2018-2019学年最新人教版八年级数学上册《等腰三角形》同步练习及答案-精品试题

合集下载

2018年秋浙教版八年级数学上《2.2等腰三角形》同步练习含答案

2018年秋浙教版八年级数学上《2.2等腰三角形》同步练习含答案
【解】 ∵a2+2ab=c2+2bc,
∴a2+2ab+b2=c2+2bc+b2,
∴(a+b)2=(b+c)2,∴a+b=±(b+c).
∵a>0,b>0,c>0,
∴a+b=b+c,∴a=c.
∴△ABC为等腰三角形.
11.如图,直线l1,l2交于点B,A是直线l1上的点,在直线l2上寻找一点C,使△ABC是等腰三角形,请画出所有的等腰三角形.
(第11题)
【解】 分类讨论:若以AB为腰,B为顶角顶点,可作出点C1,C2;
若以AB为腰,A为顶角顶点,可作出点C3;
若以AB为底边,可作AB的中垂线交l2于点C4.
故共有4个满足题意的等腰三角形.
12.有一个等腰三角形,三边长分别为3x-2,4x-3,6-2x,求这个等腰三角形的周长.
4.已知一等腰三角形的两边长x,y满足方程组则此等腰三角形的周长为__5__.
5.如图,在△ABC中,AB=AC,AD是BC边上的中线,点E,F是AD的三等分点.若△ABC的面积为12 cm2,则图中阴影部分的面积为__6__cm2.
,(第5题)) ,(第6题))
6.如图,AB,AC是等腰三角形ABC的两腰,AD平分∠BAC,则△BCD是等腰三角形吗?试说明理由.
【解】 当等腰三角形的顶角是钝角时,如解图①,此时顶角的度数是90°+20°=110°;
当等腰三角形的顶角是锐角时,如解图②,此时顶角的度数是90°-20°=70°.
(第9题解)
10.已知a,b,c是ABC的三边长,且满足a2+2ab=c2+2bc,试判断这个三角形的形状.
8.如图,在△ABC中,AB=BC=14,D为AB的中点,ED⊥AB,垂足为D,交BC于点E.若△EAC的周长为24,则AC=__10__.

人教版-八年级数学上册《第十三章 等腰三角形》同步练习题及答案

人教版-八年级数学上册《第十三章 等腰三角形》同步练习题及答案

人教版-八年级数学上册《第十三章等腰三角形》同步练习题及答案学校班级姓名学号一、选择题:(本题共8小题,每小题5分,共40分.)1.等腰三角形的一个底角为,则它的顶角为()A.B.C.D.或2.一个等腰三角形两边长分别为20和10,则周长为()A.40 B.50 C.40或50 D.不能确定3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AB=2BD B.AD⊥BC C.AD平分∠BAC D.∠B=∠C4.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°5.如图,已知中,AB=AC,E、D分别为、上的点,连接BD,DE,若AD=DE=BE,∠C=70°,则的度数为()A.50°B.60°C.70°D.80°6.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC 的度数为()A.45°B.60°C.65°D.75°7.如图,点B和点C是对应顶点,记,当时,与之间的数量关系为()A.B.C.D.8.如图,△ABC是边长为2的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC到点Q,使CQ=PA,连接PQ交AC于点D,则DE的长为()A.0.5 B.0.9 C.1 D.1.25二、填空题:(本题共5小题,每小题3分,共15分.)9.在△ABC中,∠C=90°,∠A=30°,AB=16,则BC的长是.10.△ABC中,AB=AC,∠BAC=40°,点D在直线BC上,CD=CA,则∠DAB的度数为.11.如图,在中,∠C=90°,AD=ED,∠CDE=72°,则的大小等于度.12.如图,在等边中,BD=CE,与交于P,,垂足为,PD=2,PQ=6,则的长为.13.如图,在中,点在边上,于点,若的面积为6,则的面积为.三、解答题:(本题共5题,共45分)14.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.15.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AB于E,求EB:EA的值.16.如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.17.如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连接DC,以DC为边,作等边△DCE,点B、E在CD的同侧,CE与BD交于点F,连接BE,按要求将图形补完整;(1)求证:△ADC≌△BDE;(2)求证:BD垂直平分CE.18.如图,在中,AB=AC,D为的中点,于点E,于点F,且DE=DF,连接,点G在的延长线上,且CD=CG.(1)求证:是等边三角形;(2)若,求的长.参考答案:1.C 2.B 3.A 4.C 5.B 6.B 7.B 8.C9.810.75°或15°11.5412.1413.1014.证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA 中,∴△EAB≌△DCA(SAS),∴AD=BE15.解:如图,连接AD∵AB=AC,∠BAC=120°,D为BC的中点∴∠BAD=60°,AD⊥BC∴∠B=90°﹣60°=30°∵DE⊥AB∴∠ADE=90°﹣60°=30°设EA=x在Rt△ADE中,AD=2EA=2x在Rt△ABD中,AB=2AD=4x∴EB=AB﹣EA=4x﹣x=3x∴EB:EA=3x:x=3.16.证明:和是顶角相等的等腰三角形,得出∴AB=AC,AD=AE,∠BAD=∠CAE在和中,.17.(1)解:补充图形如下:∵和都是等边三角形∴,CD=ED,∠ADB=∠CDE∴∴在和中∴(2)解:由(1)得∴在等腰中有∴由已知在等边三角形中有∴为的垂直平分线即垂直平分.18.(1)证明:∵,DF⊥BC∴∵D为的中点∴在与中∴∴∴∵∴∴是等边三角形;(2)解:由(1)知,是等边三角形∴∴∵∴连接,则∴∴∵∴∵∴∴∴CG=2。

八年级上2.3《等腰三角形的性质定理》同步练习题含答案

八年级上2.3《等腰三角形的性质定理》同步练习题含答案

浙教版八年级数学上册第二章特殊三角形2.3《等腰三角形的性质定理》同步练习题一、选择题1.一个等腰三角形的顶角是底角的4倍,则其顶角的度数为()A.20° B.30° C.80° D.120°2.等腰三角形的一个外角为140°,则顶角的度数为()A.40° B.40°或70° C.70° D.40°或100°3.如图,在△ABC中,已知∠B和∠C的平分线交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.若BD+CE=9,则线段DE的长为()A. 9B. 8C. 7D. 6(第3题)(第4题)4.如图,△ABC内有一点D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°5.等腰三角形的“三线合一”指的是()A.中线、高线、角平分线互相重合 B.腰上的中线、腰上的高线、底角的平分线互相重合C.顶角的平分线、中线、高线互相重合D.顶角的平分线,底边上的高线、底边上的中线互相重合(第6题)6.如图是人字形屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,其中A,B,C,D均为焊接点,且AB=AC,D为BC的中点.现在焊接所需的四根钢条已截好,且已标出BC的中点D.如果焊接工身边只有可检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接的点是()A.AC和BC,焊接点C B.AB和AC,焊接点AC.AD和BC,焊接点D D.AB和AD,焊接点A二、填空题7.(1)在△ABC中,AB=AC,AD⊥BC于点D,若∠BAC=80°,则∠DAC=40°;若BC=6 cm,则CD=____cm;(2)在△ABC中,AB=AC,AD平分∠BAC,若BD=2.5 cm,则BC=5c m,∠ADB=;(3)在△ABC中,AB=AC,AD是BC边上的中线,若∠BAD=50°,则∠BAC=__,∠ADC=____.8. 如图,在△ABC中,AB=AC,BC=6,AD⊥BC于点D,则BD=____.9.如图,在△ABC中,AB=AC,E为BC的中点,延长BA至点D.若∠CAE=36°,则∠B=_-_,∠CAD=______.10. 在等腰三角形A BC中,AB=AC,AD是角平分线,有下列结论:①AD⊥BC,②BD=DC,③∠B=∠C,④∠BA D=∠CAD.其中正确的是________ (填序号).三、解答题11.如图,在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点(不与A重合),且OB=OC,试猜想AE与BC的关系,并说明理由.12.如图,在△ABC中,PM,QN分别是AB,AC的垂直平分线,∠BAC=110°,求∠P AQ的度数.(第13题)13.如图,已知等腰△ABC的周长为16 cm,AD是顶角∠BAC的平分线,AB∶AD=5∶4,且△ABD的周长为12 cm.求△ABC各边的长.(第14题)14.如图,已知D是等腰三角形ABC的底边BC上一点,它到两腰AB,AC的距离分别为DE,DF,请指出当D在什么位置时,DE=DF,并加以证明.(第15题)15.如图,已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE且∠DAB=∠EAC,则DE∥BC吗?为什么?(第16题)16.如图,在△ABC 中,∠BCA =90°,∠BAC =30°,分别以AB ,AC 为边做等边△ABE 和△ACD ,连结ED 交AB 于点F .求证:(1)BC =12AB ; (2)EF =FD .参考答案:1.D2.D3.A4.A5.D6.C7.3; 90°;100°, 90° 8. 39. ∠B =54°,∠CAD =108°.10. ①②③④11.【解】 猜想:AE 垂直平分BC ,即AE ⊥BC ,BD =CD.理由如下:∵AB =AC ,OB =OC ,AO =AO ,∴△ABO ≌△ACO(SSS),∴∠BAO =∠CAO.∴AE⊥BC,BD=CD(等腰三角形三线合一).12.【解】∵PM垂直平分AB,∴P A=PB,∴∠P AB=∠B.同理,∠QAC=∠C.∵∠B+∠C+∠BAC=180°,∴∠B+∠C=180°-110°=70°,∴∠P AB+∠QAC=70°.∵∠P AQ=110°-(∠P AB+∠QAC),∴∠P AQ=110°-70°=40°.13.【解】设AB=5x,则AD=4x,AC=5x,BC=16-10x.∵AB=AC,AD平分∠BAC,∴BD=DC=12BC=8-5x,∴5x+4x+(8-5x)=12,解得x=1.∴AB=5x=5,AC=5x=5,BC=16-10x=6.14.【解】当D在BC的中点时,DE=DF.证明:当BD=CD时,∵∠B=∠C,∠DEB=∠DFC=90°,∴△DBE≌△DCF(AAS),∴DE=DF.15.【解】DE∥BC.理由如下:∵AB=AC,AD=AE,∴∠B =∠C ,∠D =∠E.∵∠DAB =∠EAC ,∴∠B +∠DAB =∠C +∠EAC , ∴∠AFG =∠AGF ,∴∠AFG =12(180°-∠EAD ). 又∵∠D =12(180°-∠EAD ), ∴∠AFG =∠D ,16.【解】 (1)过点E 作EG ⊥AB 于点G . ∵△ABE 为等边三角形,∴BG =12AB ,∠BEG =12∠AEB =30°,BA =BE . ∵∠BCA =90°,∠BAC =30°,∴∠BGE =∠BCA =90°,∠BAC =∠BEG . 在△ACB 和△EGB 中,∵⎩⎪⎨⎪⎧∠BGE =∠BCA ,∠BEG =∠BAC ,BE =BA ,∴△ACB ≌△EGB (AAS ),∴BC =BG .∴BC =12AB . (2)∵△ACB ≌△EGB ,∴AC =EG .∵△ACD 为等边三角形,∴∠CAD =60°,AC =AD ,∴EG =DA .∵∠BAC =30°,∴∠DAF =∠CAD +∠BAC =90°. ∴∠EGF =∠DAF .在△EGF 和△DAF 中, ∵⎩⎪⎨⎪⎧∠EFG =∠DF A ,∠EGF =∠DAF ,EG =DA ,∴△EGF ≌△DAF (AAS ), ∴EF =FD .。

人教版八年级数学上册 第11章《三角形》 同步练习及答案(11.1)

人教版八年级数学上册 第11章《三角形》 同步练习及答案(11.1)

第11章《三角形》同步练习(§11.1 与三角形有关的线段A)班级学号姓名得分1、填空题:(1)由____________三条线段______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______,相邻两边所组成的角叫做______,简称______.(2)如图所示,顶点是A、B、C的三角形,记作______,读作______.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用______表示;顶点C 所对的边______还可用______表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质______________________________.由它还可推出:三角形两边的差____________.(4)对于△ABC,若a≥b,则a+b______c同时a-b______c;又可写成______<c<______.(5)若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是____________,其中x可以取的整数值为____________.2.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.3.选择题:(1)下列各组线段能组成一个三角形的是( ).(A)3cm,3cm,6cm (B)2cm,3cm,6cm(C)5cm,8cm,12cm (D)4cm,7cm,11cm(2)现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取( ).(A)0.85m长的木条(B)0.15m长的木条(C)1m长的木条(D)0.5m长的木条(3)从长度分别为10cm、20cm、30cm、40cm的四根木条中,任取三根可组成三角形的个数是( ).(A)1个(B)2个(C)3个(D)4个(4)若三角形的两边长分别为3和5,则其周长l的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<164.(1)一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长.(2)已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.(3)一个等腰三角形的周长为30cm,一边长为6cm,求其它两边的长.(4)有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.5.(1)若三角形三条边的长分别是7,10,x,求x的范围.(2)若三边分别为2,x-1,3,求x的范围.(3)若三角形两边长为7和10,求最长边x的范围.(4)等腰三角形腰长为2,求周长l的范围.(5)等腰三角形的腰长是整数,周长是10,求它的各边长.6.已知:如图,△ABC中,AB=AC,D是AB边上一点.(1)通过度量AB 、CD 、DB 的长度,确定AB 与)(21DB CD 的大小关系.(2)试用你所学的知识来说明这个不等关系是成立的.7.已知:如图,P 是△ABC 内一点.请想一个办法说明AB +AC >PB +PC .8.如图,D 、E 是△ABC 内的两点,求证:AB +AC >BD +DE +EC .第11章《三角形》同步练习(§11.1 与三角形有关的线段B )班级 学号 姓名 得分1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC(3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________. 如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______.2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A为锐角) (∠A为直角) (∠A为钝角)(2)这三条高AD、BE、CF所在的直线有怎样的位置关系?4.(1)分别画出△ABC的三条中线AD、BE、CF.(2)这三条中线AD、BE、CF有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?6.已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.7.(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做________________________.(2)四边形是否具有这种性质?8.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形.(2)已知一个任意三角形,将其剖分成4个等积的三角形.9.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.参考答案(§11.1 与三角形有关的线段A )1.(1)不在同一直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.(2)△ABC ,三角形ABC ,BC ,a ;AC ,b ;AB ,c (3)三角形两边之和大于第三边,小于第三边. (4)>,<,a -b ,a +b(5)1cm <x <9cm ,2cm 、3cm 、4cm 、5cm 、6cm 、7cm 、8cm . 2.(1)六,△ABC 、△ABD 、△ABE 、△ACD 、△ACE 、△ADE . (2)△ABD 、△ACD 、△ADE . (3)△ACE ,∠CAE . (4)BC :CD :DE .3.(1)C ,(2)D ,(3)A ,(4)D4.(1)6,6,6;(2)20cm ,22cm ;(3)12cm ,12cm ;(4)5cm ,5cm ,2cm . 5.(1)3<x <17;(2)2<x <6;(3)10≤x <17;(4)4<e <8; (5)3,3,4或4,4,2 6.(1))(21DB CD AB +>. (2)提示:对于△ADC ,∵AD +AC >DC , ∴(AD +DB )+AC >CD +DB , 即AB +AC >CD +DB .又∵AB =AC ,∴2AB >CD +DB . 从而AB >21(CD +DB ). 7.提示:延长BP 交AC 于D .∵在△ABD 中,AB +AD >BD =BP +PD ,① 在△DPC 中,DP +DC >PC ,② 由①、②,∴AB +(AD +DC )+DP >BP +PC +DP . 即AB +AC >PB +PC .8.证明:延长BP 交AC 于D ,延长CE 交BD 于F . 在△ABD 中,AB +AD >BD . ① 在△FDC 中,FD +DC >FC . ② 在△PEF 中,PF +FE >PE . ③①+②+③得AB +AD +FD +DC +PF +FE >BD +FC +PE , 即:AB +AC +PF +FD +FE >BP +PF +FD +FE +EC +PE ,所以AB +AC >BP +PE +EC .(§11.1 与三角形有关的线段B )1.(1)垂线,顶点、垂足,=,90°,高CD 的长. (2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段. =,∠BAC ,∠BAD ,∠DAC 2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM =2ME .5.(1)略,(2)三条角平分线交于一点,(3)点N 到△ABC 三边的距离相等. 6.提示:有两种情况,分别运用方程思想,设未知数求解.⎩⎨⎧===,11,8BC AC AB 或⎩⎨⎧===.7,10BC AC AB 7.(1)三角形的稳定性,(2)不具有稳定性. 8.(1)(2)下列各图是答案的一部分:9.它的长为5,或4.提示:设S △ABC =S ,第三条高为h ,则△ABC 的三边长可表示为:hSS S 212242、、,列不等式得:12242212242SS h S S S +<<- ∴3<h <6.。

人教版八年级数学上册等腰三角形的性质同步练习题

人教版八年级数学上册等腰三角形的性质同步练习题

人教版八年级数学试题13.3.1 等腰三角形第1课时等腰三角形的性质一.选择题(共8小题)1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,则它顶角的度数是()A.80° B.80°或20°C.80°或50°D.20°3.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A. 20或16 B. 20 C. 16 D.以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC的度数是()A.60°B.70°C.75°D.80°5.已知等腰三角形的两边长分别是3和5,则该三角形的周长是()A. 8 B. 9 C. 10或12 D. 11或136.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80° B.70° C.60° D.50°7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A. 7 B.11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120° C.60°或150° D.60°或120°二.填空题(共10小题)9.已知等腰三角形的一个内角为80°,则另两个角的度数是_________ .10.如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=_________ .第10题第11题第12题第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=_________ °.12.如图,AB∥C D,AE=AF,CE交AB于点F,∠C=110°,则∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC=_________°.第14题第15题第16题第17题第18题15.如图,等腰△ABC中,AB=AC,AD平分∠BAC,点E是线段BC延长线上一点,连接AE,点C在AE的垂直平分线上,若DE=10cm,则AB+BD= _________ cm.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,则∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,则∠EPF=_________ 度.三.解答题(共5小题)19.已知:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.21.如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,由哪两个条件可以判定AB=AC?(用序号写出所有的情形)(2)选择(1)小题中的一种情形,说明AB=AC.23.(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?(2)如图,若点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜想线段DE、DB、EC之间有何数量关系?证明你的猜想.13.3.1 等腰三角形第1课时等腰三角形的性质一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、10;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE(AAS).∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:(1)∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD(SSS);…(4分)(2)由(1)知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE (SAS),∴BE=CE(全等三角形的对应边相等).(其他正确证法同样给分)…(4分)21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD(SAS).∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、(1)答:有①③、①④、②③、②④共4种情形.(2)解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:(1)成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.(2)∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。

初二数学上册(人教版)第十三章轴对称13.3知识点总结含同步练习及答案

初二数学上册(人教版)第十三章轴对称13.3知识点总结含同步练习及答案

描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.3 等腰三角形一、学习任务1. 了解等腰三角形和等边三角形的概念.2. 掌握等腰三角形和等边三角形的性质定理和判定定理,掌握 角的直角三角形的性质.二、知识清单等腰三角形 等边三角形三、知识讲解1.等腰三角形等腰三角形有两条边相等的三角形叫做等腰三角形(isosceles triangle ).等腰三角形的性质① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).三角形的边角对应关系在同一个三角形内,大边对大角,大角对大边.构造等腰三角形的方法30∘都填上)∠ADE=∠AED=2∠BAD34DE△BDE接 ,试判断 的形状,并说明理由.∠DBC描述:例题:2.等边三角形等边三角形三边都相等的三角形叫做等边三角形(equilateral triangle ),也属于等腰三角形.等边三角形的性质三个内角都相等,并且每一个角都等于 .等边三角形性质的推论在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.等边三角形的判定① 三个角都相等的三角形是等边三角形;② 有一个角是 的等腰三角形是等边三角形.构造等边三角形的方法,.即 是等腰三角形.2∴∠DBC =∠E ∴BD =DE △BDE 60∘30∘60∘如图所示,在等边三角形 中, 和 的平分线相交于点 ,, 的垂直平分线分别交 于点 ,,求证: 是等边三角形.分析:根据垂直平分线的性质可知,,,由于 , 是角平分线,所以 ,再由于外角和定理,,所以 是等边三角形.证明: , 分别是 , 垂直平分线上的点,ABC ∠ABC ∠ACB O BO OC BC E F △OEF OE =BE OF =F C OB OC ∠OBC =∠OCB =30∘∠OEF =∠OF E =60∘△OEF ∵EF BO OC值为( )32A△ABC。

初中数学湘教版八年级上册第二章2.3等腰三角形同步练习

初中数学湘教版八年级上册第二章2.3等腰三角形同步练习

初中数学湘教版八年级上册第二章2.3等腰三角形同步练习一、选择题1.下列条件不能得到等边三角形的是()A. 有两个内角是60°的三角形B. 有一个角是60°的等腰三角形C. 腰和底相等的等腰三角形D. 有两个角相等的等腰三角形2.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A. 100°B. 80°C. 50°或80°D. 20°或80°3.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是()A. 30cmB. 33cmC. 24cm或21cmD. 30cm或33cm4.如图,△ABC中,AB=AC,△DEF为等边三角形,则α、β、γ之间的关系为()A. β=α+γ2B. α=β+γ2C. β=α−γ2D. α=β−γ25.如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为()A. 30°B. 20°C. 25°D. 15°6.如图所示,在等边三角形ABC中,AD⊥BC,E为AD上一点,∠CED=50°,则∠ABE等于()A. 10°B. 15°C. 20°D. 25°7.已知等腰三角形的周长为24,其中两边之差为6,则这个等腰三角形的腰长为()A. 10B. 6C. 4或6D. 6或108.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是()A. 52<x<5 B. 0<x<2.5 C. 0<x<5 D. 0<x<109.在下列各图中,可以由题目条件得出∠1=∠2的图形个数为()A. 1B. 2C. 3D. 410.如果一个三角形的三边长分别为6,a,b,且(a+b)(a−b)=36,那么这个三角形的形状为()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等边三角形二、填空题11.在平面直角坐标系内的点A(−3,2),B(1,4),在x轴上找一点C,使得△ABC是等腰三角形,则点C的坐标为______.12.等腰三角形的一个外角是100°,则这个等腰三角形的底角为______.13.已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是______cm.14.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是______cm.15.等腰三角形的腰长为17,底长为16,则其底边上的高为______.三、解答题16.如图,在6×5的网格(小正方形边长为1)中,Rt△ABC的三个顶点都在格点上.(1)在网格中,找到格点D,使四边形ACBD的面积为10,并画出这个四边形.(2)借助网格、只用直尺(无刻度)在AB上找一点E,使△AEC为等腰三角形,且AE=AC.17.如图,△ABC中,BA=BC,点D是AC延长线上一点,平面上一点E,连接EB、EC、ED、BD,CB平分∠ACE.(1)若∠ABC=50°,求∠DCE的度数;(2)若∠ABC=∠DBE,求证:AD=CE.18.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.答案和解析1.【答案】D【解析】解:A、有两个内角是60°的三角形是等边三角形,不符合题意;B、有一个角是60°的等腰三角形是等边三角形,不符合题意;C、腰和底相等的等腰三角形是等边三角形,不符合题意;D、有两个角相等的等腰三角形可能不是等边三角形,符合题意;故选:D.根据等边三角形的定义可知:满足三边相等、有一内角为60°且两边相等或有两个内角为60°中任意一个条件的三角形都是等边三角形.本题考查了等边三角形的判定,解决本题的关键是熟记等边三角形的定义和判定定理.2.【答案】D【解析】解:(1)若等腰三角形一个底角为80°,顶角为180°−80°−80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.3.【答案】D【解析】解:①当9为腰时,9+9>12,故此三角形的周长=9+9+12=30;②当12为腰时,9+12>12,故此三角形的周长=9+12+12=33.故选:D.由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.4.【答案】B【解析】解:∵AB=AC,∴∠B=∠C,∴∠2+∠γ=∠1+∠α,∴∠2−∠1=∠α−∠γ,∵等边△DEF,∴∠5=∠3=60°,∴∠2+∠α=∠1+∠β=120°,∴∠2−∠1=∠β−∠α,∴∠α−∠γ=∠β−∠α,∴2∠α=∠β+∠γ,∴α=β+γ2,故选:B.根据等腰三角形的性质推出∠B=∠C,根据三角形的内角和定理求出∠2−∠1=∠α−∠γ,根据等边三角形的性质和邻补角定义求出∠2−∠1=∠β−∠α,代入上式即可求出答案.本题主要考查对三角形的内角和定理,等边三角形的性质,等腰三角形的性质,邻补角的定义等知识点的理解和掌握,能推出∠2−∠1=∠α−∠γ和∠2−∠1=∠β−∠α是解此题的关键.5.【答案】D【解析】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED=180°−∠CAD2=75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选:D.由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.此题考查了等边三角形的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.【解析】解:∵在等边三角形ABC中,AD⊥BC,∴AD是BC的线段垂直平分线,∵E是AD上一点,∴EB=EC,∴∠EBD=∠ECD,∵∠CED=50°,∴∠ECD=40°,又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°−40°=20°,故选:C.先根据等腰三角形的性质可知AD是BC的垂直平分线,得出∠ABC=∠ACD,∠ABE=∠ACE.可求出∠ABE的值.本题考查的是等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系;熟练掌握并灵活运用这些知识是解决问题的关键.7.【答案】A【解析】解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=24,解得:x=4,当x=4时,x+6=10,此时等腰三角形的三边为:4,10,10;(2)设底为x,则腰为(x−6),由题意得:x+2(x−6)=24,解得:x=12,当x=12时,x−6=6,12,6,6不能构成三角形,不符合题意;因此,腰为10,故选:A.分两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.考查等腰三角形的性质,以及分类讨论思想方法的应用,设未知数,列方程求解是常用的方法.【解析】解:依题意得:10−2x−x<x<10−2x+x,<x<5.解得52故选:A.根据已知条件得出底边的长为:10−2x,再根据第三边的长度应是大于两边的差而小于两边的和,即可求出第三边长的范围.本题考查了等腰三角形的性质和三角形的三边关系及解一元一次不等式组等知识;根据三角形三边关系定理列出不等式,接着解不等式求解是正确解答本题的关键.9.【答案】C【解析】解:在第一个图中,∵AB=AC,∴∠1=∠2;在第二个图中,∠1=∠2;在第三个图中,∵a//b,∴∠1=∠3,而∠2=∠3,∴∠1=∠2;在第四个图中,∠1>∠2.故选:C.根据等腰三角形的性质对第一个图形进行判断,根据对顶角相等对第2个图进行判断;根据平行线的性质和对顶角相等对第3个图进行判断;根据三角形外角性质对第4个图进行判断.本题考查了等腰三角形的性质,平行线的性质,对顶角相等,正确的识别图形是解题的关键.10.【答案】C【解析】解:∵(a+b)(a−b)=36,∴a2−b2=36,∴a2+36=b2,又∵6,a,b是三角形三边长,∴这个三角形的形状为直角三角形,故选:C.根据平方差公式进行计算,再利用勾股定理逆定理可得答案.此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.,0)(−1,0)11.【答案】(3,0)(1,0)(12【解析】解:∵A(−3,2),B(1,4),∴AB2=(−3−1)2+(2−4)2=20,当△ABC是等腰三角形,设C(m,0)①AB=BC,即(1−m)2+44=20,解得:m=−1,m=3,∴C1(3,0),C4(−1,0);②AB=AC,即(−3−m)2+22=20,解得m=−7,m=1,∴C2(1.0),C5(−7,0)(此时C,A,B三点共线);③AC=BC,即(−3−m)2+22=(1−m)2+42,解得:m=1,2,0).∴C3(12,0),(−1,0).综上所述:点C的坐标为:(3,0),(1.0),(12根据等腰三角形两腰相等,分别以A、B为圆心以AB的长度为半径画圆,与x轴的交点即为所求的点C,AB的垂直平分线与坐标轴的交点也可以满足△ABC是等腰三角形.本题考查了等腰三角形的判定,坐标与图形性质,作出图形,利用数形结合的思想求解更形象直观.12.【答案】50°或80°【解析】解:①若100°的外角是此等腰三角形的顶角的邻角,则此顶角为:180°−100°=80°,=50°;则其底角为:180°−80°2②若100°的外角是此等腰三角形的底角的邻角,则此底角为:180°−100°=80°;故这个等腰三角形的底角为:50°或80°.故答案为:50°或80°.由等腰三角形的一个外角是100°,可分别从①若100°的外角是此等腰三角形的顶角的邻角与②若100°的外角是此等腰三角形的底角的邻角去分析求解,即可求得答案.此题考查了等腰三角形的性质.此题比较简单,解题的关键是注意分类讨论思想的应用,小心别漏解.13.【答案】15【解析】解:若3cm是腰长,则三角形的三边分别为3cm,3cm,6cm,∵3+3=6,∴不能组成三角形,若3cm是底边,则三角形的三边分别为3cm,6cm,6cm,能组成三角形,周长=3+6+6=15cm,综上所述,这个等腰三角形的周长是15cm.故答案为:15.分3cm是腰长和底边两种情况,根据三角形的三边关系讨论求解即可.本题考查了等腰三角形的性质,关键在于分情况讨论并利用三角形的三边关系判断是否能够组成三角形.14.【答案】6或7【解析】【分析】本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.=7cm,根当腰长=6cm时,底边=20−6−6=8cm,当底边=6cm时,腰长=20−62据三角形的三边关系,即可推出腰长.【解答】解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20−6−6=8cm,即6+6>8,能构成三角形,=7cm,即7+6>7,能构成三角形,∴当底边=6cm时,腰长=20−62∴腰长是6cm或7cm,故答案为:6或7.15.【答案】15【解析】解:如图:AB=AC=17,BC=16.△ABC中,AB=AC,AD⊥BC;BC=8;则BD=DC=12Rt△ABD中,AB=17,BD=8;由勾股定理,得:AD=√AB2−BD2=15.故答案为:15.在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.本题主要考查了等腰三角形的性质以及勾股定理的应用.16.【答案】解:(1)如图,四边形ACBD即为所求;(2)如图,点E即为所求.【解析】本题考查了作图−应用与设计作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.(1)根据网格,即可找到格点D,使四边形ACBD的面积为10,并画出这个四边形;(2)借助网格、只用直尺即可在AB上找一点E,使△AEC为等腰三角形,且AE=AC.17.【答案】解:(1)∵△ABC中,BA=BC,∠ABC=50°,=65°,∴∠BAC=∠ACB=180°−50°2∵CB平分∠ACE,∴∠BCE=∠ACB=65°,∴∠DCE=180°−65°−65°=50°;(2)∵△ABC中,BA=BC,∴∠BAC=∠ACB,∵CB平分∠ACE,∴∠BCE=∠ACB∴∠BCE=∠BAC,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∵AB=BC,∴△BAD≌△BCE(ASA),∴AD=CE.【解析】(1)根据等腰三角形的性质得出∠BAC=65°,进而解答即可;(2)根据全等三角形的判定和性质解答即可.此题考查等腰三角形的性质,关键是根据等腰三角形的性质和全等三角形的判定和性质解答.18.【答案】证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠FAD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB−∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.【解析】(1)依据AB=AC,∠BAC=36°,可得∠ABC=72°,再根据BD是∠ABC的平分线,即可得到∠ABD=36°,由∠BAD=∠ABD,可得AD=BD,依据E是AB的中点,即可得到FE⊥AB;(2)依据FE⊥AB,AE=BE,可得FE垂直平分AB,进而得出∠BAF=∠ABF,依据∠ABD=∠BAD,即可得到∠FAD=∠FBD=36°,再根据∠AFC=∠ACB−∠CAF=36°,可得∠CAF=∠AFC=36°,进而得到AC=CF.本题考查了等腰三角形的判定与性质,解决问题的关键是综合运用等腰三角形的判定与性质,线段垂直平分线的判定与性质,三角形外角的性质.。

人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套《11.1.1 三角形的边》同步练习一、选择题(共15题)1、图中三角形的个数是()A、8个B、9个C、10个D、11个2、至少有两边相等的三角形是()A、等边三角形B、等腰三角形C、等腰直角三角形D、锐角三角形3、已知三角形的三边为4、5、x ,则不可能是()A、6B、5C、4D、14、以下三条线段为边,能组成三角形的是()A、1cm、2cm、3cmB、2cm、2cm、4cmC、3cm、4cm、5 cmD、4cm、8cm、2cm5、一个三角形的两边分别为5cm、11cm,那么第三边只能是()A、3cmB、4cmC、5cmD、7cm6、下列长度的各组线段中,不能组成三角形的是()A、1.5,2.5,3.5B、2,3,5C、6,8,10D、4,3,37、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A、13cmB、6cmC、5cmD、4cm8、若三角形的三边长分别为3,4,x-1,则x的取值范围是( )A、0<x<8B、2<x<8C、0<x<6D、2<x<69、已知三角形的三边长分别为3、x、14,若x为正整数,则这样的三角形共有()A、2个B、3个C、5个D、7个10、小明与小王家相距5km,小王与小邓家相距2km,则小明与小邓家相距()A、3kmB、7kmC、3km或7kmD、不小于3km也不大于7km11、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个12、若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A、7B、6C、5D、413、已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A、8cmB、10cmC、8cm或10cmD、8cm或9cm14、△ABC的三边分别为a , b , c且(a+b-c)(a-c)=0,那么△ABC为()A、不等边三角形B、等边三角形C、等腰三角形D、锐角三角形15、如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A、6B、7C、8D、10二、填空题16、按照三个内角的大小,可以将三角形分为锐角三角形、________、________;按照有几条边相等,可以将三角形分为等边三角形、________、________.17、△ABC的三边分别为a , b , c.则同时有________,理由:________.18、等腰三角形的一边为6,另一边为12,则其周长为________.19、一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长________cm.20、某村庄和小学分别位于两条交叉的大路边(如图).可是,每年冬天麦田弄不好就会走出一条小路来.你说小学生为什么会这样走呢?________.21、小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是________.________ ________ 。

同步练习全册人教版数学八年级上册

同步练习全册人教版数学八年级上册

第十一章 三角形第一节 与三角形有关的线段一、单选题(共10小题)1.(2017·山东乐安中学初一期中)如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°【答案】A 【解析】根据题意可得,在△ABC 中,∠C =70°,∠CCC =48°,则∠CCC =62°, 又AD 为△ABC 的角平分线,∴∠1=∠2=62°÷2=31°又在△AEF 中,BE 为△ABC 的高∴∠CCC =90°−∠1=59°∴∠3=∠CCC =59°考点:1、三角形的内角内角之和的关系 2、对顶角相等的性质.2.(2019·成都市武侯区西蜀实验学校初一期末)下列说法正确的有( )①同位角相等;②过直线外一点有且只有一条直线与这条直线平行;③相等的角是对顶角;④三角形两边长分别为3,5,则第三边c 的范围是28c ≤≤.A .1个B .2个C .3个D .4个【答案】A【解析】分别判断①②③④是否正确即可解答.解:①同位角相等,错误;②过直线外一点有且只有一条直线与这条直线平行,正确;③相等的角是对顶角,错误;④三角形两边长分别为3,5,则第三边c 的范围是28c ≤≤,错误.故选:A.点睛:本题考查了三角形三边关系、同位角、对顶角、平行线的知识,熟练掌握是解题的关键.3.(2019·江西南昌二中初一期末)下列图中不具有稳定性的是( )A.B.C.D.【答案】B【解析】三角形不容易产生变化,因此三角形是最稳定的.四边形不具有稳定性,据此解答即可.解:根据三角形具有稳定性,四边形不具有稳定性可知四个选项中只有正方形不具有稳定性的.故选B.点睛:本题主要考查三角形的稳定性.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.(2019·富顺县赵化中学校初三中考真题)已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.解:设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选C.点睛:此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.a的三条线段能组成一个三角形,则a的值可以是()5.(2019·浙江初三中考真题)若长度分别为,3,5A.1 B.2 C.3 D.8【答案】C【解析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.点睛:本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.(2019·重庆重庆十八中初一期中)如图,两个三角形的面积分别为16,9,若两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.8 B.7 C.6 D.5【答案】B【解析】可以设空白面积为x,然后三角形的面积列出关系式,相减即可得出答案.解:设空白面积为x,得a+x=16,b+x=9,则a-b=(a+c)-(b+c)=16-9=7,所以答案选择B项.点睛:本题考察了未知数的设以及方程的合并,熟悉掌握概念是解决本题的关键.7.(2019·贵州初三中考真题)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,76cmC.2cm,2cm,6cm D.5cm,6cm,7cm【答案】C【解析】根据三角形任意两边的和大于第三边,进行分析判断即可.解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形,故选C.点睛:本题考查了三角形构成条件,熟练掌握三角形三边关系是解题的关键.8.(2019·连云港市新海实验中学初一期中)现有两根木棒,它们的长分别为30cm和40cm,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A.10cm的木棒B.60cm的木棒C.70cm的木棒D.100cm的木棒【答案】B【解析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.解:解:根据三角形的三边关系,得:第三边应大于两边之差,即40−30=10;第三边应小于两边之和,即30+40=70.下列答案中,只有60符合条件.故选:B.点睛:熟练掌握构成三角形的条件是解题的关键.9.(2019·邢台市第十二中学初一期末)如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BD D.线段BC【答案】C【解析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.解:由图可知,ABC中AC边上的高线是BD.故选:C.点睛:掌握垂线的定义是解题的关键.10.(2019·山东济南十四中初一期末)如果等腰三角形两边长是6和3,那么它的周长是( )A.15或12 B.9 C.12 D.15【答案】D【解析】由已知可得第三边是6,故可求周长.【详解】另外一边可能是3或6,根据三角形三边关系,第三边是6,所以,三角形的周长是:6+6+3=15.故选:D【点睛】本题考核知识点:等腰三角形.解题关键点:分析等腰三角形三边的关系.二、填空题(共5小题)11.(2019·兰州市外国语学校初一期末)等腰三角形的周长为12cm,其中一边长为3cm,则该等腰三角形的腰长为___________.【答案】4.5cm【解析】此题要分情况考虑:3cm是底或3cm是腰.根据周长求得另一边,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断是否能够组成三角形.解:当3cm是底时,则腰长是(12−3)÷2=4.5(cm),此时能够组成三角形;当3cm是腰时,则底是12−3×2=6(cm),此时3+3=6,不能组成三角形,应舍去.故答案为:4.5cm点睛:此题考查等腰三角形的性质,三角形三边关系,解题关键在于分情况讨论12.(2019·乐清育英学校初中分校初一期中)如图,CD平分∠ACB,DE∥BC,∠AED=80°,则∠EDC的度数为___.【答案】40°.【解析】根据平行线的性质求出∠ACB,根据角平分线定义求出∠BCD,再根据平行线的性质即可求解. 解:∵DE∥BC,∠AED=80°,∴∠ACB=∠AED=80°,∵CD平分∠ACB,∠ACB=40°,∴∠BCD=12∵DE∥BC,∴∠EDC=∠BCD=40°故答案为:40°点睛:本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.13.(2019·扬州市梅岭中学初一期中)若一个三角形的三条边的长分别是2,x,6,则整数x的值有__________个.【答案】3【解析】根据已知边长求第三边x的取值范围为:4<x<8,进而解答即可.解:解:设第三边长为xcm,则6-2<x<6+2,4<x<8,故x取5,6,7,故答案为:3点睛:本题考查三角形三边关系定理:三角形两边之和大于第三边.已知两边确定第三边的范围时,第三边的长大于已知两边的差,且小于已知两边的和.14.(2018·北京昌平中学初二期末)要使五边形木框不变形,应至少钉上_____根木条,这样做的依据是_____.【答案】2;三角形具有稳定性.【解析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解:因为三角形具有稳定性,再钉上两根木条,就可以使五边形分成三个三角形,故至少要再钉两根木条. 故答案为:2;三角形具有稳定性.点睛:本题考查的知识点是三角形的稳定性,解题的关键是熟练的掌握三角形的稳定性.15.(2019·江苏苏州中学初一期中)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是7,则四边形CEFD的面积是____.【答案】7【解析】根据等底等高的三角形的面积相等可知三角形的中线把三角形分成面积相等的两个三角形,然后表示出S△ABE=S△ACD=12S△ABC,再表示出S△ABF与S四边形CEFD,即可得解.解:∵AD、BE是△ABC的中线,∴S△ABE=S△ACD=12S△ABC,∵S△ABF=S△ABE-S△AEF,S四边形CEFD=S△ACD-S△AEF,∴S△ABF=S四边形CEFD=7,故答案为:7.点睛:本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.三、解答题(共2小题)16.(2019·长春吉大附中实验学校初一期中)在5×5的正方形网格中,每个小正方形的边长均为1,点A、B在网格格点上,若点C也在网格格点上,分别在下面的3个图中画出△ABC使其面积为2(形状完全相同算一种).【答案】见解析【解析】根据三角形的面积为2构造底和高即可求解.解:如图所示.点睛:此题主要考查网格的作图,解题的关键是根据面积公式构造底和高.17.(2019·兰州市第三十五中学初一期中)如图,直线AB,CD相交于点O,OE平分∠AOD,FO⊥OD于O,∠1=40°,试求∠2和∠4的度数。

初中数学八年级上册等腰三角形同步练习题(附参考答案)

初中数学八年级上册等腰三角形同步练习题(附参考答案)

八年级数学上册等腰三角形同步练习班级考号姓名总分一.选择题(共8小题)1.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A.5个B.6个C.7个D.8个2.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.53.下列条件中不能确定是等腰三角形的是()A.三条边都相等的三角形D.一条中线把面积分成相等的两部分的三角形B.有一个锐角是45°的直角三角形C.一个外角的平分线平行于三角形一边的三角形4.如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC 是等腰三角形的方法有()A.2种B.3种C.4种D.6种5.下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4 D.AB=3,BC=7,周长为136.下列说法中:(1)顶角相等,并且有一腰相等的两个等腰三角形全等;(2)底边相等,且周长相等的两个等腰三角形全等;(3)腰长相等,且有一角是50°的两个等腰三角形全等;(4)两条直角边对应相等的两个直角三角形全等;错误的有()A.1个B.2个C.3个D.4个7.已知下列各组数据,可以构成等腰三角形的是()A.1,2,1 B.2,2,1 C.1,3,1 D.2,2,58.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③二.填空题(共10小题)9.用若干根火柴(不折断)紧接着摆成一个等腰三角形,底边用了10根,则一腰至少要用_________根火柴.10.如图,∠BAC=100°,∠B=40°,∠D=20°,AB=3,则CD=_________11.如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠ABC,∠ACB,DE经过点M,且DE∥BC,则图中有_________个等腰三角形.12.在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,则∠B的度数是_________.13.在△ABC中,∠A=100°,当∠B=_________°时,△ABC是等腰三角形.14.如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=_________度,图中有_________个等腰三角形.15.若三角形三边长满足(a﹣b)(a﹣c)=0,则△ABC的形状是_________.16.如果一个三角形有两个角分别为80°,50°,则这个三角形是_________三角形.17.在平面上用18根火柴首尾相接围成等腰三角形,这样的等腰三角形一共可以围攻成_________种.18.如图,已知AD平分∠EAC,且AD∥BC,则△ABC一定是_________三角形.三.解答题(共5小题)19.如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD.(1)求证:△ABC≌△DCB;(2)△OBC的形状是_________.(直接写出结论,不需证明)20.已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.21.如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形?(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形.22.如图,△ABC中,∠A=36°,AB=AC,CD平分∠ACB,试说明△BCD是等腰三角形.23.如图,四边形ABCD中,AB∥CD,AD∥BC,连接AC,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)求证:△ABC≌△CDA.(2)请直接写出图中所有的等腰三角形(不添加字母);(3)图中阴影部分的△AB′O和△CDO是否全等?若全等请给出证明;若不全等,请说明理由.附:参考答案答案:一、DCDCBABA二、9、6;10、3;11、5;12、80°或50°或20°;13、40度;14、72,3;15、等腰三角形;16、等腰;17、4;18、等腰三、19、(1)证明:在△ABC和△DCB中,∴△ABC≌△DCB(SSS).(2)解:∵△ABC≌△DCB,∴∠OBC=∠OCB.∴OB=OC.∴△OBC为等腰三角形.故填等腰三角形.20、解答:证明:作OE⊥AB于E,OF⊥AC于F,∵AO平分∠BAC,∴OE=OF(角平分线上的点到角两边的距离相等).∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.21解:(1)①③,①④,②③和②④;(2)以①④为条件,理由:∵OB=OC,∴∠OBC=∠OCB.又∵∠DBO=∠ECO,∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.22解:△ABC中∵AB=AC,∠A=36°∴∠B=∠ACB=(180°﹣∠A)=72°∵CD平分∠ACB∴∠DCB=∠ACB=36°在△DBC中∠BDC=180°﹣∠B﹣∠DCB=72°=∠B∴CD=CB即△BCD是等腰三角形.23、解:(1)证明:∵AB∥CD,AD∥BC,∴∠DAC=∠BCA,∠ACD=∠BAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA);(2)图中所有的等腰三角形有:△OAC,△ABB′,△CBB′;∵AD∥BC,∴∠DAC=∠ACB,又∵△AB′C和△ABC关于AC所在的直线对称,∴△AB′C≌△ABC,∴∠ACB=∠ACB′,AB=AB′,即△ABB′为等腰三角形,∴∠DAC=∠ACB′,∴OA=OC,即△OAC为等腰三角形,∵CB=CB′,∴△CBB′为等腰三角形;(3)△AB′O≌△CDO,理由为:证明:∵△AB′C≌△ABC,且△ABC≌△CDA,∴△AB′C≌△CDA,∴B′C=DA,AB′=CD,又OA=OC,∴DA﹣OA=B′C﹣OC,即OB′=OD,在△AB′O和△CDO中,,∴△AB′O≌△CDO.。

《等腰三角形》同步练习及答案1

《等腰三角形》同步练习及答案1

A
三、解答题:(本题共 5 小题,17~20 题,每小题 10 分,21 题 12 分,共 52 分)
上) பைடு நூலகம்
9.已知等腰三角形的两边长是 1cm 和 2cm,则这个等腰三角形的周长为_____
__cm.
10.三角形三内角的度数之比为 1∶2∶3,最大边的长是 8cm,则最 小边的长是
_______cm.
11.如图,∠A=15°,AB=BC=CD=DE=EF,则∠GEF=_______.
B E
C F D
D
30
C E B
18.如图,点 D、E 在△ADC 的边 BC 上,AD=AE,BD=EC,求证:AB=AC.
A
20.如图,公路 MN 和公路 PQ 在点 P 处交汇,且∠QPN=30°,点 A 处有一所中
学,AP=160 米,假设拖拉机行驶时,周围 100 米以内会受到噪声的影响,那么
拖拉机在公路 MN 上沿 PN 方向行驶时,学校是否会受影响?请说明理由.
(第 11 题) (第 13 题)
12.等腰三角形的底边长为 6cm,一腰上的中线把这个三角形的周长分为两部分
,这两部分之差是 3cm,那么这个等腰三角形的腰长是_______.
17。如图,DE 是△ABC 的边 AB 的垂直平分线,分别交 AB、BC 于 D,E,AE 平分∠
BAC,若∠B=30°,求∠C 的度数.
A
角形的个数是( )
A.1 B.2 C.3 D.4
2.下列说法中,正确的有 ( )
①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边
上的中线与底边上的高相等;④等腰三角形是轴对称图形.

新人教版八年级数学上册11.1 与三角形有关的线段 同步练习及答案

新人教版八年级数学上册11.1 与三角形有关的线段 同步练习及答案

第11 章《三角形》同步练习(§11.1 与三角形有关的线段A)班级学号姓名得分1、填空题:(1)由三条线段所组成的图形叫做三角形.组成三角形的线段叫做;相邻两边的公共端点叫做,相邻两边所组成的角叫做,简称.(2)如图所示,顶点是A、B、C 的三角形,记作,读作.其中,顶点A 所对的边还可用表示;顶点B 所对的边还可用表示;顶点C 所对的边还可用表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质.由它还可推出:三角形两边的差.(4)对于△ABC,若a≥b,则a+b c 同时a-b c;又可写成<c<.(5)若一个三角形的两边长分别为4cm 和5cm,则第三边x 的长度的取值范围是,其中x 可以取的整数值为.2.已知:如图,试回答下列问题:(1)图中有个三角形,它们分别是.(2)以线段AD 为公共边的三角形是.(3)线段CE 所在的三角形是,CE 边所对的角是.(4)△ABC、△ACD、△ADE 这三个三角形的面积之比等于∶∶.3.选择题:(1)下列各组线段能组成一个三角形的是( ).(A)3cm,3cm,6cm (B)2cm,3cm,6cm(C)5cm,8cm,12cm (D)4cm,7cm,11cm(2)现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取( ).(A)0.85m 长的木条(B)0.15m 长的木条(C)1m 长的木条(D)0.5m 长的木条(3)从长度分别为10cm、20cm、30cm、40cm 的四根木条中,任取三根可组成三角形的个数是( ).(A)1 个(B)2 个(C)3 个(D)4 个(4)若三角形的两边长分别为3 和5,则其周长l 的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<164.(1)一个等腰三角形的周长为18,若腰长的3 倍比底边的2 倍多6,求各边长.(2)已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.(3)一个等腰三角形的周长为30cm,一边长为6cm,求其它两边的长.(4)有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.5.(1)若三角形三条边的长分别是7,10,x,求x 的范围.(2)若三边分别为2,x-1,3,求x 的范围.(3)若三角形两边长为7 和10,求最长边x 的范围.(4)等腰三角形腰长为2,求周长l 的范围.(5)等腰三角形的腰长是整数,周长是10,求它的各边长.6.已知:如图,△ABC 中,AB=AC,D 是AB 边上一点.(1)通过度量AB、CD、DB 的长度,确定AB 与1(CD DB) 的大小关系. 2(2)试用你所学的知识来说明这个不等关系是成立的.7.已知:如图,P 是△ABC 内一点.请想一个办法说明AB+AC>PB+PC.8.如图,D、E 是△ABC 内的两点,求证:AB+AC>BD+DE+EC.第11 章《三角形》同步练习(§11.1 与三角形有关的线段B)班级学号姓名得分1.填空题:(1)从三角形一个顶点向它的对边画,以和为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC∠BDC=,C 点到对边AB 的距离是的长.(2)连结三角形的一个顶点和它的叫做三角形这边上的中线.如右图,若BE 是△ABC 中AC 边上的中线,则AE EC 1. 2(3)三角形一个角的与这个角的对边相交,以这个角的和为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是.1如图,若AD 是△ABC 的角平分线,则∠BAD∠CAD=或∠BAC=22 =2 .2.已知:△GEF,分别画出此三角形的高GH,中线EM,角平分线FN.3.(1)分别画出△ABC 的三条高AD、BE、CF.(∠A 为锐角) (∠A 为直角) (∠A 为钝角)(2)这三条高AD、BE、CF 所在的直线有怎样的位置关系?4.(1)分别画出△ABC 的三条中线AD、BE、CF.(2)这三条中线AD、BE、CF 有怎样的位置关系?(3)设中线AD 与BE 相交于M 点,分别量一量线段BM 和ME、线段AM 和MD 的长,从中你能发现什么结论?5.(1)分别画出△ABC 的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF 有怎样的位置关系?(3)设△ABC 的角平分线BE、CF 交于N 点,请量一量点N 到△ABC 三边的距离,从中你能发现什么结论?6.已知:△ABC 中,AB=AC,BD 是AC 边上的中线,如果D 点把三角形ABC 的周长分为12cm 和15cm 两部分,求此三角形各边的长.7.(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做.(2)四边形是否具有这种性质?8.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图) (1)已知一个任意三角形,并其剖分成3 个等积的三角形. (2)已知一个任意三角形,将其剖分成4 个等积的三角形.9.不等边△ABC 的两条高长度分别为4 和12,若第三条高的长也是整数,试求它的长.参考答案(§11.1 与三角形有关的线段A)1.(1)不在同一直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.(2)△ABC,三角形ABC,BC,a;AC,b;AB,c (3)三角形两边之和大于第三边,小于第三边. (4)>,<,a-b,a+b(5)1cm<x<9cm,2cm、3cm、4cm、5cm、6cm、7cm、8cm.2.(1)六,△ABC、△ABD、△ABE、△ACD、△ACE、△ADE.(2)△ABD、△ACD、△ADE. (3)△ACE,∠CAE. (4)BC:CD:DE.3.(1)C,(2)D,(3)A,(4)D4.(1)6,6,6;(2)20cm,22cm;(3)12cm,12cm;(4)5cm,5cm,2cm.5.(1)3<x<17;(2)2<x<6;(3)10≤x<17;(4)4<e<8;(5)3,3,4 或4,4,26.(1) AB > 1(CD + DB) .2(2)提示:对于△ADC,∵AD+AC>DC,∴(AD+DB)+AC>CD+DB,即AB+AC>CD+DB.又∵AB=AC,∴2AB>CD+DB.从而AB>1(CD+DB).27.提示:延长BP 交AC 于D.∵在△ABD 中,AB+AD>BD=BP+PD,① 在△DPC 中,DP+DC>PC,②由①、②,∴AB+(AD+DC)+DP>BP+PC+DP.即AB+AC>PB+PC.8.证明:延长BP 交AC 于D,延长CE 交BD 于F.在△ABD 中,AB+AD>BD.①在△FDC 中,FD+DC>FC.②在△PEF 中,PF+FE>PE.③①+②+③得AB+AD+FD+DC+PF+FE>BD+FC+PE,即:AB+AC+PF+FD+FE>BP+PF+FD+FE+EC+PE,所以AB+AC>BP+PE+EC.(§11.1 与三角形有关的线段B)1.(1)垂线,顶点、垂足,=,90°,高CD 的长. (2)所对的边的中点、线段,=,AC (3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC,∠BAD,∠DAC2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM=2ME.5.(1)略,(2)三条角平分线交于一点,(3)点N 到△ABC 三边的距离相等.6.提示:有两种情况,分别运用方程思想,设未知数求解.⎧AB = AC = 8,或⎧AB = AC = 10,⎨⎩BC = 11, ⎨⎩BC = 7.7.(1)三角形的稳定性,(2)不具有稳定性.8.(1)(2)下列各图是答案的一部分:9.它的长为5,或4.提示:设S△ABC=S,第三条高为h,则△ABC 的三边长可表示为:2S 、42S、2S,列12 h不等式得:2S-2S<2S<2S+2S 4 12 h∴3<h<6.412。

八年级数学上册《第十三章 等腰三角形》同步练习题及答案(人教版)

八年级数学上册《第十三章 等腰三角形》同步练习题及答案(人教版)

八年级数学上册《第十三章 等腰三角形》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.若等腰三角形的两边长分别为4和8,则它的周长为( )A .12B .16C .20D .16或202.如图,是屋架设计图的一部分,立柱BC 垂直于横梁AC ,AB =12m ,∠A =30°,则立柱BC 的长度为( )A .4mB .6mC .8mD .12m3.如图ABC 、ADE 中C 、D 两点分别在边AE 、AB 上,BC 与DE 相交于F 点.若BD CD CE == 104ADC ACD ∠+∠=︒则DFC ∠的度数为( ).A .104︒B .118︒C .128︒D .136︒4.如图 ABC 中 90ACB ∠=︒ , 60CAB ∠=︒ 动点P 在斜边AB 所在的直线m 上运动,连结PC ,那点P 在直线m 上运动时,能使图中出现等腰三角形的点P 的位置有( )A .6个B .5个C .4个D .3个5.如图,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若等边三角形的高为4,则DE+DF =( )A .1B .2C .3D .46.如,AOB ADC ≌,90O D ∠∠︒==记αOAD ∠=,βABO ∠=当BC OA 时,α与β之间的数量关系为( )A .αβ=B .α2β=C .αβ90+︒=D .α2β180+︒=7.如图,CD 是等腰三角形ABC 底边AB 上的中线,BE 平分ABC ∠,交CD 于点E ,AC=6,DE=2则BCE 的面积是( )A .4B .6C .8D .128.如图,已知△ABC 中,∠B =50°,P 为△ABC 内一点,过点P 的直线MN 分别交AB ,BC 于点M 、N .若M 在PA 的中垂线上,N 在PC 的中垂线上,则∠APC 的度数为( )A .100°B .105°C .115°D .120°二、填空题:9.在△ABC 中,AB=AC ,其周长为20cm ,若AB=8cm ,则BC= cm.10.如图,在ABC 中70A ∠=︒,30C ∠=︒点D 为AC 边上一点,过点D 作DE //AB ,交BC 于点E ,且DE BE =,连接BD ,则BDC ∠的度数是 .11.如图,在Rt △ABC 中90ACB ∠=︒,AC=BC=2,△ACD 为等边三角形,连接BD ,则△BCD 的面积为 .12.如图,在△ABC 中,∠ABC 的角平分线和∠ACB 相邻的外角平分线CD 交于点D ,过点D 作DE ∥BC 交AB 于E ,交AC 于G ,若EG=2,且GC=6,则BE 长为 .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是 秒.三、解答题:14.如图,点0是∠ABC ,∠ACB 的平分线的交点,OE ∥AB 交BC 于点E ,OF ∥AC 交BC 于点F ,BC=5.求△OEF 的周长.15.如图,已知D 是∠ABC 的平分线与△ABC 的外角平分线的交点,DE ∥BC ,交AB 于点E ,交AC 于点F.求证:EF=BE-CF16.如图,在ABC 中11AB AC ==,120BAC ∠=︒且AD 是ABC 的中线,AE 是ADB 的角平分线,DF AB交AE的延长线于点F,求DF的长.17.如图,在四边形 ABCD 中,AB=AD,∠BAD=120°,∠ABC=∠ADC=90°,E,F 分别是 BC, CD 上的点,且∠EAF=60°.(1)若 BE=DF,求证:△AEF 为等边三角形;(2)求证:EF=BE+DF.18.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC 的平分线交BC于点G,连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ,当θ为何值时,△DFG为等腰三角形参考答案:1.C 2.B 3.C 4.C 5.D 6.B 7.B 8.C 9.410.110°11.112.813.414.解:∵OB,OC分别是∠ABC,∠ACB的平分线∴∠1=∠2,∠4=∠5∵OE∥AB,OF∥AC∴∠1=∠3,∠4=∠6∴∠2=∠3,∠5=∠6∴BE=OE,OF=FC∴BC=BE+EF+FC=OF+OE+EF∵BC=5∴OF+OE+EF=5∴△OEF的周长=OF+OE+EF=5.15.证明:∵BD平分∠ABC∴∠ABD=∠CBD∵DE∥BC∴∠EDB=∠CBD∴∠ABD=∠EDB∴DE=BE同理DF=CF∵EF=DE-DF∴EF=BE-CF.16.解:∵△ABC是等腰三角形,D为底边的中点∴AD⊥BC,∠BAD=∠CAD∵∠BAC=120°∴∠BAD=60°,∠ADB=90°∵AE是∠BAD的角平分线∴∠DAE=∠EAB=30°.∵DF//AB∴∠F=∠BAE=30°.∴∠DAF=∠F=30°∴AD=DF.∵AB=11,∠B=30°∴1111 5.522AD AB==⨯=∴DF=5.517.(1)证明:∵∠ABC=∠ADC= 90︒,BE=DF,AB=AD∴△ABE≌△ADF∴AE=AF又∵∠EAF= 60︒∴△AEF为等边三角形;(2)证明:如图,延长CD至G,使得DG=BE,连接AG,可得到∵AD⊥DF∴∠ABE=∠ADG= 90︒∵AB=AD,DG=BE∴△ABE≌△ADG∴AE=AG,∠BAE=∠GAD又∵∠BAE+∠EAD= 120︒∴∠GAD+∠EAD= 120︒又∵∠EAF= 60︒∴∠GAF= 60︒ =∠EAF又∵AE=AG,AF=AF∴△EAF≌△GAF∴EF=GF=GD+DF=BE+DF∴EF=BE+DF.18.(1)解:∵AB=AC,∠BAC=100°∴∠B=∠C=40°.∵△ABD和△AFD关于直线AD对称∴△ADB≌△ADF∴∠B=∠AFD=40°,AB=AF∠BAD=∠FAD=θ∴AF=AC.∵AG平分∠FAC∴∠FAG=∠CAG.在△AGF和△AGC中{AF=AC∠FAG=∠CAG AG=AG∴△AGF≌△AGC(SAS) ∴∠AFG=∠C.∵∠DFG=∠AFD+∠AFG∴∠DFG=∠B+∠C=40°+40°=80°.答:∠DFG的度数为80°;(2)解:当GD=GF时∴∠GDF=∠GFD=80°.∵∠ADG=40°+θ∴40°+80°+40°+θ+θ=180°∴θ=10°.当DF=GF时∴∠FDG=∠FGD.∵∠DFG=80°∴∠FDG=∠FGD=50°.∴40°+50°+40°+2θ=180°∴θ=25°.当DF=DG时∴∠DFG=∠DGF=80°∴∠GDF=20°∴40°+20°+40°+2θ=180°∴θ=40°.∴当θ=10°,25°或40°时,△DFG为等腰三角形。

人教版八年级数学上册 13.3 等腰三角形 同步练习卷 含答案

人教版八年级数学上册  13.3 等腰三角形 同步练习卷  含答案

13.3 等腰三角形一.选择题(共10小题)1.如果等腰三角形的一个角是80°,那么它的底角是()A.80°或50°B.50°或20°C.80°或20°D.50°2.已知等腰三角形的周长是20,其中一边长为6,则其它两边的长度分别是()A.6和8 B.7和7 C.6和8或7和7 D.3和113.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC、∠BCD的平分线,则图中的等腰三角形有()A.3个B.4个C.5个D.2个4.如图,在△ABD中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥AB交AB于N,交AC于N,若BM+CN=8,则线段MN的长为()A.5 B.6 C.7 D.85.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的度数为()A.30°B.36°C.45°D.48°6.如图,等腰△ABC的面积为S,AB=AC=m,点D为BC边上任意一点,DE⊥AB于E,DF ⊥AC于F,则DE+DF=()A.B.C.D.7.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A.3 B.4 C.5 D.68.如图,已知每个小方格的边长为1,A,B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是以AB为腰的等腰三角形,这样的格点C有()A.3个B.4个C.5个D.6个9.如果等腰三角形的周长20cm,那么这个等腰三角形腰长x的取值范围是()A.x≥5cm B.5cm≤x<10cm C.x<10cm D.5cm<x<10cm 10.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个二.填空题(共11小题)11.在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.12.如图,在△ABC中,AC=BC,点D在BC边上,∠BAD+∠C=90°,点E在AC边上,∠AED=2∠BAD,若BD=16,CE=7,则DE的长为.13.在△ABC中,AB=AC,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,且DE=4,则AD+AE的值为.14.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为.15.等腰三角形的一个外角等于100°,则这个等腰三角形顶角的度数为.16.△ABC中,AB=AC=5,S△ABC=7.5,则BC的长为.17.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形,(1)如图,在△ABC中,∠A=25°,∠ABC=105°,过B作一直线交AC于D,若BD把△ABC分割成两个等腰三角形,则∠BDA的度数是.(2)已知在△ABC中,AB=AC,过顶点和顶点对边上一点的直线,把△ABC分割成两个等腰三角形,则∠A的最小度数为.18.如图,线段AB=a,点P是AB中垂线MN上的一动点,过点P作直线CD∥AB.若在直线CD上存在点Q使得△ABQ为等腰三角形,且满足条件的点Q有且只有3个,则PM的长为.19.如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是.20.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的序号是.三.解答题(共5小题)21.(1)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D.请说明△BDC 是等腰三角形;(2)在(1)的条件下请设计四个不同的方案,将△ABC分割成三个等腰三角形,请直接画出示意图并标出每个等腰三角形顶角度数;(3)若有一个内角为36°的三角形被分割成两个等腰三角形,则原三角形中最大内角的所有可能值为.22.数学课上,张老师举了下面的例题:例1:等腰△ABC中,∠A=110°,求∠B的度数;例2:等腰△ABC中,∠A=40°,求∠B的度数.爱思考的小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰△ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案一.选择题(共10小题)1.解:根据题意,一个等腰三角形的一个角等于80°,①当这个角是底角时,即该等腰三角形的底角的度数是80°,②当这个角80°是顶角,设等腰三角形的底角是x°,则2x+80°=180°,解可得,x=50°,即该等腰三角形的底角的度数是50°;故选:A.2.解:当腰为6时,另一腰也为6,则底为20﹣2×6=8,∵6+6=12>8,∴三边能构成三角形.当底为6时,腰为(20﹣6)÷2=7,∵7+7>6,∴三边能构成三角形.故选:C.3.解:共有5个.∵AB=AC∴△ABC是等腰三角形;∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:C.4.解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∴MN=ME+EN,即MN=BM+CN.∵BM+CN=8,∴MN=8,故选:D.5.解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故选:C.6.解:如图所示:连接AD,∵AB=AC=m,△ABC的面积是S,∴AB•DE+AC•DF=S,∵AB=AC=m,∴DE+DF=,故选:B.7.解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=AB,BD6=CD,故能得到符合题意的等腰三角形6个.故选:D.8.解:当AB为腰时,分别以A、B点为顶点,以AB为半径作圆,可找出格点点C的个数有6个;故使△ABC是以AB为腰的等腰三角形的格点C有6个.故选:D.9.解:∵等腰三角形的腰长为xcm,周长20cm,∴底边为(20﹣2x)cm,∴20﹣2x>0且2x>20﹣2x,解得x<10且x>5.∴腰长x的取值范围是 5cm<x<10cm.故选:D.10.解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.二.填空题(共11小题)11.解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.12.解:设∠C=2α,∵∠BAD+∠C=90°,∴∠BAD=90°﹣2α,∵AC=BC,∴∠B=∠BAC=90°﹣α,∴∠CAD=α,作∠ADF=∠DAE=α交AE于F,∴∠DFE=2α,AF=DF,∵∠AED=2∠BAD=180°﹣4α,∴∠EDF=2α,∴∠EFD=∠EDF=∠C,∴EF=DE,DF=CD,∴AF=CD,∴CF=BD=16,∵CE=7,∴EF=DE=9,故答案为:9.13.解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=10,DE=4,当BD与CE无重合时,如图1,AD+AE=BD+CE=BC﹣DE=10﹣4=6,当BD与CE有重合时,如图2,AD+AE=BD+CE=BC+DE=10+4=14,综上所述,AD+AE=6或14.故答案为:6或14.14.解:如图所示,等腰△ABC中,AB=AC,点D为AC的中点,设AB=AC=x,∵点D为AC的中点,∴AD=CD=AB,BC=17﹣(AB+AC)=17﹣2x.①当△ABD的周长大于△BCD的周长时,∵AB+AD+BD﹣(BC+CD+BD)=4,∴AB﹣BC=4,即x﹣(17﹣2x)=4,解得x=7,17﹣2x=3,7,7,3能够组成三角形,符合题意;②当△BCD的周长大于△ABD的周长时,∵BC+CD+BD﹣(AB+AD+BD)=4,∴BC﹣AB=4,即17﹣2x﹣x=4,解得x=,17﹣2x=,,,能够组成三角形,符合题意.综上所述,这个等腰三角形的底边长为3或,故答案为:3或,15.解:当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;所以这个等腰三角形顶角的度数为80°或20°.故答案为80°或20°.16.解:若△ABC是锐角三角形时,过点C作CD⊥AB于点D,过点A作AE⊥BC于点E,∵AB•CD=,∴CD=3,∴由勾股定理可知:AD=4,∴BD=1,∴BC=,若△ABC是钝角三角形时,同理可求出得BC=3,故答案为:或317.解:(1)根据题意得DA=DB,∴∠ABD=∠A=25°,∴∠BDA=180°﹣25°×2=130°.故答案为:130°;(2)如图所示:AB=AC,AD=BD,BC=CD,∵AD=BD,∴∠ABD=∠A,∵BC=CD,∴∠CBD=∠CDB=2∠A,∴∠ABC=∠ABD+∠CBD=3∠A,∵AB=AC,∴∠C=∠ABC=3∠A,∵∠A+∠ABC+∠C=180°,∴∠A=.故答案为:.18.解:如图所示,分别以A,B为圆心,AB长为半径画弧,①当直线CD经过两弧的交点时,直线CD与两弧共有3个交点G1,G2,G3,此时满足△GAB是等腰三角形的点G有且只有3个,△PAB是等边三角形,∴PM=a;②当直线CD与两弧均相切时,直线CD与两弧、直线MN共有3个交点G1,G2,G3,此时满足△GAB是等腰三角形的点G有且只有3个,∴PM=AG1=AB=a,故答案为:a或a.19.解:分三种情况:①当CD=DE时,∴∠DCE=∠DEC=70°,∴∠ADC=∠B+∠DCE=110°,②当DE=CE时,∵∠CDE=40°,∴∠DCE=∠CDE=40°,∴∠ADC=∠DCE+∠B=80°.③当EC=CD时,∠BCD=180°﹣∠CED﹣∠CDE=180°﹣40°﹣40°=100°,∵∠ACB=100°,∴此时,点D与点A重合,不合题意.综上所述,若△ADC是等腰三角形,则∠ADC的度数为80°或110°.故答案为:80°或110°.20.解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;④如图2,在AC上截取AE=PA,连接PB,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AB=AC=AE+CE=AO+AP;故④正确;本题正确的结论有:①③④,故答案为①③④.三.解答题(共5小题)21.解:(1)∵AB=AC,∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形;(2)如图方案1,做∠B的角平分线BD交AC于点D,作∠BDC得角平分线DE交BC于点E,∵∠A=36°,∴∠C=∠ABC=72°,∴∠DBC=36°,∠BDC=72°,∴∠EDG=∠BDE=36°,∴△ABD,△BDE,△DEC为等腰三角形;如图方案2,做∠B的角平分线BF交AC于点F,作∠C得角平分线CM交BF于点M,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠FBC=∠ABF=36°,∠FCM=∠MCB=72°,∴∠CFM=∠CMF=72°,∴△ABF,△BMC,△CMF为等腰三角形;如图方案3,做∠C的角平分线CN交AB于点N,作∠BNC得角平分线NP交BC于点P,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠BCN=∠ACN=36°,∠BNC=∠B=72°,∴∠BNP=∠PNC=36°,∠NPB=72°,∴△ANC,△NPC,△BNP为等腰三角形;如图方案4,作∠B的角平分线BD交AC于点D,作∠BDE=∠BDC交AB于点E,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠BCD=∠BDE=∠BED=72°,∠AED=108°,∴∠A=∠ADE=36°,∴△AED,△BDE,△BCD为等腰三角形;(3)①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.故答案为:72°,90°,108°,132°,126°.22.解:例题1:根据三角形内角和定理,∵∠A=110°>90°,∠B=∠C=35°;例题2:若∠A为顶角,则∠B=(180°﹣∠A)÷2=70°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×40°=100°;若∠A为底角,∠B为底角,则∠B=40°;故∠B=50°或20°或80°;问题:分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.。

13.3.1 等腰三角形 同步练习 2024—2025学年人教版数学八年级上册

13.3.1 等腰三角形 同步练习 2024—2025学年人教版数学八年级上册

13.3.1 等腰三角形第1 课时等腰三角形的性质A层知识点一等边对等角1.若等腰三角形底角为50°,则该三角形的顶角的度数是( )A.40°B.50°C.60°D.80°2.如图,AB∥CD,点E 在线段BC上,CD=CE.若∠ABC=30°,则∠D 的度数为( )A.85°B.75°C.65°D.30°3.如图,在△ABC中,AB=AC,∠A=50°,P 是边AB 上的一个动点(不与顶点A、B重合),则∠BCP 的度数可能是.(写出一个即可)4.如图,在Rt△ABC 中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=5.如图,在△ABC 中,AB = AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.知识点二等腰三角形“三线合一”6.如图,AD 是等腰三角形ABC 的顶角平分线,BD=5,则CD 等于( )A.10B.5C.4D.37.如图,AD,CE 分别是△ABC 的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是( )A.20°B.35°C.40°D.70°8.如图,在△ABC中,AB=AC,AD 是BC 边上的中线,BE⊥AC 于点E.求证:∠CBE =∠BAD.B层9.等腰三角形的一个角是80°,则它的顶角是( )A.50°B.80°C.50°或80°D.20°或80°【变式题】本质同:顶角、底角不明确,需分类讨论在等腰△ABC 中,∠A=2∠B,则∠C 的度数为( )A.36°B.45°C.36°或45°D.45°或72°10.如图,在△ABC中,D、E、F 分别为边AB、AC、BC 上的点,且BD=BF,CF=CE,∠A=62°,则∠DFE的度数为( )A.58°B.59°C.62°D.76°11.如图,P 为正五边形ABCDE 的边AE 上一点,过点P 作PQ∥BC,交DE 于点Q,则∠EPQ的度数为.12.过等腰三角形顶角顶点的一条直线,将该等腰三角形分成的两个三角形均为等腰三角形,则原等腰三角形的底角度数为.13.如图,在△ABC 中,D 是BC 边上一点,AD= BD, AD = AC,∠BAC = 63°, 求∠DAC 的度数.14.如图,在△ABC中,AB=AC,AD⊥BC 于点D.(1)若∠C=42°,求∠BAD 的度数;(2)若点E 在边AB 上,F 在AD 的延长线上,且AE=FE.求证:EF∥AC.C层15.问题:如图,在△ABD 中,BA=BD,在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC 的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC 的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉, 再将“∠BAE = 90°”改为“∠BAE=n°”,其余条件不变,求∠D AC的度数.第2 课时等腰三角形的判定A层知识点一等腰三角形的判定1.在△ABC中,已知∠B=∠C,则( )A. AB=BCB. AB=ACC. BC=ACD.∠A=60°2.在△ABC 中,∠A 和∠B 的度数如下,其中能判定△ABC 是等腰三角形的是( )A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°3.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC 中,∠B=56°,∠BAC=68°;③△ABC 中,AD⊥BC,AD 平分∠BAC;④△ABC中,AD⊥BC,BD=CD.其中,能判定△ABC 是等腰三角形的条件共有( )A.1 组B.2组C.3 组D.4 组4.如图,AD 平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.知识点二用尺规作等腰三角形5.作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明).已知:线段a 和∠α(如图),求作△ABC,使AB=AC=a,∠A=∠α.知识点三等腰三角形的性质与判定的综合运用6.如图,AC 和BD 相交于点O,且AB∥DC,OA=OB,OC=3cm,则OD= cm.7.如图,在△ABC中,∠B=∠C,AD⊥BC 于点D.若AB=6,CD=4,则△ABC的周长是.8.如图,在四边形ABCD 中,AB∥CD,∠B =90°,连接AC,∠DAC=∠BAC.(1)求证:AD=DC;(2)若∠D=120°,求∠ACB 的度数.B层9.如图,在等腰△ABC 中,BD 为∠ABC 的平分线,∠A=36°,AB=AC=a,BC=b,则CD=( )A.a+b2B.a−b2C. a-bD. b-a10.如图,D为△ABC 内一点, AD ⊥CD, AD 平分∠CAB,且∠DCB=∠B.如果AB=10,AC=6,那么CD=.11.(易错题)如图,在直角坐标系中,点A(-2,2)、B(0,1),点P 在x 轴上,且△PAB 是等腰三角形,则满足条件的点P 共有个.12.如图,AD∥BC,∠BAC=70°,DE⊥AC 于点E,∠D=20°.(1)求∠B 的度数,并判断△ABC 的形状;(2)若延长线段DE 恰好过点B,求证:BD 是∠ABC 的平分线.13.如图,在△ABC 中,D,E 分别是AC,AB 上的点,BD 与CE 交于点O.给出下列三个条件:①∠1=∠2;②∠3=∠4;③BE=CD.(1)上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形)?(2)选择第(1)小题中的一种情况,证明△ABC 是等腰三角形.14.如图,在△ABC中,AB=AC,M,N 分别是AB,AC 边上的点,并且MN∥BC.(1)△AMN 是否是等腰三角形?说明理由;(2)点P 是MN 上的一点,并且BP 平分∠ABC,CP 平分∠ACB.①求证:△BPM 是等腰三角形;②若△ABC 的周长为a,BC=b(a>2b),求△AMN 的周长(用含u,b的式子表示).13.3 等腰三角形13.3.1 等腰三角形第1课时等腰三角形的性质1. D2. B3.45°(答案不唯一)4.54°5.证明:∵DE⊥AB,DF⊥AC,∴∠BED =∠CFD = 90°.∵AB=AC,∴∠B=∠C.在△BED 和△CFD 中,{∠B=∠C,∠BED=∠CFD,BD=CD,∴△BED≌△CFD(AAS).6. B7. B8.证明:∵AB=AC,AD 是BC 边上的中线,∴∠CAD=∠BAD,AD⊥BC.又∵BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°.∴∠CBE=∠CAD.∴∠CBE=∠BAD.9. D 【变式题】D 10. B 11.36°12.36°或45°解析:如图①,AD=BD,AC=DC,可求得∠B=∠C=36°;如图②,AD=B D=DC,可求得∠B=∠C=45°.13.解:∵AD = BD,AD = AC,∴∠B =∠BAD,∠ADC = ∠C.又∵∠ADC =∠B+∠BAD=2∠B,∴∠C=2∠B.在△ABC中,∠B+∠C+∠BAC=180°,即12∠C+∠C+63∘=180∘,∴∠C=78∘.在△ACD 中,. ∠DAC=180°−∠C −∠ADC=180°-2∠C=24°.14.(1)解:∵AB = AC,AD⊥BC 于点D,∴∠BAD= ∠CAD, ∠ADC = 90°.又∵∠C=42°,∴∠BAD=∠CAD=90°- 42°=48°.(2) 证明: 由(1) 知∠BAD = ∠CAD.∵AE = FE,∴∠BAD=∠F.∴∠F =∠CAD.∴EF∥AC.15.解:(1)∠DAC 的度数不会改变.理由如下:∵EA=EC,∴∠CAE=∠C.∴∠AED =2∠C.∵∠BAE = 90°, ∴∠B = 90°-∠AED = 90°- 2 ∠C. ∵BA = BD, ∴∠BDA=12(180∘−∠B)=12[180∘−(90°−2∠C)]=45°+∠C.∴∠DAC=∠BDA-∠C=45°.(2)设∠B =m°,则∠BDA=12(180∘−m∘)=90∘−12m∘,∠AEB=180∘−n∘−m∘.∵EA=EC,∴∠C=12∠AEB=90∘−12n∘−12m∘∴∠DAC=∠BDA−∠C=12n∘.第2 课时等腰三角形的判定1. B2. B3. D4.证明: 如图, ∵DE ∥AC,∴∠1= ∠3. ∵AD 平分∠BAC,∴∠1=∠2.∴∠2=∠3.∵AD ⊥BD,∴∠2+∠B= 90°, ∠3+ ∠BDE = 90°. ∴∠B=∠BDE.∴BE=DE.∴△BDE是等腰三角形.5.解:△ABC 如图所示.6.37.208.(1)证明:∵AB∥CD,∴∠DCA=∠BAC.∵∠DAC =∠BAC,∴∠DAC =∠DCA.∴AD=DC.(2)解:∵AB∥CD,∴∠B+∠DCB=180°.∵∠B=90°,∴∠DCB=90°.∵AD=DC,∠D = 120°,∴∠ACD = 30°.∴∠A CB=∠DCB-∠DCA=60°.9. C 10.2 11.412.(1)解:∵DE⊥AC 于点E,∠D =20°,∴∠CAD= 70°.∵AD ∥BC, ∴∠C =∠CAD=70°.∵∠BAC=70°,∴∠B =40°,∠BAC=∠C.∴AB=BC.∴△ABC是等腰三角形.(2)证明:∵延长线段DE 恰好过点B,DE⊥AC,∴BD⊥AC.∵△ABC是等腰三角形且AB=BC,∴BD是∠ABC的平分线.13.解:(1)由①③和②③都可以判定△ABC 是等腰三角形.(2)如选择①③,证明如下:在△BOE 和△COD 中{∠1=∠2,∠BOE=∠COD,∴BOE≅2BE=CD,△COD(AAS).∴BO= CO.∴∠OBC =∠OCB.∴∠1+∠OBC=∠2+∠OCB,即∠ABC=∠ACB.∴AB=AC.∴△ABC 是等腰三角形.14.(1)解:△AMN 是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠ACB.∵MN∥BC, ∴∠AMN = ∠ABC, ∠ANM =∠ACB.∴∠AMN = ∠ANM.∴AM =AN.∴△AMN是等腰三角形.(2)①证明:∵BP 平分∠ABC,∴∠PBM=∠PBC.∵MN∥BC,∴∠MPB=∠PBC.∴∠PBM=∠MPB.∴MB=MP.∴△BPM是等腰三角形.②解:由①知MB=MP,同理可得NC=NP.∴△AMN 的周长= AM + MP+NP+AN=AM+MB+NC+AN=AB+AC.∵△ABC的周长为a,BC=b,∴AB+AC=a-b.∴△AMN 的周长=a-b.。

人教版2018年八年级数学上册三角形与三角形有关的角同步练习A卷含答案

人教版2018年八年级数学上册三角形与三角形有关的角同步练习A卷含答案

2018年八年级数学上册三角形与三角形有关的角 A卷一、选择题1、如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为()A.20° B.30° C.40° D.50°2、已知等腰三角形的一个角是100°,则它的顶角是()A.40° B.60° C.80° D.100°3、在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个 B.3个 C.4个 D.5个4、已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠B等于()A.40°B.60°C.80° D.90°5、等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为()A.70° B.20° C.70°或20° D.40°或140°6、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落AC边上的点E处.若∠A=25°,则∠BDC 等于()A.50° B.60°C.70° D.80°7、如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A等于( )A.35° B.95° C.85° D.75°8、如图,三角形ABC中,AB=AC,D,E分别为边A B,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40° B.50° C.60° D.70°9、如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=120°,则∠E的度数为()A.102° B.104° C.106°D.108°10、如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C。

2021学年初中数学《等腰三角形》同步练习(三)含答案及解析.docx

2021学年初中数学《等腰三角形》同步练习(三)含答案及解析.docx

2021学年初中数学《等腰三角形》同步练习(三)含答案及解析姓名:班级:考号:一、填空题(共8题)1、如图,已知AB=A J C = AjAgs A2D = A2A3? A3E = A3, /B二20°,则匕A.二.2、如图所示,正方形ABCD的对角线交于0, APBC是等边三角形,APB0的面积为1,则ABPD 的面积是 ________________3、等腰三角形的顶角为120。

,一腰长为6由,则这个三角形底边上任意一点到两腰距离之和为O4、如果等腰三角形的一个外角是50°,则这个等腰三角形顶角的度数是.5、底角为15°,腰长为2的等腰三角形的面积是o6、如下图,延长正方形ABCD的AB边至点E,使BE=AC,则ZBED= 度。

7、如图,AABC中Z5 = ZC , DEX AB于点E, DF±AC于点F.若DE=DF,写出两个你认为正确的结论: ___________8、等腰三角形一边长为7,周长为30,则其腰长为。

二、选择题(共9题)1、如下图,在菱形ABCD中,AEXBC于点E, AFXCD于点F, E, F分别为BC、CD的中点, 则ZEAF等于()A.75°B. 60°C. 45°D. 30°2、如下图,在AMBN中,BM=6cm,点A、C、D分别在MB、BN、NM上,若四边形ABCD为平行四边形,且ZNDC=ZMDA,则顷BCD的周长是()A. 24cmB. 18cmC. 16cmD. 12cm3、等腰三角形AABC中,AB=AC,腰上的高BD与底边的夹角为20°,则这个等腰三角形顶角的度数为()A. 20°B. 40°C. 50°D. 40°或50°4、如果一个等腰三角形的两边长分别为2cm和5cm,那么它的周长是()A. 9cmB. 12cmC. 9cm 或12cmD.以上答案都不对5、某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为4小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边网上找一点〃,连接,〃作为分割线;方法二:在腰/C上找一点〃,连接彻作为分割线;方法三:在腰上找一点〃,作座〃此;交/C于点庞作为分割线;方法四:以顶点,为圆心,,〃为半径作弧,交于点〃,交于点&弧庭作为分割线.这些分割方法中分割线最短的是()B.方法二C.方法三D.方法四A,方法一6、等腰三角形两边长分别为6、3,则该等腰三角形的周长为()A、15;B、12;C、12 或15;D、97、已知一个等腰三角形两内角的度数之比为1 : 4,则这个等腰三角形顶角的度数为()A. 20°B. 120°C. 20°或120°D. 36°AK8、如图,在ZXABC中,AB=AC,点D在AC上,且BD=BC=AD,则ZA等于()RA、30°B、40"C、45"D、36°9、如图,在RtA^C中,ZJ = 90-,时是HI的垂直平分线,交盅二于点交四。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等腰三角形》同步练习
一、选择题:(本题共8小题,每小题3分,共24分.下列各题都有代号为A,B,C,D的四个结论供选择,其中只有一个结论是正确的)
1.在△ABC中,AB=AC,∠A=36度,BD平分∠ABC交AC于D,则图中共有等腰三角形的个数是( )
A.1 B.2 C.3 D.4
2.下列说法中,正确的有( )
①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形.
A.1个B.2个 C.3个D.4个
3.如果△ABC的∠A,∠B的外角平分线分别平行于BC,AC,则△ABC是( )
A.等边三角形D.等腰三角形 C. 直角三角形D.等腰直角三角形
4.如图,把一张对边平行的纸条如图折叠,重合部分是(
)
E
D
C
B
(第4题) (第6题)
A. 等边三角形 B .等腰三角形 C. 直角三角形 D .无法确定 5.已知∠AOB =30°,点P 在∠AOB 的内部.P'与P 关于OB 对称,P"与P 关于OA 对称,则O ,P'P"三点所构成的三角形是 ( )
A. 直角三角形 B .钝角三角形 C. 等腰三角形 D .等边三角形 6.如图2,在△ABC 中,∠C =90°,DE 垂直平分AB 于E ,交AC 于D ,AD =2BC ,则∠A 等于( )
A .15°
B .25°
C . 30°
D . 35°
7.在平面直角坐标系xOy 中,已知A(2,-2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点有 ( )
A .2个 D .3个 C .4个 D .5个
8.如图,在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( )
(1)
36︒
C B
A
(2)
45︒
B
A
(3)
90︒
C B
A
108︒
(4)
C
B
A
A .(1)(2)(3)
B .(1)(2)(4) C. (2)(3)(4) D .(1)(3)(4)
二、填空题:(本题共8小题,每小题3分,共24分.把最后结果填在题中横线上) 9.已知等腰三角形的两边长是1cm 和2cm ,则这个等腰三角形的周长为_______cm .
10.三角形三内角的度数之比为1∶2∶3,最大边的长是8cm ,则最小边的长是
_______cm .
11.如图,∠A =15°,AB =BC=CD=DE =EF ,则∠GEF=_______.
G
E
C
A
E D C
B
A
(第11题) (第13题)
12.等腰三角形的底边长为6cm ,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm ,那么这个等腰三角形的腰长是_______.
13.如图,已知在△ABC 中,BC =8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于_______.
14.已知:如图,△ABC 是等边三角形,BD 是中线,延长BC 到E ,使CE=CD ,不添辅助线,请你写出三个正确结论(1)______________;(2)______________;(3)______________.
D
A
(第14题) (第15题) 15。

正三角形给人以“稳如泰山”的美感,它具有独特的对称性,请你用不同的分割方法,把下图中的两个正三角形分别分割成四个等腰三角形.(标出必要角度)
16.如图,上午8时,一条船从A 处出发,以15海里/时的速度向正北航行,10时到达B 处,从A 、B 望灯塔C ,测得∠NAC =42°,∠NBC=84°,则从B 处到灯塔C 的距离_______.

N C
B
三、解答题:(本题共5小题,17~20题,每小题10分,21题12分,共52分) 17。

如图,DE 是△ABC 的边AB 的垂直平分线,分别交AB 、BC 于D ,E ,AE 平分∠BAC ,若∠B=30°,求∠C 的度数.
30
E
D
C
B
A
18.如图,点D 、E 在△ADC 的边BC 上,AD=AE ,BD =EC ,求证:AB=AC .
E D
C
B A
19.如图,AB =AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点, (1)求证:AF 垂直于CD .
(2)在你连接BE 后,还能得出什么新的结论?请写出三个.(不要求证明)
F E
B
A
20.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所
中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受影响?请说明理由.
P
N
M
A
21.已知:如图,△ABC 为正三角形,D 是BC 延长线上一点,连结AD ,以AD 为边作等边三角形ADE ,连结CE ,用你学过的知识探索AC 、CD 、CE 三条线段的长度有何关系?试写出探求过程.
E
D
B
A
答案:。

相关文档
最新文档