matlab实现数字滤波器
用MATLAB设计FIR数字滤波器
实验八 用MATLAB 设计FIR 数字滤波器(二)一、实验目旳:1、加深对窗函数法设计FIR 数字滤波器旳基本原理旳理解。
2、学习用MATLAB 语言旳窗函数法编写设计FIR 数字滤波器旳程序。
3、理解MATLAB 语言有关窗函数法设计FIR 数字滤波器旳常用函数用法。
二、实验原理:1、用窗函数法设计FIR 数字滤波器 FIR 数字滤波器旳系统函数为N-1-n n=0H(z)=h(n)z ∑这个公式也可以当作是离散LSI 系统旳系统函数M-m -1-2-mmm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其他a k 全都为0时旳一种特例。
由于极点所有集中在零点,稳定和线性相位特性是FIR 滤波器旳突出长处,因此在实际中广泛使用。
FIR 滤波器旳设计任务是选择有限长度旳h(n),使传播函数H(e j ω)满足技术规定。
重要设计措施有窗函数法、频率采样法和切比雪夫等波纹逼近法等。
本实验重要简介窗函数法。
用窗函数法设计FIR 数字滤波器旳基本环节如下:(1)根据过渡带和阻带衰减指标选择窗函数旳类型,估算滤波器旳阶数N 。
(2)由数字滤波器旳抱负频率响应H(e j ω)求出其单位脉冲响应h d (n)。
可用自定义函数ideal_lp实现抱负数字低通滤波器单位脉冲响应旳求解。
程序清单如下:function hd=ideal_lp(wc,N) %点0到N-1之间旳抱负脉冲响应%wc=截止频率(弧度)%N=抱负滤波器旳长度tao=(N-1)/2;n=[0:(N-1)];m=n-tao+eps; %加一种小数以避免0作除数hd=sin(wc*m)./(pi*m);其他选频滤波器可以由低通频响特性合成。
如一种通带在ωc1~ωc2之间旳带通滤波器在给定N值旳条件下,可以用下列程序实现:Hd=ideal_lp(wc2,N)-ideal_lp(wc1,N)(3)计算数字滤波器旳单位冲激响应h(n)=w(n)h d(n)。
matlab filter函数用法
matlab filter函数用法MATLAB是一种在科学和数学领域广泛使用的编程语言和交互式环境。
在MATLAB中,filter函数是一个非常有用的函数,用于数字信号处理和数据滤波。
本文将详细介绍MATLAB的filter函数用法,以提供更好的理解和应用指导。
1、filter函数介绍filter函数是MATLAB中的数字滤波器函数,可以根据给定的数字滤波器系数和输入信号对信号进行滤波处理。
filter函数根据第一个参数(滤波器系数)和第二个参数(输入信号),对输入信号进行滤波,从而生成滤波后的信号。
该函数的语法如下:y = filter(b,a,x)其中,参数b是滤波器系数的向量,参数a是滤波器的反馈系数(因果滤波器的a参数为1),参数x是输入信号向量。
返回y是滤波后的信号向量。
2、使用滤波器系数在使用filter函数时,滤波器系数是必不可少的。
滤波器系数定义了数字滤波器处理输入信号的方式。
在计算机上,滤波器是使用数字算法来模拟模拟电路滤波器。
数字滤波器中最常见的类型是有限长冲激响应(FIR)滤波器和无限长冲激响应(IIR)滤波器。
这两种滤波器都在MATLAB中有广泛的应用。
当使用滤波器系数时,必须理解数字滤波器的工作原理。
数字滤波器的本质是将数字信号的特定频率区域转换为另一个频率区域。
因此,当进行数字信号滤波时,需要在输入信号上定义一个频率范围,然后使用滤波器系数来修改信号的频率分布。
3、理解滤波器系数的类型滤波器系数的类型包括传递函数系数和差分方程系数。
传递函数系数是数字滤波器的频域表现形式,是将输入信号转化为输出信号的函数。
差分方程系数是数字滤波器的时域表现形式,它实际上是将输入信号转化为输出信号的线性差分方程。
在filter函数中,b和a参数都是传递函数系数,因此在使用filter函数时必须了解这两个参数。
传递函数系数通常包括设计滤波器时选择的标准频率一些完成滤波器设计的附加参数。
由于B和A代表不同的信号属性,因此在计算数字滤波器时,必须分开使用它们。
数字滤波器matlab的程序
数字滤波器matlab的源代码function lvbo(Ua,Ub,choise)%参考指令:lvbo(2*pi,10*pi,1/0/-1)U1=min(Ua,Ub);U2=max(Ua,Ub);Us=16*U2;T=2*pi/Us;T_sum=4*max(2*pi/Ua,2*pi/Ub);sum=T_sum/T;t=T:T:T_sum;x=sin(U1*t)+0.8*sin(U2*t);X=DFT(x);figure(1); subplot(221)U=Us/sum:Us/sum:Us;stem(U,abs(X));grid onaxis([Us/sum,Us/2,0,1.2*max(abs(X))])title('原模拟信号采样频谱图')Ucd=U1+(U2-U1)*1/5;Usd=U2-(U2-U1)*1/5;switch choisecase 1Hz_ejw=IIR_DF_BW(Ucd,1,Usd,30,T,sum);case -1Hz_ejw=IIR_DF_CF(Ucd,1,Usd,30,T,sum);case 0Hz_ejw=FIR_DF_HM(U1,U2,T,sum);otherwiseHz_ejw=IIR_DF_BW(Ucd,1,Usd,30,T,sum);endY=X.*Hz_ejw;y=1/sum*conj(DFT(conj(Y)));figure(1); subplot(224)plot(t,real(y)); title('模拟信号滤波后');grid on axis([0,T_sum,-max(real(y))*1.5,max(real(y))*1.5]) subplot(222);plot(t,x); hold onaxis([0,T_sum,-max(x)*1.2,max(x)*1.2])x=sin(U1*t);plot(t,x,':r');grid ontitle('模拟信号滤波前')function Hz_ejw=IIR_DF_BW(Ucd,Ap,Usd,As,t,sum)% 巴特沃思滤波器E=(10^(0.1*Ap)-1)^0.5;V=(10^(0.1*As)-1)^0.5;Wc=Ucd*t; Ws=Usd*t;Ucd=Wc/t; Usd=Ws/t;Uca=(2/t)*tan(Ucd*t/2); Usa=(2/t)*tan(Usd*t/2);N=ceil(log10(V/E)/log10(Usa/Uca));k=[1:2*N];Spk=exp(j*(pi/2+(2*k-1)/(2*N)*pi));i=find(real(Spk)<0);Sk(1:N)=Spk(i);den=real(poly(Sk'));k0=polyval(den,0);disp('模拟巴特沃思滤波器的归一化统函数 Ha(s) 为')tf(k0,den)syms s z T;den_jU=1;s=s/Uca;for i=1:Nden_jU=s^(N-i+1)*den(i)+den_jU;endHa_s=simple(1/den_jU);H_z=subs(Ha_s,'s',(2/T)*((1-1/z)/(1+1/z)));k=1:sum;w=(2*pi/sum)*k;ejw=exp(j*w);Hz_ejw=subs(H_z,{z,T},{ejw,t*ones(1,length(ejw))}); figure(1); subplot(223)plot(w,abs(Hz_ejw)); grid ontitle('巴特沃思低通滤波器')axis([2*pi/sum,pi,-0.2,1.2*max(abs(Hz_ejw))]) function Hz_ejw=IIR_DF_CF(Ucd,Ap,Usd,As,t,sum)% 切比雪夫低通滤波器E=(10^(0.1*Ap)-1)^0.5;V=(10^(0.1*As)-1)^0.5;Wc=Ucd*t; Ws=Usd*t;Ucd=Wc/t; Usd=Ws/t;Uca=(2/t)*tan(Ucd*t/2); Usa=(2/t)*tan(Usd*t/2);N=ceil(acosh(V/E)/acosh(Usa/Uca));;A=1/E+(1/E^2+1)^0.5;a=1/2*(A^(1/N)-A^(-1/N));b=1/2*(A^(1/N)+A^(-1/N));k=1:2*N;Spk=-a*sin((2*k-1)/(2*N)*pi)+j*b*...cos((2*k-1)/(2*N)*pi);i=find(real(Spk)<0);Sk(1:N)=Spk(i);den=real(poly(Sk'));k0=1;disp('模拟切比雪夫低通滤波器的归一化统函数 Ha(s) 为') tf(k0,den)if (rem(N,2)==1)for i=1:Nk0=k0*(-Sk(i));endelseif ((rem(N,2))==0)k0=1;for i=1:Nk0=k0*(-Sk(i));endendif (rem(N,2)==0)k0=10^(-0.05*Ap)*k0;endk0=real(k0);syms s z T;den_jU=1;s=s/Uca;for i=1:Nden_jU=s^(N-i+1)*den(i)+den_jU;endHa_s=simple(1/den_jU);H_z=subs(Ha_s,'s',(2/T)*((1-1/z)/(1+1/z)));k=1:sum;w=(2*pi/sum)*k;ejw=exp(j*w);Hz_ejw=subs(H_z,{z,T},{ejw,t*ones(1,length(ejw))}); figure(1); subplot(223)plot(w,abs(Hz_ejw));grid ontitle('切比雪夫低通滤波器')axis([2*pi/sum,pi,-0.5,max(abs(Hz_ejw))])function Hz_ejw=FIR_DF_HM(U1,U2,T,sum)wp=U1*T;ws=U2*T;kuan=ws-wp;M=sum;n=[0:1:M-1];wc=(ws+wp)/2;hd=H_D(wc,M);window=hamming_m(M);h_z=hd.*window;Hz_ejw=DFT(h_z);k=1:sum;w=(2*pi/sum)*k;figure(1); subplot(223)plot(w,abs(Hz_ejw));grid onaxis([2*pi/sum,pi,-0.2,1.2*max(abs(Hz_ejw))]);title('海明窗函数低通滤波器')function hd=H_D(wc,N)M=(N-1)/2;for k=-M:Mif k==0hd(k+M+1)=wc/pi;elsehd(k+M+1)=sin(wc*k)/(pi*k);endendfunction wn=hamming_m(M)n=0:M-1;wn(n+1)=0.54-0.46*cos((2*pi*n)/(M-1));function Xk=DFT(xn)% 离散傅立叶变换,xn为原序列,Xk为DFT变换后的序列N=length(xn);n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;。
MATLAB中的数字滤波器设计与实现
MATLAB中的数字滤波器设计与实现数字滤波器在信号处理中具有重要的作用,可用于去除噪声、滤波信号以及提取特定频率的成分。
MATLAB作为一种强大的数学软件,提供了多种数字滤波器设计和实现的工具,为工程师和科学家们提供了便捷而高效的解决方案。
本文将介绍MATLAB中数字滤波器的设计原理和实现方法,帮助读者更好地理解数字滤波器在实际应用中的重要性。
1. 数字滤波器的基本原理数字滤波器是一种能够改变信号频谱特性的系统,常用于消除噪声、去除不需要的频率成分或者提取感兴趣的信号成分。
数字滤波器分为FIR(有限长冲击响应)和IIR(无限长冲击响应)两种类型。
FIR滤波器的冲击响应为有限长序列,实现简单且稳定;IIR滤波器的冲击响应为无限长序列,具备更好的频率响应特性。
在MATLAB中,我们可以通过不同的函数和工具箱来设计这些数字滤波器。
2. FIR数字滤波器的设计与实现FIR数字滤波器的设计主要通过窗函数和频域采样进行。
MATLAB提供了一系列用于FIR滤波器设计的函数,如fir1、fir2等。
其中,fir1函数可以使用窗函数方法设计低通、高通、带通和带阻滤波器;fir2函数则可以实现自定义的频率响应。
具体设计步骤为:选择合适的窗函数、确定滤波器阶数和截止频率、生成滤波器系数。
设计完成后,可以通过filter函数将滤波器应用到目标信号上。
3. IIR数字滤波器的设计与实现IIR数字滤波器的设计方法主要有脉冲响应不变法和双线性变换法。
MATLAB提供了butter、cheby1、cheby2、ellip等函数来方便地实现IIR滤波器设计。
这些函数可以通过选择滤波器类型、阶数、截止频率等参数来生成相应的滤波器系数。
与FIR滤波器不同的是,IIR滤波器具有反馈结构,在MATLAB中可以使用filter函数来实现。
4. 数字滤波器的性能评估与优化正确评估和优化数字滤波器的性能对于滤波器的应用至关重要。
MATLAB提供了多种函数和工具箱来评估滤波器的频率响应、相位响应、时域响应等,如freqz、grpdelay、impz等。
基于MATLAB的IIR数字滤波器设计与仿真
基于MATLAB的IIR数字滤波器设计与仿真一、概述在现代数字信号处理领域中,数字滤波器扮演着至关重要的角色。
其通过对输入信号的特定频率成分进行增强或抑制,实现对信号的有效处理。
无限脉冲响应(IIR)数字滤波器因其设计灵活、实现简单且性能优良等特点,得到了广泛的应用。
本文旨在基于MATLAB平台,对IIR数字滤波器的设计与仿真进行深入研究,以期为相关领域的研究与应用提供有益的参考。
IIR数字滤波器具有无限长的单位脉冲响应,这使得其在处理信号时能够展现出优秀的性能。
与有限脉冲响应(FIR)滤波器相比,IIR滤波器在实现相同性能时所需的阶数更低,从而减少了计算复杂度和存储空间。
在需要对信号进行高效处理的场合,IIR滤波器具有显著的优势。
MATLAB作为一款功能强大的数学软件,提供了丰富的函数和工具箱,使得数字滤波器的设计与仿真变得简单而高效。
通过MATLAB,我们可以方便地实现IIR滤波器的设计、分析和优化,从而满足不同应用场景的需求。
本文将首先介绍IIR数字滤波器的基本原理和特性,然后详细阐述基于MATLAB的IIR数字滤波器的设计方法和步骤。
接着,我们将通过仿真实验验证所设计滤波器的性能,并对其结果进行分析和讨论。
本文将总结IIR数字滤波器设计与仿真的关键技术和注意事项,为相关领域的研究人员和工程师提供有益的参考和启示。
1. IIR数字滤波器概述IIR(Infinite Impulse Response)数字滤波器是数字信号处理中常用的一类滤波器,它基于差分方程实现信号的滤波处理。
与FIR (Finite Impulse Response)滤波器不同,IIR滤波器具有无限长的单位脉冲响应,这意味着其输出不仅与当前和过去的输入信号有关,还与过去的输出信号有关。
这种特性使得IIR滤波器在实现相同的滤波效果时,通常具有更低的计算复杂度,从而提高了处理效率。
IIR滤波器的设计灵活多样,可以根据不同的需求实现低通、高通、带通和带阻等多种滤波功能。
数字滤波器的设计matlab
数字滤波器的设计matlab
数字滤波器的设计可以使用MATLAB中的fdatool或者直接使用代码实现。
具体步骤如下:
1. 确定滤波器的类型(低通、高通、带通、带阻)以及参数(截止频率、通带、阻带宽度等)。
2. 使用MATLAB中的fdatool进行滤波器的设计,可以手动调节参数并进行实时分析和优化,或者选择预设的滤波器模板进行修改。
3. 点击Export将滤波器参数导出至matlab代码中。
4. 使用生成的代码进行滤波器的实现,例如:
```
fs = 1000; %采样率
fc = 100; %截止频率
[b, a] = butter(6, fc/(fs/2)); %设计6阶巴特沃斯低通滤波器input_signal = sin(2*pi*50*(0:1/fs:1)); %输入信号
output_signal = filter(b, a, input_signal); %滤波结果
```
其中,b和a分别为滤波器的分子和分母系数,可以根据不同的设计方法得到,input_signal为需要进行滤波的信号,output_signal为滤波后的结果。
数字滤波器的设计及其MATLAB实现
设计低通数字滤波器,要求在通带内频率低于0.2pirad时,允许幅度误差在1dB以内,在频率0.3pi rad~pi rad之间的阻带衰减大于15dB,用脉冲响应不变法设计数字滤波器,T=1: 切比雪夫I型模拟滤波器的设计子程序:function [b,a]=afd_chb1(Omegap,Omegar,Ar)if Omegap<=0error('通带边缘必须大于0')endif(Dt<=0)|(Ar<0)error('通带波动或阻带衰减必须大于0');endep=sqrt(10^(Dt/10)-1);A=10^(Ar/20);OmegaC=Omegap;OmegaR=Omegar/Omegap;g=sqrt(A*A-1)/ep;N=ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));fprintf('\n***切比雪夫I型模拟低通滤波器阶数=%2.0f\n',N);[b,a]=u_chblap(N,Dt,OmegaC);设计非归一化切比雪夫I型模拟低通滤波器原型程序:function [b,a]=u_chblap(N,Dt,OmegaC)[z,p,k]=cheb1ap(N,Dt);a=real(poly(p));aNn=a(N+1);p=p*OmegaC;a=real(poly(p));aNu=a(N+1);k=k*aNu/aNn;b0=k;B=real(poly(z));b=k*B;直接形式转换成级联形式子程序:function [C,B,A]=sdir2cas(b,a)Na=length(a)-1;Nb=length(b)-1;b0=b(1);b=b/b0;a0=a(1);a=a/a0;C=b0/a0;p=cplxpair(roots(a));K=floor(Na/2);if K*2==NaA=zeros(K,3);for n=1:2:NaArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);elseif Na==1A=[0 real(poly(p))];elseA=zeros(K+1,3);for n=1:2:2*KArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);endA(K+1,:)=[0 real(poly(p(Na)))];endz=cplxpair(roots(b));K=floor(Nb/2);if Nb==0B=[0 0 poly(z)];elseif K*2==NbB=zeros(K,3);for n=1:2:NbBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endelseif Nb==1B=[0 real(poly(z))];elseB=zeros(K+1,3);for n=1:2:2*KBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endB(K+1,:)=[0 real(poly(z(Nb)))];End计算系统函数的幅度响应和相位响应子程序:function [db,mag,pha,w]=freqs_m(b,a,wmax)w1=0:500;w=w1*wmax/500;h=freqs(b,a,w);mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);脉冲响应不变法程序:function [b,a]=imp_invr(c,d,T)[R,p,k]=residue(c,d);p=exp(p*T);[b,a]=residuez(R,p,k);b=real(b).*T;数字滤波器响应子程序:function [db,mag,pha,grd,w]=freqz_m(b,a);[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(b,a,w);直接转换成并联型子程序:function [C,B,A]=dir2par(b,a)M=length(b);N=length(a);[r1,p1,C]=residuez(b,a);p=cplxpair(p1,10000000*eps);x=cplxcomp(p1,p);r=r1(x);K=floor(N/2);B=zeros(K,2);A=zeros(K,3);if K*2==Nfor i=1:2:N-2br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br');A((fix(i+1)/2),:)real(ar');end[br,ar]=residuez(r(N-1),p(N-1),[]);B(K,:)=[real(br') 0];A(K,:)=[real(ar') 0];elsefor i=1:2:N-1br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br);A((fix(i+1)/2),:)real(ar);endEnd比较两个含同样标量元素但(可能)有不同下标的复数对及其相位留数向量子程序:function I=cplxcomp(p1,p2)I=[];for i=1:length(p2)for j=1:length(p1)if(abs(p1(j)-p2(i))<0.0001)I=[I,j];endendendI=I';双线性变换巴特沃斯低通滤波器设计:巴特沃思模拟滤波器的设计子程序:function [b,a]=afd_butt(wp,ws,Rp,rs)if wp<=0error('通带边缘必须大于0');endif ws<=wperror('阻带边缘必须大于通带边缘');endif(Rp<=0)|(Rs<0)error('通带波动或阻带衰减必须大于0');endN=ceil((log10((10^(Rp/10)-1)/(10^(Rs/10)-1)))/(2*log10(wp/ws))); fprintf('\n***Butterworth Filter Order=%2.0f\n',N);OmegaC=wp/((10^(Rp/10)-1)^(1/(2*N)));[b,a]=u_buttap(N,OmegaC)设计非归一化巴特沃思模拟低通滤波器原型子程序:function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));直接型到级联型形式的转换:function [b0,B,A]=dir2cas(b,a)b0=b(1);b=b/b0;a0=a(1);a=a/a0;b0=b0/a0;M=length(b);N=length(a);if N>Mb=[b,zeros(1,N-M)];a=[a,zeros(1,M-N)];elseNM=0;endk=floor(N/2);B=zeros(k,3);A=zeros(k,3);if k*2==Nb=[b,0];a=[a,0];endbroots=cplxpair(roots(b));aroots=cplxpair(roots(a));for i=1:2:2*kbr=broots(i:1:i+1,:);br=real(polt(br));B((fix(i+1)/2),:)=br;ar=aroots(i:1:i+1,:);ar=real(polt(ar));A((fix(i+1)/2),:)=ar;Endfunction [db,mag,pha,grd,w]=freqz_m(b,a)[h,w]=freqz(b,a,1000,'whole');h=(h(1:501))';w=(w(1:501))';mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);grd=grdelay(b,a,w);设计一个巴特沃思高通滤波器,要求通带截止频率为0.6pi,通带内衰减不大于1dB,阻带·起始频率为0.4pi,阻带内衰减不小于15dB,T=1:>> wp=0.6*pi;ws=0.4*pi;>> Rp=1;Rs=15;T=1;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs) 计算巴特沃思滤波器阶数和截止频率N =4wn =>> [b,a]=butter(N,wn,'high'); 频率变换法计算巴特沃思高通滤波器>> [C,B,A]=dir2cas(b,a)C =0.0751B =1.0000 -2.0000 1.00001.0000 -2.0000 1.0000A =1.0000 0.1562 0.44881.0000 0.1124 0.0425>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi,db);椭圆带通滤波器的设计--ellip函数的应用:>> ws=[0.3*pi 0.75*pi]; 数字阻带边缘频率>> wp=[0.4*pi 0.6*pi]; 数字通带边缘频率>> Rp=1;Rs=40;>> Ripple=10^(-Rp/20); 通带波动>> Attn=10^(-Rs/20); 阻带衰减>> [N,wn]=ellipord(wp/pi,ws/pi,Rp,Rs) 计算椭圆滤波器参数N =4wn =0.4000 0.6000>> [b,a]=ellip(N,Rp,Rs,wn); 数字椭圆滤波器的设计>> [b0,B,A]=dir2cas(b,a) 级联形式实现b0 =0.0197B =1.0000 1.5066 1.00001.0000 0.9268 1.00001.0000 -0.9268 1.00001.0000 -1.5066 1.0000A =1.0000 0.5963 0.93991.0000 0.2774 0.79291.0000 -0.2774 0.79291.0000 -0.5963 0.9399>> figure(1);>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,2,1);plot(w/pi,mag);>> grid on;>> subplot(2,2,3);plot(w/pi,db);grid on;>> subplot(2,2,2);plot(w/pi,pha/pi);grid on;>> subplot(2,2,4);plot(w/pi,grd);设计一个巴特沃思带阻滤波器,要求通带上下截止频率为0.8pi、0.2pi,通带内衰减不大于1dB,阻带上起始频率为0.7pi、0.4pi,阻带内衰减不小于30dB:>> wp=[0.2*pi 0.8*pi];>> ws=[0.4*pi 0.7*pi];>> Rp=1;Rs=30;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs);>> [b,a]=butter(N,wn,'stop');>> [C,B,A]=dir2cas(b,a)C =0.0394B =1.0000 0.3559 0.99941.0000 0.3547 1.00401.0000 0.3522 0.99541.0000 0.3499 1.00461.0000 0.3475 0.99601.0000 0.3463 1.0006A =1.0000 1.3568 0.79281.0000 1.0330 0.46331.0000 0.6180 0.17751.0000 -0.2493 0.11131.0000 -0.6617 0.37551.0000 -0.9782 0.7446>> [db,mag,pha,grd,w]=freqz_m(b,a); >> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi);数字低通---数字带阻:function [bz,az]=zmapping(bZ,aZ,Nz,Dz) bzord=(length(bZ)-1)*(length(Nz)-1); azord=(length(aZ)-1)*(length(Dz)-1);bz=zeros(1,bzord+1);for k=0:bzordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:bzord-k-1pld=conv(pld,Dz);endbz=bz+bZ(k+1)*conv(pln,pld); endfor k=0:azordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:azord-k-1pld=conv(pld,Dz);endaz=az+aZ(k+1)*conv(pln,pld); endall=az(1);az=az/az1;bz=bz/az1;线性相位FIR滤波器的幅度特性:function pzkplot(num,den)hold on;axis('square');x=-1:0.01:1;y=(1-x.^2).^0.5;y1=-(1-x.^2).^0.5;plot(x,y,'b',x,y1,'b');num1=length(num);den1=length(den);if(num1>1)z=roots(num);elsez=0;endif(den1>1)p=roots(den);elsep=0;endif(num>1&den1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max_z=max(r_max_z,i_max_z);r_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max_p=max(r_max_p,i_max_p);a_max=max(a_max_z,a_max_p);elseif (num1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max=max(r_max_z,i_max_z);elser_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max=max(r_max_p,i_max_p);endaxis([-a_max a_max -a_max a_max]);plot([-a_max a_max],[0 0],'b');plot([0 0],[-a_max a_max],'b');plot([-a_max a_max],[a_max a_max],'b');plot([a_max a_max],[-a_max a_max],'b');Lz=length(z);for i=1:Lz;plot(real(z(i)),imag(z(i)),'bo');endLp=length(p);for j=1:Lpplot(real(p(j)),imag(p(j)),'bx');endtitle('The zeros-pole plot');xlabel('虚部');ylabel('实部');function [Hr,w,a,L]=Hr_Type1(h)M=length(h);L=(M-1)/2;a=[h(L+1) 2*h(L:-1:1)];n=[0:1:L];w=[0:1:500]'*pi/500;Hr=cos(w*n)*a';设计I型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,a,L]=Hr_Type1(h);>> amax=max(a)+1;>> amin=min(a)-1;>> subplot(2,2,1);stem(n,h);>> axis([-1 2*L+1 amin amax]);text(2*L+1.5,amin,'n'); >> xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(0:L,a);>> axis([-1 2*L+1 amin amax]);>> xlabel('n');ylabel('a(n)');title('a(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);>> grid on;text(1.05,-20,'频率pi');>> xlabel('频率');ylabel('Hr');title('I 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);>> title('零极点分布');function [hr,w,b,L]=Hr_Type2(h)M=length(h);L=M/2;b=2*h(L:-1:1);n=[1:1:L];n=n-0.5;w=[0:1:500]'*pi/500;hr=cos(w*n)*b';II型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,b,L]=Hr_Type2(h);Warning: Integer operands are required for colon operator when used as index. > In Hr_Type2 at 2>> bmax=max(b)+1;bmin=min(b)-1;>> subplot(2,2,1);stem(n,h);axis([-1 2*L+1 bmin bmax]);text(2*L+1.5,bmin,'n');xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(1:L,b);axis([-1 2*L+1 bmin bmax]);xlabel('n');ylabel('b(n)');title('b(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);grid on;text(1.05,-20,'频率pi');xlabel('频率');ylabel('Hr');title('II 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);title('零极点分布');function [hr,w,c,L]=Hr_Type3(h)M=length(h);L=(M-1)/2;b=2*h(L+1:-1:1);n=[1:1:L];w=[0:1:500]'*pi/500;hr=cos(w*n)*c';用MA TLAB编程绘制各种窗函数的形状。
利用MATLAB实现数字低通滤波器的设计
西南石油大学实验报告一实验目的:1学习用Matlab直接设计模拟滤波器和数字滤波器。
2学习用冲激响应不变法和双线性变换法的Matlab的实现。
二实验内容:设计满足下列指标的数字低通滤波器:Wp=0.2*pi, Rp=1db Ws=0.5*pi Rs=20db Fs=1khz1.利用B、C1型设计出模拟低通滤波器,采用冲激响应不变法、双线性发转换成数字低通滤波器。
2.直接设计出B、C1型数字低通滤波器。
三实验步骤:程序1Wp=2*pi*0.1*1000;Ws=2*pi*0.25*1000;Rp=1;Rs=20;[N,Wn]=buttord(Wp,Ws,Rp,Rs,'s');[z,p,k]=buttap(N);[B,A]=butter(N,Wn,'s');freq1=linspace(0,Wp,5);freq2=linspace(Wp,Ws,15);freq3=linspace(Ws,10*pi*2,25);h1=20*log10(abs(freqs(B,A,freq1)));h2=20*log10(abs(freqs(B,A,freq2)));h3=20*log10(abs(freqs(B,A,freq3)));plot([freq1 freq2 freq3]/(2*pi),[h1,h2,h3]);grid;Xlabel('Frequency in Hz');Ylabel('gain in DB');图一程序2wp=0.2*pi;ws=0.5*pi;rp=1;rs=20;fs=1000;omegap=wp*fs;omegas=ws*fs;[N,Wn]=buttord(omegap,omegas,rp,rs,'s');[B A]=butter(N,Wn,'s');[b,a]=impinvar(B,A,fs);[h,w]=freqz(b,a,256);h=20*log10(abs(h));plot(w/pi,h);图二程序3wp=0.2*pi;ws=0.5*pi;rp=1;rs=20;fs=1000;omegap=2*fs*tan(wp/2);omegas=2*fs*tan(ws/2);[N,Wn]=cheb1ord(omegap,omegas,rp,rs,'s');[B A]=cheby1(N,rp,Wn,'s');[b,a]=bilinear(B,A,fs);[h,w]=freqz(b,a,256);h=20*log10(abs(h));plot(w/pi,h);图三程序4wp=0.2*pi;ws=0.5*pi;rp=1;rs=20;[N,Wn]=buttord(wp/pi,ws/pi,rp,rs);[B A]=butter(N,Wn);[h,w]=freqz(B,A,256);h=20*log10(abs(h));plot(w/pi,h);图四程序5Wp=0.2*pi;Ws=0.5*pi;Rp=1;Rs=20;T=0.001;Fs=1000;omegap=(2/T)*tan(Wp/2);omegas=(2/T)*tan(Ws/2);[N,Wn]=cheb1ord(omegap,omegas,Rp,Rs,'s'); [B,A]=cheby1(N,Rp,Wn,'s');[b,a]=bilinear(B,A,Fs);[h,w]=freqz(b,a,256);h1=20*log10(abs(h));plot(w/pi,h1);grid;xlabel('Digital Frequency in pi units'); ylabel('Gain in DB');axis([0 1 -50 10]);图五Wp=0.2;Ws=0.5;Rp=1;Rs=20;disp('ÇбÈÑ©·òIÐÍ')[N,Wn]=cheb1ord(Wp,Ws,Rp,Rs)[B,A]=cheby1(N,Rp,Wn);disp('ÇбÈÑ©·òÐÍ·Ö×Ó¶àÏîʽ');fprintf('%.4e\n',B);disp('ÇбÈÑ©·ò·Öĸ¶àÏîʽ');fprintf('%.4e\n',A);w=linspace(0,0.8*pi,50);h1=20*log10(abs(freqz(B,A,w)));plot(w/pi,h1);grid;xlabel('Normalized frequency');ylabel('Gain in DB ');axis([0 0.8 -50 1]);图六四、实验小结通过本次实验,对MA TLAB软件有了进一步的了解,也在不断的实践中,更多的熟悉了MATLAB的编程,在编程方面一点点的有了进步。
matlab fi用法
matlab fi用法一、引言MATLAB是一款广泛应用于工程和科学领域的数学软件,其功能强大,操作便捷。
FI(Filter Instance)是MATLAB中的一个重要概念,主要用于实现数字滤波器的设计。
本文将详细介绍MATLAB中FI 的用法,帮助读者更好地理解和应用数字滤波器。
二、FI的基本概念FI是MATLAB中实现数字滤波器的一种基本方式,它包含了滤波器的类型、参数以及输入输出数据等重要信息。
通过FI,我们可以灵活地设计、测试和优化数字滤波器,以满足各种实际应用的需求。
三、FI的创建和编辑创建和编辑FI的过程相对简单。
首先,我们需要选择适当的滤波器类型和参数,然后使用MATLAB中的相关函数创建FI对象。
一旦创建了FI对象,我们就可以对其进行编辑,包括修改滤波器的参数、添加或删除输入输出数据等。
四、FI的应用示例下面是一个简单的应用示例,展示了如何使用FI实现一个低通滤波器。
首先,我们需要创建一个FI对象,指定滤波器的类型、参数等。
然后,我们可以使用该FI对象对输入数据进行滤波处理,得到处理后的输出数据。
五、FI的常见问题及解决方法在使用FI的过程中,可能会遇到一些常见问题,如滤波器设计不正确、输入输出数据不匹配等。
针对这些问题,我们将提供相应的解决方法,帮助读者更好地解决实际问题。
六、结论本文详细介绍了MATLAB中FI的用法,包括基本概念、创建和编辑、应用示例以及常见问题解决方法等。
通过本文的介绍,读者可以更好地理解和应用数字滤波器,提高在工程和科学领域的应用能力。
希望本文能对广大读者有所帮助,并在实际应用中取得更好的效果。
七、参考资料为了更好地理解和应用本文内容,读者可以参考以下参考资料:1. MATLAB官方文档2. 数字信号处理相关书籍和文献3. 相关的学术论文和报告通过阅读这些参考资料,读者可以更全面地了解数字滤波器的相关知识,进一步加深对MATLAB中FI用法的认识和理解。
matlab中关于数字滤波器的函数介绍
matlab中关于数字滤波器的函数介绍MATLAB下的数字信号处理实现示例一信号、系统和系统响应1、理想采样信号序列(1)首先产生信号x(n),0<=n<=50n=0:50; %定义序列的长度是50A=444.128; %设置信号有关的参数a=50*sqrt(2.0)*pi;T=0.001; %采样率w0=50*sqrt(2.0)*pi;x=A*exp(-a*n*T).*sin(w0*n*T); %pi是MATLAB定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形subplot(3,1,1);stem(x); %绘制x(n)的图形title(‘理想采样信号序列’);(2)绘制信号x(n)的幅度谱和相位谱k=-25:25;W=(pi/12.5)*k;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(m agX);title(‘理想采样信号序列的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘理想采样信号序列的相位谱’)(3)改变参数为:1,0734.2,4.0,10==Ω==TAαn=0:50; %定义序列的长度是50A=1; %设置信号有关的参数a=0.4;T=1; %采样率w0=2.0734;x=A*exp(-a*n*T).*sin(w0*n*T); %pi是MATLAB定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形subplot(3,1,1);stem(x); %绘制x(n)的图形title(‘理想采样信号序列’);k=-25:25;W=(pi/12.5)*k;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘理想采样信号序列的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘理想采样信号序列的相位谱’)2、单位脉冲序列在MatLab中,这一函数可以用zeros函数实现:n=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB中数组下标从1开始x(1)=1;close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(ang X) ; title (‘单位冲击信号的相位谱’)3、矩形序列n=1:50x=sign(sign(10-n)+1);close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/25)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱su bplot(3,1,3);stem(angX) ; title (‘单位冲击信号的相位谱’)4、特定冲击串:)3()2(5.2)1(5.2)()(?+?+?+=nnnnnxδδδδn=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB中数组下标从1开始x(1)=1;x(2)=2.5;x(3)=2.5;x(4)=1;close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘单位冲击信号的相位谱’)5、卷积计算:Σ+∞?∞=?=?=mmnhmxnhnxny)()()()()(在MATLAB中。
(完整word版)用MATLAB设计滤波器
用MATLAB 设计滤波器1 IIR 滤波器的设计freqz功能:数字滤波器的频率响应。
格式:[h ,w ]=freqz (b ,a,n )[h ,f]=freqz(b ,a ,n ,Fs)[h ,w ]=freqz(b ,a,n ,’whole')[h ,f ]=freqz(b,a ,n ,'whole ’,Fs )h=freqz (b ,a ,w)h=freqz (b,a ,f ,Fs)freqz(b ,a)说明:freqz 用于计算由矢量"和b 构成的数字滤波器H (z)=A(z)B(z)= n-1--n -1 l)z a(n ....a(2)z l l)z b(n .... b(2)z b(l)++++++++ 的复频响应H (j ω).[h ,w]=freqz (b,a ,n )可得到数字滤波器的n 点的幅频响应,这n 个点均匀地分布在上半单位圆(即0~π),并将这n 点频率记录在w 中,相应的频率响应记录在h 中。
至于n值的选择没有太多的限制,只要n 〉0的整数,但最好能选取2的幂次方,这样就可采用FFT 算法进行快速计算。
如果缺省,则n=512。
[h ,f ]二freqz(b,a,n ,Fs)允许指定采样终止频率Fs (以Hz 为单位),也即在0~Fs/2频率范围内选取n 个频率点(记录在f 中),并计算相应的频率响应h 。
[h,w]=freqz(b,a,n,’whole’)表示在0~2π之间均匀选取n个点计算频率响应.[h,f]=freqz(b,a,n,'whole',Fs)则在O~Fs之间均匀选取n个点计算频率响应.h=freqz(b,a,w)计算在矢量w中指定的频率处的频率响应,但必须注意,指定的频率必须介于0和2π之间.h=freqz(b,a,f,Fs)计算在矢量f中指定的频率处的频率响应,但指定频率必须介于0和Fs之间。
butter功能:Butterworth(比特沃思)模拟和数字滤波器设计。
MATLAB数字滤波器的设计
MATLAB数字滤波器的设计一、数字滤波器设计数字滤波器就是由数字乘法器、加法器和延时单位组成的一种装置。
它的作用是对输入离散信号的数字代码进行运算处理,从而达到改变信号频谱的目的。
数字滤波器可以用计算机软件实现或者大规模集成数字硬件实时实现。
在数字滤波器处理模拟信号的时候,先要对输入的模拟信号进行限带、抽样和模数转换。
数字滤波器输入信号的抽样率要大于信号带宽的两倍,它的频率响应还要具有以抽样频率为间隔的周期重复特性,并且它还要以1/2抽样频率点呈镜像对称。
数字滤波器具有高精度、高可靠性、可控制改变特性、便于集成等优点。
现在数字滤波器的使用范围比较广,例如,在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域。
数字滤波器有低通、高通、带通、带阻和全通等类型。
函数butter可用于设计Butterworth滤波器,butter函数可以设计低通、高通、带通和带阻的数字和模拟滤波器,用butter函数设计的滤波器通带内的幅度响应最大限度的平滑,但损失了截止频率处的下降斜度。
函数chebyl可用于设计Chebyshev I型滤波器,chebyl函数可以设计低通、高通、带通和带阻的数字和模拟Chebyshev I型滤波器,用chebyl函数设计的Chebyshev I型滤波器的通带内为等波纹,它的阻带内为单调。
Chebyshev I型滤波器的下降斜度比Chebyshev II型的要大,但是Chebyshev II的代价是通带内波纹比较大。
除了典型设计以外,MATLAB信号处理工具箱提供了几个直接设计IIR数字滤波器的函数,直接调用就可以设计滤波器,这为设计通用滤波器提供了方便。
在MATLAB中设计IIR滤波器时要设计出巴特沃斯滤波器可以使用Butterworth函数,要设计契比雪夫I型滤波器时可以使用Cheby1函数,设计契比雪夫II型滤波器要使用Cheby2,而椭圆滤波器则需要ellipord函数。
如何在Matlab中实现数字滤波器设计
如何在Matlab中实现数字滤波器设计数字滤波器是一种用于信号处理和数据处理的重要工具,可以帮助我们去除噪声、增强信号等。
在Matlab这个强大的软件平台上,实现数字滤波器设计变得相对简单。
本文将从数字滤波器的原理入手,介绍如何在Matlab中使用不同的设计方法来实现数字滤波器设计。
第一部分:数字滤波器的基本原理数字滤波器是对离散时间信号进行滤波处理的一种系统,其基本原理是通过去除频率响应中不需要的频率分量来实现滤波效果。
数字滤波器可以分为两种类型:有限长冲激响应(FIR)滤波器和无限长冲激响应(IIR)滤波器。
FIR滤波器是一种以线性时不变(LTI)系统为基础的滤波器,其特点是相对稳定,不会产生极点,因此设计相对简单。
而IIR滤波器由于其非线性特性,可以实现更复杂的频率响应,但相应的设计也更加复杂。
第二部分:数字滤波器设计方法2.1 频率采样法频率采样法是一种常用的数字滤波器设计方法,它通过在模拟频域上选择一组点,然后将这些点映射到数字频域上,从而实现频率响应的采样。
在Matlab中可以使用freqz函数来实现频率采样法设计数字滤波器。
2.2 窗函数法窗函数法是一种简单有效的数字滤波器设计方法,它通过将理想滤波器的频率响应与窗函数相乘,来实现数字滤波器的设计。
常用的窗函数包括矩形窗、汉宁窗、汉明窗等。
在Matlab中可以使用fir1函数来实现窗函数法设计FIR滤波器。
2.3 最小均方误差法最小均方误差法是一种优化方法,通过最小化滤波器的输出与期望输出之间的均方误差来设计数字滤波器。
在Matlab中可以使用firls函数来实现最小均方误差法设计FIR滤波器。
2.4 IRLS法IRLS法是一种通过迭代重新加权最小二乘法来设计数字滤波器的方法。
在Matlab中可以使用firls函数来实现IRLS法设计FIR滤波器。
第三部分:示例演示接下来,我们将通过一个具体的示例来演示如何使用Matlab来实现数字滤波器设计。
基于MATLAB的数字滤波器设计!!!
一、 实验目地(1)掌握双线性变换法及脉冲相应不变法设计IIR 数字滤波器地具体设计方法; (2) 熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器地计算机编程.二、 实验原理在MA TLAB 中,可以用下列函数辅助设计IIR 数字滤波器:1)利用buttord 和cheb1ord 可以确定低通原型巴特沃斯和切比雪夫滤波器地阶数和截止频率;2)[num,den]=butter (N,Wn )(巴特沃斯)和[num,den]=cheby1(N,Wn ),[num,den]=cheby2(N,Wn )(切比雪夫1型和2型)可以进行滤波器地设计;3)lp2hp,lp2bp,lp2bs 可以完成低通滤波器到高通、带通、带阻滤波器地转换;4)使用bilinear 可以对模拟滤波器进行双线性变换,求得数字滤波器地传输函数系数;5)利用impinvar 可以完成脉冲响应不变法地模拟滤波器到数字滤波器地转换. 三、 预习要求(1)在MATLAB 中,熟悉函数butter 、cheby1、cheby2地使用,其中:[num,den]=butter (N,Wn )巴特沃斯滤波器设计;[num,den]=cheby1(N,Wn )切比雪夫1型滤波器设计;[num,den]=cheby2(N,Wn )切比雪夫2型滤波器设计.(2)阅读附录中地实例,学习在MA TLAB 中进行数字滤波器地设计;(3)给出IIR 数字滤波器参数和滤波器地冲激响应,绘出它们地幅度和相位频响曲线,讨论它们各自地实现形式和特点.四、 实验内容利用MATLAB 编程,用脉冲响应不变法和双线性变换法设计一个数字带通滤波器,指标要求如下:通带边缘频率:π45.01=ΩP ,π65.02=ΩP ,通带峰值起伏:][1dB p ≤α.阻带边缘频率:π3.01=ΩS ,π8.02=ΩS ,最小阻带衰减: ][40dB S ≥α. 附录:例1 设采样周期T=250μs (采样频率fs =4kHz ),用脉冲响应不变法和双线性变换法设计一个三阶巴特沃兹滤波器,其3dB 边界频率为fc =1kHz.[B,A]=butter(3,2*pi*1000,'s');[num1,den1]=impinvar(B,A,4000);[h1,w]=freqz(num1,den1);[B,A]=butter(3,2/0.00025,'s');[num2,den2]=bilinear(B,A,4000);[h2,w]=freqz(num2,den2);f=w/pi*2000;plot(f,abs(h1),'-.',f,abs(h2),'-');grid;xlabel('频率/Hz ')ylabel('幅值/dB')程序中第一个butter地边界频率2π×1000,为脉冲响应不变法原型低通滤波器地边界频率;第二个butter地边界频率2/T=2/0.00025,为双线性变换法原型低通滤波器地边界频率.图1给出了这两种设计方法所得到地频响,虚线为脉冲响应不变法地结果;实线为双线性变换法地结果.脉冲响应不变法由于混叠效应,使得过渡带和阻带地衰减特性变差,并且不存在传输零点.同时,也看到双线性变换法,在z=-1即Ω=π或f=2000Hz处有一个三阶传输零点,这个三阶零点正是模拟滤波器在ω=∞处地三阶传输零点通过映射形成地.例2 设计一数字高通滤波器,它地通带为400~500Hz,通带内容许有0.5dB地波动,阻带内衰减在小于317Hz地频带内至少为19dB,采样频率为1,000Hz.正确wc=2*1000*tan(2*pi*400/(2*1000));wt=2*1000*tan(2*pi*317/(2*1000));[N,wn]=cheb1ord(wc,wt,0.5,19,'s');[B,A]=cheby1(N,0.5,wn,'high','s');[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/pi*500;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('')ylabel('幅度/dB')例3 设计一巴特沃兹带通滤波器,其3dB边界频率分别为f2=110kHz和f1=90kHz,在阻带f3 = 120kHz处地最小衰减大于10dB,采样频率fs=400kHz.w1=2*400*tan(2*pi*90/(2*400));w2=2*400*tan(2*pi*110/(2*400));wr=2*400*tan(2*pi*120/(2*400));[N,wn]=buttord([w1 w2],[0 wr],3,10,'s');[B,A]=butter(N,wn,'s');[num,den]=bilinear(B,A,400);[h,w]=freqz(num,den);f=w/pi*200;plot(f,20*log10(abs(h)));axis([40,160,-30,10]);grid;xlabel('频率/kHz')ylabel('幅度/dB')例4 一数字滤波器采样频率fs = 1kHz,要求滤除100Hz地干扰,其3dB地边界频率为95Hz 和105Hz,原型归一化低通滤波器为w1=95/500;w2=105/500;[B,A]=butter(1,[w1, w2],'stop');[h,w]=freqz(B,A);f=w/pi*500;plot(f,20*log10(abs(h))); axis([50,150,-30,10]); grid;xlabel('频率/Hz') ylabel('幅度/dB')。
matlab 数据滤波处理
matlab数据滤波处理在MATLAB中,数据滤波可以使用不同的方法和函数来实现。
下面是几种常见的数据滤波处理方法:1.移动平均滤波(Moving Average Filter):移动平均滤波是一种简单的滤波方法,通过计算数据序列中相邻数据点的平均值来平滑数据。
可以使用smoothdata函数实现移动平均滤波。
示例:创建示例数据data=randn(1,100);100个随机数应用移动平均滤波smoothed_data=smoothdata(data,'movmean',5);使用移动窗口大小为5的移动平均2.中值滤波(Median Filter):中值滤波是一种非线性滤波方法,将每个数据点替换为相邻数据点的中值。
可以使用medfilt1函数进行中值滤波处理。
示例:创建示例数据data=randn(1,100);100个随机数应用中值滤波smoothed_data=medfilt1(data,5);使用窗口大小为5的中值滤波3.低通滤波器(Low-pass Filter):低通滤波器可以滤除高频噪声,保留信号的低频成分。
MATLAB中可以使用filter函数设计和应用数字低通滤波器。
示例:创建示例数据data=randn(1,100);100个随机数设计低通滤波器fc=0.1;截止频率fs=1;采样频率[b,a]=butter(5,fc/(fs/2));设计5阶巴特沃斯低通滤波器应用低通滤波器smoothed_data=filter(b,a,data);以上示例中的滤波方法和参数可以根据数据的特性和需求进行调整。
使用不同的滤波方法可能需要更多的参数调整和信号处理知识。
根据具体情况,可以选择合适的滤波方法来平滑或处理数据。
matlab滤波器设计命令
matlab滤波器设计命令Matlab滤波器设计命令滤波器是数字信号处理中常用的工具,用于去除信号中的噪声、频率干扰或其他不需要的成分。
Matlab提供了一系列有用的滤波器设计命令,使用户能够轻松设计并应用各种类型的滤波器。
在本文中,我们将详细介绍Matlab中常用的滤波器设计命令,包括滤波器设计函数、滤波器类型和设计过程。
I. Matlab中常用的滤波器设计函数在Matlab中,有几种函数可用于设计滤波器,其中最常用的函数是`designfilt`函数和`fir1`函数。
1. designfilt函数`designfilt`函数是Matlab中最灵活和功能强大的滤波器设计函数之一,可用于设计各种类型的IIR和FIR滤波器。
它的基本语法如下:`filt = designfilt(FilterType, 'PropertyName', PropertyValue, ...)`其中,`FilterType`代表滤波器类型,包括低通滤波器(Lowpass)、高通滤波器(Highpass)、带通滤波器(Bandpass)、带阻滤波器(Bandstop)等。
`PropertyName`和`PropertyValue`是可选的参数,用于设置滤波器的各种属性,如阶数(Order)、截止频率(CutoffFrequency)、通带和阻带的最大衰减(MaximumAttenuation)等。
下面是一个使用`designfilt`函数设计低通滤波器的例子:Fs = 1000; 采样频率Fpass = 20; 通带截止频率Fstop = 30; 阻带截止频率designfilt('lowpassiir', 'FilterOrder', 4, 'PassbandFrequency', Fpass, 'StopbandFrequency', Fstop, 'SampleRate', Fs)该命令将设计一个4阶的低通IIR滤波器,其通带截止频率为20Hz,阻带截止频率为30Hz,采样频率为1000Hz。
实验5 基于Matlab的数字滤波器设计
实验五 基于Matlab 的数字滤波器设计实验目的:加深对数字滤波器的常用指标和设计过程的理解。
实验原理:低通滤波器的常用指标如下所述,其典型规格如下:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤≤+≤≤-πδδδw w e G w w e G s s jw p p jw p ,)(,1)(1 通带边缘频率:p ϖ阻带边缘频率:s ϖ 通带起伏:p δ 通带峰值起伏:))(1(log 2010dB p p δα--=阻带起伏: s δ 最小阻带衰减:))((log 2010dB s s δα-=数字滤波器有IIR 和FIR 两种类型,他们的特点和设计方法不同。
一、窗函数法设FIR 滤波器在Matlab 中产生窗函数十分简单:(1) 矩形窗调用格式:w=boxcar(n) ,根据长度n 产生一个矩形窗w 。
(2) 三角窗调用格式:w=triang(n) ,根据长度n 产生一个三角窗w 。
(3)汉宁窗调用格式:w=hanning(n) ,根据长度n 产生一个汉宁窗w 。
(4)汉明窗调用格式:w=hamming(n) ,根据长度n 产生一个汉明窗w 。
(5)布莱克曼窗调用格式:w=Blackman(n) ,根据长度n 产生一个布莱克曼窗w 。
基于窗函数的FIR 滤波器设计利用Matlab 提供的函数firl 来实现。
调用格式:firl(n,wn,’ftype ’,Window),n 为阶数,wn 是截止频率(如果输入是形如[w1 w2]的矢量时,本函数将设计带通滤波器,其通带为w1<w<w2)、ftype 是滤波器的类型(底通——省略该参数、高通——ftype=high 、带阻——ftype=stop )、Window 是窗函数。
1、设计一个长度为8的线性相位FIR 滤波器。
Window=boxcar(8); b=fir1(7,0.4,Window); freqz(b,1); Window=blackman(80;b=fir1(7,0.4,Window); freqz(b,1);2、设计线性相位带通滤波器,其长度N=15,上下边带截止频率分别为w1=0.3π,w2=0.5π Window=blackman(16); B=firl(15,[0.3 0.5],Window); Freqz(b,1);3、设计指标为,dB A dB R s a p p 50,3.0,25.0,2.0====πϖπϖ的底通滤波器。
基于matlab的数字滤波器设计及仿真
滤波器的指标
■ 滤波器的指标常在频域给出 ■ 数字滤波器的频率响应特性曲线:
H(ejw)= |H(ejw)|ej (w) |H(ejw)|为幅频特性函数,表示信号通过该 滤波器后各频率的衰减情况。
(w)为相频特性函数,表示信号通过滤波器 后在时间上的延时情况。
二、MATLAB环境下IIR数字滤波器的设计
四、两个有趣的实验
1、利用MATLAB进行声音滤波: 利用MATLAB读取wav格式的声音文件,对
信号进行离散傅里叶变换,得到其频谱图,给 信号加杂音,然后设计一个数字滤波器将杂音 滤除,得到原音,最后比较滤波器的滤波效果。
语音读取和加噪
■ clear;close all; ■ [Y,Fs,NBITS]=WAVREAD("WindowsXP.wav"); ■ n=length(Y); ■ f=0:Fs/n:Fs*(n-1)/n; ■ K=0:1/(n-1):1; ■ subplot(2,3,1);plot(K,Y);title("语音信号的时域波形"); ■ Y1=fft(Y,n); ■ subplot(2,3,3);plot(f,abs(Y1));title("语音信号的频谱"); ■ noise=0.02*sin(2*pi*4000*K); ■ subplot(2,3,2);plot(K(1:50),noise(1:50));title("噪声的时域波形"); ■ s=length(noise); ■ noise1=fft(noise,s); ■ subplot(2,3,5);plot(f,abs(noise1));title("噪声的频谱"); ■ A=Y"+noise; ■ subplot(2,3,4);plot(K,A);title("含噪语音的时域波形"); ■ A1=fft(A,s); ■ subplot(2,3,6);plot(f,abs(A1));title("含噪语音的频谱");
实验6数字滤波器的matlab设计
实验6数字滤波器的matlab设计实验6:数字滤波器的matlab设计一、实验目的:1 掌握低通、高通,带通,带阻滤波器的概念2 掌握使用matlab进行进行滤波器的设计二、实验原理数字滤波器是通过一定运算关系,改变输入信号频谱的利用计算机技术实现的软或硬件。
选频数字滤波器设计过程一般可以归纳为以下三个步骤:(1)按照实际需要性能要求确定滤波器技术指标。
(2)用一个因果稳定的系统函数IIR、FIR去逼近这个要求(3)用一个有限精度的运算(软、硬件)去实现这个传递函数实验工具介绍fdatool的介绍fdatool(filter design & analysis tool)是matlab信号处理工具箱里专用的滤波器设计分析工具,matlab6.0以上的版本还专门增加了滤波器设计工具箱(filter design toolbox)。
fdatool可以设计几乎所有的基本的常规滤波器,包括fir和iir的各种设计方法。
它操作简单,方便灵活。
fdatool界面总共分两大部分,一部分是design filter,在界面的下半部,用来设置滤波器的设计参数,另一部分则是特性区,在界面的上半部分,用来显示滤波器的各种特性。
design filter部分主要分为:filter type(滤波器类型)选项,包括lowpass(低通)、highpass(高通)、bandpass (带通)、bandstop(带阻)和特殊的fir滤波器。
design method(设计方法)选项,包括iir滤波器的butterworth(巴特沃思)法、chebyshev type i(切比雪夫i型)法、chebyshev type ii(切比雪夫ii型)法、elliptic(椭圆滤波器)法和fir滤波器的equiripple法、least-squares(最小乘方)法、window (窗函数)法。
filter order(滤波器阶数)选项,定义滤波器的阶数,包括specify order(指定阶数)和minimum order(最小阶数)。
matlab中farrow滤波器源码
在介绍Matlab中Farrow滤波器源码之前,首先需要了解Farrow滤波器的基本概念和原理。
Farrow滤波器是一种数字滤波器,通常用于信号处理和数字通信领域。
它是一种基于多项式插值的滤波器,可以对信号进行高质量的插值和重构。
Farrow滤波器的源码实现可以帮助我们更深入地理解其工作原理和在Matlab中的应用。
1. Farrow滤波器的基本原理Farrow滤波器是一种基于多项式插值的滤波器,它采用插值多项式对离散信号进行插值和重构。
在Farrow滤波器中,插值多项式的系数可以通过泰勒级数展开或其他插值方法来确定,从而实现对信号的高质量插值。
通过调整插值多项式的系数,可以实现不同阶次的插值,从而满足不同的应用需求。
2. Matlab中Farrow滤波器的源码实现在Matlab中,Farrow滤波器的源码实现通常包括对插值多项式系数的计算和滤波器的搭建。
我们需要根据插值多项式的阶次和插值点的位置来计算插值多项式的系数。
我们可以利用这些系数构建Farrow滤波器,并将离散信号输入滤波器进行插值和重构处理。
在实际应用中,我们可以通过调整插值多项式的阶次和系数来实现不同程度的插值和重构效果。
3. 个人观点和理解对于Farrow滤波器的源码实现,我认为需要深入理解其背后的插值原理和滤波算法。
只有深入理解了Farrow滤波器的工作原理,我们才能更好地应用它来处理实际的信号和数据。
Farrow滤波器的源码实现也可以作为学习和研究数字滤波器的一个很好的案例,可以帮助我们加深对数字信号处理和滤波技术的理解。
总结回顾通过本文对Matlab中Farrow滤波器源码的介绍,我们了解了Farrow滤波器的基本原理和在Matlab中的实现方法。
我们深入探讨了插值多项式的计算和滤波器的搭建,以及个人对Farrow滤波器的理解和观点。
希望本文能帮助你更好地理解和应用Farrow滤波器,提高对数字信号处理领域的认识和理解。
在文章中,我多次提及了主题“Matlab中Farrow滤波器源码”,并结合深入的内容和观点进行了阐述。