随机过程1-3

合集下载

随机过程(北航著)北京航空航天大学出版社第1章习题课后答案

随机过程(北航著)北京航空航天大学出版社第1章习题课后答案

第一章概论第1题某公共汽车站停放两辆公共汽车A 和B ,从t=1秒开始,每隔1秒有一乘客到达车站。

如果每一乘客以概率21登上A 车,以概率21登上B 车,各乘客登哪一辆车是相互统计独立的,并用j ξ代表t=j 时乘客登上A 车的状态,即乘客登上A 车则j ξ=1,乘客登上B 车则jξ=0,则,21}0{,21}1{====j j P P ξξ当t =n 时在A 车上的乘客数为n n j j n ηξη,1∑==是一个二项式分布的计算过程。

(1)求n η的概率,即;,...,2,1,0?}{n k k P n ===η(2)当公共汽车A 上到达10个乘客时,A 即开车(例如t =21时921=η,且t =22时又有一个乘客乘A 车,则t =22时A 车出发),求A 车的出发时间n 的概率分布。

解(1):nn k n k P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==21}{η 解(2):nn n n P P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−2191212191A)10n 9A 1-n (}n A {1名乘客登上车时刻第名乘客;在有时刻,车在开车在时刻车第2题设有一采用脉宽调制以传递信息的简单通信系统。

脉冲的重复周期为T ,每一个周期传递一个值;脉冲宽度受到随机信息的调制,使每个脉冲的宽度均匀分布于(0,T )内,而且不同周期的脉宽是相互统计独立的随机变量;脉冲的幅度为常数A 。

也就是说,这个通信系统传送的信号为随机脉宽等幅度的周期信号,它是以随机过程)(t ξ。

图题1-2画出了它的样本函数。

试求)(t ξ的一维概率密度)(x f t ξ。

解:00(1)()()(){()}{()0}[(1),],(0,){()}{[(1),]}{[(1)]}1(1)(1)1({()0}1{()}t A A n n n Tt n T f x P x A P x P t A P P t P t n T nT n T P t A P t n T nT P t n T d TT t n T T nT t T t n Tt n T T t n P t P t A ξδδξξηξηηηξξ−−=−+====∈−∈==∈−+=>−−=−+−=−==−−−=−−−==−==∫是任意的脉冲宽度01)(1)()()()()(1)()t A T tn T Tf x P x A P x t t n x A n x T T ξδδδδ=−−∴=−+⎛⎞⎛⎞=−−+−−⎜⎟⎜⎟⎝⎠⎝⎠第3题设有一随机过程)(t ξ,它的样本函数为周期性的锯齿波。

西安交通大学汪荣鑫随机过程第二版课后答案

西安交通大学汪荣鑫随机过程第二版课后答案

随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。

X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。

(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。

解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。

随机过程知识点汇总

随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。

2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。

离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。

连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。

3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。

均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。

自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。

4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。

弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。

强平稳随机过程的概率分布在时间上是不变的。

5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。

高斯随机过程的均值函数和自相关函数可以唯一确定该过程。

6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。

马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。

7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。

泊松过程的重要性质是独立增量和平稳增量。

8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。

例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。

t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。

复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。

协方差函数和相关函数也可以类似地计算得到。

复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。

教程:第3章 随机过程

教程:第3章 随机过程

• 角度2:随机过程是随机变量概念的延伸
其一,它是一个时间函数; 其二,在固定的某一观察时刻t1 ,全体样本在t1时 刻的取值ξ(t1)是一个不含t变化的随机变量。
可见,随机过程具有随机变量和时间函数的特点。 因此,我们又可以把随机过程看成依赖时间参
数的一族随机变量。这个角度更适合对随机过程 理论进行精确的数学描述。
– 相关函数和协方差函数之间的关系
B(t1,t2 ) R(t1, t2 ) a(t1) a(t2 )
若a(t1) = a(t2),则B(t1, t2) = R(t1, t2)
14
互相关函数
• 互相关函数 R (t1 , t2 ) E[ (t1 )(t2 )]
式中(t)和(t)分别表示两个随机过程。
f (t) fT (t)
T
0
T
2
2
t
28
– 对于平稳随机过程 (t) ,可以把f (t)当作是(t)的一个样本;
某一样本的功率谱密度不能作为过程的功率谱密度。过程的功
率谱密度应看作是对所有样本的功率谱的统计平均,故 (t)
的功率谱密度可以定义为
P ( f )
E
Pf
(f)
lim E FT ( f ) 2
30
• 在维纳-辛钦关系基础上,我们可以得到以下结论:
– 对功率谱密度进行积分,可得平稳过程的总功率:
R(0) P ( f )df
上式从频域的角度给出了过程平均功率的计算法。
– 各态历经过程的任一样本函数的功率谱密度等于过程 的功率谱密度。也就是说,每一样本函数的谱特性都能很好
地表现整个过程的的谱特性。
31
– 功率谱密度P ( f )具有非负性和实偶性,即有

第三章通信原理 随机过程

第三章通信原理 随机过程
或随机过程的一次实现。 全部样本函数构成的总
体 x1t, x2 ,t,就,是xn 一t个
随机过程,记作 。
t
因此从这个角度得到随机过程的这种定义: 随机过程是所有样本函数的集合。
角度2:现在,我们在某一特定时刻如 时t1刻观察
各台接收机的噪声,可以发现在同一时刻,每个接 收机的输出噪声值是不同的,它在随机变化。
(1)随机过程的协方差函数:B(t1,t2) 描述了随机过程§(t)在任意两个时刻t1和t2,相对
均值的起伏量之间的相关程度。
B(t1, t2 ) E (t1) a(t1) (t2 ) a(t2 )

B(t1, t2 ) x1 a(t1 ) x2 a(t2 ) f2( x1, x2;t1, t2 )dx1dx2
f1x,t
F1x, t
x
F1x, t
x
f1 y, tdy
F1和x, t f即1x是, t 的函数,x 又是时间 的函数。t很显然,
一维分布函数及一维概率密度函数仅仅表示了随机过程 在任一瞬间的统计特性,它对随机过程的描述很不充分, 通常需要在足够多的时间上考察随机过程的多维分布。
测试结果表明,得到的 n张记录图形并不因为有 相同的条件而输出相同 的波形。恰恰相反,即 使n足够大,也找不到两 个完全相同的波形。这 就是说,通信机输出的 噪声电压随时间的变化 是不可预知的,因而它 是一个随机过程。
N部通信机的噪声输出记录
测试结果的每一个记录, 都是一个确定的时间函
数 ,xi 称t 之为样本函数
式中 是一个离散随机变量,且
P

、0
1 2
P 2, 试12求 和E 1。 R 0,1

stochastic processes(ch1-3)

stochastic processes(ch1-3)

(4) 相关不等式: Cauchy-Schwarz 不等式和 Markov 不等式
例2. D(X ) = 0 ⇔ X 几乎必然是常数 (即存在某个常数 C 和事件 N ∈ F 使 得 P(N ) = 0, 且 ∀ω ∈ N c , X (ω) = C). 对于没有概率密度函数的非离散型随机变量, 如何定义其期望? 为此需要 扩展期望的定义, 引入更广泛的积分−−Riemann-Stieltjes 积分. 2. R 上的 Riemann-Stieltjes 积分 (1) 回顾 Riemann 积分 RZ b
三. 随机变量的刻画
1. 数字特征 (E, D, Cov) 设 X 为离散型或连续型随机变量, 很容易定义其期望和方差. (1) 期望 E: 其为 “概率” 意义下的平均, 具有线性性质. (2) 方差 D: 非负, 反应了随机变量在其均值附近波动的幅度. (3) 协方差 Cov: 反应了随机变量之间的相依关系.
¯ 的分布函数. 高维分布函数具有类似一维分布函数的性质, 详见教材. 称为 X 5. 随机变 (向) 量的函数 若 X 为随机变 (向) 量, 函数 f 连续, 则 f (X ) 也是随机变 (向) 量. (其证明 可参考理科类教材, 如文献 [3] 的 pp.147-148 或 [2] 的 p.51) 对于随机变量 X 和单调可微函数 g(x), 若 X 有概率密度函数 f (x), 则易证 Y = g(X ) 也是一个随机变量, 且其概率密度函数为 f (h(y))|h (y)|, 其中 h(y) 是 函数 y = g(x) 的反函数. 问题 4 此处为什么 h (y) 要加绝对值? 3
不断更新中 · · · · · ·
第一章
知识框架:
概率论概述
Gauss 随机变量 Poisson 随机变量

随机过程习题解答第1,2章

随机过程习题解答第1,2章

习题11. 令X(t)为二阶矩存在的随机过程,试证它是宽平稳的当且仅当EX(s)与E[X(s)X(s+t)]都不依赖s.证明:充分性:若X(t)为宽平稳的,则由定义知EX(t)=μ, EX(s)X(s+t)=r(t) 均与s 无关必要性:若EX(s)与EX(s)X(s+t)都与s 无关,说明EX(t)=常数, EX(s)X(s+t)为t 的函数2. 记1U ,...,n U 为在(0,1)中均匀分布的独立随机变量,对0 < t , x < 1定义I( t , x)=⎩⎨⎧>≤,,,,t x t x 01并记X(t)=),(11∑=nk k U t I n ,10≤≤t ,这是1U ,...,n U 的经验分布函数。

试求过程X (t )的均值和协方差函数。

解: EI ()k U t ,= P ()t U k ≤= t , D()),(k U t I = EI ()kU t ,-()2),(kU t EI= t -2t = t(1-t)j k ≠, cov ()),(),(j k U s I U t I ,=EI(t,k U )I(s,j U )-EI(t, k U )EI(s, j U ) = st -st=0k = j , cov ()),(),(j k U s I U t I ,= EI(t,k U )I(s,j U )-st = min(t,s)-stEX(t)=),(11∑=n k k U t EI n =∑=nk t n 11= tcov ())(),(s X t X =()()),(),,(cov 1),(),,(cov 1212j k jk n k k k U s I U t I n U s I U t I n ∑∑≠=+=[]∑=nk st t s n12),min(1-=()st t s n-),min(13.令1Z ,2Z 为独立的正态分布随机变量,均值为0,方差为2σ,λ为实数,定义过程()t Sin Z t Cos Z t X λλ21+=.试求()t X 的均值函数和协方差函数,它是宽平稳的吗?Solution: ()221,0~,σN Z Z . 02221==EZ EZ .()()221σ==Z D Z D ,()0,21=Z Z Cov ,()0=t EX ,()()()()()[]s Sin Z s Cos Z t Sin Z t Cos Z E s X t X Cov λλλλ2121,+⋅+=[]s t C o s S i n Z Z s t S i n C o s Z Z s t S i n S i n Z s t C o s C o s Z E λλλλλλλλ12212221+++=()02++=s t S i n S i n s t C o s C o s λλλλσ =()[]λσs t Cos -2(){}t X 为宽平稳过程.4.Poisson 过程()0,≥t t X 满足(i )()00=X ;(ii)对s t >,()()s X t X -服从均值为()s t -λ的Poisson 分布;(iii )过程是有独立增量的.试求其均值函数和协方差函数.它是宽平稳的吗?Solution ()()()()t X t X E t EX λ=-=0,()()t t X D λ= ()()()()()s t s X t EX s X t X Cov λλ⋅-=,()()()()()ts s EX s X s X t X E 22λ-+-= ()()()()ts s EX s X D 220λ-++= ()ts s s 22λλλ-+= ()t s s λλλ-+=1 显然()t X 不是宽平稳的.5. ()t X 为第4题中的Poisson 过程,记()()()t X t X t y -+=1,试求过程()t y 的均值函数和协方差函数,并研究其平稳性. Solution ()λλ=⋅=1t Ey , ()()λ=t y DCov(y(t),y(s))=Ey(t)y(s)-Ey(t)y(s)=E(x(t+1)-x(t))(x(s+1)-x(s))-λ2(1)若s+1<t, 即s≤t-1,则Cov(y(t),y(s))=0-λ2=-λ2(2)若t<s+1≤t+1, 即t>s>t-1, 则Cov(y(t),y(s))=E[x(t+1)-x(s+1)+x(s+1)-x(t)][x(s+1)-x(t)+x(t)-x(s)] -λ2=E(x(t+1)-x(s+1))(x(s+1)-x(t))+E(x(t+1)-x(s+1))(x(t)-x(s))+E(x(s+1)-x(t))+E(x(s+1)-x(t))(x(t)-x(s))- λ2=λ(s+1-t)= λ-λ(t-s)- λ2(3) 若t<s<t+1Cov(y(t),y(s))= E [x(t+1)-x(s)+x(s)-x(t)] [x(s+1)-x(t+1)+x(t+1)-x(s)]- λ2 =(x(t+1)-x(s))(x(s+1)-x(t+1))+E(x(t+1)-x(s))(x(t+1)-x(s))+E(x(s)-x(t))(x(s+1)-x(t+1))+E(x(s)-x(t))(x(t+1)-x(s))- λ2=0+λ(t+1-s)+0-λ2=λ+λ(t-s)- λ2(4) 若s>t+1 Cov(y(t),y(s))=0-λ2=-λ2由此知,故方差只与t-s有关,与t,s无关故此过程为宽平稳的。

第3章-通信原理-随机过程

第3章-通信原理-随机过程

第3章随机过程3.1 随机过程基本概念自然界中事物的变化过程可以大致分成为两类:(1) 确定性过程:其变化过程具有确定的形式,数学上可以用一个或几个时间t的确定函数来描述。

(2) 随机过程:没有确定的变化形式。

每次对它的测量结果没有一个确定的变化规律。

数学上,这类事物变化的过程不可能用一个或几个时间t的确定函数来描述。

随机信号和噪声统称为随机过程。

1. 随机过程的分布函数随机过程定义:设S k(k=1, 2, …)是随机试验。

每一次试验都有一条时间波形(称为样本函数),记作x i(t),所有可能出现的结果的总体{x1(t), x2(t),…, x n(t),…}构成一随机过程,记作ξ(t)。

无穷多个样本函数的总体叫做随机过程。

随机过程具有随机变量和时间函数的特点。

在进行观测前是无法预知是空间中哪一个样本。

在一个固定时刻t1,不同样本的取值x i(t1)是一个随机变量。

随机过程是处于不同时刻的随机变量的集合。

设ξ(t)表示一个随机过程,在任意给定的时刻t1其取值ξ(t1)是一个一维随机变量。

随机变量的统计特性可以用分布函数或概率密度函数来描述。

把随机变量ξ(t1)小于或等于某一数值x1的概率记为F1(x1, t1),即如果F1对x1的导数存在,即ξ (t)样本函数的总体(随机过程)11{()}P t xξ≤11111(,){()}F x t P t xξ=≤称为ξ(t)的一维概率密度函数。

同理,任给t 1, t 2, …, t n ∈T, 则ξ(t)的n 维分布函数被定义为为ξ(t)的n 维概率密度函数。

2. 随机过程的数字特征用数字特征来描述随机过程的统计特性,更简单直观。

数字特征是指均值、方差和相关系数。

是从随机变量的数字特征推广而来的。

(1) 数学期望(均值)表示随机过程的n 个样本函数曲线的摆动中心,即均值。

积分是对x 进行的,表示t 时刻各个样本的均值,不同时刻t 的均值构成摆动中心。

随机过程第3章

随机过程第3章

第三章 随机过程一. 随机过程的基本概念 1.1 随机过程的定义设(Ω,F ,P )为给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,P ΩF 上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}t X ω,{}t X 或(){}X t注:随机过程(){}:,t X t T ωω∈Ω∈是时间参数t 和样本点ω的二元函数,对于给定的时间0t ,是0(,)X t ω是概率空间(),,P ΩF 上的随机变量;对于给定样本点0ω∈Ω,0(,)X t ω是定义在T 上的实函数,此时称它为随机过程对应于0ω的一个样本函数,也成为样本轨道或实现。

E 称为随机过程的相空间,也成为状态空间,通常用“t X x =”表示t X 处于状态x1.2随机过程t X 按照时间和状态是连续还是离散可以分为四类:连续型随机过程、离散型随机过程、连续型随机序列、离散型随机序列1.3 有穷维分布函数设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值1,,n t t X X 构成n 维随机向量()1,,nt t X X ,其n 维联合分布函数为:()()11,,11,,,,nnt t n t t n F x x P X x X x =≤≤其n 维联合密度函数记为()1,,1,,nt t n f x x 。

我们称(){}1,,11,,:1,,,nt t n n F x x n t t T ≥∈ 为随机过程{}t X 的有穷维分布函数。

二.随机过程的数字特征 2.1 数学期望对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为()()tX t t E X xdF x μ+∞-∞==⎰()t E X 是时间t 的函数2.2 方差与矩随机过程{}t X 的二阶中心矩22()[(())],tX t t t Var X E X E X t T σ==-∈称为随机过程{}t X 的方差随机过程{}t X 的二阶原点矩定义为22()()tt E X x dF x +∞-∞=⎰注:2()X t σ是时间t 的函数,它描述了随机过程()X t 的诸样本对于其数学期望t μ的偏移程度2.3 协方差函数和自相关函数随机过程{}t X 对于任意12,t t T ∈,其协方差函数定义为12112212(,)(,)[(())(())]X t t t t t t c t t Cov X X E X E X X E X ==--当12t t t ==时,协方差函数就是方差随机过程{}t X 的自相关函数(相关函数)定义为121212(,)(),t t R t t E X X t t T =∈当12t t t ==时,自相关函数就是二阶原点矩。

概率论与随机过程:1-2,3 事件的概率 概率空间

概率论与随机过程:1-2,3 事件的概率 概率空间
解:试验为从1,2,……,N个数中有放回地依次取k 个数字,每k个数字的一个排列构成一个基本事件,因 此基本事件总数为Nk。
(1)因k个数字完全不同,实际为不可重复的排列,基本事件个数为:
C
k n
k!
P( A)
C
k n
k!
Nk
(2) 同理
P(B) (N r)k Nk
(3) 同理
P(C )
C
m k
(N
1) k m
Nk
(4) 在这k个数字中,最大数不大于M的取法有Mk种。而最
大数不大于M-1的取法有(M-1)k种。
P(D) M k (M 1)k Nk
例:取球,袋中a个白,b个红球,一一取出,不放回,
求事件Ak={第k次取出白球}的概率。 解:试验为将a+b个球编号一一不放回取出,全部取出
解:令B={恰有k件次品}
P(B)=?
P(B)
M k
N n
M k
N n
M件 次品
这是一种无放回抽样.
次品 正品
N-M件 正品
……
例3 n双相异的鞋共2n只,随机地分成n堆, 每堆2只 . 问:“各堆都自成一双鞋”(事件A)的 概率是多少?
解:把2n只鞋分成n堆,每堆2只
的分法总数为 (2n)!
a 1
N
b 2
所以,所求概率为:
P( A)
Ca ab
N
a 1
N
b 2
N ab
(二) 放球问题
n个球,随机的放入N个盒(n≤ N),每盒容量不限, 观察放法:
(1)某指定的n个盒中各有一个球A1,求P(A1); (2)恰有n个盒中各有一球A2,求P(A2); (3)某指定的盒子中恰有k个球A3,求P(A3).

通信原理第3讲随机过程

通信原理第3讲随机过程
脉冲噪声产生原因
脉冲噪声的产生与线路的物理性质、传输信号的特性以及周围环 境的干扰有关。
脉冲噪声影响
脉冲噪声会对信号造成干扰,导致数据传输错误,降低通信系统 的可靠性。
数字通信中的码间干扰
1 2 3
码间干扰定义
在数字通信中,由于信号的传输速率较高,前后 码元之间会产生相互干扰,这种现象称为码间干 扰。
意义
相关函数在通信系统中用于描述信号的时域特性和噪 声特性,对于信号的检测和识别具有重要意义。
功率谱密度和相关函数的关系
关系
功率谱密度和相关函数是描述随机信号特性的重要参数,它 们之间存在一定的关系。一般来说,功率谱密度和相关函数 可以互相推导,它们在描述信号的特性和分析通信系统时具 有互补性。
应用
描述随机过程在不同时刻取值之间的 相关性。
谱密度函数
描述随机过程的频率特性。
互相关函数
描述两个随机过程在不同时刻取值之 间的相关性。
交叉谱密度函数
描述两个随机过程的频率特性之间的 关系。
03
随机过程的平稳性和遍历 性
平稳随机过程
01
02
03
定义
如果一个随机过程的统计 特性不随时间的推移而变 化,则称该随机过程为平 稳随机过程。
多径衰落产生原因
无线信号在传播过程中会遇到多种障碍物,如建筑物、树 木等,这些障碍物会反射、折射和散射信号,导致接收端 接收到的信号包含多个路径的成分。
多径衰落影响
多径衰落会导致信号的幅度和相位发生变化,从而影响通 信质量,产生误码率,降低通信系统的性能。
有线通信中的脉冲噪声
脉冲噪声定义
在有线通信中,由于线路中存在阻抗不匹配、电磁干扰等原因, 会在信号中产生突发的脉冲噪声。

第三章 随机过程

第三章 随机过程
sin 0 tE cos cos 0 tE sin 2 2 1 1 sin 0 t cos d cos 0 t sin d 0 0 0 2 2
p2 x1 , x2 ; t1 , t2 p2 x1 , x2 ; t1 , t2 p2 x1 , x2 ; t1 t2

数字特征
E X ( t ) m X 2 D X ( t ) X
RX t1 , t2 R t1 t 2 R 2 C X t1 , t2 R m X C X ( )
第三章 随机过程
1
3.1 引言

通信系统中用于表示载荷信息的信号是 随机过程


不可能是单一的确定的而是各种不同的信号. 信息就包含于出现这种或那种信号之中. 例如二元信息需用二种信号表示具体出现哪 个 信号是随机的不可能准确预测 ,能预测则无 需通信了, 我们称这种具有随机性的信号为 随机信号.
2
随机干扰和随机噪声


通信系统中存在各种干扰和噪声, , 这些干扰 和噪声的波形更是各式各样随机的不可预测的. 我们称其为随机干扰和随机噪声 尽管随机信号和随机干扰(噪声)取何种波形 是不可预测的、随机的,但他们具有统计规律 性。研究随机信号和随机干扰统计规律性的数 学工具是随机过程理论
3
随机过程的一般表述
3.2.3两个随机过程的联合分布函数和 数字特征(续1)

互协方差函数:
C XY (t1 , t2 ) E{[ X (t1 ) mX (t1 )][Y (t2 ) mY (t2 )]}

互相关函数:
RXY (t1 , t2 ) E[ X (t1 )Y (t2 )]

随机过程第三章作业答案

随机过程第三章作业答案
k =0 ∞ ∞
Yk-1 ]] ≤ b ⋅ ∑ E[I{T ≥ k} ]
k =0
= b ⋅ ∑ P(T ≥ k) = b(1 + E[T]) < ∞,即E[W] < ∞
E[X k X k-1 ]=E[E[X k X k-1|X 0 X1 =E[X k-1E[X k |X 0 X1
2 2 ]-E[X k-1 ] ∴ E[Yk2 ]=E[X k n n
X k-1 ]] X k-1 ]]=E[X 2 k-1 ]
2 2 于是∑ Var(Yk ) = ∑ (E[X k ]-E[X 2 k-1 ]) = E[X n ]=Var(X n ) k =1 k =1
q X n ]]=E[( ) Xn+1 |X n ] p
6证明: k=1时,E[(X k -X k-1 )(Yk -Yk-1 )]=E[(X1 -X 0 )(Y1 -Y0 )]=E[X1Y1 ] k>1时,E[(X k -X k-1 )(Yk -Yk-1 )]=E[(X k Yk -X k-1Yk -X k Yk-1 +X k-1Yk-1 )] 又E[X k Yk-1 ]=E[E[X k Yk-1|Z0 ,Z1 E[X k-1Yk ]=E[E[X k-1Yk |Z0 ,Z1
= Zn ⋅ (0.5 ⋅ log 3 3+0.5 ⋅ log 3 1) = Zn ∴{Zn,n ≥ 1}关于{X n,n ≥ 1}的鞅。 事件{T=n}仅取决于σ (X1 ,X 2 X n),∴ T是停时,但不能用停时定理。 验证性说明:假设停时定理成立,则E[ZT ]=E[Zk ]=E[log 3 (1 + X k )]=1; 但由T=min{n:Zn =0}知ZT =0,即E[ZT ]=0,推出矛盾。 证明:验证停时定理1的三个条件; 条件1:P(T=∞)= lim ( 1 ) n = 0;即P(T<∞)=1,成立。 2 n →∞ 条件2:E[|ZT |]=E[|∏ log 3 (1 + X k )|]; ∵ log 3 (1+X k )=1或0, ∴ E[|ZT |]<∞,成立。

随机过程第三章-PPT

随机过程第三章-PPT
对于左边,若随机过程均方连续,则随机过程得自相关 函数,在上也处处连续。
总之,若随机过程处处均方连续,则它得自相关函数所 在上也处处连续,反之也成立。
性质3、1 若随机过程X(t)就m是 s 则它得数学期望也必定连续,即:
lim E[ X (t t)] E[ X (t)]
t 0
连续得,
E [| X (t t) X (t) |2 ]≥ E2[ X (t t) X (t)]≥ 0
性质3、2 如果自关函数RX (t1,t2 ) 在 t1 t2 时连 续,且存在二阶偏导数
2R t1t2 t1 t2
则随机过程在均方意义下存在导数(证明略)
应当指出,随机过程有导数,首先过程必须就是连
续得,但随机过程得连续性不能保证过程一定有
导数。
2、 随机过程得均方导数X (t) 得数学期望
E
lim
t1 0
X
(t1
t1 )
Y (t2 ) t1
X
(t1 )Y
(t2
)
lim E[ X (t1 t1)Y (t2 )] E[ X (t1)Y (t2 )]
t1 0
t1
lim RXY (t1 t1, t2 ) RXY (t1, t2 )
t1 0
t1
RXY (t1, t2 ) t1
x满足
lim E
n
xn x 2
0
则称随机变量序列xn依均方收敛于随机变量x,并记

lim
n
xn
x
或 xn m s (xm·s——就是英文Mean—Square缩写)
1、 两个均方收敛性判据
里斯—菲希尔定理:对随机变量序列
构造柯西序列
如果满足

现代通信原理 第3章 随机过程

现代通信原理 第3章 随机过程


自相关函数定义
R t1 , t2 E t1 t2



x1 x2 f 2 x1 , x2 ; t1 , t2 dx1dx2
(3-10)
用途:
a.用来判断广义平稳; b.用来求解随机过程的功率谱密度及平均功率。
自协方差与自相关函数之间的关系
程不一定是各态历经的。
例3-1:随机相位正弦波ξ(t)=sin(ωot+θ),其中 θ是 在(0~2π)内均匀分布的随机变量。问:
(1)ξ(t)是否广义平稳?
(2)ξ(t)是否各态历经?
解:
(1)由判定广义平稳的条件可知,如果a(t)为常 数, 而R(t,t+τ)仅与τ有关,则ξ(t)广义平稳。
a t E t E sin 0t sin 0t p d


(3-17)
为常数,这表示平稳随机过程的各样本函数围绕 着一水平线起伏。
同样,可以证明平稳随机过程的方差σ2(t)=σ2=
常数,表示它的起伏偏离数学期望的程度也是 常数。 而平稳随机过程ξ(t)的自相关函数 R(t1, t2)=E[ξ(t1)ξ(t1+τ)]=




x1 x2 f 2 ( x1 , x2 ; )dx1dx2 R( )
F2 ( x1 , x2 ; t1, t 2 ) P (t1 ) x1 , (t 2 ) x2
(3-5)

随机过程ξ (t)的二维概率密度函数
2 F2 ( x1, x2 ; t1,t2 ) f 2 ( x1, x2 ; t1, t2 ) x1 x2
(3-6)

随机过程课后习题答案

随机过程课后习题答案

标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。

求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。

解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。

3.随机过程基本知识

3.随机过程基本知识
B(t1,t2)=E{[ξ(t1)-a(t1)][ξ(t2)-a(t2)]}
= [x1 a(t1)][ x2 a(t2 )]f2(x1,x2; t1,t2)dx1dx2
式中,t1与t2是任取的两个时刻;a(t1)与a(t2)为在t1及t2时刻 得到的数学期望;f2(x1,x2; t1,t2)为二维概率密度函数。
随机变量的统计特性: 概率分布函数F(x) 概率密度函数f(x)
随机变量的数字特征: 数学期望a、方差σ2 协方差和相关系数
3.1.2 随机过程的统计特性
随机过程的两重性使我们可以用与描述随机变量相似的方 法, 来描述它的统计特性。
设ξ(t)表示一个随机过程,在任意给定的时刻t1∈T, 其取 值ξ(t1)是一个一维随机变量。而随机变量的统计特性可以用分布 函数或概率密度函数来描述。 1) 随机过程ξ(t)的一维分布函数(取一个时刻):
程在不同时刻取值之间的内在联系,为此需要进一步引入二维
分布函数。
3).随机过程ξ(t)的二维分布函数
任给两个时刻t1, t2∈T,则随机变量ξ(t1)和ξ(t2)构成一个二
元随机变量{ξ(t1), ξ(t2)},称
F2(x1,x2; t1,t2)=P{ξ(t1)≤x1, ξ(t2)≤x2}
(3.1 - 3)
nFn (x1, x2...;t1,t2...,tn ) x1 x2...xn
f (x1, x2...,xn;t1,t2...,tn )
则称fn(x1,x2,…,xn; t1,t2,…,tn)为ξ(t)的n维概率密度函数。显
然,n越大,对随机过程统计特性的描述就越充分,但问题
的复杂性也随之增加。在一般实际问题中,掌握二维分布函
随机过程的数学期望a(t)是时间t的函数,它表示随机过程 的n个样本函数曲线的摆动中心。在随机化信号或噪声中,

随机过程作业和答案第三章

随机过程作业和答案第三章

随机过程作业和答案第三章第三章马尔科夫过程1、将⼀颗筛⼦扔多次。

记X n 为第n 次扔正⾯出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出⼀步转移概率矩阵。

⼜记Y n 为前n 次扔出正⾯出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出⼀步转移概率矩阵。

解:1)由已知可得,每次扔筛⼦正⾯出现的点数与以前的状态⽆关。

故X(n)是马尔科夫链。

E={1,2,3,4,5,6} ,其⼀步转移概率为:P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为2)由已知可得,每前n 次扔正⾯出现点数的总和是相互独⽴的。

即每次n 次扔正⾯出现点数的总和与以前状态⽆关,故Y(n)为马尔科夫链。

其⼀步转移概率为其中2、⼀个质点在直线上做随机游动,⼀步向右的概率为p , (0解:由已知可得, 其⼀步转移概率如下:故⼀步转移概率为3、做⼀系列独⽴的贝努⾥试验,其中每⼀次出现“成功”的概率为p ( 0解:由已知得:故为马尔科夫链,其⼀步转移概率为616161616161616161616161616161616161P6,,2,1,6/1,,8,7,,0)1,( i i i j i j i i i j ij n n P 或)1(6,,2,1;6,,2,1, n n n j n n n n i ,,2,1,0 E )(0,1;)0(0,1)1,1(0,,1,,2,1101,1, j P P j P P i i j P q P P P x j j ij i i i i ⽽时,当 1000000 0000000001Pp q p q p qm m m m m m i n X l n X i n X i n X i n X l n X P )(0)()(,,)(,)(0)(2211mm m m m m in X k l n X i n X i n X i n X k l n X P )()()(,,)(,)()(22114、在⼀个罐⼦中放⼊50个红球和50个蓝球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 随机过程基本概念
第5页
定理1 对于连续概率分布情况,两个随机过程 X ( t ),Y (t ) 相互 独立的充分必要条件是:对于任意的 m 1, n 1 和 t , t / 有
f ( x, t , y, t / ) f X ( x, t ) fY ( y, t / )
其中 f X ( x, t ), fY ( y, t / ) 分别是 X ( t ),Y (t ) 的 m 维和 n 维分布密度。
记 FX ( x, t ) P{ X (t ) x} 为随机过程 X ( t ) 的 m 维分布 函数,又记 FY ( y, t / ) P{Y (t / ) y} 为随机过程 Y(t) 的 n 维 分布函数。
/ 如果对任意 m 1, n 1 和 t , t 有
F ( x, t , y, t / ) FX ( x, t )FY ( y, t / )
第2页
/ / ( X ( t1 ), X ( t2 ),..., X (tm ),Y (t1/ ),Y (t 2 ),...,Y (t n ))
的联合分布函数
/ F ( x1 ,..., xm ; t1 ,..., tm ; y1 ,..., yn ; t1/ ,..., tn )
/ P{ X (t1 ) x1 ,..., X (tm ) xm ,Y (t1/ ) y1 ,...,Y (t n ) yn }
{( X ( t ),Y ( t )) , t T }
为二维随机过程。类似于对前面随机过程的分析,可以定 义二维随机过程的有限维分布和数字特征。
第1章 随机过程基本概念
/ / 对任意 m 1, n 1, t1 , t 2 ,...t m T , t1/ , t 2 ,..., t n T ,作 m+n 维随机矢量
第1章 随机过程基本概念
第1页
§3 两个随机过程的联合分布和数字特征
在实际中有时需要同时考虑两个或两个以上随机过程的统计 特性。例如,把一个随机信号 X ( t ) 输入到一个线性系统,那么 系统的输出也是随机过程,记为Y ( t ),实际中需要讨论输入随 机过程 X ( t ) 和输出随机过程 Y ( t ) 之间的联系,从而要考察它 们的联合统计特性。下面仅讨论两个随机过程的情形。 设 X (t ),Y (t ) , T 是两个随机过程,则称 t
第1章 随机过程基本概念 那么称随机过程 X( t ) 与 Y ( t ) 相互独立。
第4页
相互独立性反映了两个随机过程在演变的过程中是互不影 响的。 在连续概率分布情形,称
/ f ( x1 ,..., xm ; t1 ,..., tm ; y1 ,..., yn ; t1/ ,..., tn )
RXY ( t1 , t2 ) E[ X ( t1 )Y ( t 2 )], t1 , t 2 T
定义为随机过程 X (t ),Y (t ) 的互相关函数。
第1章 随机过程基本概念 连续概率分布情况下,有
第6页
C XY ( t1 , t 2 )




[ x m X ( t1 )][ y mY (t 2 )] f ( x , y; t1 , t 2 )dxdy

RXY ( t1 , t2 )


xyf ( x , y; t1 , t 2 )dxdy
互协方差和互相关函数有如下关系
பைடு நூலகம்
C XY ( t1 , t 2 ) RXY (t1 , t 2 ) m X (t1 )mY (t 2 )
若 C XY (t1 , t2 ) 0 或 RXY (t1 , t2 ) mX (t1 )mY (t 2 ) ,则称随机 过程 X ( t ) 与 Y ( t ) 不相关。
/ m n F ( x1 ,..., xm ; t1 ,..., t m ; y1 ,..., yn ; t1/ ,..., t n ) x1 xm y1 yn
为二维随机过程 ( X (t ),Y ( t )) 的m+n维联合密度函数,
简记为 f ( x, t , y, t / ).
第1章 随机过程基本概念 定理2 若随机过程 X (t ),Y (t )(t T ) 相互独立,则 X (t ),Y (t ) 不相关。
第7页
事实上,若随机过程 X ( t )与Y ( t ) 相互独立,在独立 的定义中取 m n 1 ,则对任意固定的 t1 , t 2 T 有 X (t1 )与Y ( t2 ) 相互独立;又由概率论中随机变量的独立
性可推出 X (t1 )与Y ( t2 ) 不相关,即
E[ X ( t1 )Y ( t 2 )] EX ( t1 ) EY ( t 2 )
故有随机过程 X ( t )与Y ( t ) 互不相关。
其中
t ( t1 ,..., t m ) ; x ( x1 ,..., xm ) ;
/ t / ( t1/ ,..., t n )
y ( y1 ,..., yn ) ;
/ X (t ) ( X (t1 ),..., X (tm )) ; Y (t / ) (Y ( t1/ ),...,Y ( tn ))
考虑二维随机过程 {( X ( t ),Y ( t )) , t T } ,定义
C XY ( t1 , t2 ) E[ X (t1 ) m X (t1 ))(Y (t 2 ) mY (t 2 ))], t1 , t 2 T
为随机过程 X (t ),Y (t ) 的互协方差,而
称之为二维随机过程 ( X ( t ),Y ( t )) 的 m+n 维(联合) 分布函数。
用向量表示,即
F ( x, t , y, t ) P{ X (t ) x,Y (t ) y}
/ /
第1章 随机过程基本概念
第3页
F ( x, t , y, t / ) P{ X (t ) x,Y (t / ) y}
相关文档
最新文档