初二数学函数知识点总结(推荐文档)
初中函数知识点总结(全面)
初中函数知识点总结(全面)1. 函数的概念函数是一种特殊的关系,它将一个自变量的值映射到唯一的因变量的值。
函数通常用来描述两个变量之间的依赖关系。
2. 函数的表示方式函数可以通过方程、表格和图像等方式来表示。
方程表示函数时,可以使用变量和常数来描述自变量和因变量之间的关系。
表格则将自变量和因变量的值以表格形式列出。
图像则以直线、曲线或者其他形状来表示函数的变化规律。
3. 函数的定义域和值域函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。
定义域和值域的确定需要根据函数的实际情况来分析和判断。
4. 常见的函数类型初中阶段研究的函数类型包括线性函数、二次函数、反比例函数和指数函数等。
线性函数是一种最简单的函数类型,它的方程形式为y = kx + b,其中k和b分别代表斜率和截距。
二次函数的方程形式为y = ax^2 + bx + c,其中a、b和c分别代表二次项、一次项和常数项的系数。
5. 函数的图像特征函数的图像可以通过斜率和截距、顶点坐标、对称轴和开口方向等特征来描述。
对于线性函数,斜率代表图像的倾斜程度,截距代表图像与y轴的交点;对于二次函数,顶点坐标代表图像的最高点或者最低点的位置,对称轴代表图像的对称线。
6. 函数的应用函数在数学和实际生活中都有广泛的应用。
在数学中,函数可以用来解决各种关系和变化的问题,例如求解方程、确定最大值和最小值等。
在实际生活中,函数可以用来描述各种现象和规律,例如汽车的加速度、温度的变化等。
总结:初中函数知识点包括函数的概念、表示方式、定义域和值域、常见的函数类型、图像特征和应用。
掌握这些知识点可以帮助学生更好地理解和应用函数,提高数学能力。
以上是初中函数知识点的全面总结,希望对你的学习有所帮助!。
(完整版)初中数学函数知识点归纳
初中数学函数板块的知识点总结与归类学习方法初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。
初中数学从性质上分,可以分为:一次函数、反比例函数、二次函 数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。
一、一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。
2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。
k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。
(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。
(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。
3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。
(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。
初二函数知识点总结
初二函数知识点总结函数在数学上的定义:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数.下面是店铺整理的关于初二函数知识点总结,欢迎大家参考!初二函数知识点总结1一、知识要点1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.2、一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.(3)当b=0,k≠0时,y=b仍是一次函数.(4)当b=0,k=0时,它不是一次函数.3、一次函数的图象(三步画图象)由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.4、一次函数y=kx+b(k,b为常数,k≠0)的性质(正比例函数的性质略)(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k<o时,y的值随x值的增大而减小.< p="">(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;5、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.6、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.7、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.8、本章思想方法(1)函数方法。
初二数学基础知识点归纳总结(2篇)
初二数学基础知识点归纳总结一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b>0图像经过一、二、三象限;(2)k>0,b<0图像经过一、三、四象限;(3)k>0,b=0图像经过一、三象限;(4)k<0,b>0图像经过一、二、四象限;(5)k<0,b<0图像经过二、三、四象限;(6)k<0,b=0图像经过二、四象限。
一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.5.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.数据的分析数据的代表:平均数、众数、中位数、极差、方差1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。
5.直角三角形斜边上的中线等于斜边的一半。
6.矩形的定义:有一个角是直角的平行四边形。
初中数学函数知识点
初中数学函数知识点初中数学函数知识点(一)一、函数的基本概念1. 函数的定义与表达式:函数是一种具有确定性的关系,将一个数(自变量)唯一地对应到另一个数(因变量)。
函数通常用符号表示,如f(x)、g(x)等。
2. 自变量与因变量:自变量是指函数中输入的数,通常用x表示;因变量是指自变量通过函数转化所得到的输出数,通常用y表示。
3. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
4. 函数的图象:函数的图象是自变量与因变量的对应关系在平面直角坐标系上的图形表示。
二、一次函数1. 一次函数的形式:一次函数是指函数的表达式中只有一次幂的项,通常表示为f(x) = kx + b,其中k、b为常数。
2. 一次函数的图象:一次函数的图象是一条直线,其斜率k表示该直线的倾斜程度,截距b表示该直线与y轴的交点。
3. 一次函数的特点:当斜率k>0时,函数单调递增;当斜率k<0时,函数单调递减;当斜率k=0时,函数为常值函数。
三、二次函数1. 二次函数的形式:二次函数是指函数的表达式中含有x的二次幂的项,通常表示为f(x) = ax^2 + bx + c,其中a、b、c为常数且a≠0。
2. 二次函数的图象:二次函数的图象是一条抛物线,其开口方向由二次项的系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点:二次函数的图象上最高(或最低)的点称为顶点,其横坐标为 x = -b / (2a),纵坐标为 f(-b / (2a))。
4. 二次函数的轴对称性:二次函数的图象以顶点为对称轴关于y轴对称。
四、绝对值函数1. 绝对值函数的形式:绝对值函数是指函数的表达式中含有绝对值运算符| |,通常表示为f(x) = |x|。
2. 绝对值函数的图象:绝对值函数的图象是一条以原点为中心的V字形曲线,其左右两段的斜率大小相等。
3. 绝对值函数的特点:当自变量为正数时,函数的值与自变量相等;当自变量为负数时,函数的值为自变量取相反数。
初二函数知识点总结【最新5篇】
初二函数知识点总结【最新5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!初二函数知识点总结【最新5篇】为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
初中数学函数知识点总结6篇
初中数学函数知识点总结初中数学函数知识点总结6篇总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。
那么总结有什么格式呢?以下是小编整理的初中数学函数知识点总结,仅供参考,大家一起来看看吧。
初中数学函数知识点总结1课题3.5正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky (k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR 值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax第三章第30页b24acb2注:二次函数yaxbxca(x (a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A (1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。
初中函数关系知识点总结-初二数学函数关系知识点
初中函数关系知识点总结-初二数学函数关系知识点一、函数的定义与表示函数是数学中常见的一种表达关系的方式,通常用字母表示。
函数由输入和输出两个变量组成,可以表示为f(x) = y的形式。
二、函数的图像与性质1. 函数的图像是平面直角坐标系中的点的集合,其中横坐标为输入值,纵坐标为对应输出值。
2. 函数的性质包括定义域、值域、单调性、奇偶性等。
- 定义域:函数能够取值的范围。
- 值域:函数所有可能的输出值的范围。
- 单调性:函数在某个定义域内的取值随输入的增大或减小而增大或减小。
- 奇偶性:函数在定义域内的取值与输入的正负性质有关。
三、函数间的关系1. 函数之间存在四种基本的关系:- 相等关系:两个函数在相同的定义域内具有相同的输出值。
- 大于关系:一个函数在某个定义域内的值大于另一个函数在相同定义域内的值。
- 小于关系:一个函数在某个定义域内的值小于另一个函数在相同定义域内的值。
- 复合关系:一个函数的输入是另一个函数的输出。
四、常见函数类型1. 线性函数:表达式为f(x) = ax + b,其中a和b为常数。
2. 平方函数:表达式为f(x) = ax^2,其中a为常数。
3. 开方函数:表达式为f(x) = √(ax + b),其中a和b为常数。
4. 绝对值函数:表达式为f(x) = |ax + b|,其中a和b为常数。
五、函数的性质与应用1. 奇偶性对称性:若函数f(x)满足对任意x都有f(-x) = f(x),则函数f(x)为偶函数;若对任意x都有f(-x) = -f(x),则函数f(x)为奇函数。
2. 函数的应用:函数在数学和实际问题中有着广泛的应用,如描述变化规律、建立模型等。
初中数学函数知识点归纳
初中数学函数知识点归纳一、函数的概念和性质1.函数的定义:函数是一个由一个或多个自变量和一个因变量组成的数学关系。
对于每一个自变量的取值,函数都有一个确定的因变量值与之对应。
2.函数的表示:函数可以用函数表、函数图、函数解析式等形式来表示。
3.函数的自变量和因变量:自变量是输入值,因变量是对应的输出值。
4.定义域:函数可以接受的自变量的取值范围称为函数的定义域。
5.值域:函数所有可能的因变量值的集合称为函数的值域。
二、常见函数的性质和图像1.奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
2.单调性:增函数在定义域内满足f(x1)<f(x2)当x1<x2,减函数在定义域内满足f(x1)>f(x2)当x1<x23.分段函数:定义域被分为不同区间,每个区间内可以使用不同的函数关系来表达。
三、常见的数学函数1. 线性函数:f(x)=ax+b,其中a和b为常数,表示一条直线的函数关系。
2. 幂函数:f(x)=ax^n,其中a和n为常数,表示自变量的n次幂关系。
3.反比例函数:f(x)=a/x,其中a为常数,表示自变量和因变量之间的反比例关系。
4.指数函数:f(x)=a^x,其中a为常数且大于0且不等于1,表示指数和对数之间的关系。
5. 对数函数:f(x)=log_a(x),其中a为常数且大于0且不等于1,表示指数和对数之间的关系。
6.三角函数:如正弦函数、余弦函数、正切函数等,主要描述角度和边长之间的关系。
7.复合函数:由多个函数通过代数运算组合而成的函数。
四、函数的性质和运算1.函数的相等:两个函数f(x)和g(x)在其定义域内的每个点上的值都相等时,称这两个函数相等。
2.函数的复合:将一个函数的输出作为另一个函数的输入,得到的新函数称为复合函数。
3.函数的逆函数:若一个函数f(x)的定义域和值域互换,且满足f(f^(-1)(x))=x和f^(-1)(f(x))=x,则f(x)的逆函数为f^(-1)(x)。
八年级数学函数的相关概念知识点总结
八年级数学函数的相关概念知识点总结一、函数的概念:1、函数的定义:一般地,如果在一个变化过程中有两个变量 x 和 y,并且对于变量 X 的每一个值,变量 y 都有唯一的值与它对应,那么我们称 y 是 x 的函数 (function),其中 x 是自变量。
例如某天的气温随时间变化的曲线如下图所示:从这条曲线可以看出温度是随时间变化的,也就是可以知道不同时间对应的温度和同一温度对应的未使用时间。
2、函数的表示法:可以用三种方法来表示函数: ① 图象法、② 列表法、③ 关系式法。
3、函数值:对于自变量在可取值范围内的一个确定的值 a , 函数有唯一确定的对应值,这个对应值称为当自变量等于 a 时的函数值。
二、理解函数概念时应注意的几点:① 在某一变化过程中有两个变量x与y;② 这两个变量互相联系,当变量x取一个确定的值时,变量y 的值就随之确定;③ 对于变量 x 的每一个值,变量 y 都有唯一的一个值与它对应。
如在关系式y^2 = x(x>0)中,当 x=9 时,y 对应的值为 3 或-3,不唯一 ,则 y不是 x的函数。
三、函数的应用:1、判别是否为函数关系;2、确定自变量的取值范围;3、确定实际背景下的函数关系式;4、由自变量的值求函数值;5.探究具体问题中的数量关系和变化规律。
四、典例讲解:例题1、下列各图像中,y 是 x 的函数的图像是( D )例题2、在函数变量为x , y,常量为 5 ,-3 ,自变量为x ,当 x = -1 时,函数值为 2 。
例题3、一名老师带领 x 名学生到动物园参观。
已知成人票每张 30 元,学生票每张 10 元。
若设门票的总费用为 y 元,则 y 与 x 的函数关系式为(A )例题4、下面的表格列出了一个实验的统计数据,给出的是皮球从高处落下时弹跳高度 b 与下降高度 d 的关系。
下列能表示这种关系的式子是( C)例题5、已知两个变量 x , y 满足 2x^2 - 3y + 5 = 0 , 试问:① y 是 x 的函数吗?② x 是 y 的函数吗?若是,写出 y 与 x 的关系式;若不是,请说明理由。
初中函数知识点全面总结
初中函数知识点全面总结一、函数的基本概念1.1 函数的引入在日常生活和数学问题中,我们经常遇到一些问题,例如:已知椭圆的长轴、短轴的长度,我们可以求椭圆的面积;已知一个正方体的边长,我们可以求它的体积,这些问题都是函数的具体例子。
函数研究的对象是一对对象之间的依赖关系。
1.2 函数的定义函数是一个变量间的依赖关系。
如果对于每一个自变量x,都有唯一的因变量y和它对应,那么这个变量x和它所对应的y就构成函数。
通常记作y=f(x)。
1.3 自变量、因变量和函数符号在函数f(x)中,x称为自变量,y称为因变量,而f(x)则是函数的符号表示。
1.4 自变量和因变量的关系自变量和因变量之间存在着一一对应的关系。
当自变量x取不同的值时,因变量y也会随之变化。
这种变化规律可以用图象或公式来表示。
1.5 函数的图象对于函数y=f(x),其图象是平面直角坐标系内一条曲线。
曲线上的每一个点(x,y)都满足方程y=f(x)。
1.6 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
例如,对于函数f(x)=x^2,其定义域是实数集R,值域是非负实数集[0,+∞)。
二、函数的表示方法2.1 列表法通过若干对自变量和因变量对照,列出所有自变量和因变量的对应关系,就是列表法表示函数。
2.2 公式法用一个能够表示自变量与因变量之间的对应关系的等式来表示函数。
2.3 函数关系图象法可以通过函数的图象来表达函数。
三、函数的性质3.1 函数的奇偶性当自变量为-x时,若f(x)=-f(-x),则函数f(x)为奇函数;当自变量为-x时,若f(x)=f(-x),则函数f(x)为偶函数。
3.2 增减性与极值若在自变量的某一邻域内,函数值随着自变量的增大而增大,则称此函数在此邻域内是增函数;反之,则是减函数。
当函数在某一点上取得最大值或最小值时,称这个函数在这一点有极值。
3.3 奇偶性与周期性若f(x+T)=f(x)对于一切x都成立,则称T为函数f(x)的周期。
八年级(人教版)函数知识点总结
八年级(人教版)函数知识点总结
1. 函数的定义和特点
- 函数是指两个变量之间的一种特殊关系。
通常用符号“y=f(x)”表示。
- 函数的特点包括单值性、对应性和确定性。
2. 函数的表示方法
- 表达法:y=f(x)
- 函数图像法:用图像表示函数的变化规律
- 函数表格法:通过表格列出函数的输入和输出值
3. 函数的分类
- 一次函数:y=ax+b,其中a和b为常数,a不等于0
- 二次函数:y=ax^2+bx+c,其中a、b和c为常数,a不等于0 - 反比例函数:y=k/x,其中k不等于0
- 正比例函数:y=kx,其中k不等于0
4. 函数的图像和性质
- 一次函数的图像为一条直线,斜率决定了函数的增减性。
- 二次函数的图像为一条抛物线,开口方向和开口大小由二次项的系数决定。
- 反比例函数的图像为一条曲线,通过原点,并且随着x的增大,y的值逐渐减小。
- 正比例函数的图像为一条经过原点且与x轴平行的直线。
5. 函数的应用
- 函数广泛应用于数学和实际生活中的问题求解。
- 函数可以描述物体的运动规律、变化趋势、关系等。
以上是八年级(人教版)函数知识点的简要总结,希望对您有所帮助。
函数初二知识点总结
函数初二知识点总结一、函数的概念。
1. 变量与常量。
- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。
例如,在行程问题中,速度不变时,路程s = vt,v是常量,s和t是变量。
2. 函数的定义。
- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
例如,y = 2x+1,对于x的每一个值,都能通过这个式子算出唯一的y值。
3. 函数的表示方法。
- 解析法:用数学式子表示两个变量之间的函数关系,如y = 3x - 2。
- 列表法:通过列出自变量与函数的对应值来表示函数关系。
例如,某商店销售一种商品,记录不同销售量x(件)时的销售额y(元),如下表:x1 2 3 4.y5 10 15 20.- 图象法:用图象表示两个变量之间的函数关系。
如在平面直角坐标系中画出y = x^2的图象。
二、函数自变量的取值范围。
1. 整式型函数。
- 对于y = 2x+3这样的整式函数,自变量x的取值范围是全体实数。
2. 分式型函数。
- 对于y=(1)/(x),因为分母不能为0,所以x≠0。
3. 二次根式型函数。
- 对于y = √(x),被开方数x≥slant0。
如果是y=√(2x - 1),则2x - 1≥slant0,解得x≥slant(1)/(2)。
三、函数图象的画法。
1. 列表。
- 对于y = 2x+1,可以选取一些x的值,如x=-2,-1,0,1,2,然后分别计算出对应的y值:- 当x = - 2时,y=2×(-2)+1=-3;- 当x=-1时,y = 2×(-1)+1=-1;- 当x = 0时,y=2×0 + 1=1;- 当x = 1时,y=2×1+1 = 3;- 当x = 2时,y=2×2+1=5。
列出表格如下:x-2 -1 0 1 2.y-3 -1 1 3 5.2. 描点。
八年级(人教版)函数知识点总结
八年级(人教版)函数知识点总结1. 函数的概念1.1 函数的定义- 函数是一种具有特定输入和输出的关系。
1.2 函数的表示方法- 显式函数表达式- 隐式函数表达式- 函数图像2. 函数的性质2.1 奇偶性- 如果对于任何$x$,都满足$f(-x) = f(x)$,则称函数为偶函数。
- 如果对于任何$x$,都满足$f(-x) = -f(x)$,则称函数为奇函数。
2.2 周期性- 如果对于任何$x$,都满足$f(x+T) = f(x)$,则称函数为周期函数。
2.3 单调性- 如果对于$x_1 < x_2$,都满足$f(x_1) < f(x_2)$,则称函数为单调递增。
- 如果对于$x_1 < x_2$,都满足$f(x_1) > f(x_2)$,则称函数为单调递减。
3. 函数的基本图像与简单变形3.1 常函数$f(x) = C$3.2 一次函数$f(x) = kx + b$3.3 二次函数$f(x) = ax^2 + bx + c$,其中$a\neq 0$ 3.4 绝对值函数$f(x) = |x|$3.5 倒数函数$f(x) = \frac{1}{x}$3.6 反比例函数$f(x) = \frac{k}{x}$,其中$k\neq 0$ 4. 函数的运算4.1 函数的和、差、积、商- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- 和函数:$(f+g)(x) = f(x)+g(x)$,$D_{f+g} = D_f \cap D_g$ - 差函数:$(f-g)(x) = f(x)-g(x)$,$D_{f-g} = D_f \cap D_g$- 积函数:$(f\times g)(x) = f(x)\times g(x)$,$D_{f\times g} = D_f \cap D_g$- 商函数:$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$,$D_{\frac{f}{g}} = \{x\in D_f \cap D_g|g(x)\neq 0\}$4.2 复合函数- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- $(f\circ g)(x) = f(g(x))$,$D_{f\circ g} = \{x\in D_g|g(x)\in D_f\}$5. 函数的应用5.1 解方程- 通过函数图像的交点来求解方程。
八年级函数基础知识点总结
八年级函数基础知识点总结一、函数的概念1. 什么是函数?函数是一种特殊的数学关系,它将每个自变量(输入值)映射到唯一的因变量(输出值)。
通俗地讲,函数就是一个“机器”,它能够将一个数映射成另一个数。
2. 函数的表示方法函数可以用各种不同的表示方法来表达,比如代数式、图形、表格、文字描述等。
3. 函数的符号表示用数学符号表示函数的一般形式为:f(x) = y。
其中,f(x)表示函数名,x表示自变量,y 表示因变量。
二、函数的图象1. 函数的图象函数的图象是函数在平面直角坐标系中的几何表现,通常用曲线来表示。
横坐标表示自变量,纵坐标表示因变量。
2. 函数的性质函数的图象具有一些特定的性质,比如单调性、奇偶性、周期性等。
这些性质可以通过函数的图象来进行判断和分析。
三、函数的运算1. 函数的四则运算函数之间可以进行加、减、乘、除等四则运算,这些运算的结果仍然是一个函数。
2. 复合函数复合函数是指将一个函数的输出作为另一个函数的输入,进行组合运算得到一个新的函数。
3. 反函数如果函数f将x映射为y,那么反函数f^(-1)将y映射为x。
反函数是原函数的逆运算。
四、函数的性质1. 函数的值域和定义域函数的值域是函数所有可能的输出值的集合,定义域是函数所有可能的输入值的集合。
2. 奇偶性函数f(x)的奇偶性是指当x为某个数时,函数f(-x)与f(x)的关系。
如果f(-x) = f(x),则函数f(x)是偶函数;如果f(-x) = -f(x),则函数f(x)是奇函数。
3. 单调性如果函数在定义域上的任意两个数x1、x2,若有x1 < x2,则f(x1)与f(x2)的关系。
如果f(x1) < f(x2),则函数f(x)是增函数;如果f(x1) > f(x2),则函数f(x)是减函数。
4. 周期性函数f(x)的周期是一个正数T,如果对于任意x,f(x+T) = f(x)。
五、函数的应用1. 实际问题中的函数函数在各个行业和领域中有着广泛的应用,比如物理学中的运动学函数、经济学中的收益函数、生物学中的生长函数等。
初二函数知识点归纳
初二函数知识点归纳一、函数的概念。
1. 定义。
- 在一个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了唯一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
- 例如:汽车以60千米/小时的速度匀速行驶,行驶路程s(千米)与行驶时间t(小时)之间的关系为s = 60t,这里t是自变量,s是因变量,s是t的函数。
2. 函数的表示方法。
- 解析式法。
- 用数学式子表示两个变量之间的函数关系的方法叫做解析式法。
例如y=2x + 1,y=(1)/(x)等都是用解析式表示函数。
- 列表法。
- 通过列出自变量的值与对应的函数值的表格来表示函数关系的方法。
如某商店销售某种商品,统计不同价格x(元)下的销售量y(件),可以列出如下表格:| x | 10 | 15 | 20|.| | | | |.| y | 50 | 30 | 20|.- 图象法。
- 用图象表示两个变量之间的函数关系的方法。
例如,在平面直角坐标系中画出y = x^2的图象,通过图象可以直观地看出函数的一些性质。
二、一次函数。
1. 定义。
- 形如y=kx + b(k,b是常数,k≠0)的函数叫做一次函数。
当b = 0时,y=kx(k≠0)叫做正比例函数,正比例函数是特殊的一次函数。
2. 一次函数的图象和性质。
- 图象。
- 一次函数y = kx + b的图象是一条直线。
当k>0,b>0时,直线经过一、二、三象限;当k>0,b<0时,直线经过一、三、四象限;当k<0,b>0时,直线经过一、二、四象限;当k<0,b<0时,直线经过二、三、四象限。
- 例如,y = 2x+1,k = 2>0,b = 1>0,其图象经过一、二、三象限;y=-3x - 2,k=-3<0,b = - 2<0,其图象经过二、三、四象限。
- 性质。
- 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
初二数学函数知识点总结
初二数学《函数》知识点总结(一)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、已知点的坐标找出该点的方法:分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x 轴y 轴的的垂线,两垂线的交点即为要找的点。
3、已知点求出其坐标的方法:由该点分别向x 轴y 轴作垂线,垂足在x 轴上的坐标是改点的横坐标,垂足在y 轴上的坐标是该点的纵坐标。
4、各个象限内点的特征:第一象限:(+,+) 点P (x,y ),则x >0,y >0; 第二象限:(-,+) 点P (x,y ),则x <0,y >0; 第三象限:(-, -) 点P (x,y ),则x <0,y <0; 第四象限:(+,-) 点P (x,y ),则x >0,y <0; 5、坐标轴上点的坐标特征:x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。
两坐标轴的点不属于任何象限。
6、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 7、平行于坐标轴的直线上的点的坐标特征: 平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。
8、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a) 第二、四象限角平分线上的点横纵坐标互为相反数。
点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)9、点P (x,y )的几何意义: 点P (x,y )到x 轴的距离为 |y|, 点P (x,y )到y 轴的距离为 |x|。
点P (x,y )到坐标原点的距离为22y x10、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-11、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点则:M=(212x x + , 212y y +) 12、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
初二函数知识点及经典例题
第十八章 函数一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 《函数》知识点总结
一、函数的基本知识:
知识网络图 基本概念
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值
与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
4、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
5、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
6、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
二、正比例函数和一次函数 1、正比例函数及性质
一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零
一次函数
一元一次方程 一元一次不等式 二元一次方程
再认识
变化的世界
函数
建立数学模型
图象
性质
应用
当k>0时,直线y=kx 经过一、三象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )
(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 2、一次函数及性质
一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.
注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数
一次函数y=kx+b 的图象是经过(0,b )和(-
k
b
,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-
k
b
,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨
⎧<>00
b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩
⎨⎧<<00
b k 直线经过第二、三、四象限 注:y =kx+b 中的k ,b 的作用:
1、k 决定着直线的变化趋势
① k>0 直线从左向右是向上的 ② k<0 直线从左向右是向下的 2、b 决定着直线与y 轴的交点位置
① b>0 直线与y 轴的正半轴相交 ② b<0 直线与y 轴的负半轴相交
(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小. (5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;
当b<0时,将直线y=kx 的图象向下平移b 个单位.
三、一次函数y=kx +b 的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图
象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标
或纵坐标为0的点.
注:对于y =kx+b 而言,图象共有以下四种情况:
1、k>0,b>0
2、k>0,b<0
3、k<0,b<0
4、k<0,b>0
b>0
b<0
b=0
k>0
经过第一、二、三象限
经过第一、三、四象限
经过第一、三象限
图象从左到右上升,y 随x 的增大而增大
k<0
经过第一、二、四象限
经过第二、三、四象限
经过第二、四象限
图象从左到右下降,y 随x 的增大而减小
4、直线y=kx +b(k ≠0)与坐标轴的交点.
(1)直线y=kx 与x 轴、y 轴的交点都是(0,0);
(2)直线y=kx +b 与x 轴交点坐标为与 y 轴交点坐标为(0,b).
5、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
8、正比例函数与一次函数图象之间的关系
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).。