Dirac fields in a Bohm-Aharonov background and spectral boundary conditions
pickands-balkema-de haan定理 -回复
pickands-balkema-de haan定理-回复海因里希·哈恩(Heinrich Johann Martin Hahn)是19世纪德国数学家,他在数学策略上做出了重要贡献。
他的最著名的成就之一是哈恩定理(The Hahn Pick' s theorem),它是一个关于格点的性质的定理。
哈恩定理在数学中有广泛的应用,尤其是在代数几何和组合数学领域。
这个定理提供了一种计算有理数格点的数量的方法,并且还可以用来证明一些与凸集和点的包围问题有关的结果。
该定理的主要思想是通过指定一个适当的多面体,计算多边形内的格点数,从而得到有理数格点的数量。
为了更好地理解和应用哈恩定理,让我们一步一步地回答一些重要的问题。
问题1:什么是格点?格点是指在一个二维或三维的笛卡尔坐标系中,坐标都是整数的点。
格点可以在平面上或者空间中形成一个离散的点集。
例如,在平面上,格点可以表示为(x, y),其中x和y都是整数。
问题2:哈恩定理是什么?哈恩定理是一个关于格点的定理,它给出了一个计算有理数格点数量的方法。
它是通过指定一个适当的多面体,计算多边形内的格点数。
对于一个多边形P,如果它的顶点都是有理数坐标,且通过多边形内的每个格点的线段都与多边形的一条边相交,则哈恩定理给出了一个计算P内格点数量的公式:A = I + B/2 - 1,其中A表示P内的格点数量,I表示P内的边界格点数量,B表示P内边界以外的格点数量。
问题3:如何证明哈恩定理?哈恩定理的证明相对复杂,需要借助一些几何和代数的概念。
证明的基本思想是将多边形P分割为一系列三角形,并计算每个三角形内的格点数量。
然后,将这些三角形的格点数量相加,即可得到整个多边形P内的格点数量。
证明的关键步骤包括:1. 将多边形P的顶点表示为有理数坐标。
这可以通过有理数参数化来实现,将多边形的边表示为有理数函数,并求解相应的交点得到顶点坐标。
2. 将多边形P分割为一系列三角形,使每个三角形的顶点都是有理数坐标。
哈夫曼编解码算法设计
哈夫曼编解码算法设计1.引言1.1 概述概述部分将对哈夫曼编解码算法进行简要介绍,包括该算法的产生背景、主要特点以及应用领域等方面的内容。
哈夫曼编解码算法是一种基于权重分布的压缩算法,它通过对输入的数据流进行编码和解码来实现数据的压缩和恢复。
该算法由大卫·哈夫曼(David A. Huffman)于1952年提出,是一种被广泛应用于信息论和数据压缩领域的有效算法。
该算法的主要特点是根据输入数据的权重分布构建一棵哈夫曼树,通过不等长的编码方式来表示输入数据中出现频率较高的字符或数据块。
编码时,出现频率较高的字符使用较短的二进制编码,而出现频率较低的字符则使用较长的二进制编码,以此来实现数据的压缩效果。
哈夫曼编码算法在数据压缩领域有着广泛的应用。
由于压缩后的数据长度较短,可以大大节省存储空间和传输带宽,因此被广泛应用于各种数据传输和存储场景中,如文件压缩、图像压缩、语音压缩等。
此外,哈夫曼编码算法的设计思想也对后续的数据压缩算法提供了重要的借鉴和参考价值。
本文将详细介绍哈夫曼编码算法的原理、设计与实现,并通过实例和实验验证算法的性能和效果。
通过对哈夫曼编码算法的研究与分析,可以更好地理解该算法的优势和不足,并为后续的算法改进和优化提供参考。
最后,本文将总结哈夫曼编码算法的主要特点和应用场景,并对未来的研究方向提出展望。
1.2 文章结构文章结构部分主要介绍本文的各个部分以及每个部分的内容安排。
在本文中,共包含引言、正文和结论三个部分。
引言部分主要介绍了整篇文章的背景和目的。
在概述部分,简要说明了哈夫曼编解码算法的概念和作用,以及该算法在通信领域的重要性。
然后,文章结构部分具体说明了本文的组织结构,以便读者能够清晰地了解文章的整体脉络。
正文部分是本文的主体,分为两个部分:哈夫曼编码算法原理和哈夫曼编码算法设计与实现。
在哈夫曼编码算法原理部分,将详细介绍哈夫曼编码算法的基本原理,包括频率统计、构建哈夫曼树和生成哈夫曼编码等步骤。
外文翻译---基于离散混沌映射的图像加密并行算法
3.转换
3.1.A-转换
在A转换中,A代表加,能被形式化的定义如下:
a+b=c(1)
加法被定义为按位与操作
转换A有三个基本性质:
(2.1)a+a=0
(2.2)a+b=b+a(2)
(2.3)(a+b)+c=a+(b+c)
在并行模式计算时,许多的PE可以同时读取或写入相同的内存区域(即临界区),
这往往会导致意想不到的执行程序。因此,有必要在关键区域使用一些并行技术管理。
2.2.并行图像的加密框架
为了满足上述要求,我们提出了一个并行图像加密的框架,这是一个四个步骤的过程:
步骤1:整个图像被划分成若干块。
步骤2:每个PE负责确定数量块。一个区域内的像素可以充分使用有效的混乱和扩散进行操作加密。
附件C:译文
基于离散混沌映射的图像加密并行算法
摘要:
最近,针对图像加密提出了多种基于混沌的算法。然而,它们都无法在并行计算环境中有效工作。在本文中,我们提出了一个并行图像加密的框架。基于此框架内,一个使用离散柯尔莫哥洛夫流映射的新算法被提出。它符合所有并行图像加密算法的要求。此外,它是安全、快速的。这些特性使得它是一个很好的基于并行计算平台上的图像加密选择。
这个框架可以非常有效的实现整个图像的扩散。但是,它是不适合在并行计算环境中运行。这是因为当前像素的处理无法启动直到前一个像素已加密。即使有多个处理元素(PE),这种计算仍然是在一个串行模式下工作。此限制了其应用平台,因为许多基于FPGA / CPLD或者数字电路的设备可以支持并行处理。随着并行计算技术的应用,加密速度可以大大加快。
第21届高性能体系结构大会
CCF 推荐A 类国际学术会议介绍第21届高性能体系结构大会梁 云 谢小龙北京大学关键词:高性能计算 体系结构Modha)博士的报告是关于大脑计算。
在过去十年中,莫德哈一直致力于一个由纳米科技、超级计算机、仿生学技术等组成的大脑计算项目。
该项目旨在理解动物大脑的组成方式和计算方法,并且采用最新型的人类科研成果来制造一台模拟大脑运行的计算机。
目前,该项目已在某些方面实现了一个猫的大脑功能,并被媒体广泛报道。
微软研究院戴夫·维克(Dave Wecker)博士的主题报告是关于量子计算。
相比于传统的基于晶体管的计算机,量子计算机可以提供指数级增长的计算能力。
但是这也带来了一些挑战。
要想完全发挥量子计算机的威力,必须要开发新的编程语言、编译器和设计工具。
他介绍了对量子算法的模拟。
论文概况本次大会共收到226篇投稿,录取了51篇,录取率为22.6%。
会议采用两轮双盲评审,在审稿人给出审稿意见和评分之后,每一篇论文都会获得一个辩驳(rebuttal)的机会,允许投稿人用800个单词来回答审稿人的问题,审稿人根据投稿人的回答做出最终的决定。
较低的录取率、审稿人的严格审核和投稿人的辛勤工作,一起为大会呈现了高水平的论文。
作为一个体系结构和高性能计算类会议,HPCA 一直关注着传统体系结构的发展和变化。
在录取的51篇论文中,多核结构、互联网络、缓存设计、自2009年中国科学院计算技术研究所研究员陈云霁发表了中国大陆学者在高性能体系结构大会(International Symposium on High Performance Com-puter Architecture, HPCA)上的首篇文章后,大陆学者再接再厉,又有北京大学、国防科学技术大学、上海交通大学等多家单位相继在HPCA 上发表论文,目前已达10余篇(每年1~2篇)。
在今年召开的第21届高性能体系结构大会上,北京大学研究员梁云课题组关于GPU 缓存旁路的论文被录取。
隐马尔可夫算法
隐马尔可夫算法隐马尔可夫算法(Hidden Markov Model,HMM)是一种基于统计学的建模方法,经常应用于语音识别、手写体识别、自然语言处理等领域。
HMM的基本思想是,通过观测到的数据序列来推断隐含的状态序列,然后利用这个状态序列进行预测或决策。
HMM模型由三个部分构成:状态序列、观测序列和模型参数。
其中,状态序列包含模型中可能存在的所有状态,如语音识别中可能是说话者的语速、音调等特征;观测序列则是我们实际观测到的数据,如语音信号的音频波形;模型参数则是用来定量描述状态转移概率、观测概率和初始状态概率的参数。
通过这三个部分的组合,可以构建起一个完整的HMM模型。
HMM模型的训练过程通常采用最大似然估计方法,即根据已知的观测序列,利用EM算法估计出最优的模型参数。
在预测或决策时,通常利用前向-后向算法(Forward-Backward Algorithm)计算出给定观测序列下每个状态的概率,并选择概率最大的状态序列作为预测结果。
预测和决策结果的准确度取决于模型参数的设置和训练数据的质量。
HMM算法的优点在于可以处理不完整数据和噪声,而且可以考虑到时间相关性。
因此,在语音识别、自然语言处理等领域中得到了广泛的应用。
然而,HMM模型也存在一些缺点,如模型训练需要大量时间和计算资源、模型中难以处理复杂的长程依赖关系等。
因此,在实际应用中需要根据具体情况选择最合适的模型。
总之,HMM算法是一种广泛应用于统计学建模的方法,其在语音识别、手写体识别、自然语言处理和生物信息学等领域中有着广泛的应用。
虽然它也存在一些缺点,但是凭借着它的优点,HMM算法仍然是一种值得深入研究和应用的算法。
Ornstein–Uhlenbeck process - Wikipedia, the f
Ornstein–Uhlenbeck process - Wikipedia,the f...Ornstein–Uhlenbeck process undefinedundefinedFrom Wikipedia, the free encyclopediaJump to: navigation, searchNot to be confused with Ornstein–Uhlenbeck operator.In mathematics, the Ornstein–Uhlenbeck process (named after LeonardOrnstein and George Eugene Uhlenbeck), is a stochastic process that, roughly speaking, describes the velocity of a massive Brownian particle under the influence of friction. The process is stationary, Gaussian, and Markov, and is the only nontrivial process that satisfies these three conditions, up to allowing linear transformations of the space and time variables.[1] Over time, the process tends to drift towards its long-term mean: such a process is called mean-reverting.The process x t satisfies the following stochastic differential equation:where θ> 0, μ and σ> 0 are parameters and W t denotes the Wiener process. Contents[hide]1 Application in physical sciences2 Application in financialmathematics3 Mathematical properties4 Solution5 Alternative representation6 Scaling limit interpretation7 Fokker–Planck equationrepresentation8 Generalizations9 See also10 References11 External links[edit] Application in physical sciencesThe Ornstein–Uhlenbeck process is a prototype of a noisy relaxation process. Consider for example a Hookean spring with spring constant k whose dynamics is highly overdamped with friction coefficient γ. In the presence of thermal fluctuations with temperature T, the length x(t) of the spring will fluctuate stochastically around the spring rest length x0; its stochastic dynamic is described by an Ornstein–Uhlenbeck process with:where σ is derived from the Stokes-Einstein equation D = σ2 / 2 = k B T / γ for theeffective diffusion constant.In physical sciences, the stochastic differential equation of an Ornstein–Uhlenbeck process is rewritten as a Langevin equationwhere ξ(t) is white Gaussian noise with .At equilibrium, the spring stores an averageenergy in accordance with the equipartition theorem.[edit] Application in financial mathematicsThe Ornstein–Uhlenbeck process is one of several approaches used to model (with modifications) interest rates, currency exchange rates, and commodity prices stochastically. The parameter μ represents the equilibrium or mean value supported by fundamentals; σ the degree of volatility around it caused by shocks, and θ the rate by which these shocks dissipate and the variable reverts towards the mean. One application of the process is a trading strategy pairs trade.[2][3][edit] Mathematical propertiesThe Ornstein–Uhlenbeck process is an example of a Gaussian process that has a bounded variance and admits a stationary probability distribution, in contrast tothe Wiener process; the difference between the two is in their "drift" term. For the Wiener process the drift term is constant, whereas for the Ornstein–Uhlenbeck process it is dependent on the current value of the process: if the current value of the process is less than the (long-term) mean, the drift will be positive; if the current valueof the process is greater than the (long-term) mean, the drift will be negative. In other words, the mean acts as an equilibrium level for the process. This gives the process its informative name, "mean-reverting." The stationary (long-term) variance is given byThe Ornstein–Uhlenbeck process is the continuous-time analogue ofthe discrete-time AR(1) process.three sample paths of different OU-processes with θ = 1, μ = 1.2, σ = 0.3:blue: initial value a = 0 (a.s.)green: initial value a = 2 (a.s.)red: initial value normally distributed so that the process has invariant measure [edit] SolutionThis equation is solved by variation of parameters. Apply Itō–Doeblin's formula to thefunctionto getIntegrating from 0 to t we getwhereupon we seeThus, the first moment is given by (assuming that x0 is a constant)We can use the Itōisometry to calculate the covariance function byThus if s < t (so that min(s, t) = s), then we have[edit] Alternative representationIt is also possible (and often convenient) to represent x t (unconditionally, i.e.as ) as a scaled time-transformed Wiener process:or conditionally (given x0) asThe time integral of this process can be used to generate noise with a 1/ƒpower spectrum.[edit] Scaling limit interpretationThe Ornstein–Uhlenbeck process can be interpreted as a scaling limit of a discrete process, in the same way that Brownian motion is a scaling limit of random walks. Consider an urn containing n blue and yellow balls. At each step a ball is chosen at random and replaced by a ball of the opposite colour. Let X n be the number of blueballs in the urn after n steps. Then converges to a Ornstein–Uhlenbeck process as n tends to infinity.[edit] Fokker–Planck equation representationThe probability density function ƒ(x, t) of the Ornstein–Uhlenbeck process satisfies the Fokker–Planck equationThe stationary solution of this equation is a Gaussian distribution with mean μ and variance σ2 / (2θ)[edit ] GeneralizationsIt is possible to extend the OU processes to processes where the background driving process is a L évy process . These processes are widely studied by OleBarndorff-Nielsen and Neil Shephard and others.In addition, processes are used in finance where the volatility increases for larger values of X . In particular, the CKLS (Chan-Karolyi-Longstaff-Sanders) process [4] with the volatility term replaced by can be solved in closed form for γ = 1 / 2 or 1, as well as for γ = 0, which corresponds to the conventional OU process.[edit ] See alsoThe Vasicek model of interest rates is an example of an Ornstein –Uhlenbeck process.Short rate model – contains more examples.This article includes a list of references , but its sources remain unclear because it has insufficient inline citations .Please help to improve this article by introducing more precise citations where appropriate . (January 2011)[edit ] References^ Doob 1942^ Advantages of Pair Trading: Market Neutrality^ An Ornstein-Uhlenbeck Framework for Pairs Trading ^ Chan et al. (1992)G.E.Uhlenbeck and L.S.Ornstein: "On the theory of Brownian Motion", Phys.Rev.36:823–41, 1930. doi:10.1103/PhysRev.36.823D.T.Gillespie: "Exact numerical simulation of the Ornstein–Uhlenbeck process and its integral", Phys.Rev.E 54:2084–91, 1996. PMID9965289doi:10.1103/PhysRevE.54.2084H. Risken: "The Fokker–Planck Equation: Method of Solution and Applications", Springer-Verlag, New York, 1989E. Bibbona, G. Panfilo and P. Tavella: "The Ornstein-Uhlenbeck process as a model of a low pass filtered white noise", Metrologia 45:S117-S126,2008 doi:10.1088/0026-1394/45/6/S17Chan. K. C., Karolyi, G. A., Longstaff, F. A. & Sanders, A. B.: "An empirical comparison of alternative models of the short-term interest rate", Journal of Finance 52:1209–27, 1992.Doob, J.L. (1942), "The Brownian movement and stochastic equations", Ann. of Math.43: 351–369.[edit] External linksA Stochastic Processes Toolkit for Risk Management, Damiano Brigo, Antonio Dalessandro, Matthias Neugebauer and Fares TrikiSimulating and Calibrating the Ornstein–Uhlenbeck process, M.A. van den Berg Calibrating the Ornstein-Uhlenbeck model, M.A. van den BergMaximum likelihood estimation of mean reverting processes, Jose Carlos Garcia FrancoRetrieved from ""。
埃农映射的不动点
埃农映射的不动点埃农映射(Arnold's cat map)是一种具有周期性的非线性映射,最早由Vladimir I. Arnold在1968年引入,用来说明质点在二维平面上的运动轨迹。
这个映射的非线性特点使得它具有许多有趣的数学性质,其中之一是存在不动点。
埃农映射可以形象地理解为将一个正方形的平面划分为一个个小的正方形,并按照一定的规则对小正方形进行旋转和重新排列,从而得到新的平面。
这个过程可以表示为一个二维的矩阵乘法。
具体而言,给定一个矩阵```A = [[2, 1],[1, 1]]```和一个二维向量```X = [x, y]```则埃农映射可以表示为```A * X (mod 1)```其中mod 1表示取余数。
根据埃农映射的定义,我们可以通过反复将一个点进行映射来观察它在平面上的运动轨迹。
令一个初始点为(X0, Y0),经过n次映射后得到(Xn, Yn)。
当(Xn, Yn) = (X0, Y0)时,我们称它为一个周期为n的不动点,表示在n次映射后,点回到了初始的位置。
埃农映射具有非常有趣的周期性特征。
事实上,对于一个正方形的平面而言,埃农映射的周期为n的不动点共有n个。
这意味着在平面上存在很多很多的周期性轨迹,这些轨迹之间又有着复杂的交织关系。
这种周期性特征是埃农映射非线性性质的直接体现,也是它被广泛研究和应用的原因之一。
埃农映射及其不动点的研究在许多领域中都有重要的应用。
在动力系统中,埃农映射是研究混沌现象的一个重要模型。
混沌现象是指非线性动力系统中出现的无规律、无周期的运动。
埃农映射的周期特性使得它成为理解混沌现象的基础模型之一。
在密码学中,埃农映射的周期性特征被应用于设计密码算法。
利用埃农映射的特性,可以生成一系列随机数,并通过一定的操作将这些随机数转化为密码所需的扰动序列。
这种基于埃农映射的密码算法被广泛应用于信息安全领域。
此外,在图像处理和数据压缩领域,埃农映射也有一定的应用。
The Laplacian of a uniform hypergraph
The Laplacian of a Uniform Hypergraph∗Shenglong Hu†,Liqun Qi‡February5,2013AbstractIn this paper,we investigate the Laplacian,i.e.,the normalized Laplacian tensor of a k-uniform hypergraph.We show that the real parts of all the eigenvalues of theLaplacian are in the interval[0,2],and the real part is zero(respectively two)if andonly if the eigenvalue is zero(respectively two).All the H+-eigenvalues of the Laplacianand all the smallest H+-eigenvalues of its sub-tensors are characterized through thespectral radii of some nonnegative tensors.All the H+-eigenvalues of the Laplacianthat are less than one are completely characterized by the spectral components of thehypergraph and vice verse.The smallest H-eigenvalue,which is also an H+-eigenvalue,of the Laplacian is zero.When k is even,necessary and sufficient conditions for thelargest H-eigenvalue of the Laplacian being two are given.If k is odd,then its largest H-eigenvalue is always strictly less than two.The largest H+-eigenvalue of the Laplacianfor a hypergraph having at least one edge is one;and its nonnegative eigenvectors arein one to one correspondence with theflower hearts of the hypergraph.The secondsmallest H+-eigenvalue of the Laplacian is positive if and only if the hypergraph isconnected.The number of connected components of a hypergraph is determined bythe H+-geometric multiplicity of the zero H+-eigenvalue of the Lapalacian.Key words:Tensor,eigenvalue,hypergraph,LaplacianMSC(2010):05C65;15A181IntroductionIn this paper,we establish some basic facts on the spectrum of the normalized Laplacian tensor of a uniform hypergraph.It is an analogue of the spectrum of the normalized Lapla-cian matrix of a graph[6].This work is derived by the recently rapid developments on both ∗To appear in:Journal of Combinatorial Optimization.†Email:Tim.Hu@connect.polyu.hk.Department of Applied Mathematics,The Hong Kong Polytechnic University,Hung Hom,Kowloon,Hong Kong.‡Email:maqilq@.hk.Department of Applied Mathematics,The Hong Kong Polytechnic Uni-versity,Hung Hom,Kowloon,Hong Kong.This author’s work was supported by the Hong Kong Research Grant Council(Grant No.PolyU501909,502510,502111and501212).1the spectral hypergraph theory [7,16,19–21,23,27,29,30,33–35]and the spectral theory of tensors [4,5,11,13–15,17,19–22,24–26,28,31,32,36].The study of the Laplacian tensor for a uniform hypergraph was initiated by Hu and Qi [16].The Laplacian tensor introduced there is based on the discretization of the higher order Laplace-Beltrami operator.Following this,Li,Qi and Yu proposed another definition of the Laplacian tensor [19].Later,Xie and Chang introduced the signless Laplacian tensor for a uniform hypergraph [33,34].All of these Laplacian tensors are in the spirit of the scheme of sums of powers.In formalism,they are not as simple as their matrix counterparts which can be written as D −A or D +A with A the adjacency matrix and D the diagonal matrix of degrees of a graph.Also,this approach only works for even-order hypergraphs.Very recently,Qi [27]proposed a simple definition D −A for the Laplacian tensor and D +A for the signless Laplacian tensor.Here A =(a i 1...i k )is the adjacency tensor of a k -uniform hypergraph and D =(d i 1...i k )the diagonal tensor with its diagonal elements being the degrees of the vertices.This is a natural generalization of the definition for D −A and D +A in spectral graph theory [3].The elements of the adjacency tensor,the Laplacian tensor and the signless Laplacian tensors are rational numbers.Some results were derived in [27].More results are expected along this simple and natural approach.On the other hand,there is another approach in spectral graph theory for the Laplacian of a graph [6].Suppose that G is a graph without isolated vertices.Let the degree of vertex i be d i .The Laplacian,or the normalized Laplacian matrix,of G is defined as L =I −¯A ,where I is the identity matrix,¯A =(¯a ij )is the normalized adjacency matrix,¯a ij =1√d i d j ,if vertices i and j are connected,and ¯a ij =0otherwise.This approach involves irrational numbers in general.However,it is seen that λis an eigenvalue of the Laplacian L if and only if 1−λis an eigenvalue of the normalized adjacency matrix ¯A.A comprehensive theory was developed based upon this by Chung [6].In this paper,we will investigate the normalized Laplacian tensor approach.A formal definition of the normalized Laplacian tensor and the normalized adjacency tensor will be given in Definition 2.7.In the sequel,the normalized Laplacian tensor is simply called the Laplacian as in [6],and the normalized adjacency tensor simply as the adjacency tensor.In this paper,hypergraphs refer to k -uniform hypergraphs on n vertices.For a positive integer n ,we use the convention[n ]:={1,...,n }.Let G =(V,E )be a k -uniform hypergraph with vertex set V =[n ]and edge set E ,and d i be the degree of the vertex i .If k =2,then G is a graph.For a graph,let λ0≤λ1≤···≤λn −1be the eigenvalues of L in increasing order.The following results are fundamental in spectral graph theory [6,Section 1.3].(i)λ0=0andi ∈[n −1]λi ≤n with equality holding if and only if G has no isolated vertices.(ii)0≤λi ≤2for all i ∈[n −1],and λn −1=2if and only if a connected component of Gis bipartite and nontrivial.2(iii)The spectrum of a graph is the union of the spectra of its connected components. (iv)λi=0andλi+1>0if and only if G has exactly i+1connected components.I.Ourfirst major work is to show that the above results can be generalized to the Laplacian L of a uniform hypergraph.Let c(n,k):=n(k−1)n−1.For a k-th order n-dimensional tensor,there are exactly c(n,k)eigenvalues(with algebraic multiplicity)[13,24]. Letσ(L)be the spectrum of L(the set of eigenvalues,which is also called the spectrum of G).Then,we have the followings.(i)(Corollary3.2)The smallest H-eigenvalue of L is zero.(Proposition3.1)m(λ)λ≤c(n,k)with equality holding if and only if G has noλ∈σ(L)isolated vertices.Here m(λ)is the algebraic multiplicity ofλfor allλ∈σ(L).(ii)(Theorem3.1)For allλ∈σ(L),0≤Re(λ)with equality holding if and only ifλ=0;and Re(λ)≤2with equality holding if and only ifλ=2.(Corollary6.2)When k is odd,we have that Re(λ)<2for allλ∈σ(L).(Theorem6.2/Corollary6.5)When k is even,necessary and sufficient conditions are given for2being an eigenvalue/H-eigenvalue of L.(Corollary6.6)When k is even and G is k-partite,2is an eigenvalue of L.(iii)(Theorem3.1together with Lemmas2.1and3.3)Viewed as sets,the spectrum of G is the union of the spectra of its connected components.Viewed as multisets,an eigenvalue of a connected component with algebraic multiplic-ity w contributes to G as an eigenvalue with algebraic multiplicity w(k−1)n−s.Here s is the number of vertices of the connected component.(iv)(Corollaries3.2and4.1)Let all the H+-eigenvalues of L be ordered in increasing order asµ0≤µ1≤···≤µn(G)−1.Here n(G)is the number of H+-eigenvalues of L(with H+-geometric multiplicity),see Definition4.1.Thenµn(G)−1≤1with equality holding if and only if|E|>0.µ0=0;andµi−2=0andµi−1>0if and only if log2i is a positive integer and G has exactly log2i connected components.Thus,µ1>0if and only if G is connected.On top of these properties,we also show that the spectral radius of the adjacency tensor of a hypergraph with|E|>0is equal to one(Lemma3.2).The linear subspace generated by the nonnegative H-eigenvectors of the smallest H-eigenvalue of the Laplacian has dimension exactly the number of the connected components of the hypergraph(Lemma3.4).Equalities that the eigenvalues of the Laplacian should satisfy are given in Proposition3.1.The only two H+-eigenvalues of the Laplacian of a complete hypergraph are zero and one(Corollary 4.2).We give the H+-geometric multiplicities of the H+-eigenvalues zero and one of the Laplacian respectively in Lemma4.4and Proposition4.2.We show that when k is odd and G is connected,the H-eigenvector of L corresponding to the H-eigenvalue zero is unique3(Corollary6.4).The spectrum of the adjacency tensor is invariant under multiplication by any s-th root of unity,here s is the primitive index of the adjacency tensor(Corollary6.3). In particular,the spectrum of the adjacency tensor of a k-partite hypergraph is invariant under multiplication by any k-th root of unity(Corollary6.6).II.Our second major work is that we study the smallest H+-eigenvalues of the sub-tensors of the Laplacian.We give variational characterizations for these H+-eigenvalues(Lemma 5.1),and show that an H+-eigenvalue of the Laplacian is the smallest H+-eigenvalue of some sub-tensor of the Laplacian(Theorem4.1and(8)).Bounds for these H+-eigenvalues based on the degrees of the vertices and the second smallest H+-eigenvalue of the Laplacian are given respectively in Propositions5.1and5.2.We discuss the relations between these H+-eigenvalues and the edge connectivity(Proposition5.3)and the edge expansion(Proposition 5.5)of the hypergraph.III.Our third major work is that we introduce the concept of spectral components of a hypergraph and investigate their intrinsic roles in the structure of the spectrum of the hypergraph.We simply interpret the idea of the spectral componentfirst.Let G=(V,E)be a k-uniform hypergraph and S⊂V be nonempty and proper.The set of edges E(S,S c):={e∈E|e∩S=∅,e∩S c=∅}is the edge cut with respect to S.Unlike the graph counterpart,the number of intersections e∩S c may vary for different e∈E(S,S c). We say that E(S,S c)cuts S c with depth at least r≥1if|e∩S c|≥r for every e∈E(S,S c).A subset of V whose edge cut cuts its complement with depth at least two is closely related to an H+-eigenvalue of the Laplacian.These sets are spectral components(Definition2.5). With edge cuts of depth at least r,we define r-th depth edge expansion which generalizes the edge expansion for graphs(Definition5.1).Aflower heart of a hypergraph is also introduced (Definition2.6),which is related to the largest H+-eigenvalue of the Laplacian.We show that the spectral components characterize completely the H+-eigenvalues of the Laplacian that are less than one and vice verse,and theflower hearts are in one to one correspondence with the nonnegative eigenvectors of the H+-eigenvalue one(Theorem4.1). In general,the set of the H+-eigenvalues of the Laplacian is strictly contained in the set of the smallest H+-eigenvalues of its sub-tensors(Theorem4.1and Proposition4.1).We introduce H+-geometric multiplicity of an H+-eigenvalue.The second smallest H+-eigenvalue of the Laplacian is discussed,and a lower bound for it is given in Proposition5.2.Bounds are given for the r-th depth edge expansion based on the second smallest H+-eigenvalue of L for a connected hypergraph(Proposition5.4and Corollary5.5).For a connected hypergraph, necessary and sufficient conditions for the second smallest H+-eigenvalue of L being the largest H+-eigenvalue(i.e.,one)are given in Proposition4.3.The rest of this paper begins with some preliminaries in the next section.In Section2.1, the eigenvalues of tensors and some related concepts are reviewed.Some basic facts about the spectral theory of symmetric nonnegative tensors are presented in Section2.2.Some new observations are given.Some basic definitions on uniform hypergraphs are given in Section2.3.The spectral components and theflower hearts of a hypergraph are introduced.In Section3.1,some facts about the spectrum of the adjacency tensor are discussed.4Then some properties on the spectrum of the Laplacian are investigated in Section3.2. We characterize all the H+-eigenvalues of the Laplacian through the spectral components and theflower hearts of the hypergraph in Section4.1.In Section4.2,the H+-geometric multiplicity is introduced,and the second smallest H+-eigenvalue is explored.The smallest H+-eigenvalues of the sub-tensors of the Laplacian are discussed in Section 5.The variational characterizations of these eigenvalues are given in Section5.1.Then their connections to the edge connectivity and the edge expansion are discussed in Section5.2 and Section5.3respectively.The eigenvectors of the eigenvalues on the spectral circle of the adjacency tensor are characterized in Section6.1.It gives necessary and sufficient conditions under which the largest H-eigenvalue of the Laplacian is two.In Section6.2,we reformulate the above conditions in the language of linear algebra over modules and give necessary and sufficient conditions under which the eigenvector of an eigenvalue on the spectral circle of the adjacency tensor is unique.Somefinal remarks are made in the last section.2PreliminariesSome preliminaries on the eigenvalues and eigenvectors of tensors,the spectral theory of symmetric nonnegative tensors and basic concepts of uniform hypergraphs are presented in this section.2.1Eigenvalues of TensorsIn this subsection,some basic facts about eigenvalues and eigenvectors of tensors are re-viewed.For comprehensive references,see[13,24–26]and references therein.Let C(R)be thefield of complex(real)numbers and C n(R n)the n-dimensional complex(real)space.The nonnegative orthant of R n is denoted by R n+,the interior of R n+is denotedby R n++.For integers k≥3and n≥2,a real tensor T=(t i1...i k)of order k and dimension nrefers to a multiway array(also called hypermatrix)with entries t i1...i k such that t i1...i k∈Rfor all i j∈[n]and j∈[k].Tensors are always referred to k-th order real tensors in this paper,and the dimensions will be clear from the content.Given a vector x∈C n,definean n-dimensional vector T x k−1with its i-th element beingi2,...,i k∈[n]t ii2...i kx i2···x ikfor alli∈[n].Let I be the identity tensor of appropriate dimension,e.g.,i i1...i k =1if and only ifi1=···=i k∈[n],and zero otherwise when the dimension is n.The following definitions are introduced by Qi[24,27].Definition2.1Let T be a k-th order n-dimensional real tensor.For someλ∈C,if polynomial system(λI−T)x k−1=0has a solution x∈C n\{0},thenλis called an eigenvalue of the tensor T and x an eigenvector of T associated withλ.If an eigenvalue5λhas an eigenvector x ∈R n ,then λis called an H-eigenvalue and x an H-eigenvector.Ifx ∈R n +(R n ++),then λis called an H +-(H++-)eigenvalue.It is easy to see that an H-eigenvalue is real.We denote by σ(T )the set of all eigenval-ues of the tensor T .It is called the spectrum of T .We denoted by ρ(T )the maximum module of the eigenvalues of T .It is called the spectral radius of T .In the sequel,unlessstated otherwise,an eigenvector x would always refer to its normalization x k √ i ∈[n ]|x i|k.This convention does not introduce any ambiguities,since the eigenvector defining equations are homogeneous.Hence,when x ∈R n +,we always refer to x satisfying n i =1x k i =1.The algebraic multiplicity of an eigenvalue is defined as the multiplicity of this eigenvalue as a root of the characteristic polynomial χT (λ).To give the definition of the characteristic polynomial,the determinant or the resultant theory is needed.For the determinant theory of a tensor,see [13].For the resultant theory of polynomial equations,see [8,9].Definition 2.2Let T be a k -th order n -dimensional real tensor and λbe an indeterminate variable.The determinant Det (λI −T )of λI −T ,which is a polynomial in C [λ]and denoted by χT (λ),is called the characteristic polynomial of the tensor T .It is shown that σ(T )equals the set of roots of χT (λ),see [13,Theorem 2.3].If λis a root of χT (λ)of multiplicity s ,then we call s the algebraic multiplicity of the eigenvalue λ.Let c (n,k )=n (k −1)n −1.By [13,Theorem 2.3],χT (λ)is a monic polynomial of degree c (n,k ).Definition 2.3Let T be a k -th order n -dimensional real tensor and s ∈[n ].The k -th order s -dimensional tensor U with entries u i 1...i k =t j i 1...j i k for all i 1,...,i k ∈[s ]is called the sub-tensor of T associated to the subset S :={j 1,...,j s }.We usually denoted U as T (S ).For a subset S ⊆[n ],we denoted by |S |its cardinality.For x ∈C n ,x (S )is defined as an |S |-dimensional sub-vector of x with its entries being x i for i ∈S ,and sup(x ):={i ∈[n ]|x i =0}is its support .The following lemma follows from [13,Theorem 4.2].Lemma 2.1Let T be a k -th order n -dimensional real tensor such that there exists an integer s ∈[n −1]satisfying t i 1i 2...i k ≡0for every i 1∈{s +1,...,n }and all indices i 2,...,i k such that {i 2,...,i k }∩{1,...,s }=∅.Denote by U and V the sub-tensors of T associated to [s ]and {s +1,...,n },respectively.Then it holds thatσ(T )=σ(U )∪σ(V ).Moreover,if λ∈σ(U )is an eigenvalue of the tensor U with algebraic multiplicity r ,then it is an eigenvalue of the tensor T with algebraic multiplicity r (k −1)n −s ,and if λ∈σ(V )is an eigenvalue of the tensor V with algebraic multiplicity p ,then it is an eigenvalue of the tensor T with algebraic multiplicity p (k −1)s .62.2Symmetric Nonnegative TensorsThe spectral theory of nonnegative tensors is a useful tool to investigate the spectrum of a uniform hypergraph[7,23,27,33–35].A tensor is called nonnegative,if all of its entriesare nonnegative.A tensor T is called symmetric,if tτ(i1)...τ(i k)=t i1...i kfor all permutationsτon(i1,...,i k)and all i1,...,i k∈[n].In this subsection,we present some basic facts about symmetric nonnegative tensors which will be used extensively in the sequel.For comprehensive references on this topic,see[4,5,11,14,22,28,31,32]and references therein.By[23,Lemma3.1],hypergraphs are related to weakly irreducible nonnegative tensors. Essentially,weakly irreducible nonnegative tensors are introduced in[11].In this paper,we adopt the following definition[14,Definition2.2].For the definition of reducibility for a nonnegative matrix,see[12,Chapter8].Definition2.4Suppose that T is a nonnegative tensor of order k and dimension n.We call an n×n nonnegative matrix R(T)the representation of T,if the(i,j)-th element of R(T)is defined to be the summation of t ii2...i kwith indices{i2,...,i k} j.We say that the tensor T is weakly reducible if its representation R(T)is a reducible matrix.If T is not weakly reducible,then it is called weakly irreducible.For convenience,a one dimensional tensor,i.e.,a scalar,is regarded to be weakly irreducible.We summarize the Perron-Frobenius theorem for nonnegative tensors which will be used in this paper in the next lemma.For comprehensive references on this theory,see[4,5,11, 14,28,31,32]and references therein.Lemma2.2Let T be a nonnegative tensor.Then we have the followings.(i)ρ(T)is an H+-eigenvalue of T.(ii)If T is weakly irreducible,thenρ(T)is the unique H++-eigenvalue of T.Proof.The conclusion(i)follows from[32,Theorem2.3].The conclusion(ii)follows from[11,Theorem4.1].2 The next lemma is useful.Lemma2.3Let B and C be two nonnegative tensors,and B≥C in the sense of compo-nentwise.If B is weakly irreducible and B=C,thenρ(B)>ρ(C).Thus,if x∈R n+is aneigenvector of B corresponding toρ(B),then x∈R n++is positive.Proof.By[31,Theorem3.6],ρ(B)≥ρ(C)and the equality holding implies that|C|=B. Since C is nonnegative and B=C,we must have the strict inequality.7The second conclusion follows immediately from the first one and the weak irreducibility of B .For another proof,see [31,Lemma 3.5].2Note that the second conclusion of Lemma 2.3is equivalent to that ρ(S )<ρ(B )for any sub-tensor S of B other than the trivial case S =B .By [14,Theorem 5.3],without the weakly irreducible hypothesis,it is easy to construct an example such that the strict inequality in Lemma 2.3fails.For general nonnegative tensors which are weakly reducible,there is a characterization on their spectral radii based on partitions,see [14,Theorems 5.2amd 5.3].As remarked before [14,Theorem 5.4],such partitions can result in diagonal block representations for symmetric nonnegative tensors.Recently,Qi proved that for a symmetric nonnegative tensor T ,it holds that [28,Theorem 2]ρ(T )=max {T x k :=x T (T x k −1)|x ∈R n +, i ∈[n ]x k i =1}.(1)We summarize the above results in the next theorem with some new observations.Theorem 2.1Let T be a symmetric nonnegative tensor of order k and dimension n .Then,there exists a pairwise disjoint partition {S 1,...,S r }of the set [n ]such that every tensor T (S j )is weakly irreducible.Moreover,we have the followings.(i)For any x ∈C n ,T x k =j ∈[r ]T (S j )x (S j )k ,and ρ(T )=max j ∈[r ]ρ(T (S j )).(ii)λis an eigenvalue of T with eigenvector x if and only if λis an eigenvalue of T (S i )with eigenvector x (S i )k √ j ∈S i |x j|k whenever x (S i )=0.(iii)ρ(T )=max {T x k |x ∈R n +,i ∈[n ]x k i =1}.Furthermore,x ∈R n +is an eigenvector ofT corresponding to ρ(T )if and only if it is an optimal solution of the maximization problem (1).Proof.(i)By [14,Theorem 5.2],there exists a pairwise disjoint partition {S 1,...,S r }of the set [n ]such that every tensor T (S j )is weakly irreducible.Moreover,by the proof for [14,Theorem 5.2]and the fact that T is symmetric,{T (S j ),j ∈[r ]}encode all the possible nonzero entries of the tensor T .After a reordering of the index set,if necessary,we get a diagonal block representation of the tensor T .Thus,T x k = j ∈[r ]T (S j )x (S j )k follows for every x ∈C n .The spectral radii characterization is [14,Theorem 5.3].(ii)follows from the partition immediately.(iii)Suppose that x ∈R n +is an eigenvector of T corresponding to ρ(T ),then ρ(T )=x T (T x k −1).Hence,x is an optimal solution of (1).8On the other side,suppose that x is an optimal solution of (1).Then,by (i),we haveρ(T )=T x k =T (S 1)x (S 1)k +···+T (S r )x (S r )k .Whenever x (S i )=0,we must have ρ(T )( j ∈S i (x (S i ))k j )=T (S i )x (S i )k ,since ρ(T )( j ∈S i(y (S i ))k j )≥T (S i )y (S i )k for any y ∈R n +by (1).Hence,ρ(T (S i ))=ρ(T ).By Lemma 2.3,(1)and the weak irreducibility of T (S i ),we must have that x (S i )is a positive vector whenever x (S i )=0.Otherwise,ρ([T (S i )](sup(x (S i ))))=ρ(T (S i ))with sup(x (S i ))being the support of x (S i ),which is a contradiction.Thus,max {T (S i )z k |z ∈R |S i |+,i ∈S iz k i =1}has an optimal solution x (S i )in R |S i |++.By optimization theory [2],we must have that(T (S i )−ρ(T )I )x (S i )k −1=0.Then,by (ii),x is an eigenvector of T .22.3Uniform HypergraphsIn this subsection,we present some preliminary concepts of uniform hypergraphs which will be used in this paper.Please refer to [1,3,6]for comprehensive references.In this paper,unless stated otherwise,a hypergraph means an undirected simple k -uniform hypergraph G with vertex set V ,which is labeled as [n ]={1,...,n },and edge set E .By k -uniformity,we mean that for every edge e ∈E ,the cardinality |e |of e is equal to k .Throughout this paper,k ≥3and n ≥k .For a subset S ⊂[n ],we denoted by E S the set of edges {e ∈E |S ∩e =∅}.For a vertex i ∈V ,we simplify E {i }as E i .It is the set of edges containing the vertex i ,i.e.,E i :={e ∈E |i ∈e }.The cardinality |E i |of the set E i is defined as the degree of the vertex i ,which is denoted by d i .Then we have that k |E |= i ∈[n ]d i .If d i =0,then we say that the vertex i is isolated .Two different vertices i and j are connected to each other (or the pair i and j is connected),if there is a sequence of edges (e 1,...,e m )such that i ∈e 1,j ∈e m and e r ∩e r +1=∅for all r ∈[m −1].A hypergraph is called connected ,if every pair of different vertices of G is connected.A set S ⊆V is a connected component of G ,if every two vertices of S are connected and there is no vertices in V \S that are connected to any vertex in S .For the convenience,an isolated vertex is regarded as a connected component as well.Then,it is easy to see that for every hypergraph G ,there is a partition of V as pairwise disjoint subsets V =V 1∪...∪V s such that every V i is a connected component of G .Let S ⊆V ,the hypergraph with vertex set S and edge set {e ∈E |e ⊆S }is called the sub-hypergraph of G induced by S .We will denoted it by G S .In the sequel,unless stated otherwise,all the notations introduced above are reserved for the specific meanings.Here are some convention.For a subset S ⊆[n ],S c denotes the complement of S in [n ].For a nonempty subset S ⊆[n ]and x ∈C n ,we denoted by x S the monomial i ∈S x i .Let G =(V,E )be a k -uniform hypergraph.Let S ⊂V be a nonempty proper subset.Then,the edge set is partitioned into three pairwise disjoint parts:E (S ):={e ∈E |e ⊆S },9E(S c)and E(S,S c):={e∈E|e∩S=∅,e∩S c=∅}.E(S,S c)is called the edge cut of G with respect to S.When G is a usual graph(i.e.,k=2),for every edge in an edge cut E(S,S c)whenever it is nonempty,it contains exactly one vertex from S and the other one from S c.When G is a k-uniform hypergraph with k≥3,the situation is much more complicated.We will say that an edge in E(S,S c)cuts S with depth at least r(1≤r<k)if there are at least r vertices in this edge belonging to S.If every edge in the edge cut E(S,S c)cuts S with depth at least r,then we say that E(S,S c)cuts S with depth at least r.Definition2.5Let G=(V,E)be a k-uniform hypergraph.A nonempty subset B⊆V is called a spectral component of the hypergraph G if either the edge cut E(B,B c)is empty or E(B,B c)cuts B c with depth at least two.It is easy to see that any nonempty subset B⊂V satisfying|B|≤k−2is a spectral component.Suppose that G has connected components{V1,...,V r},it is easy to see that B⊂V is a spectral component of G if and only if B∩V i,whenever nonempty,is a spectral component of G Vi.We will establish the correspondence between the H+-eigenvalues that are less than one with the spectral components of the hypergraph,see Theorem4.1.Definition2.6Let G=(V,E)be a k-uniform hypergraph.A nonempty proper subset B⊆V is called aflower heart if B c is a spectral component and E(B c)=∅.If B is aflower heart of G,then G likes aflower with edges in E(B,B c)as leafs.It is easy to see that any proper subset B⊂V satisfying|B|≥n−k+2is aflower heart. There is a similar characterization between theflower hearts of G and these of its connected components.Theorem4.1will show that theflower hearts of a hypergraph correspond to its largest H+-eigenvalue.We here give the definition of the normalized Laplacian tensor of a uniform hypergraph.Definition2.7Let G be a k-uniform hypergraph with vertex set[n]={1,...,n}and edge set E.The normalized adjacency tensor A,which is a k-th order n-dimension symmetric nonnegative tensor,is defined asa i1i2...i k :=1(k−1)!j∈[k]1k√i jif{i1,i2...,i k}∈E,0otherwise.The normalized Laplacian tensor L,which is a k-th order n-dimensional symmetric tensor,is defined asL:=J−A,where J is a k-th order n-dimensional diagonal tensor with the i-th diagonal element j i...i=1 whenever d i>0,and zero otherwise.10When G has no isolated points,we have that L =I −A .The spectrum of L is called the spectrum of the hypergraph G ,and they are referred interchangeably.The current definition is motivated by the formalism of the normalized Laplacian matrix of a graph investigated extensively by Chung [6].We have a similar explanation for the normalized Laplacian tensor to the Laplacian tensor (i.e.,L =P k ·(D −B )1)as that for the normalized Laplacian matrix to the Laplacian matrix [6].Here P is a diagonal matrixwith its i -th diagonal element being 1k √d iwhen d i >0and zero otherwise.We have already pointed out one of the advantages of this definition,namely,L =I −A whenever G has no isolated vertices.Such a special structure only happens for regular hypergraphs under the definition in [27].(A hypergraph is called regular if d i is a constant for all i ∈[n ].)By Definition 2.1,the eigenvalues of L are exactly a shift of the eigenvalues of −A .Thus,we can establish many results on the spectra of uniform hypergraphs through the spectral theory of nonnegative tensors without the hypothesis of regularity.We note that,by Definition 2.1,L and D −B do not share the same spectrum unless G is regular.In the sequel,the normalized Laplacian tensor and the normalized adjacency tensor are simply called the Laplacian and the adjacency tensor respectively.By Definition 2.4,the following lemma can be proved similarly to [23,Lemma 3.1].Lemma 2.4Let G be a k -uniform hypergraph with vertex set V and edge set E .G is connected if and only if A is weakly irreducible.For a hypergraph G =(V,E ),it can be partitioned into connected components V =V 1∪···∪V r for r ≥1.Reorder the indices,if necessary,L can be represented by a block diagonal structure according to V 1,...,V r .By Definition 2.1,the spectrum of L does not change when reordering the indices.Thus,in the sequel,we assume that L is in the block diagonal structure with its i -th block tensor being the sub-tensor of L associated to V i for i ∈[r ].By Definition 2.7,it is easy to see that L (V i )is the Laplacian of the sub-hypergraph G V i for all i ∈[r ].Similar convention for the adjacency tensor A is assumed.3The Spectrum of a Uniform HypergraphBasic properties of the eigenvalues of a uniform hypergraph are established in this section.3.1The Adjacency TensorIn this subsection,some basic facts of the eigenvalues of the adjacency tensor are discussed.1The matrix-tensor product is in the sense of [24,Page 1321]:L =(l i 1...i k ):=P k ·(D −A )is a k -th order n -dimensional tensor with its entries being l i 1...i k := j s ∈[n ],s ∈[k ]p i 1j 1···p i k j k (d j 1...j k −a j 1...j k ).11。
kurbatov方程
kurbatov方程English Answer:First proposed by Valery Petrovich Kurbatov, the Kurbatov equation is a non-linear differential equation that has been widely employed in various fields, including reaction-diffusion processes, continuum mechanics, and neural networks. The equation can be represented as:∂u/∂t = ∂^2u/∂x^2 + u^2 u^3。
where:u represents the dependent variable.t signifies time.x denotes the spatial coordinate.The Kurbatov equation has attracted significantattention due to its ability to exhibit a wide range of complex behaviors, including:Solitary wave solutions.Periodic and chaotic oscillations.Phase transitions.The solitons that emerge from the Kurbatov equation are self-reinforcing, localized waves that retain their form as they propagate. Periodic oscillations occur in certain parameter regimes, characterized by regular variations in the dependent variable over time. When the system becomes more complex, chaotic oscillations can arise, involving irregular and unpredictable fluctuations. Phase transitions refer to abrupt changes in the system's behavior, marked by shifts between different dynamical regimes.The Kurbatov equation has been used to model diverse phenomena, such as:Flame propagation.Chemical reactions.Pattern formation.Population dynamics.In the context of flame propagation, the Kurbatov equation describes the evolution of the flame front, capturing the interplay between heat transfer, chemical reactions, and fluid flow. It has also been applied to study chemical reactions, particularly those involving autocatalytic processes and oscillatory behavior. In pattern formation, the Kurbatov equation has been used to explain the emergence of complex spatiotemporal patterns in systems ranging from biological systems to chemical reactions. Furthermore, it has been employed in population dynamics to model the growth and interactions of biological populations.Chinese Answer:库尔巴托夫方程由瓦列里·彼得罗维奇·库尔巴托夫最先提出,是一个非线性偏微分方程,广泛应用于反应扩散过程、连续介质力学和神经网络等各个领域。
量子力学相位因子
2001 - 05 - 14 收到初稿 ,2001 - 06 - 29 修回
γ( t )
的乘
积 ,即 Ψ ( x , t ) = | Ψ ( x , t ) | ei
γ( t)
.
从量子力学的初等原理已经知道 , 作为与实验结果 2 联系 ,最重要的是| Ψ ( x , t ) | ,一般称其为在某一瞬 时 t ,在空间 x 与 x + Δ x 间测到粒子的几率密度. Ψ ( x , t ) 是相应粒子的波函数 . 迄今量子力学已经 在实践中验证了 70 多年了 . 人们可以说对于波函数 相当清楚了解了 . 知道计算它的方法和它的物理意 义 . 但是仔细地考虑一下 , 可以发现 , 一本量子力学 参考书可以写上千页 ,仍然是不完备的 . 因为量子力 学仍然在发展中 ,尤其是近 10 年来 . 20 世纪初期出 ・668 ・
Δ
70 年 ,迄今实验还未发现单磁荷. 狄拉克本人在晚
年却倾向否定自己几十年来所持的观点 , 而转向支 持磁单极不存在的观点 ! 但是他仍然坚持量子力学 相位因子的重要意义 , 甚至把相位因子看成是比量 子力学算子对易关系更为基本的东西 . 磁单极虽未被实验发现 , 但磁单极场这种类型 的作用则是已经存在于原子分子的结构内部之中. 磁单极如果一旦被实验发现 , 那固然是人类对于自 然界认识的一次突破 . 但即使磁单极不存在于自然 界 ,那么给予的理解也可能是人类对自然界认识的 又一次飞跃 . 因为大自然禁戒了某些理论上合理的 存在 ,往往暗示着有很根本的新的自然规律在起作 用 . 虽然暂时我们对这新的规律还未认识 ,但禁戒的 存在揭示着人们要探求的目标和方向. 弱电统一作 用的希格斯 ( Higg) 粒子也经过了三四十年的探索而 仍未发现 . 如果 Higg 粒子果真不存在 , 那么弱电统
小波域隐马尔可夫树模型在图像去噪中的应用
Ab t a t W a l tDo an H M T o l sbe n a sr c : vee — m i m des ha e ppl d i t tsi i a n m a oc s i i n s a itcsgn la d i gepr e sng. Thef a ur s e e t e o he wa l tc fiint t e n t c ls o e lwo l m a r a ur d,s c sc r e a in a r it ft vee oe fce sbe w e hes ae fr a— rd i ge a e c pt e u h a o r l to nd pe ss — e c d i i nc r t d t r i tnc n N o n y an t s i a na e he Pe sse y a d nGa san t op r isoft e w a ee o fiint us i iy pr e te h v ltc e fce s.T h a e eW v — ltDom an H M T o l e- i m de wa b l nd t EM l ort s uita he a g ihm wa u e t s i a e h r m e e s of he H M T s s d o e tm t t e pa a t r t m o 1 Atl s ye i n M A P s us d t s i ae t e w a ltc e fc e t de . a tBa sa wa e o e tm t h vee o fii n s.T hee e i e a e u t ho e xp rm nt lr s lss w d
荒漠河岸多枝柽柳灌丛碳氮磷化学计量特征及其影响因素
Vol.34,No.3Mar.,2021第34卷第3期2021年3月环境科学研究Research of Environmental Sciences荒漠河岸多枝桂柳灌丛碳氮磷化学计量特征及其影响因素张晓龙,周继华2,来利明2,姜联合2,郑元润2”1. 山西财经大学资源环境学院,山西太原0300062. 中国科学院植物研究所,北京100093摘要:为了解群落水平下荒漠河岸多枝柽柳(Tamarw ramosissima Ledeb.)灌丛的碳氮磷化学计量特征及其影响因素,在黑河下游荒漠河岸3 800 m 范围内,沿垂直河道方向上设置9个采样点,采用相关性分析、冗余分析(RDA)和偏冗余分析(pRDA)方法,对多枝柽柳群落的碳氮磷化学计量格局及其与环境因子的关系进行研究.结果表明:黑河下游荒漠河岸多枝柽柳群落TC 、TN 、TP 含量平均值分别为380. 27,30. 42和1. 54 mg/g,C :N 、C :P 和N :P 平均值分别为12. 98,257. 09和20. 04.与全球和区域尺度物种水平研究相比,黑河下游荒漠河岸多枝柽柳灌丛群落具有较低的TC 含量、较高的TN 含量和N :P 以及相对稳定的TP 含量.多枝柽柳灌丛群落碳氮磷化学计量特征变异系数相对较小,内稳性较强,相对较高的N :P(14. 55〜27. 20)表明群落水平下多枝 柽柳灌丛更倾向于受磷元素的限制.在沿河梯度上,多枝柽柳群落TC 含量和TN 含量均随沿河距离的增加呈显著下降的变化趋 势,而C :N 随沿河距离的增加呈波动上升的变化趋势;TP 含量呈先降后升的变化趋势,而C :P 和N :P 大致呈先上升后下降的变化趋势.多枝柽柳灌丛群落的碳氮磷化学计量特征与土壤理化属性存在一定相关性,土壤含水量、土壤容重和土壤pH 是影响多 枝柽柳群落碳氮磷化学计量特征变化的关键因子,三者共同解释了总变异的57. 7%,其中土壤含水量解释了总变异的32.8%.研究显示,土壤水盐与多枝柽柳灌丛的碳氮磷化学计量特征关系密切,土壤含水量在解释多枝柽柳灌丛碳氮磷化学计量特征变化方面比土壤pH 更为重要.关键词:荒漠河岸;黑河;多枝柽柳群落;碳氮磷;化学计量特征中图分类号:X171. 1文章编号:1001-6929(2021)03-0698-09文献标志码:A DOI : 10. 13198/j. issn. 1001-6929. 2020. 08. 04Carbon , Nitrogen and Phosphorus Stoichiometric Characteristics of Tamarix ramosissima Ledeb. Shrubland and Their Influencing Factors in a Desert Riparian Area of ChinaZHANG Xiaolong 1,2, ZHOL Jihua 2, LAI Liming 2, JIANG Lianhe 2, ZHENG Yuanrun 2*收稿日期:2020-03-31 修订日期:2020-08-20作者简介:张晓龙( 1988-),男,山西浑源人,讲师,博士,主要从事化学计量生态和生物化学地理研究,***********************.cn .*责任作者,郑元润( 1968-),男,山西大同人,研究员,博士,博导,主要从事植被生态学研究,****************.cn基金项目:国家自然科学基金项目(No.91425301)Supported by National Natural Science Foundation of China (No.91425301)1. School of Resources and Environment , Shanxi Lniversity of Finance and Economics , Taiyuan 030006, China2.Institute of Botany, Chinese Academy of Sciences, Beijing 100093, ChinaAbstract : In order to explore the community level stoichiometric characteristics of Tamarin ramosissima Ledeb. shrubland and their influencing factors in an arid desert riparian area, 9 sites were vertically sampled within 3800 m from the downstream of Heihe River. Thestoichiometric patterns of carbon , nitrogen and phosphorus in a T. ramosissi m a community and their relationship with environmental factorswere studied by correlation analysis , redundancy analysis ( RDA ) and partial redundancy analysis (pRDA). The results show the mean TC , TN and TP contents for the T. ramosissi m a community were 380. 27, 30. 42 and 1. 54 mg/g, respectively. The mean C :N, C :P and N :P ratios for the T. ramosissi m a community were 12. 98, 257. 09 and 20. 04, respectively. Compared to the results of species level at the global and regional scales , the T. ramosi s sima community was characterized by lower TC , higher TN and N :P, and relatively stable TP contents. The variation coefficients of the community level stoichiometric characteristics were much lower and their stoichiometrichomeostasis was relatively strong. The relatively high N : P levels ( 14.55-27.20) indicate that the T. ramosissi m a community might be more heavily limited by P at the community level. Along the river gradient, the TC and TN contents in the T. ramos ss ma communitydecreased significantly with distance from the river, but the C : N ratio increased and fluctuated with distance. The TP content of the community decreased and then increased, while the C : P and N : P ratios increased and then decreased with distance. The stoichiometric第3期张晓龙等:荒漠河岸多枝柽柳灌丛碳氮磷化学计量特征及其影响因素699characteristics and soil physicochemical properties were correlated,and RDA analysis demonstrates that the soil water content,soil bulk density and soil pH had significant impacts on the stoichiometric characteristics of the71.ramosissima community and jointly accounted for 57.7%of the total variation,of which soil moisture accounted for32.8%.Our observations indicate that soil water and saline-alkali properties were closely related to the stoichiometric characteristics of the71.ramosissima shrubland and that soil water content had a stronger impact on the community stoichiometry variations than soil pH.Keywords:desert riparian;Heihe River;Tamarix ramosissima community;carbon,nitrogen and phosphorus;stoichiometric characteristics生态化学计量学作为一门探索生态过程中能量和多重化学元素平衡的新兴学科,为探究植物生长和养分供应关系以及植物与环境之间化学元素的相互耦合性提供了一种综合方法[1-2].碳、氮、磷是植物生长发育和生理生态活动所需的重要元素,植物吸收氮元素、磷元素,同化碳元素,进而影响群落、生态系统的碳过程以及矿质元素的生物地球化学循环[3-4]•相比于其他元素而言,碳、氮和磷元素的耦合作用更强, C:N:P计量比不仅能够反映植物的养分限制状况和适应策略,同时能反映出植物吸收氮和磷过程中的光合固碳能力[5-6].有研究表明,低C:N和C:P的植物倾向于采取高光合速率的竞争策略,而高C:N和C:P的植物更倾向于采用低光合速率的强大防御生态策略[7-8].因此,基于生态化学计量特征的植物-环境关系研究,能更好地揭示不同环境植物群落养分获取及其对环境的适应机制[9].值得提出的是,尽管目前对森林、草原、荒漠和水生生态系统的植物化学计量特征进行了一些有意义的探讨[3,10-11],但对灌丛群落化学计量特征及其对环境梯度变化响应规律的研究仍较少,尤其缺乏对干旱区固沙灌丛的生态化学计量研究[12-13].多枝柽柳(Tamarix ramosissima Ledeb.)具有很强的耐旱性和适应能力,在长期的植被-环境相互作用下发展成不同的群落类型,在维持当地生态系统稳定和提供关键生态系统服务方面发挥着独特的作用[14].有研究表明,在相对潮湿的河岸地带,多枝柽柳具有强烈的水分竞争和向土壤中分泌盐的能力,尤其会限制草本植物的生长,形成单优势种植物群落,从而降低当地生物多样性[15].然而,在相对干旱的荒漠地区,多枝柽柳通过根系的“提水作用”将水分从深层土壤和地下水输送到浅层土壤,水分和养分富集形成“沃岛效应”,通过“沃岛效应”为干旱荒漠地区动植物提供良好的栖息地,从而提高生物多样性[16].以往关于柽柳的研究多集中于植物群落生态学特性及其与环境因子关系方面,例如,地下水变化对柽柳群落多样性的影响[",17]、土壤水分变化对柽柳群落特征的影响[18-19],人工生态输水工程对荒漠河岸柽柳植被恢复的影响[20-21]以及柽柳沙包与环境因子之间的关系[22]等,而对柽柳群落的生态化学计量学研究比较缺乏[8,23].在当前环境条件下,尤其是在极端干旱的荒漠河岸地区,群落水平上柽柳群落碳氮磷化学计量及其相互作用有哪些特点土壤水盐和养分等环境因子如何对柽柳群落碳氮磷化学计量特征产生影响定量地揭示它们之间的相互作用关系将有助于深入认识荒漠河岸地区柽柳群落的养分限制状况和适应策略.鉴于此,该文通过对黑河下游荒漠河岸地带多枝柽柳群落进行调查,分析群落水平下碳氮磷化学计量特征,探讨多枝柽柳群落碳氮磷化学计量格局与环境因子的关系,从而阐明多枝柽柳群落对极端干旱环境的适应性,以期为荒漠河岸柽柳植被恢复和柽柳群落多样性保护提供参考.1材料与方法1.1研究区概况研究区域位于黑河下游荒漠河岸地带(42°06'N〜42°07'N、101°00'E~101°03'E),地处中纬度温带大陆性干旱气候区,气候极端干旱[8].年均温8弋左右,多年平均降水量低于40mm,75%以上的年降水量集中在7—8月,年蒸发量为2300~3700mm[14].下游荒漠河岸地带性土壤为灰棕漠土,两岸发育有林灌草甸土,由于成土过程受地下水影响较大,呈现一定的盐碱化[24].受河流补给地下水的影响,荒漠河岸林主要分布在河岸两边,以胡杨(PopuZus eupAratica)和柽柳(Tamarix ramosissima以旱生和沙生类型的灌木为主,代表性植物有泡泡刺(Nitraria spAaerocarpa)、琵琶柴(Keaumuria soongarica)、细枝盐爪爪(KaZidium graci'Ze)、膜果麻黄(£pAedra przewaZsiii)等[25]•1.2采样点设置与取样2019年8月9—18日植物生长旺季,多枝柽柳处于夏花期(6—9月),在黑河下游乌兰图格沿河监测断面,沿垂直于河岸大致以500m为间隔设置调查样地,共布设群落调查样地9个(见图1).每个样地随机设置3个10mX10m的灌木样方,调查样方内700环境科学研究第34卷所有物种,在灌木、草本层主要记录种类名称、株(丛)数、高度、冠幅、基径和盖度等群落特征;同时记录样地基本状况,包括样地经纬度、坡度、生境、地貌和土地利用等属性.对于每个样方,每个物种地上生物量的测定采用样株收获法,每个物种取2~3株具有代表性的植株带回实验室,用毛刷刷净植株表面的尘土等杂质,于80t恒温烘干至恒质量并称量,进而估算调查样方地上生物量.获取生物量后,将植株粉碎后过0.149mm筛,用于化学性质分析,植物化学性质采用质量百分比表示,植物TC、TN、TP含量测定参照ZHANG等[8]所述方法测定.在与植物群落相对应的样地内,对其土壤理化性质(土壤含水量、容重、TC含量、TN含量、C:N、速效磷含量、pH和电导率)进行测定,取样深度为50cm,每个样地设3个重复,土壤理化属性测定参照ZHANG等[8]所述方法测定.图1研究区样地位置示意Fig.1Locations of the sample plots1.3数据统计分析植物群落TC、TN和TP含量是群落内物种TC、TN和TP含量的加权平均值[11-12].群落TC含量(T c):sT c二工(5G)(1)/二1群落TN含量(T n):sT N二工(5M)(2)/二1群落TP含量(T p):ST p二工(B i P i)(3)/二1式中:S为物种数;B i为物种i的相对地上生物量;C i 为物种i的TC含量,mg/g;N,为种物i的TN含量,mg/g;P i为物种i的TP含量,mg/g.采用SPSS18.0软件进行数据统计分析,用单因素分析和LSD检验法对沿河不同样地多枝柽柳群落的盖度、生物量、TC、TN、TP含量及C:N:P计量比进行差异显著性检验(P<0.05),通过Pearson相关系数分析多枝柽柳群落TC、TN、TP含量及C:N:P计量比与土壤理化属性的关系(P<0.05).为定量分析土壤因子对多枝柽柳群落碳氮磷化学计量特征的影响,采用排序法确定主要影响因子,DCA结果显示,所有排序轴梯度长度均小于3,因此采用冗余分析法(RDA)确定主要影响因子.为避免冗余变量的影响,采用Monte Carlo检验(9999次置换)检测多枝柽柳群落碳氮磷化学计量特征和土壤因子是否存在显著相关关系,排除影响不显著的变量(P>0.05).采用偏冗余分析(“RDA)用于揭示土壤因子对多枝柽柳群落碳氮磷化学计量特征的单独影响与交互作用.上述统计分析在CANOCO5.0软件中完成[26].2结果与分析2.1荒漠河岸多枝柽柳群落基本特征在沿河梯度上,多枝柽柳群落盖度(F=83.18, P<0.001)、地上生物量(F=63.52,P<0.001)在不同样地间均具有显著差异,群落盖度为16.19%~ 85.33%,地上生物量为161.49-2812.81g/m2(见表1).群落盖度和地上生物量随沿河距离的增加呈下降的变化趋势,地上生物量最大值出现在距河100m 处,而群落盖度最大值出现距河1300m处(见表1).2.2荒漠河岸多枝柽柳群落碳氮磷化学计量特征在沿河梯度上,多枝柽柳群落TC含量(F= 10.05,P<0.001)、TN含量(F=12.24,P<0.001)、TP 含量(F=44.73,P<0.001),C:N(F=12.90,P< 0.001)、C:P(F=9.65,P<0.001)和N:P(F=5.11, P=0.002)在不同样地间均具有显著差异(见表2).多枝柽柳群落TC含量为317.39〜439.73mg/g,TN 含量为21.27-43.61mg/g,TP含量为0.97〜2.15 mg/g,C:N、C:P和N:P分别为9.08〜16.52,182.07~ 410.06和14.55〜27.20(见表2).在沿河梯度上,多枝柽柳群落TC和TN含量均随沿河距离的增加呈显著下降的变化趋势,最大值出现在距河100m处,分别为423.67和40.89mg/g;群落TP含量呈先下降后上升的变化趋势(见图2),最大值出现在距河300m处,为2.09mg/g.C:N随沿河距离的增加呈波动上升的变化趋势,最大值出现在距河3800m处,为16.18;而C:P和N:P均大致呈先上升后下降的变化趋势,分别出现在距河1800和2300m处,分别为336.36和24.10(见图2).2.3多枝柽柳群落计量学特征与土壤因子的关系在沿河梯度上,多枝柽柳群落TC含量、TN含量与土壤含水量、土壤TC含量、土壤TN含量和土壤速效磷含量均呈显著正相关,群落TP含量与土壤含水量、土壤TC含量、土壤TN含量和土壤pH均呈显著第3期张晓龙等:荒漠河岸多枝柽柳灌丛碳氮磷化学计量特征及其影响因素701表1黑河下游沿河多枝桂柳样地基本情况注:不同字母表示差异显著(P <0. 05).下同.Table 1 Characteristics of T. ramosissima sites along the downstream of the Heihe River样地编号沿河距离/m海拔/m群落结构盖度地上生物量/( g/m 2 )T1100926灌木-草本结构56. 73%±5. 66%b 2 812. 81±199. 00a T2300926灌木-草本结构67. 57%±3. 38%b2 627. 35±185. 88aT3800925灌木-草本结构75. 04%±1.99%ab 1 969. 46±189. 93b T41 300924灌木-草本结构85. 33%±1.92%a745. 60±39. 06cT51 800924灌木-草本结构45. 14%±2. 80%c 277. 84±8. 39dT62 300923灌木-草本结构32. 59%±4. 79%d389. 63±96. 17d T72 800925单-灌木结构20. 78%±1.05%de 454. 36±38. 92cdT83 300923单-灌木结构21. 65%±3. 15%de316. 15±44. 23d T93 800923灌木-草本结构16. 19%±0. 49%e161.49±20. 28d表2荒漠河岸多枝桂柳样地间群落化学计量特征的方差分析Table 2 The variance analysis community stoichiometric traits at different T. ramosissima sites参数平均值标准差变异系数最小值最大值自由度F P 群落TC 含量/(mg/g)380. 2731.170. 08317. 39439. 73810. 050. 001群落TN 含量/(mg/g)30. 427. 210. 2421.2743. 61812. 240. 001群落 TP 含量/( mg/g)1.540. 360. 230. 97 2. 15844. 730. 001群落C :N 12. 98 2. 290. 189. 0816. 52812. 900. 001群落C :P 257. 0954. 610. 21182. 07410. 0689. 650. 001群落N :P20. 043. 780. 1914. 5527. 2085. 110. 002沿河距离/m 沿河距离/m 沿河距离/m图2多枝桂柳群落全碳、全氮、全磷及碳氮磷计量比随沿河梯度的变化Fig.2 Changes in the T. ramosissima community TC , TN , TP and C :N :P stoichiometricratios along the rivergradient702环 境 科 学 研 究第 34 卷正相关,而群落TP 含量与土壤电导率呈显著负相关(见表3).群落C :N 与土壤容重、土壤C :N 均呈显著正相关,而与土壤含水量、土壤TC 含量、土壤TN 含量和土壤速效磷含量均呈显著负相关;群落C :P 与 土壤电导率呈显著正相关,而与土壤含水量、土壤TC含量、土壤TN 含量和土壤pH 均呈显著负相关;群落N :P 与土壤容重、土壤C :N 均呈显著负相关(见表3).2.4 土壤因子对多枝柽柳群落计量学特征的影响表3多枝桂柳群落碳氮磷化学计量特征与土壤因子之间的相关关系Table 3 Pearson correlation between the T. ramos i ssi m a community stoichiometric traits and soil properties注:* 表示 P <0. 05 ; ** 表示 P <0. 01.项目土壤含水量土壤容重土壤 TC 含量土壤 TN 含量土壤 C :N土壤速效磷含量土壤 pH土壤电导率群落 TC 含量0. 738 **-0. 3540. 813**0. 543 **-0. 0200. 623 **0. 275-0. 262群落 TN 含量0. 828 **-0. 3700. 838 **0. 757 **-0. 3800. 541 **0. 291-0. 287群落 TP 含量0.814**0. 0530. 699 **0. 621 **-0. 0610. 3530. 540 **-0. 550**群落 C :N—0.699 **0. 289 *-0. 681 **-0. 726 **0. 542 **-0. 440 **-0. 1890. 185群落C :P -0.582**-0. 246-0. 382*-0.416*0. 016-0. 134-0.514**0. 523 **群落N :P -0.018-0. 555 *0. 1670. 170-0. 422*0. 239-0. 3420. 342从RDA 排序结果来看,前2个排序轴分别解释 了多枝柽柳群落计量学特征变化的50. 83%和 26. 00%(见图3).排序轴1主要解释了土壤含水量 (F 二20. 3,P <0. 001)和土壤 pH (F 二3. 7,P <0. 05)对柽柳群落计量学特征变化的影响,排序轴2主要解释了土壤容重(F 二9. 0,P <0. 001)对多枝柽柳群落计量学特征变化的影响(见图3).该结果表明,对多枝柽 柳群落计量学特征变化具有显著影响的土壤因子为SBD1.0N :P-l.ol --------------------------------------------------------------------------1.0-0.50.5 1.0轴 1(50.83%)注:TC —群落TC 含量;TN —群落TN 含量;TP —群落TP 含量;C :N —群落 C :N ;C :P —群落 C :P ;N :P —群落 N :P ;SCN —土壤 C :N ; SBD —土壤容重;pH —土壤 pH ; SM —土壤含水量;STN —土壤TN 含量;STC —土壤TC 含量;SAP —土壤速效磷含量;SEC —土壤电导率.图3多枝桂柳群落碳氮磷化学计量特征与土壤因子RDA 排序结果Fig.3 RDA ordination plot of the T. ramos ss macommunity stoichiometric traits and soil properties土壤含水量、土壤容重和土壤pH.偏冗余分析表明, 土壤含水量、土壤容重和土壤pH 共同解释了多枝柽柳群落计量学特征变化的57. 7%, 土壤含水量的单 独解释率在总解释率中的占比(32. 8%)最大,其次是土壤含水量和土壤pH 的交互作用(12. 1%)以及土壤容重的单独解释率(10. 5%),而土壤pH 的单独解 释率相对较低( 见图 4) .特征与土壤因子偏冗余分析结果Fig.4 Partial redundancy analysis of the T. ramos ss ma community stoichiometrictraits and soil properties3讨论3.1群落水平上荒漠河岸多枝柽柳灌丛TC 、TN 、TP含量及其计量比该研究聚焦于黑河下游极端干旱荒漠河岸地带(年降水量30〜40 mm )沿河梯度上多枝柽柳群落的碳 氮磷化学计量特征及其影响因素.在群落水平上,该研究中多枝柽柳群落TC 含量平均值为380. 27 mg/g,第3期张晓龙等:荒漠河岸多枝柽柳灌丛碳氮磷化学计量特征及其影响因素703略高于黑河下游荒漠河岸地带和中下游戈壁荒漠地区物种水平的TC含量平均值(见表4),而多枝柽柳群落TC含量平均值显著低于黄土高原地区、全球尺度下物种水平的TC含量平均值[27-29].多枝柽柳群落TN含量平均值为30.42mg/g,高于黑河下游荒漠河岸地带和中下游戈壁荒漠地区物种水平的TN含量平均值(见表4),同时也高于黄土高原地区、全球尺度下物种水平的TN含量平均值[27-29].多枝柽柳群落TP含量平均值为1.54mg/g,高于黑河下游荒漠河岸地带物种水平的TP含量平均值(见表4),而略低于中下游戈壁荒漠地区、黄土高原地区、全球尺度下物种水平的TP含量平均值[27-29],这可能是导致该研究中N:P较高的原因.与全球尺度、区域尺度相比较,该研究中多枝柽柳群落具有TC含量低、TN含量高、N:P高、TP含量相对稳定的特点.此外,与黑河下游荒漠河岸地带和黑河中下游荒漠地区物种水平下的研究结果相比,黑河下游荒漠河岸地带群落水平碳氮磷化学计量参数变异系数相对较小(见表4),反映出 多枝柽柳群落水平碳氮磷化学计量特征相对较高的内稳性.表4黑河中下游荒漠地区植物在物种和群落水平下碳氮磷化学计量特征Table4Stoichiometric traits of desert plants in the middle and lower reaches of Heihe at species and community levels,respectively项目黑河下游荒漠河岸地带(群落水平)黑河下游荒漠河岸地带(物种水平)[8]黑河中下游戈壁荒漠地区(物种水平)〔何数值变异系数数值变异系数数值变异系数TC含量/(mg/g)380.27±31.170.08327.29±75.580.23301.22±99.050.33 TN含量/(mg/g)30.42±7.210.2413.88±2.720.2018.81±4.860.26 TP含量/(mg/g) 1.54±0.360.230.58±0.200.34 1.74±0.700.40 C:N12.98±2.290.1824.41±6.820.2815.88±2.680.14 C:P257.09±54.610.21614.94±214.480.35199.68±108.610.54 N:P20.04±3.780.1926.12±6.850.2612.27±5.340.433.2荒漠河岸沿河多枝柽柳群落碳氮磷化学计量变化特征在沿河梯度上,多枝柽柳群落TC含量平均值相对较低,主要与该区域极端干旱和盐碱的环境有关,植物为应对干旱和盐碱胁迫,其自身代谢成本增加,光合速率受到抑制,从而使得多枝柽柳群落的固碳能力降低[31-32],这也可能是多枝柽柳群落TC含量随沿河距离的增加呈显著下降变化趋势的主要原因.由于该地区河流水补给的地下水是植物和土壤的主要水分来源[24],随着沿河距离的增加,地下水埋深逐渐增加,土壤含水量逐渐降低,水分条件变差使得植物生产力下降,多枝柽柳群落TC含量降低[8,17].这和多枝柽柳群落TC含量与土壤含水量呈显著正相关的分析结果相符合,尤其是在土壤水分条件最好的样地T1,群落TC含量平均值为423.67mg/g,而在土壤水分条件最差的样地T9,群落TC含量平均值仅为348.96mg/g,这在一定程度上说明水分条件变化影响着荒漠植物群落碳含量的变化,较低的碳含量可能与极端干旱的环境有关[32].有研究表明,在自然条件下,植物叶片氮含量与土壤氮含量呈线性正相关[33],即使在半干旱-干旱地区的氮添加控制试验中,土壤无机氮含量的增加也会导致植物叶片氮含量的显著增加[34],这与该研究中多枝柽柳群落TN含量与土壤TN含量呈显著正相关的分析结果相符合.该研究中群落相对较高的氮含量主要与优势种多枝柽柳和干旱盐碱生境相关.在沿河梯度上,多枝柽柳是一种典型的内生固氮菌属灌木[35],此外,在盐碱环境下,荒漠植物可积累大量含氮物质,导致多枝柽柳群落具有相对较高的氮含量,相对较高的氮含量可能是荒漠植物对极端干旱和盐碱环境的适应结果[32,36].磷元素被认为是中国陆地植物生长的主要限制性养分,植物磷含量低主要是由土壤磷含量较低引起的[37].该研究中多枝柽柳群落TP含量平均值(1.54 mg/g)略高于全国陆地植物物种平均水平(1.46 mg/g),且与植物吸收关系密切的土壤速效磷含量(4.48mg/kg)也高于全国平均水平(3.83mg/kg)[38],该研究中黑河下游荒漠河岸地带多枝柽柳群落TP 含量可能是由于相对较高的土壤磷含量所致.然而,该研究中多枝柽柳群落TP含量与土壤速效磷含量呈正相关(R=0.353),但不显著,这与该区域盐分胁迫有关.有研究表明,在受盐胁迫土壤中,存在大量的Cl-,SO42-等阴离子,它们会与磷元素产生竞争效应,抑制植物对磷元素的吸收[39],这与该研究中多枝柽柳群落TP含量与土壤电导率呈显著负相关的分析结果相符合.在沿河梯度上,在距河1800~2800m之间,土壤电导率为13.32-15.05mS/cm,极端盐胁迫704环境科学研究第34卷可能抑制植物对磷元素的吸收,这也可能是多枝柽柳群落TP含量呈先下降后上升的变化趋势的主要原因.有研究表明,磷元素主要来源于土壤母质,干旱区降水过程对土壤的淋溶程度较低,相对于氮元素,土壤母质中磷含量相对丰富,使得氮元素更易成为限制性元素[40-41].Gusewell等认为,在群落水平上N:P 更能准确判断植物生长的养分限制[42],而笔者得到的柽柳群落N:P平均值为20.04,相对较高的N:P可能意味着该区域多枝柽柳群落在生长旺季氮过量而磷含量相对不足.3.3荒漠河岸沿河多枝柽柳群落碳氮磷化学计量格局形成的影响因素分析在干旱区,尤其是极端干旱地区,水分条件是影响植物生长和分布的主要影响因子[17].该研究中多枝柽柳群落TC、TN、TP含量均与土壤含水量呈显著正相关,在黑河下游荒漠河岸地带,水分条件较好的近河地带,土壤水分和土壤养分含量相对较高,植物群落生长条件较好,植物群落通过水分-养分的耦合效应获取更多的养分[8,43];随着沿河垂直距离的增加,养分和水分条件变差,导致植物能获取的养分减少,使得植物TC、TN、TP含量显著降低[8].偏冗余分析结果表明,土壤含水量、土壤容重和土壤pH会对多枝柽柳群落碳氮磷化学计量特征产生显著影响,进一步说明多枝柽柳群落TC、TN、TP含量与水分条件有关.水分条件较土壤pH的影响作用更为明显,可能是因为黑河下游极端干旱的环境导致水分条件更易成为荒漠植物生长的限制因素.此外,土壤含水量和土壤pH的交互作用解释了多枝柽柳群落碳氮磷化学计量特征变化的12.1%,表明该区域土壤盐碱共同影响着多枝柽柳群落的生长.考虑到植被与环境之间的复杂关系,在黑河下游荒漠河岸地带进行长期多尺度野外调查,或者控制试验可能更有利于进一步阐明多枝柽柳群落对土壤水盐和养分的响应.4结论a)黑河下游荒漠河岸地带多枝柽柳群落具有TC含量低、TN含量高、N:P高、TP含量相对稳定的特点.与黑河中下游地区荒漠植物物种水平相比,在群落水平上,荒漠河岸多枝柽柳灌丛碳氮磷化学计量特征的变异系数相对较小,内稳性较强.群落水平N:P的分析表明,黑河下游荒漠河岸多枝柽柳群落在生长旺季受磷元素的限制程度较大.b)在沿河梯度上,多枝柽柳群落TC、TN、TP的含量以及C:N、C:P和N:P在不同沿河距离样地内均具有显著差异(P<0.05).随着沿河距离的增加,多枝柽柳群落TC、TN、TP含量和C:N:P均呈现出显著的变化趋势.土壤含水量、土壤容重和土壤pH较好地解释了多枝柽柳群落碳氮磷化学计量特征的变化,共同解释了总变异的57.7%.c)在解释多枝柽柳群落碳氮磷化学计量特征的变化方面,土壤含水量以及土壤含水量和土壤pH交互作用的贡献率大于土壤pH,表明水分是该区域植物生长的主要限制因子,植物可能通过调节自身营养元素的比例来适应极端干旱盐碱的环境.参考文献(References):[1]ELSER J J,STERNER R,GOROKHOVA E,et aZ.Biologicalstoichiometry from genes to ecosystems[J].Ecology Letters,2000,3:540-550.[2]田地,严正兵,方精云•植物化学计量学:一个方兴未艾的生态学研究方向[J].自然杂志,2018,40(4):235-242.TIAN Di,YAN Zhengbing,FANG Jingyun.Plant stoichiometry:aresearch frontier in ecology[J].Chinese Journal of Nature,2018,40(4):235-242.[3]TANG Z Y,XL W T,ZHOL G Y,et aZ.Patterns of plant carbon,nitrogen,and phosphorus concentration in relation to productivity inChina's terrestrial ecosystems[J].Proceedings of the NationalAcademy of Sciences of the Lnited States of America,2018,115:4033-4038.[4]DL E Z,TERRER C,PELLEGRINI A,et aZ.Global patterns ofterrestrial nitrogen and phosphorus limitation[J].NatureGeoscience,2020,13:221-226.[5]ELESER J J,ACHARYA K,KYLE M,et aZ.Growth ratestoichiometry couplings in diverse biota[J].Ecology Letters,2003,6(10):936-943.[6]HAN W X,FANG J Y,REICH P B,et aZ.Biogeography andvariability of eleven mineral elements in plant leaves acrossgradients of climate,soil and plant functional type in China[J].Ecology Letters,2011,14(8):788-796.[7]STERNER R W,ELSER J J.Ecological stoichiometry:the biology ofelements from molecules to the biosphere[M].New Jersey:Princeton Lniversity Press,2002.[8]ZHANG X L,ZHOL J H,GLAN T Y,et aZ.Spatial variation in leafnutrient traits of dominant desert riparian plant species in an aridinland river basin of China[J].Ecology and Evolution,2019,9(3):1523-1531.[9]张晓龙,周继华,来利明,等•黑河下游绿洲-过渡带-戈壁荒漠群落优势种叶片性状和生态化学计量特征[J].应用与环境生物学报,2019,25(6):1270-1276.ZHANG Xiaolong,ZHOL Jihua,LAI Liming,et aZ.Leaf traits andecological stoichiometry of dominant desert species across oasisGobi desert ecotone in the lower reaches of Heihe River,China[J].Chinese Journal of Applied and Environmental Biology,2019,25(6):1270-1276.[10]智颖飙,刘珮,马慧,等•中国荒漠植物生态化学计量学特征与驱动因素[J].内蒙古大学学报(自然科学版),2017,48(1):97-105.。
医药卫生霍奇金淋巴瘤诊治进展
R-S cells CD30+
二、临床分期与危险因子
• 早期:I-ⅡA不伴RF (低危组) • 中期:I-IIA伴RF无X (高危组)
• 进展期(晚期):Ⅰ-ⅡB-X;III-Ⅳ
Risk factors (RF) • 大病灶X (>7.5-10cm;≧1/3最大胸腔截面) • ≥ 50岁 • 结外病变(脾累及,IV期) • B症状 • ESR > 50mm/h或> 30mm/h伴B症状 • ≥3病变部位
第20页/共55页
(四)进展期霍奇金淋巴瘤的治疗
• MOPP(1960’s)
5年 OS 66%
• ABVD(1970’s)
5年 OS 73%
• 是目前进展期HL的标准治疗方案
• MOPP/ABVD杂交方案疗效与ABVD方案相同
• BEACOPP(1990’s),3年 OS 91%,强化组 92%
• Stanford V(1990’s)6年 EFS 89%,OS 96%
• 260例Ⅱa期伴危险因素和Ⅱb~Ⅳ期无年龄限制的 (IV 期仅占17%)HL 患者入组
• PET-2阳性 50例 19%
• IPS 0-2 分组
13%
• IPS 3-7 分组
38%
• 预期2年FFS PET-2阴性组95%;阳性组28% P
<0.01
• 多因素分析显示PET-2、IV期、>45岁具有预测作 用
• 证实了霍奇金氏病RS细胞来源于生发中心阶段的 克隆性B淋巴细胞。
第4页/共55页
霍奇金淋巴瘤:WHO 2000年分类
•结 节 性 淋 巴 细 胞 为 主 型 5%
(lymphocyte predominance, nodular )
HansJ.Morgenthau’sPoliticsamongNations_1
Andrea LocatelliREADING SUGGESTIONS:Hans J. Morgenthau’s Politics among NationsHans Morgenthau’s most known book is not a classic for chronological reasons: published for the first time in 1948, and substantially revised until the author’s death, this essay cannot be understood if not in the context of the Cold War. Indeed, a deep investigation of Morgenthau’s thought should force us to the reading of several other works, most of all Scientific Man Vs Power Politics (1946), but this task would exceed the limits of space at our disposal.However, Politics Among Nations is worth in itself, because it touches upon a series of themes and concepts that reasonably make of it a classic. More, it is possible to dig out of it a comprehensive view of international politics – i.e. one that aims at accounting for the overall functioning of the international system. It should be stated clearly that Morgenthau’s ambition does not lead him to a complete success: to tell the truth, his main (self-acknowledged) accomplishment – to come up with a theory of international relations – does not stand to a close scrutiny. Nonetheless, even admitting the limits of his theoretical contribution, most of Morgenthau’s work is definitely outstanding and enlightening.As it has been sharply stated (Hoffmann, 1987), it is not easy to distinguish in his works between the political analyst and the sincere believer:4041 a clever and polite way to point out one of the most evident fallacies in hismethodological approach, namely the intermingling of normative and explicative attempt. A second challenging critique is the pre-scientific use of key concepts such as interest and power (Claude, 1962), which make it really difficult to talk of a theory, at least in neo-positivists terms.Nevertheless, some of the main statements in Politics Among Nations are worth investigating, as they can serve as a caveat for political scientists and, broadly speaking, every observer of global affairs. Such warnings look pretty relevant even in the current days, and this may happen not by chance: Morgenthau wrote his book in the second half of the40s, just when a brand new bipolar system wasreplacing the century-old multipolarity; nowadays, thedual confrontation on which the Cold War rested formore than forty years has been supplanted by a moreobscure unipolar moment (for an early and fortunateattempt to define the current international system, see Krauthammer, 1990/91). Arguably, some of the puzzles we are called to solve at present resemble in a sense the same dilemmas that the early strategists of the Cold War had to face more than half a century ago.Admittedly, it would be untenable to address contemporary problems as Morgenthau had done, but it is nonetheless fascinating to try to explore the issue of the day keeping in mind his teaching. Or, in other (more explicit) words, to investigate about the problem of an unrivalled and unconstrained America from a classic realist perspective. This issue has been debated Andrea LocatelliHans MorgenthauAndrea Locatellithoroughly in the last years (see for instance Ikenberry, 2002), from several perspectives. It would be impossible to point out here all the shades of the debate, but we can perhaps summarize the main point at stake in a single theoretical question: how will the current global environment evolve – admitting that it will?Thus, if the value of a book is to be assessed by its relevance to the present, Politics Among Nations will prove a significant success, as the following argument hopefully will make clear.This point has been analysed and discussed in depth, giving rise to a huge literature on the future of international order. Shrinking the terms of a multifaceted and uneasy debate, two main positions can be laid out: the first one can be labelled the “optimist” view, whose supporters claim that since the end of the Cold War we have been enjoying the benefits of a pax Americana that spread peace, democracy and free trade in most of the world and, as no credible challengers lie ahead, we should not worry about the future, because the foundation on which this system rests is still unquestioned. Probably, the one who paved the way for this thread was Francis Fukuyama (1989), with his well known article on the end of history.Of course, several critiques can be raised against this vision: are the benefits equally distributed among the States in the system? Where are the challengers supposed to come from? From exiting States or non-State actors? Is not terrorism a threat to American primacy? Is the link between hegemony and order so straightforward – i.e., is America’s hegemony a guarantee of common benefits for other States? Some of these objections have been strongly42Andrea Locatellirefused, others proved more penetrating. By virtue of the answers to these criticisms, now slightly different positions can be found in this camp; nonetheless the core argument can be summarized as follows: despite superficial signs of tension, there appear to be a remarkable stability in the international system, particularly as relations among developed countries are concerned. The contemporary order, based on an American dominance, seems poised to last for a long time (Nye, 1990).Quite the opposite, other thinkers have expressed a more gloomy view: according to this vision, that we can therefore label as “pessimistic”, the contemporary order is inherently unstable, conducive to warfare and short-lived. This camp too, of course, is much more fragmented than it appears on surface. As for the rival approach, it is not possible to discuss in depth every single contribution to this thread, but a common set of observations can be pointed out: pessimists agree with optimists that the current international system is based on America’s hegemony (usually stressing the not so benign aspects of it), but far from finding this order sustainable, they see it as shaken by an underlying tension that will ultimately lead to the American fall and the return to multipolarity.Different sources of tension have been considered, from the effect of structural pressure – that will give rise to counter-balancing coalitions eventually terminating US dominance (Waltz, 1993, 2000) – to the hegemonic power’s increasing costs of maintaining its position (Gilpin, 1981, Kennedy, 1987). But so far this hypothesis has not found strong evidence: as no counter-coalition has not taken place yet, nor U.S. power seems weakened since the4344 end of the Cold War, the only way out for this thesis is indeterminacy: America’s fall will happen, sooner or later the unipolar moment will be replaced by multipolarity, but we still do not know when.Such a theoretical landscape is not comforting at all: on the one hand, we have those who believe that we have entered in a new era of stable peace (assured by the American influence), butare nonetheless unable to explain why, how, and howlong it will last; on the other hand, there are those whoclaim that the American era is going to come to an end,but cannot say when.Admittedly, only futurologists may profess to have a solution; nor we could hope to find a handy way out in the pages of Politics among Nations . But Morgenthau’s key assumption on the nature of international relations can prove useful: life among States is a perennial, day-by-day struggle for power, which means that States, even when nurturing peaceful relations, have an overwhelming target – to take care of their own capabilities, particularly vis-à-vis the partners. As a result, two patterns characterize the realm of international politics – the rise of power and a condition of general conflict – both posing a pressing question: how can we limit the first one, and how can we manage the second one? Morgenthau’s answers are well know: through the balance of power and a wise diplomatic policy, respectively.Does this approach help us in the investigation of the contemporary order? I think so. Morgenthau will not grant any of the camps a final say in the dispute, but he can help the pessimists by redressing their concerns and Andrea LocatelliMorgenthau’s contribution to the study of IR is still relevantAndrea Locatellistriking a tough blow to the optimists.The argument against the optimistic view is straightforward: the idea of a benign hegemony, dispensing benefits here and there is just a mask to a more self-interested behaviour. One of the sources of contemporary stability – the positive incentives provided by the U.S. to keep the system as it is – is then brittle and dependent on volatile contingencies. So far, what made the American conduct in foreign affairs apparently so benign has been a far-sighted policy of self-restraint. But in truth one must not wonder about that: after the Cold War, the United States had no incentive in pursuing an “imperialistic” policy (as Morgenthau would have called it): rather, it chose a more suitable “status quo” policy – one, therefore, aimed at avoiding any kind of threat. What really make this order stable, in conclusion, is the huge superiority of the American power compared with any of the other States in the world.So, Morgenthau would have been sceptical about the possibility of a long-lasting hegemony. Since international relations have always been marked by conflict, the contemporary period of peace should be considered as an exception more than a rule. Admittedly, we cannot charge Morgenthau with the task of amending the latest realist approach, as he probably could not solve the indeterminacy fallacy. Nonetheless, his thought could help solving not just a theoretical, but a normative problem: whereas contemporary realists focused their attention on how to implement a power-bounding policy, they should have paid more attention on how to guarantee a peaceful management of their relationships. And this task is far more important if you assume that the order45Andrea Locatelliinforming the system is in the midst of a radical change. In a world, rather than invoking the rise of a peer competitor to the U.S., they should have to consider how to make this eventual confrontation as peaceful as possible. And, as stated, Morgenthau wrote pages and pages on the problem of how to manage the underlying conflict in the system. Maybe, pessimists could be better policy-advisors if they read the chapter in Politics among Nations devoted to the role of diplomacy.To conclude, Morgenthau’s contribution to the study of International Relations is in many respects replete of oversimplifications and flaws, but his approach to the realm, even when dismissed, should always be kept under consideration.46Andrea LocatelliBibliography:Claude I., Power and International Relations, New York, Random House, 1962. Fukuyama F., The End of History, in “The National Interest”, XVI, Summer 1989, pp. 3-11.Hoffmann S., Hans Morgenthau: The Limits and Influence of Realism, in Janus and Minerva, Boulder and London, Westview Press, 1987, pp. 70-81.Gilpin R., War and Change in World Politics, Cambridge, Cambridge University Press, 1981.Ikenberry J. (editor), America Unrivalled, Cornell, Cornell University Press, 2002.Kennedy P., The Rise and Fall of the Great Powers, New York, Random House, 1987.Krauthammer C., The Unipolar Moment, in “Foreign Affairs”, LXX, 1, January/ February, 1990/91, pp. 23-33.Morgenthau H., Scientific Man VS. Power Politics, Chicago, The University of Chicago Press, 1946.Morgenthau H., Politics Among Nations. The Struggle for Power and Peace, New York, Knopf, 1985, 6th edition, (first edition 1948).Nye, J., Bound to Lead, New York, Basic Books, 1990.Waltz K., The Emerging Structure of International Politics, in “International Security”, XVIII, 2, 1993, pp. 44-79.Waltz K., Structural Realism after the Cold War, in “International Security”, XXV, 1, 2000, pp. 5-4147。
隐马尔可夫过程
隐马尔可夫过程隐马尔可夫过程可以看做是另一种名为状态空间模型的统计模型。
它用于描述一个随着时间推移而改变的潜在状态的序列,并且由于状态是不可直接观测的,只有输出的观测值可用于推断每个状态。
在现实生活中,这种模型在语言识别、金融市场预测、手写文字识别等领域得到广泛应用。
隐马尔可夫过程可以被看作有两个概率分布的简单贝叶斯分类器。
一个分布用于表示隐藏状态序列,另一个分布用于表示在给定状态下生成可观测输出的概率。
在此过程中,第一个分布被称为状态转移概率,而第二个分布被称为输出概率。
通过利用这两个概率和已知的观测序列来推断隐藏状态。
隐马尔可夫过程的形式化数学表示为:假设隐藏状态空间S包含N个离散状态,以及观测输出空间包含K 个离散观测值,具有以下概率:1.初始概率分布: π = {πi},其中πi表示初始状态为i的概率;2.状态转移概率:A = {aij},其中aij表示从状态i到状态j的转移概率;3.输出概率:B = {bj(k)},其中bj(k)表示给定状态记为j时,生成k的观测值的概率;在隐马尔可夫过程中,假定观测值序列O = {O1,O2,…,OT}是已知的,那么我们需要找到可能的隐藏状态序列Q = {Q1,Q2,…,QT},以及相应的概率P(O | Q)(称为似然值),以了解在给定O的条件下,Q的最佳匹配值。
我们还可以通过找到最大概率(Viterbi解码)的Q序列来识别Q序列,也可以通过找到最适合Q序列的概率(前向后向算法)来进行模型拟合。
隐马尔可夫过程在自然语言处理方面尤为重要,因为它可以用于处理许多问题,如语音识别、自然语言理解和文本文档分类等。
例如,通过匹配语音信号中的隐含状态,可以根据语音内容转换为文字;通过对文本的隐藏语义分层进行分析,可以构建更优行的文本分类器等。
总之,隐马尔可夫过程是一个强大的统计模型,有助于我们在不确定性环境中进行推断和预测,获得实际应用中的很多成功的例子。
亥姆霍兹函数
亥姆霍兹函数
又称卡尔曼-希尔伯特函数,是一个带螺旋形衰减系数的定制函数,可以衡量一个系
统在改变激发条件时,随着时间推移,过渡到其新状态的情况。
该函数由卡尔曼-希尔伯
特所发明,是对应理想系统的动态特性的一种可以证明的估计。
它有可能帮助设计师预测
情况下,一个被发展出来的被激发的系统的输出,并在该输出不适合的情况下,进行系统
的调整以适应输出需要的改变。
在某一时刻,一个系统状态可以表达如下:
U(t) = K * U * Exp(-p * t)
其中,K为一个正值,用于表示函数偏移;U为函数初始值;p是衰减系数,该值影响指数衰减的速度。
用上述函数描述被激发系统的动态特性就可以得到卡尔曼-希尔伯特函数:
U(t) = K * U * Exp(-2 * p * t) * Cos(p * t + \phis)
在上述式子中加入了一个相位项(\phis),该多项用于描述级联(连续)相位调整(幅度),是被激发系统本身输出和激发件输出之间的延迟。
这就意味着随着\phis增加,系统的时间衰减会较慢,而且延迟也会随之而增加。
另外,K,U和p三个参数也可以在调节系统特性时使用。
K可以用于增加激发强度,
U可以用于改变初始值,而p则可以用于衰减趋势的变化程度的控制。
因此,卡尔曼-希尔伯特函数可以用于表征被激发系统的动态变化,并且它也常常被
用于评估系统的表现情况,从而为系统的调节与设计提供有用的参考。
同时,卡尔曼-希
尔伯特函数也广泛应用于工程控制理论方面的研究,特别是模糊控制理论。
由于其独特简
单的特性,该函数仍是工程中极具重要性的函数。
S. hermonthica infection assay.
A novel form of resistance in rice to the angiosperm parasite Striga hermonthica
Blackwell Publishing, Ltd.
A. L. Gurney, J. Slate, M. C. Press and J. D. Scholes
பைடு நூலகம்199
200 Research
root exudates (Yoder, 1999). Following germination, a sticky radicle attaches to the root of the host and, following perception of host-derived haustorial initiation factors, parasite cells invade the host cortex, reaching the host vasculature within a period of approx. 5 d (Albrecht et al., 1999). At this stage they form direct contact with host xylem vessels. Both the life cycle of the parasite and its mode of action make it difficult to control: an adult plant can produce up to 100 000 tiny seeds that can survive in the soil for 20 yr or more. The ‘phytotoxic’ effect of Striga means that whilst control measures that lower numbers of emerged Striga plants may be effective in reducing the density of seeds in the soil seed bank (in the medium- to long-term), they are unlikely to have any short-term impact on crop yield. At present, perhaps the most effective strategies centre on agronomic practices, such as improving soil fertility (Cechin & Press, 1993a,b; Showemimo et al., 2002), or intercropping cereals with the legume Desmodium uncinatum (Khan et al. 2002). Some tolerant varieties of sorghum and maize (i.e. those that yield a little better in the presence of the parasite) have been identified (Gurney et al., 2002; Oswald & Ransom, 2004). Many of these tolerant varieties produce lower amounts of germination stimulants in their root exudates, leading to smaller numbers of attached parasites and/or to later attachment of the parasites to the host. However, because parasite biomass and loss of crop yield are not linearly related, tolerant varieties can still exhibit significant reductions in yield (Gurney et al., 1999). Breeding for postattachment resistance in cereals is likely to be the most cost effective and sustainable form of long-term control. Despite considerable efforts, by large numbers of researchers, to screen cultivars of sorghum and maize, and wild relatives of these species, for postattachment resistance to Striga, success has been limited. At present, no postattachment resistance to Striga has been found in cultivars of maize (Oswald & Ransom, 2004). Although parasites fail to develop on Tripsacum dactyloides, a wild relative of maize, the latter is difficult to use in traditional breeding programmes (Gurney et al., 2003). Recently, two sorghum cultivars (Framida and Dobbs) and a wild sorghum accession (P47121) have been shown to exhibit a hypersensitive-like necrosis at the site of attachment of S. asiatica parasites, although the molecular genetic basis of this resistance is unknown (Mohamed et al., 2003). In this article, we report the discovery of a cultivar of rice that exhibits very high levels of postattachment resistance to S. hermonthica. In this case, the parasite penetrates the host root cortex but is unable to form vascular continuity with the host and it dies. To our knowledge, this is the first report of such resistance in any cereal host to this devastating parasite. Specifically, we describe the phenotype of the resistance response and, using a mapping population of backcross inbred lines, we identify seven major quantitative trait loci (QTL) that together explain 31% of the phenotypic variation in host resistance.
2019年清华大学伯克利数据科学基础综合真题回忆
[2019初试真题回忆] 2019年清华大学伯克利数据科学基础综合真题回忆(973)
数据结构50分,应用随机过程约55分,运筹学约45分。
选择每题5分,共12道,其中关于马尔可夫链概率矩阵2道,关于数据结构4道,包括链表的时间复杂度,哈夫曼树路径,树的节点数,哈希表。
选择题第一题是已知xy服从正态分布,求二者平方和的开方的分布情况。
第二题是某人有3条路可以选择,一条通向出口需3小时,一条回到原点需5小时,一条回到原点需7小时,求他出去的平均时长。
某道题是关于非线性规划解的情况,其他的选择记不清了。
大题一共六道,每题14~16分,其中一道编程题占16分。
第一题记不清了,第二题求证齐次马尔可夫并计算稳定矩阵,第三题和第四题都是关于线性规划的,第三题求标准型并用图解法求解,第四题是实际情境下的,要求列出线性规划方程,图解法求解。
第五题是优先队列dijksdra算法,给出了开始的情况和抽去某一个节点后的情况,求队列的顺序,然后表述出抽出最后一个节点后的情况,包括dis和parent。
第六题是编程题,n个顶点的图,相邻顶点不同颜色,判断能否最多用2个颜色完成上色,n取值1~1000。
输入示例
3 3
0 1
0 2
1 2
输出示例
No
本人专业课内容准备的并不好,时间关系有很多知识点没有学到,但总体感觉考察的比较基础,估算关于马尔可夫链的题目分值占23分,关于线性规划30分。
复习应当扎实基础。
楼主今年就是准备的很慌乱,因为是跨专业来考,把几乎所有时间都放在了学习编程上,结果编程题还没答上。
还是要踏实努力,然后稳住,心态别崩2333
欢迎补充和指正,仅供大家参考~。
小鼠淋巴结位置
Research paperAnatomy and nomenclature of murine lymph nodes:Descriptive study and nomenclatory standardization in BALB/cAnNCrl miceWim Van den Broeck a,⁎,Annie Derore b,c ,Paul Simoens aaDepartment of Morphology,Faculty of Veterinary Medicine,Ghent University,Salisburylaan 133,B-9820Merelbeke,BelgiumbInnogenetics NV ,Industriepark Zwijnaarde 7,B-9052Ghent,BelgiumcFlanders Interuniversity Institute for Biotechnology (VIB),Technologiepark 927,B-9052Ghent,BelgiumReceived 21November 2005;received in revised form 10January 2006;accepted 26January 2006Available online 6March 2006AbstractMurine lymph nodes are intensively studied but often assigned incorrectly in scientific papers.In BALB/cAnNCrl mice,we characterized a total of 22different lymph nodes.Peripheral nodes were situated in the head and neck region (mandibular,accessory mandibular,superficial parotid,cranial deep cervical nodes),and at the forelimb (proper axillary,accessory axillary nodes)and hindlimb (subiliac,sciatic,popliteal nodes).Intrathoracic lymph nodes included the cranial mediastinal,tracheobronchal and caudal mediastinal nodes.Abdominal lymph nodes were associated with the gastrointestinal tract (gastric,pancreaticoduodenal,jejunal,colic,caudal mesenteric nodes)or were located along the major intra-abdominal blood vessels (renal,lumbar aortic,lateral iliac,medial iliac and external iliac nodes).Comparative and nomenclative aspects of murine lymph nodes are discussed.The position of the lymph nodes of BALB/cAnNCrl mice is summarized and illustrated in an anatomical chart containing proposals for both an official nomenclature according to the Nomina Anatomica Veterinaria and English terms.©2006Elsevier B.V .All rights reserved.Keywords:Mouse;Lymph node;Nomenclature1.IntroductionRodents,and mice in particular,have long been used as laboratory animals in various scientific experiments.The possibility to produce different murine strains and a variety of knock-out mice,the high reproductive rate of these animals,and the ease of their handling have made them the preferential laboratory animal.In immunolog-ical sciences,murine lymph nodes (lnn.)are often used to isolate lymphocytes in order to study fundamentalaspects of immunology and immunopathology.The methodology to recognize and dissect these lymph nodes requires at least a basic anatomical knowledge.In numerous studies,however,inaccurate,misleading or even enigmatic terms such as genital nodes (Cain and Rank,1995)or tonsillar nodes (Deaglio et al.,1996)have sometimes been assigned to murine lymph nodes.The ambiguity of murine lymph node (ln.)nomenclature is illustrated by the lymph node at the ear base of mice which has been variably designated by various terms such as parotid ln.(Cuq,1966;Grassé,1972;Popesko et al.,1992),lateral mandibular ln.(Cuq,1966),and facial ln.(Wolvers et al.,1999),while numerous recent studies refer to an allegedly auricular ln.(Anjuère et al.,1999;Dearman et al.,1996;Sailstad et al.,1995)or pre-Journal of Immunological Methods 312(2006)12–19/locate/jim⁎Corresponding author.Tel.:+3292747716;fax:+3292647790.E-mail address:wim.vandenbroeck@UGent.be (W.Van den Broeck).0022-1759/$-see front matter ©2006Elsevier B.V .All rights reserved.doi:10.1016/j.jim.2006.01.022auricular ln.(Hendrickx et al.,1992)in this region.Given this confusion,it becomes very difficult to reproduce the experimental reports or compare different scientific results.Nevertheless,the localization of the different lymph nodes with their respective names in mice has been thoroughly described in a number of anatomical publications (Barone et al.,1950;Cuq,1966;Kawashima et al.,1964),but these papers are seldom referred to.A sample bibliographic (Medline)search from 1989to 1999demonstrated that of 293randomly chosen papers in which the words “mouse lymph node(s)”are used,89citations (i.e.30%)used only vague terms such as “lymph node ”,“peripheral lymph node ”,“draining lymph node ”,“local lymph node ”,or “regional lymph node ”instead of the precise anatomical names.In the remaining 204publications,at least 42different specific names were given to the lymph nodes that were studied.Only 1article,however,contained some figures illustrating the anatomical position and identification of the lymph nodes in question (Wolvers et al.,1999).In contrast,in the remaining 203studies the exact scientific identification of the node was lacking:59of these investigations referred to previous publica-tions in which the nomenclature used was not based on asufficiently scientific anatomical support,while in the remaining 144articles no anatomical reference was given at all.In an attempt to rectify this situation,we first characterized the lymph nodes in BALB/cAnNCrl mice and then summarized our findings in an anatomical chart.2.Materials and methods 2.1.AnimalsSeventy female BALB/cAnNCrl mice (Iffa Credo N.V .,Brussels,Belgium)aged 8to 32weeks were housed in groups of 3to 6animals in conventional type II cages containing nesting material as environmental enrich-ment (Brain et al.,1994)along with water and food supply ad libitum.At the end of the experiments,all animals were euthanized by intraperitoneal (IP)injec-tion of 30μl T61(Hoechst Roussel Vet,Brussels,Belgium).All experimental studies described in this paper were approved by the Institutional Animal Welfare Committee of Innogenetics (September 15,1999).Table 1Protocols used for demonstrating murine lymph nodes Protocol Route of administrationSedation/anaesthesia Product Quantity (μl)Incubation (days)Number of animals I Intravenous (lateral caudal vein)–Ink+RAS a 200b 103II Subcutaneous,mental region –Ink+CFA c 60b 286III Subcutaneous,mental region –Ink+RAS 10b 214IV Subcutaneous,frontal region –Ink+CFA 60b 286V Subcutaneous,auricular base–Ink+RAS 10b 216VI Subcutaneous,palmar metacarpal region –Ink+CFA 40b 183426VII Subcutaneous,plantar metatarsal region –Ink+CFA 40b 183426VIII Intranasal instillation Sedation Ink+RAS 2×30b,d 10e 317e 3IX Intraperitoneal –Ink+tR f2000g 143X PeroralSedation Ink+RAS or CFA 500b 216XI Intrahepatic h Anaesthesia Ink+RAS 30b 216XIIIntralienal iAnaesthesiaInk+RAS50b216a RAS:Ribi Adjuvant System®,RIBI Immuno Chem Research,Inc.,Hamilton,USA.bEqual quantities ink/RAS or CFA.cCFA:Complete Freunds Adjuvant®,Difco Laboratories,Detroit,Michigan,USA.dTwo administrations of 30μl with 21-day interval.eDays after the last administration.ftR:Thioglycollate+Resazurin®,Sanofi Diagnostics Pasteur,Marnes-la-Coquette,France.g50μl ink+1950μl Thioglycollate +Resazurin®.hAfter anaesthesia,the abdominal wall was incised 5mm caudal to the xiphoid process under surgical conditions;after the injection of the solution into the left and right hepatic lobes,the abdominal incision was closed.iAfter anaesthesia,the left abdominal wall was incised under surgical conditions;after the injection of the solution into the spleen,the abdominal incision was closed.13W.Van den Broeck et al./Journal of Immunological Methods 312(2006)12–19Table 2List of lymph nodes observed in the present study of BALB/cAnNCrl mice #English name Official name Protocol Occurrencea Topography2Accessory mandibular ln.Ln.mandibularis accessorius I,II,IV ,V Constant (21/21)Dorsolateral to the mandibular lymph nodeSuperficial parotid ln.Ln.parotideus superficialisI,II,IV ,VConstant (21/21)Ventral to the external acoustic pore,caudal to the extraorbital lacrimal gland,cranioventral to the parotid salivary gland,dorsal to the junction between the superficial temporal vein (v.)and the maxillary v.4Cranial deep cervical ln.Ln.cervicalisprofundus cranialis I,II,IV ,VIConstant (24/24)Medial to the external jugular vein and sternocephalic muscle (m.),lateral to sternohyoid m.,caudal to digastric m.,dorsal to the trachea5Proper axillary ln.Ln.axillaris propriusI,VIConstant (12/12)Medial to the shoulder,dorsolateral to ascending pectoral m.,at the junction between the lateral thoracic vein and the axillary vein6Accessory axillary ln.Ln.axillaris accessorius I,VI Constant (12/12)Caudal to triceps brachii m.,lateral to cutaneous trunci m.,in subcutaneous adipose tissue7Subiliac ln.Ln.subiliacusI,VIIConstant (12/12)In the fold of the flank (plica lateralis)cranial to thigh musculature,near the deep circumflex iliac artery (a.)and v.8Sciatic ln.Ln.ischiadicus I,VIIConstant (12/12)Medial to gluteus superficialis m.,caudal to gluteus medius m.and sciatic nerve9Popliteal ln.Ln.popliteus I,VII Constant(12/12)In the popliteal fossa between biceps femoris m.and semitendinosus m.10Cranial mediastinal lnn.Lnn.mediastinales craniales I Constant(3/3)Bilaterally 2lymph nodes located lateral to the thoracic thymus and along the internal thoracic a.and v.11Tracheobronchal ln.Ln.tracheobronchalis VIII Constant(6/6)Single (unpaired)lymph node at the tracheal bifurcation 12Caudal mediastinal ln.Ln.mediastinalis caudalis I Constant(3/3)Single (unpaired)lymph node in the caudal mediastinum,ventral to the esophagus,along the ventral vagal trunk 13Gastric ln.Ln.gastricus I,IX,X,XI,XII Constant(24/24)Single (unpaired)lymph node in the lesser omentum at the minor curvature of the stomach14Pancreaticoduodenal ln.Ln.pancreaticoduodenalis I,IX,X,XI,XII Constant(24/24)Single (unpaired)lymph node in the mesoduodenum,dorsal to the portal vein,surrounded by pancreatic tissue 15Jejunal lnn.Lnn.jejunales I,IX,X,XI,XII Constant(24/24)Large cluster of lymph nodes in the mesojejunum along the cranial mesenteric a.16Colic ln.Ln.colicus I,IX,X,XI,XII Constant(24/24)In the mesocolon at the transition between ascending colon and transverse colon17Caudal mesenteric ln.Ln.mesentericus caudalis I,IX,X,XI,XII Constant(24/24)Single (unpaired)lymph node in the caudal mesentery at the origin of the caudal mesenteric a.18Renal ln.Ln.renalis I,VII,IX,X,XI,XII Constant(33/33)Dorsal to the ipsilateral kidney nearby the renal blood vessels,caudal to the adrenal gland19Lumbar aortic ln.Ln.lumbalis aorticus VII bInconstant(4/6bilateral,2/6only left)Lateral to (and adjacent with)the abdominal aorta,halfway between the origin of the renal and common iliac arteries20Lateral iliac ln.Ln.iliacus lateralis I Inconstant(2/3only right,1/3absent)In adipose tissue caudolateral to the kidney along the deep circumflex iliac a.21Medial iliac ln.Ln.iliacus medialis I,VII,IX,X Constant(21/21)Major bilateral lymph node at the terminal segment of the abdominal aorta and the origin of the common iliac a.22External iliac ln.Ln.iliacus externus I Constant(3/3)Small lymph node along the initial (intra-abdominal)segment of the external iliac a.,before the latter enters the femoral canalEnglish and official Latin names of each node are given together with their frequency and a short description of their topography.aF :number of animals in which lymph nodes were found,E :number of animals in which these particular lymph nodes were examined.bProtocol VII with 42incubation days.14W.Van den Broeck et al./Journal of Immunological Methods 312(2006)12–192.2.Stimulation of lymph nodesAs murine lymph nodes are hardly distinguishable from the surrounding fat and connective tissue(Cuq, 1966),they were stimulated and colored in vivo by an injection of Indian ink in combination with an adjuvant prior to euthanasia and subsequent dissection of the animals.Intravenous injections were performed in three mice to obtain a general overview(protocol I),whereas different additional stimulation protocols were used to demonstrate the presence of particular nodes in various body regions(protocols II–XII).In some protocols,a previous sedation of the mice by intramuscular injection of1μl/g body weight of a solution of200μl ketamine (Ketalar,Parke Davis,Dublin,Ireland)and30μl xylazine(Rompun2%,Bayer,Brussels,Belgium)was required.In a few cases,anaesthesia was induced by injecting the mice intraperitoneally with220μl of a solution containing200μl ketamine,100μl xylazine and 700μl physiological salt solution.The different protocol details are listed in Table1.The specific protocols that have been used to identify the particular nodes are listed in Table2.2.3.Histological examinationThe lymphoid architecture of the in vivo colored structures was verified by histological examination. Dissected lymph nodes were fixed in3.5%phosphate-buffered formaldehyde immediately after necropsy. Paraffin sections were made and stained with eosin–haematoxylin.3.ResultsBased on their topography,the murine lymph nodes were divided into peripheral(head and neck region, forelimb,hindlimb),intrathoracic,and intra-abdominal lymph nodes.A precise nomenclature based on the Nomina Anatomica Veterinaria(2005),equivalent English terms,and the topography of the lymph nodes are described in Table2.The anatomical position ofthe Fig.1.Peripheral lymph nodes in the mouse.(1a)Ventro-lateral view of the head and throat region with sublingual(a),mandibular(b)and parotid (c)salivary gland and the extraorbital lacrimal gland(d),(1b)ventral view of the axillary region,(1c)lateral view of the thorax and forelimb,(1d) dorsal view of the sacral region with the sciatic nerve(a),and(1e)ventral view of the spread hindlimbs;numbers(1–9)according to the description in Table2.15 W.Van den Broeck et al./Journal of Immunological Methods312(2006)12–19exposed lymph nodes is illustrated in 14photographs (Figs.1–3)and 2drawings (Fig.4).Nine peripheral lymph nodes are constant and bilaterally present,namely the mandibular,accessory mandibular,superficial parotid,and cranial deep cervical ln.in the head and neck regions,the axillary and accessory axillary ln.in the forelimb,and the subiliac,sciatic and popliteal ln.in the hindlimb region.Intrathoracic nodes are few in number and consist of the cranial mediastinal lnn.,tracheobronchal ln.and the caudal mediastinal ln.Intra-abdominal lymph nodes are either associated with the gastroin-testinal tract or lie along the major abdominal arteries.The former group consists of the gastric and pancrea-ticoduodenal ln.,the jejunal lnn.and colic ln.which together represent the cranial mesenteric lnn.,and the caudal mesenteric ln.The other intra-abdominal lymph nodes include the bilateral renal,medial iliac and external iliac ln.,as well as the inconstant lumbar aortic and lateral iliac ln.The latter lymph node was observed in 2out of 3mice that were stimulated by intravenous injection.Other lymph nodes such as the facial (Wolvers et al.,1999),auricular or pre-auricular (Anjuère et al.,1999;Dearman et al.,1996;Hendrickx et al.,1992;Sailstad et al.,1995),superficial cervical (Barone et al.,1950;Cuq,1966),caudal deep cervical (Barone et al.,1950),pulmonary (Teitelbaum et al.,1999),hepatic and lienal (Barone et al.,1950),(ileo)cecal (Barone et al.,1950;Cuq,1966),sacral (Popesko et al.,1992),and femoral (Björkdahl et al.,1999;Mishell et al.,1980)lymph nodes were not observed in any of the BALB/cAnNCrl mice that were examined in the present study.Furthermore,there was no evidence of the presence of a submental lymph node (Cook,1983;Jacoby and Fox,1984),but a number of subcutaneous submental lymph nodules were demonstrated just caudal to the inter-mandibular synchondrosis by histological examination.4.DiscussionWe sought to definitely localize lymph nodes in mice and to provide an up-to-date anatomical determination chart to identify the different nodes.Most oftheseFig.2.Intrathoracic and intra-abdominal lymph nodes in the mouse.(2a)Ventral view of the thoracic cavity with the right lung (a)and thymus (b),both turned over to the left side,(2b)ventral view of the thoracic cavity with oesophagus (a),heart (b)and thymus (c),(2c)ventral view of the abdominal cavity with stomach (a),liver (b)and spleen (c),(2d)exposed mesentery,and (2e)ventral view of the abdominal cavity with the left uterine horn (a)and the caudal mesenteric artery (b);numbers (10–17)according to the description in Table 2.16W.Van den Broeck et al./Journal of Immunological Methods 312(2006)12–19lymph nodes have already been described in anatomical papers (Barone et al.,1950;Cuq,1966;Kawashima et al.,1964),but bibliometric analysis indicates that contemporary investigators are often not familiar with these publications.As a consequence,the nomenclature of murine lymph nodes used in recent literature lacks uniformity and is sometimes inadequate or even incorrect.By using different conventional in vivo staining techniques,22lymph nodes could be demonstrated in BALB/cAnNCrl mice.They were named by analogy to the terms listed in Nomina Anatomica Veterinaria (2005).This terminology is based on precise nomen-clatory principles leading to short and simple terms with instructive and descriptive value.Several lymph nodes that were observed in BALB/cAnNCrl mice could be identified because of their comparative and topographic similarities with analogous lymph nodes in domestic carnivores,pigs,and herbivores,and they were named accordingly.However mice lack several lymph nodes that are present in other mammals,such as the deep parotid or proper lumbar lymph nodes.Despite the absence of these complementary structures in mice,the terms superficial parotid and lumbar aortic lymph nodes were retained because the pertaining adjectives have useful descriptive value.This was also the case for the term cranial deep cervical lymph node,although the superficial cervical and caudal deep cervical lymph nodes were not observed in BALB/cAnNCrl mice.No additional topographic adjective was used for the single tracheobronchal lymph node because a precise homol-ogy with either the right,left,or middle tracheobronchal lymph node of domestic animals could not be ascertained in the present study or by data from the literature (Cuq,1966;Kawashima et al.,1964).A number of lymph nodes that has been described in murine species by other authors were not found in the present study.The facial lymph node as mentioned by Wolvers et al.(1999),and the auricular (Anjuère et al.,1999;Dearman et al.,1996;Sailstad et al.,1995)and pre-auricular lymph node (Hendrickx et al.,1992)probably correspond with the superficial parotid ln.described in our study.The submental ln.,illustrated as bilateral lymph nodes in two papers (Cook,1983;Jacoby and Fox,1984),were not observed as nodes as such,but subcutaneous median lymph noduleswereFig.3.Intra-abdominal lymph nodes in the mouse (ventral view).(3a,3b,3c,3d)Ventral views of the abdominal cavity with the right kidney (a)(turned over to the left side in 3a),the right adrenal gland (b),the descending colon (c)(displaced in 3c)and the deep circumflex iliac artery (d);numbers (7,17–22)according to the description in Table 2.17W.Van den Broeck et al./Journal of Immunological Methods 312(2006)12–19present just caudal to the intermandibular synchondro-sis.Furthermore,there was no evidence of the caudal deep cervical ln.which has been described ventral to the trachea and dorsal to the sternum at the level of the first two ribs (Barone et al.,1950).Similarly,the existence of the superficial cervical ln.which has inconstantly be seen medial to the cervical part of the trapezius muscle and cranial to the supraspinatus muscle (Barone et al.,1950;Cuq,1966),and the presence of the femoral ln.which has been described in the inguinal region (Björkdahl et al.,1999;Mishell et al.,1980)could not be demonstrated.An intrathoracic pulmonary lymph node (Teitelbaum et al.,1999)was also absent in all mice examined in the present study.The (ileo)cecal lnn.,described in the ileocecal mesentery as accessory nodes (Barone et al.,1950;Cuq,1966),were not observed inour study,whereas the sacral ln.which has been illustrated by Popesko et al.(1992)most likely refers to the caudal mesenteric ln.as defined by Kawashima et al.(1964).Despite the minute dissections and the use of specific intrahepatic and intralienal stimulation techni-ques,our study failed to demonstrate the existence of hepatic and lienal lymph nodes in BALB/cAnNCrl mice.The presence of these nodes in mice has been discussed by Barone et al.(1950).According to these authors,murine lienal nodes are absent,which corre-sponds with the present findings in BALB/cAnNCrl mice.On the other hand,they observed a (retro)hepatic or portal lymph node which could hardly be discerned from the lymph nodes adjacent to the stomach and the pancreas.This lymph node corresponds most likely with the pancreaticoduodenal lymph node described in the present study.A novel finding in our study was the presence of a small and inconstant lateral iliac lymph node in BALB/cAnNCrl mice.The presence and lymphoid nature of the latter lymph node were verified by histological examination.It is not unlikely that this structure,along with other lymph nodes,might also be demonstrated in other murine species and breeds.To date,no precise nor conclusive data are available concerning the presence of hemal lymph nodes in mice.The exact function of these nodes,which are very obvious in some domestic animal species such as oxen and sheep,has still to be elucidated,but probably they perform a spleen-like function,as suggested by their morphology (Bassan et al.,1999).In the present study,the presence of hemal lymph nodes could not be demonstrated neither by macroscopic nor by micro-scopic examination in any of the stimulated or unstimulated regions in BALB/cAnNCrl mice.In summary,we recommend that scientific papers on laboratory animals,and on mice in particular,should carefully observe universally accepted rules of nomen-clature for the identification of all lymphatic organs that are described and investigated.ReferencesAnjuère,F.,Martin,P.,Ferrero,I.,López Fraga,M.,Martinez delHoyo,G.,Wright,N.,Ardavin,C.,1999.Definition of dendritic cell subpopulations present in the spleen,Peyer's patches,lymph nodes and skin of the mouse.Blood 93,590.Barone,R.,Bertrand,M.,Desenclos,R.,1950.Recherches anatomi-ques sur les ganglions lymphatiques des petits rongeurs de laboratoire.Rev.Méd.Vét.101,423.Bassan,N.,Vasquez,F.,Vinuesa,M.,Cerrutti,P.,Bernardi,S.,1999.Morphological alterations in hemal nodes in splenectomized cattle.Arq.Bras.Med.Vet.Zootec.51,445.Björkdahl,O.,Akerblad,P.,Gjörloff-Wingren,A.,Leanderson,T.,Dohlsten,M.,1999.Lymphoid hyperplasia in transgenicmiceFig.4.Schematic drawing of the localization of the lymph nodes in the mouse.(4a)Ventral and (4b)lateral view;numbers (1–22)according to the description in Table 2;superficial or exposed lymph nodes are in black,the deeply located lymph nodes are dotted.18W.Van den Broeck et al./Journal of Immunological Methods 312(2006)12–19over-expressing a secreted form of the human interleukin-1βgene product.Immunology96,128.Brain,P.F.,Büttner, D.,Costa,P.,Gregory,J.A.,Heine,W.O.P., Koolhaas,J.,Militzer,K.,Ödberg, F.O.,Scharmann,W., Stauffacher,M.,1994.Rodents.In:O'Donoghue,P.N.(Ed.),The Accommodation of Laboratory Animals in Accordance with Animal Welfare Requirements.Proceedings of an International Workshop held at the Bundesgesundheitsamt.Bonn,Germany, p.1.Cain,T.K.,Rank,R.G.,1995.Local Th1-like responses are induced by intravaginal infection of mice with the mouse pneumonitis biovar of Chlamidia trachomatis.Infect.Immun.63,1784.Cook,M.J.,1983.Anatomy.In:Foster,H.L.,Small,J.D.,Fox,J.G.(Eds.),The Mouse in Biomedical Research:V olume III.Normative Biology,Immunology,and Husbandry.Academic Press Inc.,New York,p.111.Cuq,P.,1966.Le système lymphatique de la Souris.Recl.Méd.Vét.142,1211.Deaglio,S.,Dianzani,U.,Horenstein,A.L.,Fernandez,J.E.,Van Kooten,C.,Bragardo,M.,Funaro,A.,Garbarino,G.,Di Virgilio,F.,Banchereau,J.,Malavasi,F.,1996.Human CD38ligand.A120kDa protein predominantly expressed on endothelial cells.J.Immunol.156,727.Dearman,R.J.,Basketter,D.A.,Kimber,I.,1996.Characterization of chemical allergens as a function of divergent cytokine secretion profiles induced in mice.Toxicol.Appl.Pharmacol.138,308. Grassé,P.P.,1972.In:Grassé,P.P.(Ed.),Traitéde Zoölogie.Tome XVI,Fascicule IV.Masson,Paris,p.848.Hendrickx,R.L.,Tumpey,T.M.,Finnegan,A.,1992.IFN-γand IL-2 are protective in the skin but pathologic in the corneas of HSV-1-infected mice.J.Immunol.149,3023.Jacoby,R.O.,Fox,J.G.,1984.Biology and diseases of mice.In:Fox,J.G.,Cohen,B.J.,Loew,F.M.(Eds.),Laboratory Animal Medicine.Academic Press Inc,New York,p.140.Kawashima,Y.,Sugimura,M.,Hwang,Y.,Kudo,N.,1964.The lymph system in mice.Jpn.J.Vet.Res.12,69.Mishell,B.B.,Shiigi,S.M.,Henry,C.,Chan,E.L.,North,J.,Gallily, R.,Slomich,M.,Miller,K.,Marbrook,J.,Parks,D.,Good,A.H., 1980.Preparation of mouse cell suspensions.In:Meshell,B.B., Shiig,S.M.(Eds.),Selected Methods in Cellular Immunology.W.F.Freeman and Company,San Francisco,p.13.Nomina Anatomica Veterinaria(NA V),2005.In:Waibl,H.,Gasse,H.,Constantinescu,G.,Hashimoto,Y.,Simoens,P.(Eds.),World Association of Veterinary Anatomists,5th edition, pp.120–122(Hannover,Columbia,Sapporo,Ghent),http://www./.Popesko,P.,Rajtová,V.,Horák,J.,1992.In:Popesko,P.(Ed.),A Colour Atlas of the Anatomy of Small Laboratory Animals.Rat, Mouse,Golden Hamster,vol.2.Wolfe Publishing Ltd,London, p.105.Sailstad,D.M.,Krishnan,S.D.,Tepper,J.S.,Doerfler,D.L.,Selgrade, M.K.,1995.Dietary vitamin A enhances sensitivity of the local lymph node assay.Toxicology96,157.Teitelbaum,R.,Schubert,W.,Gunther,L.,Kress,Y.,Macaluso,F., Pollard,J.W.,McMurray,D.N.,Bloom,B.R.,1999.The M cell asa portal of entry to the lung for the bacterial pathogenMycobacterium tuberculosis.Immunity10,641.Wolvers,D.A.W.,Coenen-de Roo,C.J.J.,Mebius,R.E.,Van der Cammen,M.J.F.,Tirion,F.,Miltenburg,A.M.M.,Kraal,G.,1999.Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes:studies with OV A and human cartilage gp-39.J.Immunol.162,1994.19W.Van den Broeck et al./Journal of Immunological Methods312(2006)12–19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :h e p -t h /9811242v 1 27 N o v 1998Dirac fields in a Bohm-Aharonov background and spectralboundary conditionsC.G.Beneventano,M.De Francia and E.M.Santangelo Departamento de F´ısica -Facultad de Ciencias Exactas -Universidad Nacional de La Plata,ArgentinaWe study the problem of a Dirac field in the background of an Aharonov-Bohm fluxstring.We exclude the origin by imposing spectral boundary conditions at a finite radius then shrinked to zero.Thus,we obtain a behaviour of the eigenfunctions which is compatible with the self-adjointness of the radial Hamiltonian and the invariance under integer translations of the reduced flux.After confining the theory to a finite region,we check the consistency with the index theorem,and discuss the vacuum fermionic number and Casimir energy.1Setting of the problemWe study the Dirac equation for a massless particle in four dimensional Minkowski space,in the presence of a flux tube located at the origin,i.e.,(i ∂−A )Ψ=0H= ∇∧ A =κ2πis the reduced flux.As the gauge potential is z −independent,equation (1)can be decoupled into two uncoupled two-component equations,1by choosing:γ0=σ300σ3 γ1= iσ200iσ2 γ2= −iσ100iσ1 γ3= 0iσ1iσ10 (2)In order to avoid singularities,we will consider that only r >r 0is accessi-ble,and take the limit r 0→0,which is equivalent to having a punctured planewith the removed point corresponding to the string position.By taking A z =A r =0,A θ=κr∂θ−κs =−1can be studied in a similar way,and explicit reference will be made to it whenever necessary).In this case,we can write:H += 0L †L 0 ,with L =−ie iθ(−∂r +B)L †=ie −iθ(∂r +B)(4)and its eigenfunctions:ΨE =ϕE (r,θ)χE (r,θ),satisfy :LϕE =EχE L †χE =EϕE(5)Now,the two components in ΨE have different θdependence.In order to makethis fact explicit,and to discuss boundary conditions at r =r 0,we introduce 2ΨE =1r e−i θ2χ1E (r,θ) L 1=−∂r +B L †1=∂r +B (6)so thatL 1ϕ1E =iEχ1EL †1χ1E =−iEϕ1E(7)We expand ϕ1E and χ1E in terms of eigenfunctions of B,which are of theform:e n =e i (n +12−κ2)θχ1E (r,θ)=∞n =−∞g n (r )e i (n +1E(A n J n +1−κ(|E |r )−B n J κ−n −1(|E |r ))e iθ(10)(Of course,for integer κ,a linear combination of Bessel and Neumann functions must be taken).Finally,for s =−1,the upper and lower components of ΨE interchange,and E →−E .22Boundary conditions at the originAs is well known,3theradialDiracHamiltonianin the background of anAharonov-Bohm gaugefield requires a self-adjoint extension for the critical subspace n=k.In fact,imposing regularity of both components of the Dirac field at the origin is too strong a requirement,except for integerflux.Rather, one has to apply the theory of Von Neumann deficiency indices,which leads to a one parameter family of allowed boundary conditions,characterized by i limr→0(Mr)ν+1g n(r)sin π2 =lim r→0(Mr)−νf n(r)cos π2 (11)withνvarying between−1and0(ν=−αfor s=1;ν=α−1for s=−1). Here,Θparametrizes the admissible self-adjoint extensions,and M,a mass parameter,is introduced for dimensional reasons.Which of these boundary conditions to impose depends on the physical situation under study.One possibility is to take afiniteflux tube,ask for continuity of both components of the Diracfield atfinite radius and then let this radius go to zero.1 Thus,one of the possible self-adjoint extensions is obtained,which corresponds toΘ=πEJ k+α−n−1(|E|r)e i(n+1)θ +3+∞n=k+1A n J n−k−α(|E|r)e inθi|E|2(13)ΨE(r,θ)=k−1n=−∞B n J k+α−n(|E|r)e inθ−i|E|EJ n+1−k−α(|E|r)e i(n+1)θ α<1 2).It corresponds to the values of the parameterΘ:Θ= −π2π2(15)As shown in,7Θ=±π2.This is due to the already commentedpresence of a constant zero mode on the cylinder.However,for the repre-sentation s=−1of2×2Dirac matrices,APS boundary conditions must bereversed,forλ=0,as compared to(12),since the operator B changes into −B.Forλ=0the lower component will be taken to be zero at r0which,as we will show later,allows for charge conjugation to be a symmetry of the wholemodel.In this case,the resulting extension corresponds toΘ= π2−π2(16) It is worth pointing that,for integerκ=k,our procedure leads(both for s=±1)to the requirement of regularity of both components at the origin.3The theory in a bounded regionFrom now on,we will confine the Diracfields inside a bounded region,byintroducing a boundary at r=R,and imposing there boundary conditions ofthe APS type,complementary to the ones considered at r=r0.For s=1f n(R)=0,forλn(R)>0g n(R)=0,forλn(R)≤0(17)4We start by studying the zero modes of our theory,which are of the form Ψ0(r,θ)= e−iθ2)θe iθ2)θ (18)It is easy to see that no zero mode remains after imposing the boundary conditions at both the internal and external radius,even without taking r0→0.This is in agreement with the APS index theorem.5In fact,according to such theoremn+−n−=A+b(r0)+b(R)(19) where n+(n−)is the number of chirality positive(negative)zero energy solu-tions,A is the anomaly,or bulk contribution,and b are the surface contribu-tions coming from both boundaries2,8b(R)=12(η(r0)−h r)(20)withη(r)the spectral asymmetry of the boundary operator B and h r the dimension of its kernel.In our case,the boundary contributions cancel.As regards the volume part,it also vanishes for the gaugefield configuration under study,and we have n+−n−=0,which is consistent with the absence of zero modes.For s=−1both boundary contributions interchange,and identical conclusionshold regarding the index.The nonzero energy spectrum can be determined by imposing(for s=1) the boundary conditions(17)at r=R on the eigenfunctions in eqs.(13)and (14).Thus,one gets:E n,l= ±j n−α,l R,n≥−1,α≥1R,n≥0±j n+α,l2(21) where jν,l is the l-th positive root of Jν.The same spectrum results for s=−1.For both s values,the energy spectrum is symmetric with respect to zero. This fact,together with the absence of zero modes results in a null vacuum expectation value for the fermionic charge9N +=−1It is interesting to note that the contribution to the fermionic number coming from r0coincides,for each s value,with the result presented for the whole punctured plane in4(for details,see10),except forα=1∞n=−∞ζ|n−α|+ζ−αforα<12AcknowledgmentsThe authors thank H.Falomir for many useful discussions and comments.E.M.S.also thanks the organizers of this event for their kind hospitality.This work was partially supported by ANPCyT,under grant PMT-PICT0421and U.N.L.P.,Argentina.Bibliography1.C.R.Hagen.Aharonov-Bohm scattering of particles with spin.Phys.Rev.Lett.,64:503,1990.2.Zhong-Qi Ma.Journal of Physics,A19:L317,1986.3.P.de Sousa Gerbert.Fermions in an Aharonov-Bohmfield and cosmicstrings.Phys.Rev.,D40:1346,1989.4.Yu.A.Sitenko.Selfadjointness of the Dirac Hamiltonian and fermionnumber fractionization in the background of a singular magnetic vortex.Phys.Lett.,B387:334–340,1996.5.M.F.Atiyah,V.K.Patodi,and I.M.Singer.Math.Proc.Camb.Phil.Soc.,77:43,1975.6.J.S.Dowker,J.S.Apps,K.Kirsten,and M.Bordag.Spectral invariantsfor the Dirac equation on the d-ball with various boundary conditions.Class.Quant.Grav.,13:2911–2920,1996.7.Cristina Manuel and Rolf Tarrach.Contact interactions and Diracanyons.Physics Letters,B301(1):72–76,1993.8.H.Falomir,R.E.Gamboa Sarav´ı,and E.M.Santangelo.Dirac operatoron a disk with global boundary conditions.Journal of Mathematical Physics,39:532,1998.9.A.J.Niemi and G.W.Semenoff.Spectral asymmetry on an open space.Phys.Rev.,D30:809,1984.10.C.G.Beneventano,M.De Francia,and E.M.Santangelo.Diracfields inthe background of a magneticflux string and spectral boundary condi-tions.hep-th/9809081.11.S.Leseduarte and August Romeo.Influence of a magneticfluxon on thevacuum energy of quantumfields confined by a mun.Math.Phys.,193:317,1998.7。