初二数学函数知识点总结(推荐文档)

合集下载

初二函数知识点总结

初二函数知识点总结

初二函数知识点总结

初二函数知识点总结篇一

一。定义

1、全等形:形状大小相同,能完全重合的两个图形。

2、全等三角形:能够完全重合的两个三角形。

二。重点

1、平移,翻折,旋转前后的图形全等。

2、全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。

3、全等三角形的判定:

SSS三边对应相等的两个三角形全等[边边边]

SAS两边和它们的夹角对应相等的两个三角形全等[边角边]

ASA两角和它们的夹边对应相等的两个三角形全等[角边角]

AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]

HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]

4、角平分线的性质:角的平分线上的点到角的两边的距离相等。

5、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。

初二函数知识点总结篇二

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的。方法叫做图象法。

初二函数知识点总结

初二函数知识点总结

初二函数知识点总结

函数在数学上的定义:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数.下面是店铺整理的关于初二函数知识点总结,欢迎大家参考!

初二函数知识点总结1

一、知识要点

1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.

2、一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.

(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.

(3)当b=0,k≠0时,y=b仍是一次函数.

(4)当b=0,k=0时,它不是一次函数.

3、一次函数的图象(三步画图象)

由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.

由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

初二数学八下一次函数所有知识点总结和常考题型练习题

初二数学八下一次函数所有知识点总结和常考题型练习题

一次函数知识点

(一)函数

1.变量: 在一个变化过程中可以取不同数值的量。

常量: 在一个变化过程中只能取同一数值的量。

2.函数:一般的, 在一个变化过程中, 如果有两个变量x和y, 并且对于x的每一个确定的值, y都有唯一确定的值与其对应, 那么我们就把x称为自变量, 把y称为因变量, y是x的函数。

判断y是否为x的函数, 只要看x取值确定的时候, y是否有唯一确定的值与之对应。

3.确定函数定义域的方法:

(1)关系式为整式时, 函数定义域为全体实数;

(2)关系式含有分式时, 分式的分母不等于零;

(3)关系式含有二次根式时, 被开放方数大于等于零;

(4)关系式中含有指数为零的式子时, 底数不等于零;

(5)实际问题中, 函数定义域还要和实际情况相符合, 使之有意义。

4、函数的解析式: 用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式

5.函数的图像

一般来说, 对于一个函数, 如果把自变量与函数的每对对应值分别作为点的横、纵坐标, 那么坐标平面内由这些点组成的图形, 就是这个函数的图象.

6.描点法画函数图形的一般步骤

第一步: 列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中, 以自变量的值为横坐标, 相应的函数值为纵坐标, 描出表格中数值对应的各点);

第三步: 连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

7、函数的表示方法

列表法: 一目了然, 使用起来方便, 但列出的对应值是有限的, 不易看出自变量与函数之间的对应规律。

(二)解析式法: 简单明了, 能够准确地反映整个变化过程中自变量与函数之间的相依关系, 但有些实际问题中的函数关系, 不能用解析式表示。

初二函数的图像知识点总结

初二函数的图像知识点总结

初二函数的图像知识点总结

一、坐标系和直角坐标系

在学习函数图像之前,我们需要先了解坐标系和直角坐标系的概念。坐标系是用来描述平

面上点的工具,它由水平方向和垂直方向的两条线组成。而直角坐标系是将坐标系中的每

一个点都表示为一个有序对(x, y),其中x表示点在横坐标轴上的位置,y表示点在纵坐标

轴上的位置。

二、函数的概念

函数是数学中的重要概念,它描述了一个变量如何依赖于另一个变量。通俗地讲,函数就

是一种关系,它将一个自变量的取值映射到一个因变量的取值。函数通常用f(x)表示,其

中x是自变量,f(x)是对应的因变量。在学习函数图像时,我们需要了解一些常见的函数

类型,比如线性函数、二次函数、指数函数和对数函数等。

三、函数图像的基本性质

在绘制函数图像时,我们需要掌握一些基本的性质。比如,线性函数的图像是一条直线,

它可以通过两个点来确定;二次函数的图像是一条抛物线,它的开口方向取决于二次项系

数的正负;指数函数和对数函数的图像分别是指数曲线和对数曲线,它们有一些特定的性

质和规律。

四、函数图像的绘制方法

在学习函数图像时,我们也需要了解一些绘制方法,比如利用表格法来绘制函数图像。表

格法是通过选取一些自变量的值,计算对应的因变量的值,然后将这些点连接起来来近似

函数的图像。此外,我们还可以利用函数的性质和变化规律来绘制函数图像,比如线性函

数的斜率和截距可以帮助我们绘制出函数的大致形状。

五、函数图像与实际问题的应用

函数图像不仅仅是数学中的一个概念,它还可以帮助我们解决一些实际问题。比如,我们

可以利用函数图像来描述日常生活中的变化规律,比如温度随时间的变化、物体的运动轨

初中函数知识点归纳数学函数知识总结

初中函数知识点归纳数学函数知识总结

初中函数知识点归纳数学函数知识总结

初中函数知识点:函数定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。

初中函数知识点归纳

函数

(1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。

(2)本质:一一对应关系或多一对应关系。

有序实数对平面直角坐标系上的点

(3)表示方法:解析法、列表法、图象法。

(4)自变量取值范围:

对于实际问题,自变量取值必须使实际问题有意义;

对于纯数学问题,自变量取值必须保证函数关系式有意义:

①分式中,分母≠0;

②二次根式中,被开方数≥0;

③整式中,自变量取全体实数;

④混合运算式中,自变量取各解集的公共部份。

二、正比例函数与反比例函数

两函数的异同点

二、一次函数(图象为直线)

(1)定义式:y=kx+b(k、b为常数,k≠0);自变量取全体实数。

(2)性质:

①k>0,过第一、三象限,y随x的增大而增大;

k<0,过第二、四象限,y随x的增大而减小。

②b=0,图象过(0,0);

b>0,图象与y轴的交点(0,b)在x轴上方;

b<0,图象与y轴的交点(0,b)在x轴下方。

三、二次函数(图象为抛物线)

(1)自变量取全体实数

一般式:y=ax2+bx+c(a、b、c为常数,a≠0),其中(0,c)为抛物线与y轴的交点;

顶点式:y=a(x—h)2+k(a、h、k为常数,a≠0),其中(h,k)为抛物线顶点;

初二数学函数知识点积累总结

初二数学函数知识点积累总结

初二数学函数知识点积累总结

数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.下面是小编为大家整理的关于初二数学函数知识点总结,希望对您有所帮助!

初二上册数学一次函数知识点

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

初二数学《函数》知识点总结

初二数学《函数》知识点总结

初二数学《函数》知识点总结

(一)平面直角坐标系

1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标

2、已知点的坐标找出该点的方法:

分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x轴y轴的的垂线,两垂线的交点即为要找的点。

3、已知点求出其坐标的方法:

由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是改点的横坐标,垂足在y轴上的坐标是该点的纵坐标。

4、各个象限内点的特征:

第一象限:(+,+)点P(x,y),则x>0,y>0;

第二象限:(-,+)点P(x,y),则x<0,y>0;

第三象限:(-,-)点P(x,y),则x<0,y<0;

第四象限:(+,-)点P(x,y),则x>0,y<0;

5、坐标轴上点的坐标特征:

x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。

6、点的对称特征:已知点P(m,n),

关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号

关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号

关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号

7、平行于坐标轴的直线上的点的坐标特征:

平行于x轴的直线上的任意两点:纵坐标相等;

平行于y轴的直线上的任意两点:横坐标相等。

8、各象限角平分线上的点的坐标特征:

第一、三象限角平分线上的点横、纵坐标相等。

点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a)

第二、四象限角平分线上的点横纵坐标互为相反数。

点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)

初二数学函数知识点总结

初二数学函数知识点总结

初二数学函数知识点总结

初二数学《函数》知识点总结

(一)平面直角坐标系

1、定义:平面上互相垂直且有公共原点的两条数轴构成平面

直角坐标系,简称为直角坐标系

2、已知点的坐标找出该点的方法:

分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x 轴y轴的的垂线,两垂线的交点即为要找的点。

3、已知点求出其坐标的方法:

由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是改点的横坐标,垂足在y轴上的坐标是该点的纵坐标。

4、各个象限内点的特征:

第一象限:(+,+)点P(x,y),则x>0,y>0;

第二象限:(-,+)点P(x,y),则x<0,y>0;

第三象限:(-, -)点P(x,y),则x<0,y<0;

第四象限:(+,-)点P(x,y),则x>0,y<0;

5、坐标轴上点的坐标特征:

x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。

6、点的对称特征:已知点P(m,n),

关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号

关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号

关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号

7、平行于坐标轴的直线上的点的坐标特征:

平行于x轴的直线上的任意两点:纵坐标相等;

平行于y轴的直线上的任意两点:横坐标相等。

8、各象限角平分线上的点的坐标特征:

第一、三象限角平分线上的点横、纵坐标相等。

点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a)

第二、四象限角平分线上的点横纵坐标互为相反数。

八年级上册数学函数知识点_初中数学函数知识必看

八年级上册数学函数知识点_初中数学函数知识必看

八年级上册数学函数知识点_初中数学函数知识必看

八年级上册数学函数知识点

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

初二函数所有的知识点总结

初二函数所有的知识点总结

初二函数所有的知识点总结

一、函数的概念

函数是一种特殊的关系,它表示一种从一个集合到另一个集合的对应关系。在数学上,函数通常用 f(x) 或 y = f(x) 的形式表示,其中 x 是自变量,y 是因变量。函数的定义域是指函数的自变量可以取的值的集合,值域是函数的因变量所能取得的值的集合。函数的图像是函数在坐标系上的呈现形式,它能够直观地表示函数的性质。函数的性质包括奇偶性、单调性、周期性等。

二、函数的表示方法

1. 公式表示法:函数可以用数学公式的方式进行表示,比如 f(x) = 2x + 3。

2. 表格表示法:可以通过制作函数的输入和输出值的对应表格来表示函数。

3. 图形表示法:函数的图像可以用坐标系上的点来表示。

三、函数的运算

1. 函数的加法和减法:当两个函数相加或相减时,可将它们的对应值相加或相减。

2. 函数的乘法和除法:当两个函数相乘或相除时,可将它们的对应值相乘或相除。

3. 复合函数:当一个函数中出现另一个函数时,称为复合函数。

四、基本函数

1. 线性函数:线性函数是一种特殊的一次函数,它的图像是一条直线,表示为 f(x) = kx + b。

2. 平方函数:平方函数的一般形式是 f(x) = ax^2 + bx + c,它的图像是一条抛物线。

3. 绝对值函数:绝对值函数的一般形式是 f(x) = |x - a| + b,它的图像以直线为轴对称。

4. 一次函数:一次函数的一般形式是 f(x) = ax + b,它的图像是一条直线。

5. 反比例函数:反比例函数的一般形式是 f(x) = k/x,它的图像是两个坐标轴的倒数。

初二下数学函数知识点总结归纳

初二下数学函数知识点总结归纳

初二下数学函数知识点总结归纳函数作为数学中的重要概念,在初二下学期的数学课程中占据着重

要的地位。通过学习函数,我们可以更好地理解数学中的关系与运算,并且在解决实际问题时能够找到更有效的方法。下面对初二下数学函

数知识点进行总结归纳,以帮助同学们回顾与复习。

一、函数的概念及基本性质

函数是一个有关联关系的集合。如果对于集合A中的每一个元素a,都对应集合B中唯一确定的元素b,那么称集合A和集合B之间存在

函数关系。数学表达式上,我们通常用f(x)表示函数,其中x为自变量,f(x)为对应的因变量。

函数有以下基本性质:

1. 定义域:函数的自变量x的取值范围称为函数的定义域,通常表

示为D(f)。例如,f(x) = 2x,其定义域为全体实数。

2. 值域:函数在定义域内所有可能函数值所组成的集合称为函数的

值域,通常表示为R(f)。例如,f(x) = x^2,其值域为非负实数。

3. 范围:函数在定义域D(f)上的所有可能函数值所组成的集合称为

函数的范围,通常表示为Ran(f)。例如,f(x) = x^2,其范围为非负实数。

4. 单调性:函数的单调性用来描述函数图像在定义域上的特点。函

数可以是严格增加、非严格增加、严格减少或非严格减少。例如,f(x) = 2x,在定义域上是严格增加函数。

5. 奇偶性:函数的奇偶性用来描述函数的对称性。若对于定义域内

的任意x,有f(-x) = f(x),则函数为偶函数;若对于定义域内的任意x,有f(-x) = -f(x),则函数为奇函数。

6. 周期性:函数可以具有周期性。若存在一个正数T使得对于定义

初二数学函数知识点总结

初二数学函数知识点总结

初二数学《函数》知识点总结

(一)平面直角坐标系

1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系

2、已知点的坐标找出该点的方法:

分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x 轴y 轴的的垂线,两垂线的交点即为要找的点。 3、已知点求出其坐标的方法:

由该点分别向x 轴y 轴作垂线,垂足在x 轴上的坐标是改点的横坐标,垂足在y 轴上的坐标是该点的纵坐标。 4、各个象限内点的特征:

第一象限:(+,+) 点P (x,y ),则x >0,y >0; 第二象限:(-,+) 点P (x,y ),则x <0,y >0; 第三象限:(-, -) 点P (x,y ),则x <0,y <0; 第四象限:(+,-) 点P (x,y ),则x >0,y <0; 5、坐标轴上点的坐标特征:

x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 6、点的对称特征:已知点P(m,n),

关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 7、平行于坐标轴的直线上的点的坐标特征: 平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。 8、各象限角平分线上的点的坐标特征:

第一、三象限角平分线上的点横、纵坐标相等。

点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a) 第二、四象限角平分线上的点横纵坐标互为相反数。

初中函数关系知识点总结-初二数学函数关系知识点

初中函数关系知识点总结-初二数学函数关系知识点

初中函数关系知识点总结-初二数学函数

关系知识点

一、函数的定义与表示

函数是数学中常见的一种表达关系的方式,通常用字母表示。函数由输入和输出两个变量组成,可以表示为f(x) = y的形式。

二、函数的图像与性质

1. 函数的图像是平面直角坐标系中的点的集合,其中横坐标为输入值,纵坐标为对应输出值。

2. 函数的性质包括定义域、值域、单调性、奇偶性等。

- 定义域:函数能够取值的范围。

- 值域:函数所有可能的输出值的范围。

- 单调性:函数在某个定义域内的取值随输入的增大或减小而增大或减小。

- 奇偶性:函数在定义域内的取值与输入的正负性质有关。

三、函数间的关系

1. 函数之间存在四种基本的关系:

- 相等关系:两个函数在相同的定义域内具有相同的输出值。

- 大于关系:一个函数在某个定义域内的值大于另一个函数在相同定义域内的值。

- 小于关系:一个函数在某个定义域内的值小于另一个函数在相同定义域内的值。

- 复合关系:一个函数的输入是另一个函数的输出。

四、常见函数类型

1. 线性函数:表达式为f(x) = ax + b,其中a和b为常数。

2. 平方函数:表达式为f(x) = ax^2,其中a为常数。

3. 开方函数:表达式为f(x) = √(ax + b),其中a和b为常数。

4. 绝对值函数:表达式为f(x) = |ax + b|,其中a和b为常数。

五、函数的性质与应用

1. 奇偶性对称性:若函数f(x)满足对任意x都有f(-x) = f(x),则函数f(x)为偶函数;若对任意x都有f(-x) = -f(x),则函数f(x)为奇函数。

初二数学函数知识点总结

初二数学函数知识点总结

4、函数解析式: 用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
wk.baidu.com
5、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值)

第二步: 描点 (在直角坐标系中, 以自变量的值为横坐标, 相应的函数值为纵坐标, 描出表格中数值对应的各点) ;
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)
( 3)走向: k>0 ,图象经过第一、三象限; k<0,图象经过第二、四象限
b>0
,图象经过第一、二象限; b<0,图象经过第三、四象限
k0 b0
直线经过第一、二、三象限
k0 b0
直线经过第一、三、四象限
k0 b0
直线经过第一、二、四象限
k0 b0
直线经过第二、三、四象限
注: y= kx+b 中的 k, b 的作用:
b<0 经过第一、三、四象限
b=0 经过第一、三象限
k>0
图象从左到右上升, y 随 x 的增大而增大
经过第一、二、四象限
经过第二、三、四象限
经过第二、四象限
k<0
图象从左到右下降, y 随 x 的增大而减小 4、直线 y=kx + b(k ≠ 0) 与坐标轴的交点.
(1) 直线 y=kx 与 x 轴、 y 轴的交点都是 (0 , 0) ;

初二数学函数知识点总结

初二数学函数知识点总结

初二数学《函数》知识点总结

(一)平面直角坐标系

1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系

2、已知点的坐标找出该点的方法:

分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x 轴y 轴的的垂线,两垂线的交点即为要找的点。 3、已知点求出其坐标的方法:

由该点分别向x 轴y 轴作垂线,垂足在x 轴上的坐标是改点的横坐标,垂足在y 轴上的坐标是该点的纵坐标。 4、各个象限内点的特征:

第一象限:(+,+) 点P (x,y ),则x >0,y >0; 第二象限:(-,+) 点P (x,y ),则x <0,y >0; 第三象限:(-, -) 点P (x,y ),则x <0,y <0; 第四象限:(+,-) 点P (x,y ),则x >0,y <0; 5、坐标轴上点的坐标特征:

x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 6、点的对称特征:已知点P(m,n),

关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 7、平行于坐标轴的直线上的点的坐标特征:

平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。 8、各象限角平分线上的点的坐标特征:

第一、三象限角平分线上的点横、纵坐标相等。

点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a) 第二、四象限角平分线上的点横纵坐标互为相反数。

初二数学八下一次函数所有知识点总结和常考题型练习题

初二数学八下一次函数所有知识点总结和常考题型练习题

一次函数知识点

(一)函数

1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对

应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应。

3、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

4、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式.

5、函数的图像

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

6、描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

7、函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 《函数》知识点总结

一、函数的基本知识:

知识网络图 基本概念

1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值

与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、函数的图像

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

4、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

5、描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 6、函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 二、正比例函数和一次函数 1、正比例函数及性质

一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零

一次函数

一元一次方程 一元一次不等式 二元一次方程

再认识

变化的世界

函数

建立数学模型

图象

性质

应用

当k>0时,直线y=kx 经过一、三象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )

(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 2、一次函数及性质

一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.

注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数

一次函数y=kx+b 的图象是经过(0,b )和(-

k

b

,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-

k

b

,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨

⎧<>00

b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩

⎨⎧<<00

b k 直线经过第二、三、四象限 注:y =kx+b 中的k ,b 的作用:

1、k 决定着直线的变化趋势

① k>0 直线从左向右是向上的 ② k<0 直线从左向右是向下的 2、b 决定着直线与y 轴的交点位置

① b>0 直线与y 轴的正半轴相交 ② b<0 直线与y 轴的负半轴相交

(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小. (5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;

当b<0时,将直线y=kx 的图象向下平移b 个单位.

三、一次函数y=kx +b 的图象的画法.

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图

象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标

或纵坐标为0的点.

注:对于y =kx+b 而言,图象共有以下四种情况:

1、k>0,b>0

2、k>0,b<0

3、k<0,b<0

4、k<0,b>0

b>0

b<0

b=0

k>0

经过第一、二、三象限

经过第一、三、四象限

经过第一、三象限

图象从左到右上升,y 随x 的增大而增大

k<0

经过第一、二、四象限

经过第二、三、四象限

经过第二、四象限

图象从左到右下降,y 随x 的增大而减小

4、直线y=kx +b(k ≠0)与坐标轴的交点.

(1)直线y=kx 与x 轴、y 轴的交点都是(0,0);

(2)直线y=kx +b 与x 轴交点坐标为与 y 轴交点坐标为(0,b).

5、用待定系数法确定函数解析式的一般步骤:

(1)根据已知条件写出含有待定系数的函数关系式;

相关文档
最新文档