绝对值化简求值练习题
绝对值计算化简专项练习题有答案
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.绝对值化简求值参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2 =|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x <﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x <时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x ≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x ﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x ﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x 到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x ﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2Welcome !!!欢迎您的下载,资料仅供参考!。
(完整word版)绝对值计算化简专项练习30题(有答案)OK
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值. 8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.﹣2a+c﹣1 2.2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|2=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5017.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=0 19.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+…+1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=23.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。
有理数绝对值化简求值题20道
有理数绝对值化简求值题20道一、基础题型1. 已知a = - 3,求| a|的值。
- 解析:根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
因为a=-3是负数,所以| a|=-a = -(-3)=3。
2. 若b = 5,求| b|的值。
- 解析:由于b = 5是正数,正数的绝对值是它本身,所以| b|=b = 5。
3. 已知c=0,求| c|的值。
- 解析:0的绝对值是0,所以| c| = 0。
二、含有简单运算的题型4. 已知x=-2,求| x + 1|的值。
- 解析:先计算x + 1=-2+1=-1,因为-1是负数,所以| x + 1|=-(x + 1)=-(-1)=1。
5. 若y = 3,求| y-2|的值。
- 解析:先计算y-2 = 3-2 = 1,1是正数,所以| y-2|=y - 2=1。
6. 已知m=-4,求| 2m|的值。
- 解析:先计算2m=2×(-4)=-8,因为-8是负数,所以| 2m|=-2m=-2×(-4)=8。
三、含有多层绝对值的题型7. 已知a=-2,求|| a| - 1|的值。
- 解析:首先| a|=| - 2|=2,然后|| a| - 1|=|2 - 1|=|1| = 1。
8. 若b = 1,求|| b|+2|的值。
- 解析:因为| b|=|1| = 1,所以|| b|+2|=|1 + 2|=|3| = 3。
四、含有字母表达式的题型9. 已知a、b满足a=-b,且b≠0,求| a|+| b|的值。
- 解析:因为a=-b,所以| a|=| - b|=| b|。
则| a|+| b|=| b|+| b| = 2| b|。
10. 若x、y满足x<0,y>0且| x|=| y|,求| x + y|的值。
- 解析:因为x<0,y>0且| x|=| y|,设x=-m,则y = m(m>0)。
那么x + y=-m+m = 0,所以| x + y| = 0。
绝对值计算化简专项练习30题(有答案)
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.绝对值化简求值参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2 =|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x <﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x <时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x ≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x ﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x ﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x 到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x ﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。
绝对值计算化简专项练习30题(有答案)
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣--故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2--。
绝对值计算化简专项练习30题(有答案)OK
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时和xy<0矛盾,舍去;当x取﹣1时,y取2,此时和xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离和x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离和x到2的距离的差和x到3的距离和x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。
绝对值计算化简专项练习30题(有答案)OK
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值. 8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.﹣2a+c﹣1 2.2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,7.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,=2(2+4+6+…+1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=23.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.答案为50 28.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。
绝对值计算化简专项练习题有答案)OK
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b| 2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a ﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7|(2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p?|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.绝对值化简求值参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣1 2.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x <﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x <时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x ≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x ﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122.解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣1 25.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011| =|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x 到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x ﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣| =1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p?|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。
绝对值计算化简专项练习30题(有答案)OK
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=50 16.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=1011030创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*27.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x 到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*。
绝对值计算化简专项练习30题(有答案)OK
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。
绝对值化简例题10道
绝对值化简例题10道1.已知数轴上点A表示的数为-3,点B表示的数为5,求A、B两点间的距离(用绝对值表示并化简)。
2.某股票第一天的收盘价为每股12元,第二天上涨了3元,第三天又下跌了5元,用绝对值表示并化简第二天相对于第一天的价格变化量和第三天相对于第二天的价格变化量。
3.一辆汽车从A地出发向东行驶,速度为每小时50千米,3小时后到达B地,然后又向西行驶了2小时到达C地,A地在原点位置,向东为正方向,求汽车从B地到C地的位移的绝对值并化简。
4.一个物体在数轴上运动,初始位置在-2的位置,先向右移动4个单位长度,再向左移动3个单位长度,求该物体最终位置与初始位置距离的绝对值并化简。
5.小明家本月收入为8000元,支出了6000元,下个月收入为7000元,支出了8000元,用绝对值表示并化简本月和下个月收支差值。
6.测量某物体的长度,第一次测量值为12.5厘米,第二次测量值为12.2厘米,第三次测量值为12.8厘米,用绝对值表示并化简第一次测量值与第二次测量值的差值的绝对值,以及第二次测量值与第三次测量值的差值的绝对值。
7.某球队在一场比赛中,上半场进了3个球,下半场丢了2个球,用绝对值表示并化简上半场进球数与下半场丢球数差值的绝对值。
8.气温第一天是10℃,第二天下降了5℃,第三天又上升了3℃,用绝对值表示并化简第二天相对于第一天气温变化的绝对值和第三天相对于第二天气温变化的绝对值。
9.水库的水位第一天为15米,第二天上涨了2米,第三天下降了3米,用绝对值表示并化简第二天相对于第一天水位变化的绝对值和第三天相对于第二天水位变化的绝对值。
10.数轴上有一点P对应的数为x,已知点P到点A(-1)的距离与点P到点B(3)的距离相等,求x的值(先根据距离公式列出含绝对值的方程,这里只要求列出题目)。
绝对值计算化简专项练习30题(有答案)OK
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值. 8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.﹣2a+c﹣1 2.2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=0此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+…+1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=23.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.答案为5028.解:(1)原式=﹣(3。
绝对值计算化简专项练习30题(有答案)OK(DOC)
绝对值计算化简专项练习1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|. 5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值. 8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值. 12.化简:|3x+1|+|2x﹣1|.12.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.13.计算:|﹣|+|﹣|+|﹣|+…+|﹣|14.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.15.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1| (3)|﹣5|+|﹣10|﹣|﹣9|;16.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.17.(1)已知|a﹣2|+|b+6|=0,则a+b= _________ (2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.18.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值化简求值练习题
一、绝对值化简题 1.若x>0,y<0,求x?y?2?y?x?3的值。
2.若a?2?2?a?0,则a的取值范围是:
A.a≤ B. a<C.a≥D. a>2
3. 有理数a、b在数轴上的表示如图所示,那么
A.-b>a B.-a<b B.C.b>a D.∣a∣>∣b∣ 4.有理数a、b在数轴上的位置如图1-1所示,那么下列式子中成立的是
A.a>bB.a0 D.a?0 b
5. 已知a、b、c在数轴上的位置如下图所示,化简: |a-b|+|-c|-|a-c| ; |a-b|-|b+c|+|a-c| ;
b-2a2b
|-a+b|+|b-c|-|a+c|; -|a+b|+|b-c|-|a-c|.
2b -2a
二、整式化简求值
1.化简:
?
2?7x??2x3x2
5?2
2a21?1?8ab??ab; ?2?2
?8m2??4m?2m2??3m?m2?7??8??
3x2?2xy?4y2?
4?5
3-2
-「2+2b2-3」
1st?3st?6
32328a?a?a?4a?a?7a?6
7xy?xy?4?6x?323xy?5xy?5
2?3
2?3?2[x?]
3x?2xy?4y?
4?5
8m222222222222?[4m2?2m?]
2222?3
2ab?3ab?
322212ab328a?a?a?4a?a?7a?6
8ab?5ab
2?22??2?3ab?4ab?2?42a?3ab?2a? ?2??222?
2. 先化简,再求值:
121232xy??,其中
x??1,y?2.422
3b?[1??2],其中b?
—1,a??2。
11—4,其中x=5.4
x2y?[2xy2?2?xy]?3xy2,其中x??3,y??2。
12x3?4x?x2?,其中x??33
1a2b?5ac??,其中a??1,b?2,c??2。
123232x?4x?x?,其中x??3。
12ab?5ac??,其中a??1,b?2,c??2。
23a1??2,其中a??;
1
412313y)?,其中x?,y??2;232
2x?2几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;
③零的绝对值是零。
?a?当a为正数也可以写成: |a|??0?当a为0? a?当a为负数?
说明:|a|≥0即|a|是一个非负数;
|a|概念中蕴含分类讨论思想。
一、典型例题
例1.已知a、b、c在数轴上位置如图:
则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于
A.-3aB.c-a C.2a-2b D. b
例2.已知:x?0?z,xy?0,且y?z?x,那么x?z?y?z?x?y
的值
A.是正数 B.是负数C.是零D.不能确定符号例3.已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?
例4.方程x?2008?2008?x 的解的个数是
A.1个 B.2个 C.3个 D.无穷多个
例5.已知|ab-2|与|a-1|互为相互数,试求下式的值.
1111 aba?1b?1a?2b?2a?2007b?2007
在上述分数连加求和的过程中,我们采用了裂项的方法,巧妙得出了最终的结果.同学们可以再深入思考,11112?44?66?82008?2010
如果题目变成求值,你有办法求解吗?有兴趣的同学可以在课下继续探究。
例6.观察下列每对数在数轴上的对应点间的距离与?2,3与5,?2与?6,?4与3.
并回答下列各题:
你能发现所得距离与这两个数的差的绝对值有什么关系吗?答: .
若数轴上的点A表示的数为x,点B表示的数为―1,则A与B两点间的距离
可以表示为
结合数轴求得x?2?x?3的最小值为,取得最小值时x 的取值范围为满足x?1?x?4?3的x的取值范围为
5?x?2例7、当xx?3有最小值?这个最小值是多少?当x取何值时,
有最大值?这个最大值是多少?求x?4?x?5的最小值。
求x?7?x?8?x?9的最小值。
绝对值的化简求值
板块一绝对值的基本概念
绝对值的代数意义:
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
⑴下列各组判断中,正确的是
A.若a?b,则一定有a=b
C.若a?b,则一定有a?b
⑵如果a2?b2,则
A.a?b
⑶下列式子中正确的是
A.|a|??a B.|a|??a
⑷对于|m?1|,下列正确的是
A.|m?1|?|m| B.|m?1|?|m| C.|a|??a D.|a|??a B.a?b C.a?b D.a?b B.若a?b,则一定有a>b D.若a?b,则一定有a2? C.|m?1|?|m|?1 D.|m?1|?|m|?1
⑴若|x?2|?x?2?0,求x的取值范围。
⑵a、b是有理数,如果|a?b|?a?b,那么对于结论: ①a一定不是负数;②b可能是负数
A.只有①正确
C.① ,②都正确
板块二绝对值的化简求值
B.只有②正确 D.① ,②都不正确
1已知|x?1|?2,|y|?3且x与y互为相反数,求x2?xy?4y的值。
如果abc?0,代数式abcabbcacabc的最小值是n,则n11的值是|a||b||c||ab||bc||ac||abc|多少。
化简|m|?|m?1|?|m?2|
求y?|x?1|?|x?5|的最大值和最小值。
化简||x?1|?2|?|x?1|。