少时,可使得广场面积最大,并求出最大面积;(2)若要求步道长为105米,则可设计出的水池最大面积是多少.18.(本题满分16分)平面直角坐标系中,椭圆()2222:10x y C a b a b +=>>过点53⎝⎭25. (1)求椭圆C 的标准方程;(2)过点()2,0K 作一直线与椭圆C 交于A,B 两点,过A,B 两点作椭圆右准线的垂线,垂足分别为11,A B ,试问直线1AB 与1A B 的交点是否为定点,若是,求出定点的坐标;若不是,请说明理由.19.(本题满分16分)设()[]sin ,0,2xf x e x ax x π=⋅+∈,(a 为常数) (1)当0a =时,求()f x 的单调区间;(2)若()f x 在区间()0,2π内的极大值、极小值各有一个,求实数a 的取值范围.20.(本题满分16分)设{}n a 为各项均不相等的数列,n S 为它的前n 项和,满足()11,.n n na S n N R λλ*+=+∈∈(1)若11,a =,且123,,a a a 成等差数列,求λ的值;(2)若{}n a 的各项均不为零,问当且仅当λ为何值时,234,,,,,n a a a a 成等差数列试说明理由.数学附加卷21.【选做题】在A,B,C,D 四个小题中只能选做2题,每小题10分,共计20分.请在答题纸的指定区域内作答,解答应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,AB 为O 的直径,D 为O 上一点,过D 作O 的切线交AB 的延长线于点C,若DA=DC,求证:AB=2BC.B.选修4-2:矩阵与变换已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点()1,1P 在矩阵A 的变换下得到点()0,1P '-,求矩阵A 的两个特征值.C.选修4-4:坐标系与参数方程已知P 是曲线2cos :3x C y θθ=⎧⎪⎨=⎪⎩(θ为参数,2πθπ≤≤)上一点,O 为原点,若直线OP 的倾斜角为3π,求点P 的直角坐标.D.选修4-5:不等式选讲已知实数,x y 满足2x y z ++=,求22223x y z ++的最小值.【必做题】第22题、第23题,每题10分共计20分.请答题卡的指定区域内作答解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某小组共10人,利用暑期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中选出2人作为该组代表参加座谈会.(1)记“选出2人参加义工活动的次数之和为4”为事件A,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.23.(本小题满分10分)(1)设()22601261x x a a x a x a x ++=++++,求23,a a ;(2)设((20172525x =+++,求x 的整数部分的个位数字.。
数学---江苏省南京市南师附中2017届高三上学期期中试卷
江苏省南京市南师附中2017届高三上学期学期中试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置 上)1. 函数113x y -⎛⎫= ⎪⎝⎭的单调增区间为 .2.在ABC ∆中,若a cos A =b cos B =c cos C,则ABC ∆的形状是_________三角形. 3.已知n m ,为直线,βα,为空间的两个平面,给出下列命题:①αα//,n n m m ⇒⎩⎨⎧⊥⊥;②n m n m //,//⇒⎪⎩⎪⎨⎧⊂⊂βαβα;③βαβα//,⇒⎩⎨⎧⊥⊥m m ;④n m n m //,⇒⎩⎨⎧⊥⊥ββ.其中的正确命题 为 .4.已知||2a =,||3b =,,a b 的夹角为60°,则|2|a b -= .5.数列{}n a 满足:2123()n a a a a n n N *⋅⋅⋅⋅⋅=∈,则通项公式是:n a = _ ____.6. 定义:区间[],()m n m n <的长度为n m -,已知函数12log y x =的定义域为[],,a b 值域为[]0,2,则区间[],a b 长度的最大值与最小值的差为 .7.已知)(),(x g x f 均为R 上的奇函数且0>)x (f 解集为(4,10),0>)x (g 解集为(2,5),则0)()(>⋅x g x f 的解集为 . 8.设函数)0(sin >=ωωx y 在区间⎥⎦⎤⎢⎣⎡-4,5ππ上是增函数,则ω的取值范围为 ____. 9.已知()1,5x ∈,则函数2115y x x=+--的最小值为 . 10.设实数b y x ,,满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x ,,02若y x z +=2的最小值为3,则实数b 的值为 .11.已知ABC ∆中,AB 边上的高与AB 边的长相等,则ACBC AB AC BC BC AC ⋅++2的最大值为 .12.在棱长为1的正方体1111ABCD A B C D -中,E 为1AB 的中点,在面ABCD 中取一点F ,使1EF FC +最小,则最小值为__________. 13.设{}n a 是等比数列,公比2=q ,n S 为{}n a 的前n 项和,记)(1712*+∈-=N n a S S T n nn n ,设0n T 为数列{}n T 的最大值,则0n = .14.当n 为正整数时,函数()N n 表示n 的最大奇因数,如(3)3,(10)5,N N ==⋅⋅⋅,设(1)(2)(3)(4)...(21)(2)n nn S N N N N N N =+++++-+,则n S = .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15. (本题满分14分) 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且cos Bcos C=-b2a +c. (1)求角B 的大小;(2)若b =13,a +c =4,求ABC ∆的面积.16.(本题满分14分) 如图,在四棱锥ABCD P -中,BC AD //,且AD BC 2=,CD PB CD AD ⊥⊥,,点E 在棱PD 上,且ED PE 2=. (1)求证:平面⊥PCD 平面PBC ; (2)求证://PB 平面AEC .17.(本题满分15分) 设不等式⎪⎩⎪⎨⎧+-≤>>n nx y y x 300所表示的平面区域为n D ,记n D 内的整点个数为n a (n ∈*N ),(整点即横坐标和纵坐标均为整数的点) (1)求数列{a n }的通项公式; (2)记数列{a n }的前项和为S n ,且123-⋅=n nn s T ,若对于一切正整数n ,总有≤n T m ,求实数m 的取值范围.18.(本题满分15分)如图,半径为1,圆心角为3π2的圆弧AB 上有一点C . (1)若C 为圆弧AB 的中点,点D 在线段OA 上运动,求|→OC +→OD |的最小值;(2)若D ,E 分别为线段OA ,OB 的中点,当C 在圆弧AB 上运动时,求→CE •→CD 的取值范围.19.(本题满分16分)对于定义域为D 的函数)(x f y =,如果存在区间[m ,n ]⊆D ,同时满足:①)(x f 在[m ,n ]内是单调函数;②当定义域是[m ,n ]时,)(x f 的值域也是[m ,n ].则称[m ,n ]是该函数的“和谐区间”.(1)证明:[0,1]是函数)(x f y ==2x 的一个“和谐区间”.(2)求证:函数xx g y 53)(-==不存在“和谐区间”. (3)已知:函数xa x a a x h y 221)()(-+==(∈a R ,0≠a )有“和谐区间”[m ,n ],当a 变化时,求出n ﹣m 的最大值.20. (本题满分16分)已知首项为1的正项数列{}n a 满足221152n n n n a a a a +++<,n *∈N .(1)若232a =,3a x =,44a =,求x 的取值范围; (2)设数列{}n a 是公比为q 的等比数列,n S 为数列{}n a 前n 项的和.若1122n n n S S S +<<,n *∈N ,求q 的取值范围;(3)若1a ,2a ,⋅⋅⋅,k a (3k ≥)成等差数列,且12120k a a a ++⋅⋅⋅+=,求正整数k 的最小值,以及k 取最小值时相应数列1a ,2a ,⋅⋅⋅,k a 的公差.参考答案1.(,0)-∞(亦可写成(,0]-∞) 2.等边 3.③④ 45.21(1)(2,)1n n n n N n *=⎧⎪⎨⎛⎫≥∈⎪⎪-⎝⎭⎩ 6.3 7.(5,4)(4,5)-- 8.(0,2]9.34+ 10.9411. 12.2 13.4 14.423n +15.解:(1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b 2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理得:a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334. 16.证明:(1)因为,//AD CD AD BC ⊥, 所以CD BC ⊥ 。
【全国百强校】江苏省南京师范大学附属中学2017届高三数学模拟一(解析版)
江苏省南京师范大学附属中学2017届高三数学模拟一一、填空题:1. 已知,则__________.【答案】【解析】因为,所以,应填答案。
2. 已知复数,是虚数单位,在复平面上对应的点在第四象限,则实数的取值范围是__________.【答案】............... 3. 如图是某算法流程图,则程序运行后输出的结果是__________.【答案】【解析】试题分析:第一次循环,,第二次循环,,第三次循环,,结束循环,输出.考点:循环结构流程图4. 从中任取两个数,其中一个作为对数的底数,另一个作为对数的真数,则对数值大于的概率是__________.【答案】【解析】所有基本事件为共六个,满足题设条件的事件有共三个,由古典概型的计算公式所求事件的概率,应填答案。
5. 随机抽取年龄在年龄段的市民进行问卷调查,由此得到的样本的频数分布直方图如图所示,采用分层抽样的方法从不小于岁的人中按年龄阶段随机抽取人,则年龄段应抽取人数为__________.【答案】【解析】由题设提供的直方图可以看出年龄在内的人数为是样本容量),则,故年龄在内的人数为,应填答案。
6. 双曲线的焦点到渐近线的距离为 __________.【答案】【解析】由题设,则右焦点,一条渐近线方程为,故焦点到渐近线的距离为,应填答案。
7. 若函数是偶函数,则实数的值是 __________.【答案】8. 立方体中,棱长为为的中点,则四棱锥的体积为 __________.【答案】【解析】由题设,则四棱锥的底面矩形的面积为,到的距离即为到的距离,即,则四棱锥的体积,应填答案。
9. 如图所示的梯形中,,如果,则__________.【答案】【解析】试题分析:因为,所以考点:向量数量积10. 集合与直线相交,且以交点的横坐标为斜率,若直线,点到直线的最短距离为,则以点为圆心,为半径的圆的标准方程为_________.【答案】【解析】设直线的斜率为,直线方程为,由题意方程组的解为,则,即,点到直线的距离(当且仅当取等号),则所求圆的半径,圆的标准方程为,应填答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三年级期中考试 数学试卷一、填空题:本大题共14个小题,每小题5分,共70分. 请把答案填在答卷纸相应位置上. 1.已知集合{1,2,3,4}U =,{1,3}A =,{1,3,4}B =,则()U A C B = . 2.若复数z 满足1zi i =+,则z 的共轭复数是 . 3.已知一组数据3,5,4,7,6,那么这组数据的方差为 .4.袋中有形状、大小都相同的4只球,其中有2只红球,2只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为 .5.如下图,矩形ABCD 由两个正方形拼成,则CAE ∠的正切值为 .6.下图是一个算法流程图,则输出的k 的值是 .7.若实数,x y 满足条件2003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则目标函数34z x y =-的最大值是 .8.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(3,4)-,则此双曲线的离心率为 .9.若cos()6πθ-=,则25cos()sin ()66ππθθ+--= . 10.在等腰梯形ABCD 中,已知//AB DC ,2AB =,1BC =,60ABC ∠=,点E 和点F 分别在线段BC 和DC 上,且23BE BC = ,16DF DC = ,则AE AF ∙的值为 .11.等比数列{}n a 的首项为2,公比为3,前n 项的和为n S ,若341log [(1)]92n m a S +=,则14n m+的最小值为 . 12.在平面直角坐标系xOy 中,点(1,0)A ,(4,0)B ,若直线0x y m -+=上存在点P ,使得2PA PB =,则实数m 的取值范围是 .13.已知函数,1()(1),1x e x f x f x x ⎧≤=⎨->⎩,()1g x kx =+,若方程()()0f x g x -=有两个不同的实根,则实数k 的取值范围是 .14.已知不等式2(3)()0ax x b +-≤对于任意的(0,)x ∈+∞恒成立,其中,a b 是整数,则a b +的取值集合为 .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15. (本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos cos b c Ca A-=. (1)求角A 的值;(2)若ABC ∆的面积为2,且a =ABC ∆的周长. 16. (本小题满分14分)在四棱锥P ABCD -中,90ACD ∠= ,BAC CAD ∠=∠,PA ⊥平面ABCD ,点E 为PD的中点.(1)求证:平面PAC ⊥平面PCD ;(2)求证://CE 平面PAB .17. (本小题满分14分)如图,在半径为30cm 的半圆形铁皮上截取一块矩形材料ABCD (点,A B 在直径上,点,C D 在半圆周上),并将其卷成一个以AD 为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗). (1)若要求圆柱体罐子的侧面积最大,应如何截取? (2)若要求圆柱体罐子的体积最大,应如何截取?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知,,A B C 是椭圆22221(0)x y a b a b+=>>上不同的三点,A ,(2,2)B --,C 在第三象限,线段BC 的中点在直线OA 上. (1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点,,A B C )且直线,PB PC 分别交直线OA 于,M N 两点,证明:OM ON ∙为定值并求出该定值.19. (本小题满分16分)已知数列{}n a 和{}n b 满足*123()n bn a a a a n N ∙∙∙∙=∈ ,若{}n a 为等比数列,且12a =,326b b =+.(1)求n a 与n b ; (2)设*11()n n nc n N a b =-∈,记数列{}n c 的前n 项和为n S . (Ⅰ)求n S ;(Ⅱ)求正整数k ,使得对任意*n N ∈均有k n S S ≥. 20. (本小题满分16分)已知函数2()2ln ()f x x a x a R =-∈,()2g x ax =. (1)求函数()f x 的极值;(2)若0a >时,函数()()()h x f x g x =-有且仅有一个零点,求实数a 的值; (3)若01a <<,对于区间[1,2]上的任意两个不相等的实数12,x x 都有1212|()()||()()|f x f x g x g x ->-成立,求a 的取值范围.试卷答案一、填空题:1.{1,2,3} 2.i +1 3.2 4.32 5. 31 6.5 7.1- 8.35 9.3233--10.1829 11.25 12.]22,22[- 13.]1,1()1,21(--e e 14.}8,2{- 二、解答题:本大题共6小题,共计90分.请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 解:(1)因为AC a c b cos cos 2=- (2)c o s c o s b c A a C -=,由正弦定理得 (2sin sin )cos sin cos B C A A C -=, ………………2分即2sin cos sin cos sin cos B A A C C A =+=sin(A +C ) . ………………4分 因为B =π-A -C ,所以sin B =sin(A +C ), 所以2sin cos sin B A B =. 因为B ∈(0,π),所以sin B ≠0,所以1cos 2A =,因为0A π<<,所以3A π=. ………………7分(2)△ABC 的面积为23,且5=a周长 a b c ++= ………………14分 16.(本小题满分14分)证明: (1)因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD , ………………2分 又∠ACD =90°,则CD AC ⊥,而P A ∩AC =A ,所以CD⊥平面P AC,因为CD⊂平面ACD,………………4分所以,平面P AC⊥平面PCD.………………7分(2)证法一:取AD中点M,连EM,CM,则EM∥P A.因为EM ⊄平面P AB,P A⊂平面P AB,所以EM∥平面P AB.………………9分在Rt△ACD中,AM=CM,所以∠CAD=∠ACM,又∠BAC=∠CAD,所以∠BAC=∠ACM,则MC∥AB.因为MC ⊄平面P AB,AB⊂平面P AB,所以MC∥平面P AB.………………12分而EM∩MC=M,所以平面EMC∥平面P AB.由于EC⊂平面EMC,从而EC∥平面P AB.………14分证法二:延长DC,AB交于点N,连PN.因为∠NAC=∠DAC,AC⊥CD,所以C为ND的中点.而E为PD中点,所以EC∥PN.因为EC ⊄平面P AB,PN ⊂平面P AB,所以EC∥平面P AB………………14分17.(本小题满分14分)解:(1)如图,设圆心为O ,连结OC ,设BC =x ,法一易得AB =(0 30)x ∈,, 故所求矩形ABCD 的面积为()2S x = ………3分=()22900x x +-≤900=(2cm )(当且仅当22900x x =-,x =cm)时等号成立) 此时BC =cm ; ……6分 法二 设COB θ∠=,()0 θπ∈,; 则30sin BC θ=,30cos OB θ=,所以矩形ABCD 的面积为()230sin 30cos 900sin 2S θθθθ=⨯⨯=, ………3分 当sin 21θ=,即θπ=4时,max ()900S θ=(2cm )此时BC =cm ; ………6分(2)设圆柱的底面半径为r ,体积为V ,由2AB r =π得,r , 所以()231900V r x x x =π=-π,其中(0 30)x ∈,, ………9分 由()2190030V x '=-=π得x =,此时,()31900V x x =-π在(0,上单调递增,在()上单调递减, 故当x =cm3cm ,………13分答:(1)当截取的矩形铁皮的一边BC 为cm 为时,圆柱体罐子的侧面积最大. (2)当截取的矩形铁皮的一边BC 为cm 为时,圆柱体罐子的体积最大.………14分 18.(本小题满分16分)解:(1)由已知,得2222101041,441,a bab ⎧⎪+=⎪⎨⎪+=⎪⎩ 解得2220,5.a b ⎧=⎨=⎩ 所以椭圆的标准方程为221205x y +=. ………………4分(2)设点(,)C m n (0,0)m n <<,则BC 中点为22(,)22m n --. 由已知,求得直线OA 的方程为20x y -=,从而22m n =-.① 又∵点C 在椭圆上,∴22420m n +=.②由①②,解得2n =(舍),1n =-,从而4m =-. 所以点C 的坐标为(4,1)--.…8分 (3)设00(,)P x y ,11(2,)M y y ,22(2,)N y y . ∵,,P B M 三点共线,∴011022222y y y x ++=++,整理,得001002()22x y y y x -=+-.………………10分 ∵,,P C N 三点共线,∴22011244y y y x ++=++,整理,得00200422x y y y x -=--.………………12分 ∵点C 在椭圆上,∴2200420x y +=,2200204x y =-.从而2200000012220000002(45)2(205)55244416442x y x y x y y y x y x y x y +--===⨯=+---. …………………14分 所以122552OM ON y y ⋅== .∴OM ON ⋅ 为定值,定值为252. ………………16分19.(本小题满分16分)解:(1)由题意a 1a 2a 3…a n=n b ,b 3-b 2=6,知a 3=(2)b 3-b 2=8. 设数列{a n }的公比为q,又由a 1=2,得4132==a a q ,q =2(q =-2舍去),所以数列{a n }的通项为a n =2n (n ∈N *).…3分所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n+1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). …………6分(2)(i)由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *).所以S n =1n +1-12n (n ∈N *). …10分(ii)因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n-1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n ≤5×(5+1)25<1,所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4. …………16分 20.(本小题满分16分)(1)xa x x a x x f 2222)('2-=-= 当0≤a 时,0)('>x f ,f (x )在),0(+∞上递增,f (x )无极值 …………2分 当0>a 时,),0(a x ∈时,0)('<x f ,f (x )递减;),(+∞∈a x 时,0)('>x f ,f (x )递增,所以f (x )有极小值a a a a f ln )(-=综上,当0≤a 时,f (x )无极值;当0>a 时,f (x )有极小值a a a a f ln )(-=,无极大值 …………4分(2)ax x a x x h 2ln 2)(2--=,则xaax x a x a x x h 222222)('2--=--= 因为0>a ,令0)('=x h ,得2420aa a x ++=,故h (x )在),0(0x 上递减,在),(0+∞x 上递增,所以h (x )有极小值0)(0=x h 02ln 20020=--ax x a x …………6分 且0222020=--a ax x 联立可得01ln 200=-+x x 令1ln 2)(-+=x x x m ,得112)('>+=xx m ,故m (x )在),0(+∞上递增 又m (1) = 0,所以10=x ,即211242=⇒=++a a a a …………10分(3)不妨令2121≤<≤x x ,因为0 < a < 1,则)()(21x g x g < 由(1)可知)()(21x f x f <,因为)()()()(2121x g x g x f x f ->- 所以)()()()()()()()(11221212x g x f x g x f x g x g x f x f ->-⇒->- 所以ax x a x x g x f x h 2ln 2)()()(2--=-=在[1,2]上递增 所以0222)('≥--=a xax x h 在[1,2]上恒成立, …………12分 即12+≤x x a 在[1,2]上恒成立 令]3,2[1∈+=x t ,则212112≥-+=+t t x x , ……14分 所以]21,0(∈a …………16分。