全等三角形辅助线之截长补短和倍长中线(原题+解析)
全等三角形证明题辅助线专题--截长补短和倍长中线

全等三角形证明题辅助线专题--截长补短和倍长中线一、截长补短1.如图所示,AC∥BD,EA、EB分别平分∠CAB和∠DBA,点E在线段CD上,求证:AB=AC+BD.2.如图,在四边形ABCD中,AD=CD,BD平分∠ABC,DE⊥AB于点E,求证:AE+BC=BE.3.如图,△ABC中,∠CAB=∠CBA=45∘,点E为BC的中点,CN⊥AE交AB于点N,连接EN.求证AE=CN+EN.4.如图,△ABC的∠B和∠C的平分线BD,CE相交于点F,∠A=60°,(1)求∠BFC的度数.(2)求证:BC=BE+CD.5.如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:第2页,共28页BC=AB+CE.6.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?2(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是边BC,CD延长线上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明;2若不成立,请写出它们之间的数量关系,并证明.7.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF = 60°.探究图中线段BE,EF,FD之间的数量关系.8.如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:OE=OD;(3)猜测AE,CD,AC三者的数量关系,并证明.第4页,共28页9.如图在△ABC中,∠ABC=60°,AC=2AB,AD平分∠BAC交BC于点D,延长DB点F,使BF=BD,连接AF.(1)求证:AF=CD;(2)若CE平分∠ACB交AB于点E,试猜想AC、AF、AE三条线段之间的数量关系,并证明你猜想的结论.二、倍长中线10.如图,在△ABC和△DEF中,AB=DE,AC=DF,AM和DN分别是中线,且AM=DN.求证:△ABC≌△DEF.11.(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图①,△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是______.A.SSS B.SAS C.AAS D.HLⅡ.由“三角形的三边关系”可求得AD的取值范围是______.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【初步运用】如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.12.已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BC交AC于F,求证:AF=EF.第6页,共28页13.如图,在△ABC中,AD是中线,∠BAC=∠BCA,点E在BC的延长线上,CE=AB,连接AE.求证:AE=2AD.14.如图,Rt△ABC中,∠ABC=90°(1)如图1,若BD为高线,AB=4,BC=3,AC=5,求BD的长(2)如图2,若BD为中线,求证:BD=1AC215.如图,在五边形ABCDE中,∠E=90O,BC=DE,,连接AC,AD,且AB=AD,AC⊥BC.(1)求证:AC=AE(2)如图,若∠ABC=∠CAD,AF为BE边上的中线,求证:AF⊥CD;(3)如图,在(2)的条件下,AE=8,DE=5,则五边形ABCDE的面积为_______。
全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.截长补短:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂D C BAED F CB A线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
全等三角形中的倍长中线与截长补短法

1
例1:△ABC中,AB=5,AC=3,求中线AD的取值范围
2
提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边
例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE
方法1:过D作DG∥AE交BC于G,
方法2:过E作EG∥AB交BC的延长线于G,
A
B
C
D
M
N
思考题
在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°, ∠BDC=120°, BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系.
如图2,点M、N边AB、AC上,且 当DM≠DN时,猜想(I)的结论还成立吗 ?
方法3:过D作DG⊥BC于G,过E作EH⊥BC的延长线于H
例3:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF 提示:倍长AD至G,连接BG, 证明ΔBDG≌ΔCDA 三角形BEG是等腰三角形
例4:已知:如图,在中,,D、E在BC上,且DE=EC,过D作交AE于点F,DF=AC. 求证:AE平分∠BAC 提示: 方法1:倍长AE至G,连结DG 方法2:倍长FE至H,连结CH
在三角形中线时,常廷长加倍中线,构造全等三角形。 例如:如图5-1:AD为 △ABC的中线,求证:AB+AC>2AD 分析:要证AB+AC>2AD, 由图想到: AB+BD>AD, AC+CD>AD, 所以有AB+AC+ BD+CD > AD +AD=2AD, 左边比要证结论多BD+CD, 故不能直接证出此题, 而由2AD想到要构造2AD, 即加倍中线, 把所要证的线段转移到同一个三角形中去
专题 全等三角形模型——截长补短与倍长中线(解析版)

全等三角形模型——截长补短与倍长中线截长补短截长:即在一条较长的线段上截取一段较短的线段在线段AB 上截取AD AC=补短:即在较短的线段上补一段线段使其和较长的线段相等延长AC ,使得AD AB =1.ABC D 中,AD 是BAC Ð的平分线,且AB AC CD =+.若60BCA Ð=°,则ABC Ð的大小为( )A .30°B .60°C .80°D .100°【分析】可在AB 上取AC AC ¢=,则由题中条件可得BC C D ¢=¢,即2C AC D B Ð=Т=Ð,再由三角形的外角性质即可求得B Ð的大小.【解答】解:如图,在AB 上取AC AC ¢=,AD Q 是角平分线,DAC DAC ¢\Ð=Ð,ACD \D @△()AC D SAS ¢,CD C D ¢\=,又AB AC CD =+Q ,AB AC C B ¢¢=+,BC C D \¢=¢,DCBAAB CD260C AC D B ¢\Ð=Ð=Ð=°,30B \Ð=°.故选:A .2.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在ABC D 中,2B C Ð=Ð,AD 平分BAC Ð.求证:AB BD AC +=.证明:在AC 上截取AE AB =,连接DE(2)如图2,//AD BC ,EA ,EB 分别平分DAB Ð,CBA Ð,CD 过点E ,求证:AB AD BC =+.【分析】(1)在AC 上截取AE AB =,连接DE ,证明ABD AED D @D ,得到B AED Ð=Ð,再证明ED EC =即可;(2)由等腰三角形的性质知AE FE =,再证明ADE FCE D @D 即可解决本题.【解答】证明:在AC 上截取AE AB =,连接DE ,如图1:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2BC Ð=Ð,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=;(2)延长AE 、BC 交于F ,AB BF =Q ,BE 平分ABF Ð,AE EF \=,在ADE D 和FCE D 中,DAE F AE EFAED CEF Ð=Ðìï=íïÐ=Ðî,()ADE FCE ASA \D @D ,AD CF \=,AB BF BC CF BC AD \==+=+.3.如图,在ABC D 中,AD 平分BAC Ð交BC 于D ,在AB 上截取AE AC =.(1)求证:ADE ADC D @D ;(2)若6AB =,5BC =,4AC =,求BDE D的周长.【分析】(1)根据SAS 证明ADE ADC D @D 即可;(2)根据全等三角形的性质和线段之间的关系进行解答即可.【解答】证明:(1)AD Q 平分BAC Ð,EAD CDA \Ð=Ð,在ADE D 与ADC D 中,AE AC EAD CDA AD AD =ìïÐ=Ðíï=î,()ADE ADC SAS \D @D ,(2)ADE ADC D @D Q ,ED DC \=,BDE \D 的周长6457BE BD DE AB AE BC DC DC AB AC BC DC DC AB AC BC =++=-+-+=-+-+=-+=-+=4.(2020秋•武昌区期中)如图,ABC D 中,60ABC Ð=°,AD 、CE 分别平分BAC Ð、ACB Ð,AD 、CE 相交于点P(1)求CPD Ð的度数;(2)若3AE =,7CD =,求线段AC 的长.【分析】(1)利用60ABC Ð=°,AD 、CE 分别平分BAC Ð,ACB Ð,即可得出答案;(2)由题中条件可得APE APF D @D ,进而得出APE APF Ð=Ð,通过角之间的转化可得出CPF CPD D @D ,进而可得出线段之间的关系,即可得出结论.【解答】解:(1)60ABC Ð=°Q ,AD 、CE 分别平分BAC Ð,ACB Ð,120BAC BCA \Ð+Ð=°,1()602PAC PCA BAC BCA Ð+Ð=Ð+Ð=°,120APC \Ð=°,60CPD \Ð=°.(2)如图,在AC 上截取AF AE =,连接PF .AD Q 平分BAC Ð,BAD CAD \Ð=Ð,在APE D 和APF D 中AE AF EAP FAP AP AP =ìïÐ=Ðíï=î,()APE APF SAS \D @D ,APE APF \Ð=Ð,120APC Ð=°Q ,60APE \Ð=°,60APF CPD CPF \Ð=Ð=°=Ð,在CPF D 和CPD D 中,FPC DPC CP CPFCP DCP Ð=Ðìï=íïÐ=Ðî,()CPF CPD ASA \D @D CF CD \=,3710AC AF CF AE CD \=+=+=+=.5.如图,在ABC D 中,60BAC Ð=°,AD 是BAC Ð的平分线,且AC AB BD =+,求ABC Ð的度数.【分析】在AC上截取AE AB=,根据角平分线的定义可得BAD CADÐ=Ð,然后利用“边角边”证明ABDD和AEDD全等,根据全等三角形对应边相等可得BD DE=,全等三角形对应角相等可得B AEDÐ=Ð,再求出CE BD=,从而得到CE DE=,根据等边对等角可得C CDEÐ=Ð,根据三角形的一个外角等于与它不相邻的两个内角的和可得2AED CÐ=Ð,然后根据三角形的内角和定理列方程求出CÐ,即可得解.【解答】解:如图,在AC上截取AE AB=,ADQ平分BACÐ,BAD CAD\Ð=Ð,在ABDD和AEDD中,AE ABBAD CAD AD AD=ìïÐ=Ðíï=î,()ABD AED SAS\D@D,BD DE\=,B AEDÐ=Ð,AC AE CE=+Q,AC AB BD=+,CE BD\=,CE DE\=,C CDE\Ð=Ð,即2B CÐ=Ð,在ABCD中,180BAC B CÐ+Ð+Ð=°,602180C C\°+Ð+Ð=°,解得40CÐ=°,24080ABC\Ð=´°=°.6.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD Ð=Ð=°,180ABC AED Ð+Ð=°,连接AD .求证:AD 平分CDE Ð.【分析】连接AC ,将ABC D 绕A 点旋转120°到AEF D ,由AB AE =,120BAE Ð=°,得到AB 与AE 重合,并且AC AF =,又由180ABC AED Ð+Ð=°,得到180AEF AED Ð+Ð=°,即D ,E ,F 在一条直线上,而BC DE CD +=,得CD DF =,则易证ACD AFD D @D ,于是ADC ADF Ð=Ð.【解答】证明:如图,连接AC ,将ABC D 绕A 点旋转120°到AEF D ,AB AE =Q ,120BAE Ð=°,AB \与AE 重合,并且AC AF =,又180ABC AED Ð+Ð=°Q ,而ABC AEF Ð=Ð,180AEF AED Ð+Ð=°Q ,D \,E ,F 在一条直线上,而BC EF =,BC DE CD +=,CD DF \=,又AC AF =Q ,ACD AFD \D @D ,ADC ADF \Ð=Ð,即AD 平分CDE Ð.7.已知:如图,在ABC D 中,D 是BA 延长线上一点,AE 是DAC Ð的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB ,PC .通过观察,测量,猜想PB PC +与AB AC +之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP CP =,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB PC AB AC +>+,理由如下:在BA 的延长线上截取AF AC =,连接PF ,在FAP D 和CAP D 中,AF AC FAP CAP AP AP =ìïÐ=Ðíï=î,()FAP CAP SAS \D @D ,FP CP \=.在FPB D 中,FP BP FA AB +>+,即PB PC AB AC +>+.8.已知ABC D 中,AB AC =,BE 平分ABC Ð交边AC 于E .(1)如图(1),当108BAC Ð=°时,证明:BC AB CE =+;(2)如图(2),当100BAC Ð=°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.【分析】(1)如图1中,在BC 上截取BD BA =.只要证明BEA BED D @D ,CE CD =即可解决问题;(2)结论:BC BE AE =+.如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,再证明EA EH EF CF ===即可解决问题;【解答】解:(1)如图1中,在BC 上截取BD BA =.BA BD =Q ,EBA EBD Ð=Ð,BE BE =,BEA BED \D @D ,BA BD \=,108A BDE Ð=Ð=°,AB AC =Q ,36C ABC \Ð=Ð=°,72EDC Ð=°,72CED \Ð=°,CE CD \=,BC BD CD AB CE \=+=+.(2)结论:BC BE AE =+.理由:如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,EF EH \=,100BAC Ð=°Q ,AB AC =,40ABC C \Ð=Ð=°,20EBA EBC \Ð=Ð=°,80BFE H EAH \Ð=Ð=Ð=°,AE EH \=,BFE C FEC Ð=Ð+ÐQ ,40CEF C \Ð=Ð=°,EF CF \=,BC BF CF BE AE \=+=+.9.(2020秋•建华区期末)阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC D 中,AD 平分BAC Ð,2B C Ð=Ð.求证:AB BD AC +=.”李老师给出了如下简要分析:要证AB BD AC +=,就是要证线段的和差问题,所以有两个方法:方法一:“截长法”.如图2,在AC 上截取AE AB =,连接DE ,只要证BD = EC 即可,这就将证明线段和差问题 为证明线段相等问题,只要证出△ @△ ,得出B AED Ð=Ð及BD = ,再证出Ð = ,进而得出ED EC =,则结论成立.此种证法的基础是“已知AD 平分BAC Ð,将ABD D 沿直线AD 对折,使点B 落在AC 边上的点E 处”成为可能.方法二:“补短法”.如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可,此时先证Ð C =Ð,再证出△ @△ ,则结论成立.“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【分析】方法一、如图2,在AC 上截取AE AB =,由“SAS ”可证ABD AED D @D ,可得B AED Ð=Ð,BD DE =,由角的数量关系可求DE CE =,即可求解;方法二、如图3,延长AB 至点F ,使BF BD =,由“AAS ”可证AFD ACD D @D ,可得AC AF =,可得结论.【解答】解:方法一、在AC 上截取AE AB =,连接DE ,如图2:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2B C Ð=ÐQ ,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=,故答案为:EC ,转化,ABD ,AED ,DE ,EDC ,C Ð;方法二、如图3,延长AB 至点F ,使BF BD =,F BDF \Ð=Ð,2ABD F BDF F \Ð=Ð+Ð=Ð,2ABD C Ð=ÐQ ,F C \Ð=Ð,在AFD D 和ACD D 中,FAD CAD F CAD AD Ð=ÐìïÐ=Ðíï=î,()AFD ACD AAS \D @D ,AC AF \=,AC AB BF AB BD \=+=+,故答案为F ,AFD ,ACD .倍长中线倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形;其本质是转移边和角.其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.10.三角形ABC 中,AD 是中线,且4AB =,6AC =,求AD 的取值范围是 .【分析】延长AD 到E ,使AD DE =,连接BE ,证ADC EDB D @D ,推出8AC BE ==,在ABE D 中,根据三角形三边关系定理得出AB BE AE AB BE -<<+,代入求出即可.【解答】解:延长AD 到E ,使AD DE =,连接BE ,AD Q 是BC 边上的中线,BD CD \=,在ADC D 和EDB D 中,Q AD DE ADC EDB DC BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,4AC BE \==,在ABE D 中,AB BE AE AB BE -<<+,64264AD \-<<+,15AD \<<,故答案为:15AD <<.11.(2021春•碑林区校级期中)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,ABCD 中,若4AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下ED ABC的解决方法:延长AD 到点E ,使DE AD =,则得到ADC EDB D @D ,小明证明BED CAD D @D 用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以ABC D 的边AB ,AC 为边向外作ABE D 和ACD D ,AB AE =,AC AD =,90BAE CAD Ð=Ð=°,M 是BC 中点,连接AM ,DE .当3AM =时,求DE 的长.【分析】问题背景:先判断出BD CD =,由对顶角相等BDE CDA Ð=Ð,进而得出()ADC EDB SAS D @D ;问题解决:先证明()ADC EDB SAS D @D ,得出3BE AC ==,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,同(1)的方法得出()BMN CMA SAS D @D ,则BN AC =,进而判断出ABN EAD Ð=Ð,进而判断出ABN EAD D @D ,得出AN ED =,即可求解.【解答】解:问题背景:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC D 和EDB D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,故答案为:SAS;问题解决:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC EDB D @D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,BE AC \=,在ABE D 中,AB BE AE AB BE -<<+,4AB =Q ,3AC =,4343AE \-<<+,即17AE <<,DE AD =Q ,12AD AE \=,\1722AD <<;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,由问题背景知,()BMN CMA SAS D @D ,BN AC \=,CAM BNM Ð=Ð,AC AD =Q ,//AC BN ,BN AD \=,//AC BN Q ,180BAC ABN \Ð+Ð=°,90BAE CAD Ð=Ð=°Q ,180BAC EAD \Ð+Ð=°,ABN EAD \Ð=Ð,在ABN D 和EAD D 中,AB EA ABN EAD BN AD =ìïÐ=Ðíï=î,()ABN EAD SAS \D @D ,AN DE \=,MN AM =Q ,2DE AN AM \==,3AM =Q ,6DE \=.12.如图,ABC D 中,D 为BC 的中点.(1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB D @D ,再根据三角形的三边关系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得53253AD -<<+,再计算即可.【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D Q 为BC 的中点,DB CD \=,在ADC D 和EDB D 中AD DE ADC BDE DB CD =ìïÐ=Ðíï=î,BE AC \=,在ABE D 中,AB BE AE +>Q ,2AB AC AD \+>;(2)5AB =Q ,3AC =,53253AD \-<<+,14AD \<<.13.如图,平面直角坐标系中,A 为y 轴正半轴上一点,B 、C 分别为x 轴负半轴,x 轴正半轴上的点,AB AD =,AC AE =,90BAD CAE Ð=Ð=°,连DE .如图,F 为BC 的中点,求证:2DE AF =.【分析】延长AF 至点N ,使FN AF =,连接BN ,证明BFN CFA D @D ,根据全等三角形的性质得到BN AC =,FBN FCA Ð=Ð,证明ABN DAE D @D ,根据全等三角形的性质证明;【解答】证明:延长AF 至点N ,使FN AF =,连接BN ,在BFN D 和CFA D 中,FB FC BFN CFA FN AF =ìïÐ=Ðíï=î,BN AC \=,FBN FCA Ð=Ð,BN AE \=,ABN DAE Ð=Ð,在ABN D 和DAE D 中,AB AD ABN DAE BN AE =ìïÐ=Ðíï=î,()ABN DAE SAS \D @D ,AN DE \=,2DE AF \=.14.如图,AD 是ABC D 的边BC 上的中线,CD AB =,AE 是ABD D 的边BD 上的中线.求证:2AC AE =.【分析】延长AE 至点F ,使EF AE =,连接DF ,由SAS 证得ABE FDE D @D ,得出DF AB CD ==,EDF B Ð=Ð,易证AB BD =,得出ADB BAD Ð=Ð,证明ADC ADF Ð=Ð,由SAS 证得ADF ADC D @D ,即可得出结论.【解答】证明:延长AE 至点F ,使EF AE =,连接DF ,如图所示:AE Q 是ABD D 的边BD 上的中线,BE DE \=,在ABE D 与FDE D 中,AE EF AEB FED BE DE =ìïÐ=Ðíï=î,()ABE FDE SAS \D @D ,DF AB CD \==,EDF B Ð=Ð,AD Q 是ABC D 的边BC 上的中线,CD AB =,AB BD \=,ADB BAD \Ð=Ð,ADC B BAD BDA EDF ADF \Ð=Ð+Ð=Ð+Ð=Ð,在ADF D 与ADC D 中,AD AD ADF ADC DF DC =ìïÐ=Ðíï=î,()ADF ADC SAS \D @D ,2AC AF AE \==.15.如图,在ABC D 中,D ,E 是AB 边上的两点,AD EB =,CF 是AB 边上的中线,则求证AC BC CD CE +>+.【分析】如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G ,通过证明AFH BFC D @D ,BCE AHD D @D ,可得BC AH =,CE DH =,利用三角形的三边关系可求解.【解答】证明:如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G,Q是AB边上的中线,CF\=,且CFB AFHAF BF=,Ð=Ð,CF FH()\D@DAFH BFC SAS=,Ð=Ð,且AD BE\=,CBE HADBC AH\D@D()BCE AHD SAS\=,CE DH在AGC+>+,D中,AC AG DC DG在GDH+>,D中,DG GH DHAC AG DG GH DC DG DH\+++>++,\+>+,AC AH DC DH\+>+.AC BC CD CE16.如图1,ABCÐ=Ð.D中,CD为ABCD的中线,点E在CD上,且AED BCD(1)求证:AE BC=.(2)如图2,连接BE,若2CBEÐ的度数为 (直接写出结果),Ð=°,则ACDAB AC DE==,14【分析】(1)如图1,延长CD到F,使DF CDD@D,可得=,连接AF,由“SAS”可证ADF BDCAF BC=,F BCDÐ=Ð,由等腰三角形的性质可得结论;(2)由等腰三角形的性质可得DEB DBEÐ=Ð,可得14DCB DEBÐ=Ð-°,14ACB ABC DEBÐ=Ð=Ð+°,即可求解.【解答】证明:(1)如图1,延长CD到F,使DF CD=,连接AF,CDQ为ABCD的中线,AD BD\=,且ADF BDCÐ=Ð,且CD DF=,()ADF BDC SAS\D@D,AF BC\=,F BCDÐ=Ð,AED BCDÐ=ÐQ,AED F\Ð=Ð,AE AF\=,AE BC\=;(2)12DE AB=Q,CD为ABCD的中线,DE AD DB\==,DEB DBE\Ð=Ð,14 ABC DBE CBE DEB\Ð=Ð+Ð=Ð+°,DEB DCB CBEÐ=Ð+ÐQ,14DCB DEB\Ð=Ð-°,AC AB=Q,14ACB ABC DEB\Ð=Ð=Ð+°28ACD ACB DCB\=Ð-Ð=°,故答案为:28°.17.如图,ABC D 中,点D 是BC 中点,连接AD 并延长到点E ,连接BE .(1)若要使ACD EBD D @D ,应添上条件: ;(2)证明上题:(3)在ABC D 中,若5AB =.3AC =,可以求得BC 边上的中线AD 的取值范围4AD <.请看解题过程:由ACD EBD D @D 得:AD ED =,3BE AC ==,因此AE AB BE <+,即8AE <,而12AD AE =,则4AD <请参考上述解题方法,可求得AD m >,则m 的值为 .(4)证明:直角三角形斜边上的中线等于斜边的一半.(提示:画出图形,写出已知,求证,并加以证明)【分析】(1)根据“边角边”求证三角形全等的方法可以添加条件AD DE =;(2)易证BD CD =,根据“边角边”求证三角形全等的方法即可解题;(3)根据三角形三边关系即可解题;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =;证明:延长AD 到点E 使得DE AD =,连接BE ,易证ACD EBD D @D ,可得C DBE Ð=Ð,AC BE =,即可证明BAC ABE D @D ,可得BC AE =,即可解题.【解答】解:(1)应添上条件:AD DE =,故答案为AD DE =;(2)Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;(3)Q 三角形两边之差小于第三边,AE AB BE \>-,即2AE >,12AD AE =Q ,1AD \>,故答案为 1;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =,证明:延长AD 到点E 使得DE AD =,连接BE ,Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;C DBE \Ð=Ð,AC BE =,90ABC C Ð+Ð=°Q ,90ABC DBE \Ð+Ð=°,即90ABE Ð=°,Q 在BAC D 和ABE D 中,90AB BA ABE BAC AC BE =ìïÐ=Ð=°íï=î,()BAC ABE SAS \D @D ;BC AE \=,12AD BC \=.。
三角形全等之辅助线——截长补短类经典习题讲解(精编文档).doc

【最新整理,下载后即可编辑】三角形全等之截长补短一、知识点睛 截长补短:题目中出现线段间的和差倍分时,考虑截长补短;截长补短的目的是把几条线段间的数量关系转为两条线段的等量关系.二、精讲精练(可以尝试用多种方法)1.已知:如图,在△ABC 中,∠1=∠2,∠B =2∠C .求证:AC =AB +BD .21A 21DCA 21CA2.已知:如图,在正方形ABCD 中,AD =AB ,∠D =∠ABC =∠BAD =90°,E ,F 分别为DC ,BC 边上的点,且∠EAF =45°,连接EF .求证:EF =BF +DE .3.已知:如图,在△ABC 中,∠ABC =60º,△ABC 的角平分线AD ,CE 交于点O .求证:AC =AE +CD .F EA B DCF EA B DCAEBD COA EBD CO4.已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于点E .求证:CE =21BD .5.如图,在梯形ABCD 中,AD ∥BC ,CE ⊥AB 于E ,△BDC 为等腰直角三角形,∠BDC =90°,BD CD ,CE 与BD 交于F ,连接AF .求证:CF =AB +AF .AB CDEABCDEBFCEDA BFCEDA【参考答案】1.证明略提示:方法一:在AC上截取AE=AB,连接DE,证明△ABD≌△AED,然后再证明CE=BD;方法二:延长AB到E,使BE=BD,证明△ADE≌△ADC 2.证明略提示:延长FB到G,使BG=DE,连接AG,证明△ABG≌△ADE,再证明△AFG≌△AFE)3.证明略提示:在AC上截取AF=AE,连接OF,证明△AEO≌△AFO,∠AOC=120°,再证明△COF≌△COD)4.证明略提示:延长CE交BA的延长线于点F,证明△BEF≌△BEC,得EC=EF,再证明△ACF≌△ABD,得CF=BD)5.证明略提示:方法一:延长BA交CD的延长线交于点H,证明△BDH≌△CDF,得DH=DF,BH=CF,再证明△ADH≌△ADF,得AH=AF;方法二:在CF上截取CH=AB,连接DH,证明△DHC≌△DAB,得DH=DA,CH=BA,∠HDF=∠ADF=45°,再证明△ADF≌△HDF,得AF=HF)。
全等三角形辅助线之截长补短和倍长中线(原题+解析)

全等三角形辅助线之截长补短与倍长中线一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D 到AB的距离为6,则BC的长是.二.解答题(共10小题)2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).4.(2013秋?藁城市校级期末)在△AB C中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN 于点E.(1(2(35的数量关6.(2012BF交AC 于点E7.(2010内的一点,且AD=AC8.已知点N.(1(2)若点9.(2015证:1011.(2010全等三角形辅助线之截长补短与倍长中线参考答案与试题解析一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D 到AB的距离为6,则BC的长是15 .【考点】角平分线的性质.【专题】计算题.【分析】作DE⊥AB于E,如图,则DE=6,根据角平分线定理得到DC=DE=6,再由BD:DC=3:2可计算出BD=9,然后利用BC=BD+DC进行计算即可.【解答】解:作DE⊥AB于E,如图,则DE=6,∵AD∵BD:∴BD=故答案为【点评】2.(2010AB=AC+CD.【考点】【专题】【分析】∴【解答】(180°﹣∠ACB)=45°,∠E=∠CDE=45°,∵AD∴∠1=∠2在△ABD∴△ABD≌△AED(AAS).∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.证法二:如答图所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵AC=BC,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,【点评】3.如图,(【考点】【专题】【分析】之.【解答】在△ACD在△ABE可得AE<∴AD<【点评】4.(2013D,BE⊥MN 于点E.(1(2(3【考点】【专题】证明题.【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE﹣CD=AD﹣BE;(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD﹣CE=BE﹣AD.【解答】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB,,∴△ADC≌△CEB(AAS),∴CD=BE,AD=CE,∴DE=CE+CD=AD+BE;(2)证明:与(1)一样可证明△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE;(3)解:【点评】“AAS”;5的数量关【考点】【分析】BE+CD=BC【解答】∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∵在△COD∵在△BOE,∴BE=BG,∴BE+CD=BG+CG=BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证CD=CG和BE=BG是解题的关键.6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC 于点E,∠ABE+∠CEB=180°,判断BD与CE的数量关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】探究型.【分析】延长BF至点G,使FG=BF,连CG,证△GFC≌△BFD,∠CGF=∠FBD,CG=DB,求出∠CGF=∠CEG,推出CG=CE,即可得出答案.【解答】结论:BD=CE证明:延长BF至点G,使FG=BF,连CG,∵F为CD中点,∴CF=DF,在△GFC和△BFD中∴△GFC≌△BFD(SAS),∴∠CGF=∠FBD,CG=DB,又∵∠ABE+∠CEB=180°,∠CEG+∠CEB=180°,∴∠CGF=∠C EG,∴CG=CE,∴BD=CE.【点评】本题考查了全等三角形的性质和判定的应用.7.(2010内的一点,且AD=AC【考点】【专题】【分析】由AD=AC,得AD=AE【解答】证明:作∵△ABC∴四边形∵AD=AC,∴AD=AE,∴△AED在△ADC中,SAS),∴BD=CD.【点评】8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N.(1)求证:DM=MN;(2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立?请你画出图形并证明你的结论.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)在AD上截取AF=AM,证明△DFM≌△MBN即可;(2)在AD的延长线上截取AF=AM,证明△DFM≌△MBN即可.【解答】证明:(1)如图1,在AD上截取AF=AM,∵△ABD是等边三角形,∴△AMF是等边三角形,∴DF=MB,∠DFM=120°,∵BN是∠DBA外角平分线,∴∠MBN=120°,∴∠DFM=∠MBN,∵∠DMN=60°,∴∠BMN+∠AMD=120°,∴∠A=60°,∴∠FDM+∠AMD=120°,∴∠FDM=∠BMN,在△FDM和△BMN中,,∴DM=MN.(2)点M在∵△ABD∴△AMF∵BN在△FDM∴DM=MN.【点评】9.(2015证:【考点】【专题】证明题.【分析】延长AB到F,使BF=CE,连接EF与BC相交于点N,利用“角角边”证明△BFN和△CEN全等,根据全等三角形对应边相等可得BN=CN,EN=FN,再根据正方形的性质可得∠BAN=∠DAM,然后求出∠BAN=∠EAN,再根据等腰三角形三线合一可得AE=AF,从而得证.【解答】证明:如图,延长AB到F,使BF=CE,连接EF与BC相交于点N,在△BFN和△CEN中,,∴△BFN≌△CEN(AAS),∴BN=CN,EN=FN,又∵M是CD的中点,∴∠BAN=∠DAM,∵∠BAE=2∠DAM,∴∠BAN=∠EAN,∴AN既是△AEF的角平分线也是中线,∴AE=AF,∵AF=AB+BF,∴AE=BC+CE.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,难点在于作辅助线构造10求证:【考点】【专题】【分析】与三角形ADG得到【解答】∵四边形在△ABG【点评】11.(2010【考点】【专题】【分析】延长CE到F,使CE=EF,连接FB,由△AEC≌△BEF得出对应的边角相等,进而求证△CBF≌△CBD,即可得出结论.【解答】证明:延长CE到F,使EF=CE,连接FB.∵CE是△ABC的中线,∴AE=EB,又∵∠AEC=∠BEF,∴△AEC≌△BEF,(SAS)∴∠A=∠EBF,AC=FB.∵AB=AC,∴∠ABC=∠ACB,∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF;∵CB是△ADC的中线,∴AB=BD,又∵AB=AC,AC=FB,∴FB=BD,又CB=CB,∴△CBF≌△CBD(SAS),∴CD=CF=CE+EF=2CE.【点评】本题考查了全等三角形的判定及性质,等腰三角形的性质.解决此题的关键是通过延长中线构造全等三角形.1(1(2(3(4略.2(1(23注意:有时不必的平4(1(2(3成条件,就可以得到另外两个元素为结论.5.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.6.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r:R=1:2+1.7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;。
(完整版)全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。
求证: CD=AD+BC。
思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。
2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。
三角形全等证明常用辅助线作法(倍长中线、截长补短)

倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。
三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。
本专题只讨论倍长中线的问题。
【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。
口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。
【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。
延长AD 至G 点,使DG=AD ,连接BG 。
在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。
求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。
①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。
【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。
求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。
倍长中线、截长补短

三角形全等之倍长中线、截长补短所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,倍长中线最重要的一点,延长中线一倍,完成SAS 全等三角形模型的构造。
【方法精讲】常用辅助线添加方法——倍长中线 方式1: 延长AD 到E ,使DE=AD ,连接BE△ABC 中AD 是BC边中线方式2:间接倍长①作CF ⊥AD 于F ,②延长MD 到N ,作BE ⊥AD 的延长线于使DN=MD , 连接BE 连接CD【经典例题】例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠练习:1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BF2、如图,AB=AE ,A B ⊥AE ,AD=AC ,A D ⊥AC ,点M 为BC 的中点,求证:DE=2AM第 1 题图ABFDECC M角平分线中截长补短方法在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗。
例1.已知:如图,在△ABC 中,AB>AC ∠C =2∠B ,∠1=∠2.求证:AB=AC+CD.例2.如图,在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,连接BP ,CP . 求证:AB -AC >PB -PC .例3.已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.例4.已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .DC B A12图4-121PD CB A D OECB AF EDC B A练习:1、已知:△ABC 中,AB=4cm ,BC=6cm ,BD 是AC 边上的中线,求BD 的取值范围。
完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。
下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。
一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。
具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法适用于证明线段的和、差、倍、分等类的题目。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。
要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。
具体证明过程为:在AC上截取AF=AE,连接OF。
由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。
显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。
另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。
要证明CD=AD+BC。
因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
专题01 全等模型-倍长中线与截长补短(解析版)

专题01 全等模型-倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.例1.(2023·成都市·八年级课时练习)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图,延长AD 到点E ,使DE =AD ,连结BE .请根据小明的方法思考:(1)由已知和作图能得到ADC EDB ≌△△的理由是( ).A .SSSB .SASC .AASD .ASA(2)AD 的取值范围是( ).A .68AD <<B .1216AD <<C .17AD << D .214AD <<(3)【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】如图,AD 是△ABC 的中线,BE 交AC 于点E ,交AD 于F ,且AE =EF .求证:AC =BF .【答案】(1)B (2)C (3)见解析【分析】(1)根据AD =DE ,∠ADC =∠BDE ,BD =DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE =AC=6,AE =2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长AD 到M ,使AD =DM ,连接BM ,根据SAS 证△ADC ≌△MDB ,推出BM =AC ,∠CAD =∠M ,根据AE =EF ,推出∠CAD =∠AFE =∠BFD ,求出∠BFD =∠M ,根据等腰三角形的性质求出即可.(1)∵在△ADC 和△EDB 中AD DE ADC BDE BD CD ìïÐÐíïî===,∴△ADC ≌△EDB (SAS ),故选B ;(2)∵由(1)知:△ADC ≌△EDB ,∴BE =AC =6,AE =2AD ,∵在△ABE 中,AB =8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故选:C .(3)延长AD 到点M ,使AD =DM ,连接BM .∵AD 是△ABC 中线∴CD =BD∵在△ADC 和△MDB 中DC DB ADC MDB DA DM =ìïÐ=Ðíï=î∴()SAS ADC MDB ≌△△∴BM =AC (全等三角形的对应边相等)∠CAD =∠M (全等三角形的对应角相等)∵AE =EF ,∴∠CAD =∠AFE (等边对等角)∵∠AFE =∠BFD ,∴∠BFD =∠M ,∴BF =BM (等角对等边)又∵BM =AC ,∴AC =BF .【点睛】本题考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.例2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:如图,在ABC V 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED=证明∵//CE AB (已知)∴ABD ECD Ð=Ð,BAD CED Ð=Ð(两直线平行,内错角相等).在ABD △与ECD V 中,∵ABD ECD Ð=Ð,BAD CED Ð=Ð(已证),BD CD =(已知),∴()A.A.S ABD ECD △△≌,∴AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC V 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD Ð的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE Ð=Ð,若5AB =,2CF =,求出线段DF 的长.【答案】(1)1<AD <5;(2)AD =AB +DC .理由见解析;(3)DF =3.【分析】(1)延长AD 到E ,使AD =DE ,连接BE ,证△ADC ≌△EDB ,推出AC =BE =4,在△ABE 中,根据三角形三边关系定理得出AB -BE <AE <AB +BE ,代入求出即可;(2)结论:AD =AB +DC .延长AE ,DC 交于点F ,证明△ABE ≌△FEC (AAS ),推出AB =CF ,再证明DA =DF 即可解决问题;(3)如图③,延长AE 交CF 的延长线于点G ,证明AB =DF +CF ,可得结论.【详解】解:(1)延长AD 到E ,使AD =DE ,连接BE ,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,AD DEADC EDBDC DB=ìïÐ=Ðíï=î,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB-BE<AE<AB+BE,∴6-4<2AD<6+4,∴1<AD<5,故答案为:1<AD<5;(2)结论:AD=AB+DC.理由:如图②中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,AEB FECBAE FBE CEÐ=ÐìïÐ=Ðíï=î,∴△ABE≌△FCE(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD;(3)如图③,延长AE交CF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥CF,∴∠BAE=∠G,在△AEB和△GEC中,BAE GAEB GECBE CEÐ=ÐìïÐ=Ðíï=î,∴△AEB≌△GEC(AAS),∴AB=GC,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=DF+CF,∵AB=5,CF=2,∴DF=AB-CF=3.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.例3.(2022·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.(2)如图2,AD 是△ABC 的中线,BE 交AC 干E ,交AD 于F ,且AE =EF .请判昕AC 与BF 的数量关系,并说明理由.【答案】(1)见解析(2)AC =BF ,理由见解析【解析】(1)解:如图,延长AD 到点E ,使DE =AD ,连接BE ,在△ADC 和△EDB 中∵AD DE ADC EDB CD DB =ìïÐ=Ðíï=î,∴△ADC ≌△EDB (SAS ).∴BE =AC =3.∵AB -BE <AE <AB +BE ∵2<AE <8.∵AE =2AD ∴1<AD <4.(2)AC =BF ,理由如下:延长AD 至点G ,使GD =AD ,连接BG ,在△ADC 和△GDB 中,AD DG ADC GDB BD CD =ìïÐ=Ðíï=î,∴△ADC ≌△GDB (SAS ).∴BG =AC ,∠G =∠DAC ..∵AE =EF ∴∠AFE =∠FAE . ∴∠DAC =∠AFE =∠BFG ∴∠G =∠BFG ∴BG =BF ∴AC =BF .【点睛】本题考查全等三角形判定与性质,三角形三边的关系,作辅助线:延长AD 到点E ,使DE =AD ,构造全等三角形是解题的关键.例4.(2022·山东·安丘市一模)阅读材料:如图1,在ABC V 中,D ,E 分别是边AB ,AC 的中点,小亮在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE 到点F ,使EF DE =,连接CF ,证明ADE CFE V V ≌,再证四边形DBCF 是平行四边形即得证.类比迁移:(1)如图2,AD 是ABC V 的中线,E 是AC 上的一点,BE 交AD 于点F ,且AE EF =,求证:AC BF =.小亮发现可以类比材料中的思路进行证明.证明:如图2,延长AD 至点M ,使MD FD =,连接MC ,……请根据小亮的思路完成证明过程.方法运用:(2)如图3,在等边ABC V 中,D 是射线BC 上一动点(点D 在点C 的右侧),连接AD .把线段CD 绕点D 逆时针旋转120°得到线段DE ,F 是线段BE 的中点,连接DF 、CF .请你判断线段DF 与AD 的数量关系,并给出证明.【答案】(1)证明见解析;(2)2AD DF =,证明见解析【分析】(1) 延长AD 至M ,使MD FD =,连接MC ,证明BDF CDM △≌△,结合等角对等边证明即可.(2) 延长DF 至点M ,使DF FM=,连接BM 、AM ,证明(SAS)ABM ACD △≌△,△ABM 是等边三角形,代换后得证.【详解】(1)证明:延长AD 至M ,使MD FD =,连接MC .在BDF V 和CDM V 中,BD CD BDF CDM DF DM =ìïÐ=Ðíï=î,∴BDF CDM △≌△,∴MC BF =,M BFM Ð=Ð,∵AE EF =,∴EAF EFA Ð=Ð,∵EFA BFM Ð=Ð,∴M MAC Ð=Ð,∴AC MC =,∴AC BF =.(2)线段DF 与AD 的数量关系为:2AD DF =.证明如下:延长DF 至点M ,使DF FM =,连接BM 、AM ,如图2所示:∵点F 为BE 的中点,∴BF EF=在BFM V 和EFD △中,∵BF EF BFM EFD FM DF =ìïÐ=Ðíï=î,∴(SAS)BFM EFD △≌△∴BM DE =,MBF DEF Ð=Ð,∴BM DE∥∵线段CD 绕点D 逆时针旋转120°得到线段DE∴CD DE BM ==,120Ð=°BDE ,∴18012060MBD Ð=-=°°°∵ABC V 是等边三角形∵AB AC =,60ABC ACB Ð=Ð=°,∴6060120ABM ABC MBD ÐÐа°=+=+=°∵180********ACD ACB Ð=°-Ð=°-°=°,∴ABM ACDÐ=Ð在ABM V 和ACD △中,∵AB AC ABM ACD BM CD =ìïÐ=Ðíï=î,∴(SAS)ABM ACD △≌△∴AM AD =,BAM CAD Ð=Ð,∴60MAD MAC CAD MAC BAM BAC ÐÐÐÐÐÐ=+=+==°∴AMD V 是等边三角形,∴2==AD DM DF .【点睛】本题考查了等边三角形的判定和性质,三角形全等的判定和性质,熟练掌握等边三角形的判定和性质,三角形全等的判定和性质是解题的关键.模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
全等三角形辅助线--截长补短、倍长中线、三线合一、角平分线等(部分答案)

全等三角形辅助线之倍长中线、截长补短、三线合一、角平分线(2019-2020整理版) 知识梳理倍长中线角平分线之截长补短角平分线等腰三角形EDCBA“角平分线+平行”模型“角平分线+垂直”模型“角平分线+斜交”模型E DCBAEDCBA等腰三角形三线合一模型等角对等边模型等边对等角模型FE DBA典型例题一、倍长中线【例1】 已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.【练1】在△ABC 中,59AB AC ==,,则BC 边上的中线AD 的长的取值范围是什么?【练2】如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.MCBADCBA【例2】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC于F ,AF EF =,求证:AC BE =.【练1】如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,求证:AF EF =【练2】如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.【解析】 延长FE 到点H ,使HE FE =,连结BH .在CEF ∆和BEH ∆中CE BE CEF BEH FE HE =⎧⎪∠=∠⎨⎪=⎩∴CEF BEH ∆∆≌∴EFC EHB ∠=∠,CF BH BG ==∴EHB BGE ∠=∠,而B G E A G F ∠=∠∴AFG AGF ∠=∠又∵EF AD ∥∴AFG CAD ∠=∠,AGF BAD ∠=∠∴CAD BAD ∠=∠ ∴AD 为ABC ∆的角平分线.FEDC BA FEDCBAF GE DCBAHAF GBE DC【练3】如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.【练4】如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥AB【例3】 已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.【解析】 延长FM 到N ,使M N M F =,连结BN 、EN .易证BNM ∆≌CFM ∆,∴BN CF =, 又∵AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F ,∴90EMF EMN ∠=∠=, 利用SAS 证明EMN ∆≌EMF ∆,∴EN EF =,在EBN ∆中,BE BN EN +>,∴BE CF EF +>.GFEDCBAFACD E B MFECBANMFECBA【练1】已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.【练2】在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?【解析】 延长FD 到点G ,使FD GD =,连结EG 、BG .在CDF ∆和BDG ∆中CD BD CDF BDG FD GD =⎧⎪∠=∠⎨⎪=⎩∴CDF BDG ∆∆≌ ∴BG CF =,FCD GBD ∠=∠∵90A ∠=︒∴90ABC ACB ∠+∠=︒∴90ABC GBD ∠+∠=︒在EDF ∆和EDG ∆中90ED ED EDF EDG FD GD =⎧⎪∠=∠=︒⎨⎪=⎩∴EDF EDG ∆∆≌∴EF EG =故以线段BE 、EF 、FC 为边能构成一个直角三角形.【练3】在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.(勾股定理)【解析】 如图、延长DF 至点G ,使得DF FG =,联结GB 、GE .由AF FB =,有 ADF BGF ∆∆≌3BG AD ⇒==ADF BGF ⇒∠=∠AD GB⇒∥180GBE ACB ⇒∠+∠=︒90GBE ⇒∠=︒5GE ⇒=.又DF FG =,EF DG ⊥5DE GE ⇒==.FEMCBAF EDCBAGAE BDCF FEDCBA 图 6GEFDB CA【例4】 如图所示,在ABC ∆中,AB AC =,延长AB 到D ,使B D A B =,E 为AB 的中点,连接CE 、CD ,求证2CD EC =.【解析】 解法一:如图所示,延长CE 到F ,使EF CE =.容易证明EBF EAC ∆∆≌,从而BF AC =,而AC AB BD ==,故BF BD =.注意到CBD BAC ACB BAC ABC ∠=∠+∠=∠+∠, CBF ABC FBA ABC CAB ∠=∠+∠=∠+∠,故CBF CBD ∠=∠,而BC 公用,故CBF CBD ∆∆≌,因此2CD CF CE ==.解法二:如图所示,取CD 的中点G ,连接BG .因为G 是CD 的中点,B 是AD 的中点,故BG 是DAC ∆的中位线,从而1122BG AC AB BE ===,由BG AC ∥可得GBC ACB ABC EBC ∠=∠=∠=∠,故BCE BCG ∆∆≌, 从而EC GC =,2CD CE =.【练1】已知△ABC 中,AB =AC ,BD 为AB 的延长线,且BD =AB ,CE 为△ABC 的AB 边上的中线.求证CD =2CE【练2】如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.【解析】 如图所示,设AM 交DC 于H ,要证明AM CD ⊥,实际上就是证明90AHD ∠=︒,而条件BM ME =不好运用,我们可以倍长中线AM 到F ,连接BF 交AD 于点N ,交CD 于点O .容易证明AM E FM B ∆∆≌EDCBA54321KE DCBAMECBAFNO H ABC EM则AE FB =,EAF F ∠=∠,从而AE FB ∥,90ANF ∠=︒而90CAD DAB ∠+∠=︒,90DAB ABN ∠+∠=︒,故CAD ABN ∠=∠ 从而CAD ABF ∆∆≌,故D F ∠=∠ 而90D DON FOH F ∠+∠=∠+∠=︒ 故90AHD ∠=︒,亦即AM CD ⊥二、 截长补短截长法与补短法,是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
全等三角形辅助线 - 角平分线截长补短倍长中线三垂直半角模型-教师

全等三角形辅助线的作法一.中点类辅助线作法见到中线(中点),我们可以联想的内容无非是倍长中线或者是与中点有关的一条线段,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见,常见添加方法如下图(AD 是ABC∆底边的中线).二.角平分线类辅助线作法有下列三种作辅助线的方式:1.由角平分线上的一点向角的两边作垂线;2.过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;3.OA OB=,这种对称的图形应用得也较为普遍.三.截长补短类辅助线作法截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.易错点:1.辅助线只是一个指导方法,出现相关条件或结论时不一定要作辅助线或者是按照模型作辅助线,关键是如何分析题目;2.辅助线不是随便都可以作的,比如“作一条线段等于另外一条线段且与某条线段夹角是多少度”这种辅助线就不一定能作出来.图3图2图1FEDNDMEAB CAB CDCBA知识精讲题模一:角平分线类例1.1.1如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【答案】见解析【解析】延长CE ,交BA 的延长线于点F . ∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.例1.1.1-2如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,若E 在AD 上。
三角形全等辅助线作法倍长中线截长补短

三角形全等辅助线作法辅助线的作法(一)【知识要点梳理】1.遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法.(1)截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;(2)补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段.2.角平分线问题的作法角平分线具有两条性质:(1). 对称性,作法是在一侧的长边上截取短边;(2). 角平分线上的点到角两边的距离相等,作法是从角平分线上的点向角两边作垂线段. 【典型例题探究】例1.如图,AC平分∠BAD,CE⊥AB,且∠B+∠ADC=180°,求证:AE=AD+BE例2.已知:如图,等腰三角形ABC中,AB=AC,∠A=108°,BD平分∠ABC.求证:BC=AB+DC例3. 如图,AB>AC, ∠1=∠2,求证:AB-AC > BD-CD DCBADAE CB12ACDB例4.△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E , 且AE=21BD ,求证:BD 平分∠ABC例5.已知:△ABC 为等边三角形,AE=BD.求证:EC=DE【基础达标演练】1.如图,AB ∥CD ,AE 、DE 分别平分∠BAD 和∠ADC ,求证:AD=AB+CDEDCB AAED CBAE2.已知CE、AD是△ABC的角平分线,∠B=60°,求证:AC=AE+CDAEB D C3. 已知,如图,∠C=2∠A,AC=2BC.求证:△ABC是直角三角形CA B4.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC⊥ACA1 2CB D5.已知:如图在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分线,求证:BC=AB+ADADB C6.已知:四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°.求证:AC=BC +CD.* 第二十三节 辅助线的作法(二)3. 倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形.【典型例题探究】例1.如图,AB=6,AC=8,D 为BC 的中点,求AD 的取值范围.例2.如图,AB=CD ,E 为BC 的中点,∠BAC=∠BCA ,求证:AD=2AE.ABDBE C DABADC【基础达标演练】1.已知:如图AD 为△ABC 的中线,求证:AB ﹢AC >2AD2.已知:如图ACED 和BCFG 都是正方形 ,CM 是△CEF 的中线,求证:AB=2CM3.已知:如图AD 为△ABC 的中线,AE=EF ,求证:BF=ACABCDADEM GCBFNBD EF AC4. 其它辅助线作法举例.例1.如图,在△ABC 中,AB=AC,点E 是CA 延长线上的一点,点F 在AB 上,且∠AEF=∠AFE. 求证: EF ⊥BC例2(探究性问题)求证:等腰三角形底边上的任意一点到两腰的距离之和等于腰上的高. 已知:如图,在△ABC 中,AB=AC,P 为BC 上一点,过P 作PD ⊥AB 于D.作PE ⊥AC 于E.过C 作CM ⊥AB 于M. 求证:PD+PE=CM.例3.在图,在△ABC 中,∠BAC=90°,AB=AC ,M 是AC 的中点,AD ⊥BM 于E ,交BC 于D.求证:∠AMB=∠CMD.F CBAEAM DBPCEAD C例4.如图,D 为等边△ABC 内一点,且AD=BD ,BP=AB ,∠DBP=∠DBC.求∠BPD 的度数.试一试:如图是由一个正方形和一个等腰直角三角形拼成的图形(简称直角梯形),现在要把它剪成四块全等的图形(并且形状与原图形相同)应如何剪法?ABDPC。
七年级数学全等三角形中倍长中线和截长补短作法讲解

A
B C
E D
A
F
B
E
连接CAC,并延长DED至F,连接AF
△ABC ≌ △AEF(SAS) △ACD≌ △AED(SAS)
变式练习2::如图1,OP 是∠MON 的平分线,请你利用该图 形画一对以OP 所在直线为对称轴的全等三角形,并将添加的全 等条件标注在图上.
请你参考这个作全等三角形的方法,解答以下问题:
E
延长AP、BC 交于点E
证明:在AB上截取AE=AD
∵AP平分BAD,BP平分ABC
∴ ∠ DAP= ∠ BAP, ∠ ABP= ∠ CBP
∵在△ADP与△AEP中
E
AD=AE
∠ DAP= ∠ BAP
AP=AP
∴ △ADP≌△AEP(SAS)
∴ ∠ D= ∠ AEP
∵ ∠AEP+ ∠BEP=180o
——截长〔补短〕
例:如图,AD//BC, AP平分∠DAB,BP平分 ∠ABC,点P恰好在CD上, 〔1〕假设∠D=90o,求证:①点P到AD,BC的距离相 等;
②AD+BC=AB③你还能得出哪些结论? (2)假设∠D≠90o,那么〔1〕中的结论还=AD
F
过P点作PH┴AD 延长线于H, PE┴AB于E, PF┴BC于F
∵ AD//BC
∴ ∠ D+ ∠ C=180o
∴ ∠ BEP= ∠ C 在△BPE与△BPC中
∠ BEP= ∠ C ∠ ABP= ∠ CBP
BP=BP
∴ △BPE≌△BPC(AAS) ∴BE=BC
∴ AB=AE+BE=AD+BC
变式练习:五边形ABCDE中,BC+DE=CD,
AB=AE, ∠ABC+∠AED=180°,求证:AD平分∠CDE
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形辅助线之截长补短与倍长中线一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是.二.解答题(共10小题)2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).4.(2013秋?藁城市校级期末)在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系请你直接写出这个数量关系,不要证明.5.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,判断BD与CE 的数量关系,并证明你的结论.7.(2010秋?丰台区期末)已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N.(1)求证:DM=MN;(2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立请你画出图形并证明你的结论.9.(2015春?闵行区期末)如图所示,在正方形ABCD中,M是CD的中点,E 是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.10.已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.11.(2010秋?巢湖期中)如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.全等三角形辅助线之截长补短与倍长中线参考答案与试题解析一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是15.【考点】角平分线的性质.【专题】计算题.【分析】作DE⊥AB于E,如图,则DE=6,根据角平分线定理得到DC=DE=6,再由BD:DC=3:2可计算出BD=9,然后利用BC=BD+DC进行计算即可.【解答】解:作DE⊥AB于E,如图,则DE=6,∵AD平分∠BAC,∴DC=DE=6,∵BD:DC=3:2,∴BD=×6=9,∴BC=BD+DC=9+6=15.故答案为15.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.二.解答题(共10小题)2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED (AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.【解答】证法一:如答图所示,延长AC,到E使CE=CD,连接DE.∵∠ACB=90°,AC=BC,CE=CD,∴∠B=∠CAB=(180°﹣∠ACB)=45°,∠E=∠CDE=45°,∴∠B=∠E.∵AD平分∠BAC,∴∠1=∠2在△ABD和△AED中,,∴△ABD≌△AED(AAS).∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.证法二:如答图所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵AC=BC,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.【点评】本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系.3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).【考点】全等三角形的判定与性质;三角形三边关系.【专题】计算题.【分析】可延长AD到E,使AD=DE,连BE,则△ACD≌△EBD得BE=AC,进而在△ABE中利用三角形三边关系,证之.【解答】证明:如图延长AD至E,使AD=DE,连接BE.在△ACD和△EBD中:∴△ACD≌△EBD(SAS),∴AC=BE(全等三角形的对应边相等),在△ABE中,由三角形的三边关系可得AE<AB+BE,即2AD<AB+AC,∴AD<(AB+AC).【点评】本题主要考查全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.4.(2013秋?藁城市校级期末)在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系请你直接写出这个数量关系,不要证明.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE﹣CD=AD ﹣BE;(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD﹣CE=BE ﹣AD.【解答】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB,,∴△ADC≌△CEB(AAS),∴CD=BE,AD=CE,∴DE=CE+CD=AD+BE;(2)证明:与(1)一样可证明△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE;(3)解:DE=BE﹣AD.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.5.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【考点】全等三角形的判定与性质.【分析】在CB上取点G使得CG=CD,可证△BOE≌△BOG,得BE═BG,可证△CDO≌△CGO,得CD=CG,可以求得BE+CD=BC.【解答】解:在BC上取点G使得CG=CD,∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∴∠BOE=∠COD=60°,∵在△COD和△COG中,,∴△CODF≌△COG(SAS),∴∠COG=∠COD=60°,∴∠BOG=120°﹣60°=60°=∠BOE,∵在△BOE和△BOG中,,∴△BOE≌△BOG(ASA),∴BE=BG,∴BE+CD=BG+CG=BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证CD=CG和BE=BG是解题的关键.6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,判断BD与CE 的数量关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】探究型.【分析】延长BF至点G,使FG=BF,连CG,证△GFC≌△BFD,∠CGF=∠FBD,CG=DB,求出∠CGF=∠CEG,推出CG=CE,即可得出答案.【解答】结论:BD=CE证明:延长BF至点G,使FG=BF,连CG,∵F为CD中点,∴CF=DF,在△GFC和△BFD中∴△GFC≌△BFD(SAS),∴∠CGF=∠FBD,CG=DB,又∵∠ABE+∠CEB=180°,∠CEG+∠CEB=180°,∴∠CGF=∠CEG,∴CG=CE,∴BD=CE.【点评】本题考查了全等三角形的性质和判定的应用.7.(2010秋?丰台区期末)已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.【考点】正方形的性质;全等三角形的判定与性质;等腰三角形的性质.【专题】探究型.【分析】作BE⊥BC,AE⊥AC,两线相交于点E,则四边形AEBC是正方形,由∠DAC=30°,得∠DAE=60°,由AD=AC,得AD=AE,所以,三角形AED是等边三角形,可得∠AED=60°,∠DEB=30°,所以,△ADC≌△EDB,可得BD=CD;【解答】解:BD=CD.证明:作BE⊥BC,AE⊥AC,两线相交于点E,∵△ABC是等腰直角三角形,即AC=BC,∴四边形AEBC是正方形,∵∠DAC=30°,∴∠DAE=60°,∵AD=AC,∴AD=AE,∴△AED是等边三角形,∴∠AED=60°,∴∠DEB=30°,在△ADC和△EDB中,∴△ADC≌△EDB(SAS),∴BD=CD.【点评】本题主要考查了等腰直角三角形的性质、等边三角形的性质和全等三角形的判定与性质,作辅助线构建正方形,通过证明三角形全等得出线段相等,是解答本题的基本思路.8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N.(1)求证:DM=MN;(2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立请你画出图形并证明你的结论.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)在AD上截取AF=AM,证明△DFM≌△MBN即可;(2)在AD的延长线上截取AF=AM,证明△DFM≌△MBN即可.【解答】证明:(1)如图1,在AD上截取AF=AM,∵△ABD是等边三角形,∴△AMF是等边三角形,∴DF=MB,∠DFM=120°,∵BN是∠DBA外角平分线,∴∠MBN=120°,∴∠DFM=∠MBN,∵∠DMN=60°,∴∠BMN+∠AMD=120°,∴∠A=60°,∴∠FDM+∠AMD=120°,∴∠FDM=∠BMN,在△FDM和△BMN中,,∴△FDM≌△BMN(ASA),∴DM=MN.(2)点M在AB的延长线上,如图2所示,在AD的延长线上截取AF=AM,∵△ABD是等边三角形,∴△AMF是等边三角形,∴DF=MB,∠DFM=60°,∵BN是∠DBA外角平分线,∴∠MBN=60°,∴∠DFM=∠MBN,∵∠BMN=∠AMD+∠DMN,∠FDM=∠A+∠AMD,∠DMN=∠A=60°,∴∠FDM=∠BMN,在△FDM和△BMN中,,∴△FDM≌△BMN(ASA),∴DM=MN.【点评】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,通过辅助线构造全等三角形是解决问题的关键.9.(2015春?闵行区期末)如图所示,在正方形ABCD中,M是CD的中点,E 是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】延长AB到F,使BF=CE,连接EF与BC相交于点N,利用“角角边”证明△BFN和△CEN全等,根据全等三角形对应边相等可得BN=CN,EN=FN,再根据正方形的性质可得∠BAN=∠DAM,然后求出∠BAN=∠EAN,再根据等腰三角形三线合一可得AE=AF,从而得证.【解答】证明:如图,延长AB到F,使BF=CE,连接EF与BC相交于点N,在△BFN和△CEN中,,∴△BFN≌△CEN(AAS),∴BN=CN,EN=FN,又∵M是CD的中点,∴∠BAN=∠DAM,∵∠BAE=2∠DAM,∴∠BAN=∠EAN,∴AN既是△AEF的角平分线也是中线,∴AE=AF,∵AF=AB+BF,∴AE=BC+CE.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,难点在于作辅助线构造出等腰三角形和全等三角形.10.已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.【考点】全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】延长CB到G,使BG=DF,连接AG,由四边形ABCD为正方形,利用正方形的性质得到AB=AD,AB∥CD,∠D=∠ABC=90°,进而得到∠5=∠BAF=∠1+∠3,∠ABG=180°﹣∠ABC=90°,利用SAS得到三角形ABG与三角形ADG全等,利用全等三角形对应角相等得到∠G=∠5,∠1=∠2=∠4,等量代换得到∠G=∠EAG,利用等角对等边得到AE=GE,由GE=BE+BG,等量代换即可得证.【解答】解:延长CB到G,使BG=DF,连接AG,∵四边形ABCD为正方形,∴AB=AD,AB∥CD,∠D=∠ABC=90°,∴∠5=∠BAF=∠1+∠3,∠ABG=180°﹣∠ABC=90°,在△ABG和△ADG中,,∴△ABG≌△ADF(SAS),∴∠G=∠5,∠1=∠2=∠4,∴∠G=∠5=∠1+∠3=∠4+∠3=∠EAG,∴AE=GE=BE+GB=BE+DF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.11.(2010秋?巢湖期中)如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】延长CE到F,使CE=EF,连接FB,由△AEC≌△BEF得出对应的边角相等,进而求证△CBF≌△CBD,即可得出结论.【解答】证明:延长CE到F,使EF=CE,连接FB.∵CE是△ABC的中线,∴AE=EB,又∵∠AEC=∠BEF,∴△AEC≌△BEF,(SAS)∴∠A=∠EBF,AC=FB.∵AB=AC,∴∠ABC=∠ACB,∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF;∵CB是△ADC的中线,∴AB=BD,又∵AB=AC,AC=FB,∴FB=BD,又CB=CB,∴△CBF≌△CBD(SAS),∴CD=CF=CE+EF=2CE.【点评】本题考查了全等三角形的判定及性质,等腰三角形的性质.解决此题的关键是通过延长中线构造全等三角形.考点卡片1.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.2.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE4.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.5.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.6.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r:R=1:2+1.7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.。