【复习必备】2018高中数学 第2章 推理与证明章末检测(B)苏教版选修1-2

合集下载

2018_2019学年高中数学第二章推理与证明章末复习课件苏教版选修1_220190107499

2018_2019学年高中数学第二章推理与证明章末复习课件苏教版选修1_220190107499

答案
(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,
甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的
卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的 1和3 数字之和不是5”,则甲的卡片上的数字是________. 解析 由题意可知丙不拿2和3. 若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意; 若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意. 故甲的卡片上的数字是1和3.
内部文件,请勿外传
内部文件,请勿外传
解析
1 1 1 1 分析式子 , , , ,…的规律, 2×4 4×6 6×8 8×10
可得分子均为1,分母为连续相邻的两个偶数
解析
答案
4.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个 方程x3+ax+b=0没有实根 实根”时,要做的假设是________________________.
2 3 1 2 2 1 3 3
1 2 2
1 3 3
.

只需证(x2+y2)3>(x3+y3)2,
只需证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,
只需证3x4y2+3x2y4>2x3y3.
又x>0,y>0,∴x2y2>0,
∴只需证3x2+3y2>2xy.
∵3x2+3y2>x2+y2≥2xy,∴3x2+3y2>2xy成立, 故
因为①式左边=2cos(α-β)sin α-sin[(α-β)+α]

=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α

【复习必备】2018高中数学 第2章 推理与证明 2.1.3 推理案例赏析(1)学案 苏教版选修1-2

【复习必备】2018高中数学 第2章 推理与证明 2.1.3 推理案例赏析(1)学案 苏教版选修1-2

2.1.3 推理案例赏析[学习目标] 1.通过对具体的数学思维过程的考察,进一步认识合情推理和演绎推理的作用、特点以及两者之间的联系.2.尝试用合情推理和演绎推理研究某些数学问题,提高分析问题、探究问题的能力.[知识链接]1.归纳推理的结论是否正确?它在数学活动中有什么作用?答 归纳推理的结论具有猜测的性质,结论不一定正确;它可以为数学活动的结论提供目标和方向. 2.类比推理的结论是否一定正确?答 从类比推理的思维过程可以看出:类比的前提是观察、比较和联想,其结论只是一种直觉的、经验式的推测,它还只是一种猜想,结论的正确与否,有待于进一步论证. 3.合情推理与演绎推理有何异同之处?答 合情推理是从特殊到一般,思维开放,富于创造性,但结论不一定正确,是一种或然推理.演绎推理是从一般到特殊,思维收敛,较少创造性,当前提和推理形式都正确时,结论一定正确,是一种必然推理.合情推理为演绎推理确定了目标和方向,而演绎推理又论证了合情推理结论的正误,二者相辅相成,相互为用,共同推动着发现活动的进程. [预习导引] 1.数学活动与探索数学发现活动是一个探索创造的过程,是一个不断地提出猜想、验证猜想的过程. 2.合情推理和演绎推理的联系在数学活动中,合情推理具有提出猜想、发现结论、提供思路的作用,演绎推理为合情推理提供了前提,对猜想作出“判决”或证明,从而为调控探索活动提供依据.要点一 运用归纳推理探求结论例1 已知数列的前4项为32,1,710,917,试写出这个数列的一个通项公式.解 把已知4项改写为32,55,710,917,记此数列的第n 项为a n ,则有a 1=2×1+112+1,a 2=2×2+122+1,a 3=2×3+132+1,a 4=2×4+142+1,…. 据此猜测a n =2n +1n 2+1.规律方法 运用归纳推理猜测一般结论,关键在于挖掘事物的变化规律和相互关系,可以对式子或命题进行适当转换,使其中的规律明晰化.跟踪演练1 下列各图均由全等的小等边三角形组成,观察规律,归纳出第n 个图形中小等边三角形的个数为________.答案 n 2解析 前4个图中小等边三角形的个数分别为1,4,9,16. 猜测:第n 个图形中小等边三角形的个数为n 2. 要点二 运用类比推理探求结论例2 Rt △ABC 中,∠C =90°,CD ⊥AB 于D ,则BC 2=BD ·BA (如图甲).类比这一定理,在三条侧棱两两垂直的三棱锥P -ABC (如图乙)中,可得到什么结论?解 如图,在三棱锥P -ABC 中,作PO ⊥平面ABC ,连结OB ,OC ,猜想下列结论:S 2△PBC =S △OBC ·S △ABC .证明:连结AO ,并延长交BC 于D ,连结PD .PA ⊥PB ,PA ⊥PC ⇒PA ⊥平面PBC .∵PD ⊂平面PBC ,BC ⊂平面PBC ,∴PA ⊥PD ,PA ⊥BC .∵PO ⊥平面ABC ,AD ⊂平面ABC ,BC ⊂平面ABC , ∴PO ⊥AD ,PO ⊥BC .∴BC ⊥平面PAD . ∴BC ⊥AD ,BC ⊥PD .S 2△PBC =(12BC ·PD )2=14BC 2·PD 2,S △OBC ·S △ABC =12BC ·OD ·12BC ·AD=14BC 2·OD ·AD . ∵PD 2=OD ·AD , ∴S 2△PBC =S △OBC ·S △ABC .规律方法 在类比推理中,要提炼两类事物的共同属性.一般而言,提炼的共同属性越本质,则猜想的结论越可靠.跟踪演练2 如图,设△ABC 中,BC =a ,AC =b ,AB =c ,BC 边上的高AD =h .扇形A 1B 1C 1中,=l ,半径为R ,△ABC 的面积可通过下列公式计算:(1)S =12ah ;(2)S =12bc sin ∠BAC .运用类比的方法,猜想扇形A 1B 1C 1的面积公式,并指出其真假.(1)________________________________________________________________________; (2)________________________________________________________________________. 答案 (1)S =12lR 真命题(2)S =12R 2sin A 1 假命题要点三 运用演绎推理证明结论的正确性例3 在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)求证数列{a n -n }是等比数列; (2)求数列{a n }的前n 项和S n ;(3)求证不等式S n +1≤4S n 恒成立(n ∈N *).11B C(1)证明 由a n +1=4a n -3n +1, 得a n +1-(n +1)=4(a n -n ),n ∈N *. ∴a n +1-(n +1)a n -n=4 (n ∈N *).∴数列{a n -n }是以a 1-1,即2-1=1为首项,以4为公比的等比数列. (2)解 由(1)可知a n -n =4n -1,∴a n =n +4n -1.∴S n =a 1+a 2+…+a n=(1+40)+(2+41)+…+(n +4n -1) =(1+2+…+n )+(1+4+…+4n -1)=n (n +1)2+13·4n-13. (3)证明 由(2)知,S n +1-4S n =(n +1)(n +2)2+13·4n +1-13-4[n (n +1)2+13·4n -13]=(n +1)(n +2)2-2n (n +1)+1=-(n -1)(3n +4)2≤0,∴S n +1≤4S n 恒成立(n ∈N *).规律方法 演绎推理的一般形式是三段论,证题时要明确三段论的大前提、小前提和结论,写步骤时常省略大前提或小前提.跟踪演练3 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). ∴y =f (x )为R 上的单调增函数.1.一个数列的第2项到第4项分别是3,15,21,据此可以猜想这个数列的第一项是________. 答案3解析 ∵a 2=9=6×2-3,a 3=15=6×3-3, a 4=21=6×4-3,∴猜想a 1=6×1-3= 3.2.在平面中,圆内接平行四边形一定是矩形.运用类比,可猜想在空间有如下命题:________________________________________________________________________. 答案 球内接平行六面体一定是长方体3.设x i >0 (i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…类比上述结论,对于n 个正数x 1,x 2,…,x n ,猜想有下述结论________________________________. 答案 x 1+x 2+…+x n ≥n nx 1x 2…x n4.已知a ,b ∈N *,f (a +b )=f (a )f (b ),f (1)=2,则f (2)f (1)+f (3)f (2)+…+f (2015)f (2014)=________. 答案 4028解析 令b =1,则f (a +1)=f (a )f (1), ∴f (a +1)f (a )=f (1)=2. ∴f (2)f (1)+f (3)f (2)+…+f (2015)f (2014)=2+2+…+2=2×2014=4028.1.数学活动中,合情推理和演绎推理相辅相成,共同推动发现活动的进程.2.合情推理中要对已有事实进行分析,作出猜想,猜想的结论为演绎推理提供了目标和方向.一、基础达标1.有两种花色的正六边形地板砖,按下面的规律拼成若干个图案,则第6个图案中有底纹的正六边形的个数是________.答案 31解析 有底纹的正六边形的个数组成等差数列a 1=6,d =5,∴a 6=6+(6-1)×5=31.2.观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,… 由此猜测第n 个等式为________________________________________________________________________(n ∈N *). 答案 1+12+13+…+12n -1>n23.已知数列{a n }的前n 项和为S n ,且S n =n 2+1.则此数列的前4项分别为a 1=________,a 2=________,a 3=________,a 4=________.据此猜测,数列{a n }的通项公式为a n =______________________.答案 2 3 5 7 ⎩⎪⎨⎪⎧2,n =12n -1,n ≥24.正方形ABCD 中,对角线AC ⊥BD .运用类比的方法,猜想正方体ABCD -A 1B 1C 1D 1中,相关结论:______________________. 答案 对角面AA 1C 1C ⊥面BB 1D 1D5.如果函数f (x )是奇函数,那么f (0)=0.因为函数f (x )=1x是奇函数,所以f (0)=0.这段演绎推理错误的原因是__________________. 答案 大前提错误6.已知△ABC 中,AD ⊥BC 于D ,三边是a ,b ,c ,则有a =c cos B +b cos C ;类比上述推理结论,写出下列条件下的结论:四面体P -ABC 中,△ABC ,△PAB ,△PBC ,△PCA 的面积分别是S ,S 1,S 2,S 3,二面角P -AB -C ,P -BC -A ,P -AC -B 的度数分别是α,β,γ,则S =__________________________. 答案 S 1cos α+S 2cos β+S 3cos γ7.已知等式:3tan30°·tan30°+tan30°+tan30°=3, 3tan20°·tan40°+tan20°+tan40°=3, 3tan15°·tan45°+tan15°+tan45°= 3. 据此猜想出一个一般性命题,并证明你的猜想. 解 猜想:3tan α·tan β+tan α+tan β=3, 其中α+β=60°.证明:∵tan(α+β)=tan α+tan β1-tan α·tan β,即3=tan α+tan β1-tan α·tan β.整理,得3tan α·tan β+tan α+tan β= 3. 二、能力提升8.已知等式:(tan5°+1)(tan40°+1)=2;(tan15°+1)·(tan30°+1)=2;(tan25°+1)(tan20°+1)=2.据此可猜想出一个一般性命题:________________________________________________________________________. 答案 (tan α+1)[tan(45°-α)+1]=29.设M 是具有以下性质的函数f (x )的全体:对于任意s >0,t >0,都有f (s )+f (t )<f (s +t ).给出函数f 1(x )=log 2x ,f 2(x )=2x-1.下列判断正确的是________. ①f 1(x )∈M ;②f 1(x )∉M ;③f 2(x )∈M ;④f 2(x )∉M . 答案 ②③解析 对于f 1(x )=log 2x ;log 22+log 24>log 2(2+4),所以f 1(x )∉M .对于f 2(x )=2x-1:2s-1+2t-1-(2s +t-1)=-(2s -1)(2t-1)<0,f 2(x )∈M .10.已知命题:平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在椭圆x 2m 2+y 2n2=1(m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e .将该命题类比到双曲线中,给出一个命题:________________________________________________________________________ ________________________________________________________________________.答案 平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在双曲线x 2m 2-y 2n 2=1(m ,n >0,p =m 2+n 2)上,双曲线的离心率为e ,则|sin A -sin C |sin B =1e11.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律. 解 (1)∵a 1=5,d =2, ∴S n =5n +n (n -1)2×2=n (n +4).(2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n . ∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39,T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21, S 4=4×(4+4)=32,S 5=5×(5+4)=45.由此可知S 1=T 1,当2≤n ≤5,n ∈N 时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .12.在平面中有命题:等腰三角形底边上任一点到两腰距离之和等于一腰上的高.把此结论类比到空间的正三棱锥,猜想并证明相关结论.解 猜想结论:正三棱锥底面上任一点到三个侧面的距离之和等于以侧面为底时三棱锥的高.证明如下:设P 为正三棱锥A -BCD 底面上任一点,点P 到平面ABC ,ACD ,ABD 的距离分别为h 1,h 2,h 3,以侧面ABC 为底时对应的高为h ,则: V P -ABC +V P -ACD +V P -ABD =V D -ABC .即:13S △ABC ·h 1+13S △ACD ·h 2+13S △ABD ·h 3=13S △ABC ·h . ∵S △ABC =S △ACD =S △ABD ,∴h 1+h 2+h 3=h ,此即要证的结论. 三、探究与创新13.记S n 为数列{a n }的前n 项和,给出两个数列: (Ⅰ)5,3,1,-1,-3,-5,-7,… (Ⅱ)-14,-10,-6,-2,2,6,10,14,18,…(1)对于数列(Ⅰ),计算S 1,S 2,S 4,S 5;对于数列(Ⅱ),计算S 1,S 3,S 5,S 7;(2)根据上述结果,对于存在正整数k ,满足a k +a k +1=0的这一类等差数列{a n }的和的规律,猜想一个正确的结论,并加以说明.解 (1)对于数列(Ⅰ),S 1=S 5=5,S 2=S 4=8;对于数列(Ⅱ),S 1=S 7=-14,S 3=S 5=-30. (2)对于等差数列{a n },当a k +a k +1=0时,猜想S n =S 2k -n (n ≤2k ,n ,k ∈N *). 下面给出证明:设等差数列{a n }的前项为a 1,公差为d . ∵a k +a k +1=0,∴a 1+(k -1)d +a 1+kd =0, ∴2a 1=(1-2k )d .又S 2k -n -S n =(2k -n )a 1+(2k -n )(2k -n -1)2d -na 1-n (n -1)2d=[(k -n )(1-2k )+(2k -n )(2k -n -1)2-n (n -1)2]d =0.∴S 2k -n =S n ,猜想正确.。

2018年高中数学第2章推理与证明章末小结与测评学案苏教版选修1_2

2018年高中数学第2章推理与证明章末小结与测评学案苏教版选修1_2

第2章推理与证明一、合情推理和演绎推理1.归纳和类比是常用的合情推理,都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理.从推理形式上看,归纳是由部分到整体,个别到一般的推理,类比是由特殊到特殊的推理,演绎推理是由一般到特殊的推理.2.从推理所得结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确.从二者在认识事物的过程中所发挥作用的角度考虑,它们又是紧密联系,相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得.合情推理可以为演绎推理提供方向和思路.二、直接证明和间接证明1.直接证明包括综合法和分析法:(1)综合法是“由因导果”.它是从已知条件出发,顺着推证,用综合法证明命题的逻辑关系是:A⇒B1⇒B2⇒…⇒B n⇒B(A为已经证明过的命题,B为要证的命题).它的常见书面表达是“∵,∴”或“⇒”.(2)分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,包括学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B⇐B1⇐B2⇐…⇐B n⇐A.它的常见书面表达是“要证……只需……”或“⇐”.2.间接证明主要是反证法:反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法,反证法是间接证明的一种方法.反证法主要适用于以下两种情形:(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.(考试时间:120分钟试卷总分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.(新课标Ⅰ卷)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A城市和C城市,乙去过A城市或C城市,结合乙的回答可得乙去过A城市.答案:A2.周长一定的平面图形中圆的面积最大,将这个结论类比到空间,可以得到的结论是________________________________________________________________________.解析:平面图形中的图类比空间几何体中的球,周长类比表面积,面积类比体积.故可以得到的结论是:表面积一定的空间几何体中,球的体积最大.答案:表面积一定的空间几何体中,球的体积最大3.下列说法正确的是________.(写出全部正确命题的序号)①演绎推理是由一般到特殊的推理②演绎推理得到的结论一定是正确的③演绎推理的一般模式是“三段论”形式 ④演绎推理得到的结论的正误与大、小前提和推理形式有关解析:如果演绎推理的大前提和小前提都正确,则结论一定正确.大前提和小前提中,只要有一项不正确,则结论一定也不正确.故②错误.答案:①③④4.(陕西高考)观察分析下表中的数据:猜想一般凸多面体中F ,V ,E 所满足的等式是_________________.解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F +V -E =2.答案:F +V -E =25.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=⎝ ⎛⎭⎪⎫S 1S 2·h 1h 2=14×12=18.答案:1∶86.设函数f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.解析:∵f (x )=12x+2,f (1-x )=121-x +2=2x2+2·2x =12·2x2+2x .∴f (x )+f (1-x )=1+12·2x2+2x=22, 发现f (x )+f (1-x )正好是一个定值, ∴2S =22×12.∴S =3 2.答案:3 27.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的一个性质为________________________________________________________________________.解析:正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心,故可猜想:正四面体的内切球切于四个侧面各正三角形的中心.答案:正四面体的内切球切于四个侧面各正三角形的中心8.已知x ,y ∈R +,当x 2+y 2=________时,有x 1-y 2+y 1-x 2=1. 解析:要使x 1-y 2+y 1-x 2=1, 只需x 2(1-y 2)=1+y 2(1-x 2)-2y 1-x 2, 即2y 1-x 2=1-x 2+y 2. 只需使(1-x 2-y )2=0, 即1-x 2=y ,∴x 2+y 2=1. 答案:19.设数列{a n }的前n 项和为S n ,令T n =S 1+S 2+…+S nn,称T n 为数列a 1,a 2,…,a n 的“理想数”.已知数列a 1,a 2,…,a 500的“理想数”为2 004,那么数列3,a 1,a 2,…,a 500的“理想数”为________.解析:由题意知T 500=2 004=S 1+S 2+…+S 500500,则T 501=3+(S 1+3)+(S 2+3)+…+(S 500+3)501=500×2 004+3×501501=2 003.答案:2 003 10.如图,在平面直角坐标系xOy 中,圆x 2+y 2=r 2(r >0)内切于正方形ABCD ,任取圆上一点P ,若OP ―→=mOA ―→+nOB ―→ (m ,n ∈R ),则14是m 2,n 2的等差中项;现有一椭圆x 2a 2+y 2b2=1(a >b >0)内切于矩形ABCD ,任取椭圆上一点P ,若OP ―→=mOA ―→+nOB ―→ (m ,n ∈R ),则m 2,n 2的等差中项为________.解析:如图,设P (x ,y ),由x 2a 2+y 2b2=1知A (a ,b ),B (-a ,b ),由OP ―→=mOA ―→+nOB ―→可得⎩⎪⎨⎪⎧x =(m -n )a ,y =(m +n )b ,代入x 2a 2+y 2b 2=1可得(m -n )2+(m +n )2=1,即m 2+n 2=12,所以m 2+n 22=14,即m 2,n 2的等差中项为14.答案:1411.(安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝ ⎛⎭⎪⎫226=14.法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n ,故a 7=2×⎝ ⎛⎭⎪⎫226=14.答案:1412.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +axn ≥n +1,则a 的值为________.解析:由x +1x ≥2,x +4x 2=x +22x 2≥3,x +27x 3=x +33x 3≥4,…,可推广为x +nnxn ≥n +1,故a =n n.答案:n n13.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n 个图形中共有______________个顶点.解析:设第n 个图形中有a n 个顶点, 则a 1=3+3×3,a 2=4+4×4,…,a n -2=n +n ·n ,a n =(n +2)2+n +2=n 2+5n +6.答案:n 2+5n +614.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n ,3)=12n 2+12n ,正方形数 N (n ,4)=n 2, 五边形数 N (n ,5)=32n 2-12n ,六边形数 N (n ,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.解析:N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列;数列{b k }是以12为首项,-12为公差的等差数列;所以N (n ,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.答案:1 000二、解答题(本大题共6小题,共90分)15.(本小题满分14分)设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8.证明:∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab ≥4⎝ ⎛⎭⎪⎫当a =12,b =12时等号成立,又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥4.(当a =12,b =12时等号成立)∴1a +1b +1ab≥8.16.(本小题满分14分)已知数列{a n }满足a 1=1,a n +a n +1=⎝ ⎛⎭⎪⎫15n(n ∈N *),若T n =a 1+a 2·5+a 3·52+…+a n ·5n -1,b n =6T n -5na n ,类比课本中推导等比数列前n 项和公式的方法,求数列{b n }的通项公式.解:因为T n =a 1+a 2·5+a 3·52+…+a n ·5n -1,①所以5T n =a 1·5+a 2·52+a 3·53+…+a n -1·5n -1+a n ·5n,②由①+②得:6T n =a 1+(a 1+a 2)·5+(a 2+a 3)·52+…+(a n -1+a n )·5n -1+a n ·5n=1+15×5+⎝ ⎛⎭⎪⎫152×52+…+⎝ ⎛⎭⎪⎫15n -1×5n -1+a n ·5n=n +a n ·5n, 所以6T n -5n a n =n ,所以数列{b n }的通项公式为b n =n .17.(本小题满分14分)观察 ①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两式的结构规律,你能否提出一个猜想?并证明你的猜想. 解:观察40°-10°=30°,36°-6°=30°,由此猜想:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34.证明:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=sin 2α+cos 2(30°+α)+sin α(cos 30°cos α-sin 30°sin α) =sin 2α+cos 2(30°+α)+32sin αcos α-12sin 2α=12sin 2α+cos 2(30°+α)+34sin 2α =1-cos 2α4+1+cos (60°+2α)2+34sin 2α =1-cos 2α4+12+14cos 2α-34sin 2α+34sin 2α =34. 18.(本小题满分16分)若a >b >c >d >0且a +d =b +c ,求证:d +a <b +c . 证明:要证d +a <b +c ,只需证(d +a )2<(b +c )2,即a +d +2ad <b +c +2bc .因a +d =b +c ,则只需证ad <bc ,即证ad <bc .设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )·(c +d -t )<0. 故ad <bc 成立,从而d +a <b +c 成立.19.(本小题满分16分)设f (x )=3ax 2+2bx +c ,已知a +b +c =0,f (0)>0,f (1)>0.求证:(1)a >0,且-2<b a<-1;(2)方程f (x )=0在(0,1)内有两个实数根.证明:(1)因为a +b +c =0,f (0)=c >0,f (1)=3a +2b +c =2a +b >0, 而b =-a -c ,则a -c >0,所以a >c >0. 又2a >-b ,所以-2<b a,而a +b <0,则b a <-1,因此有-2<b a<-1.(2)Δ=(2b )2-12ac =4[(a +c )2-3ac ]=4⎝ ⎛⎭⎪⎫a -12c 2+3c 2,则Δ>0,f (x )的对称轴为x =-b 3a ,由(1)可得13<-b 3a <23,又f (0)>0,f (1)>0且a >0,故方程f (x )=0在(0,1)内有两个实数根. 20.(本小题满分16分)已知数列{a n }满足a 1=12,2a n +1=a n a n +1+1.(1)猜想数列{a n }的通项公式(不用证明);(2)已知数列{b n }满足b n =(n +1)a n +2,求证:数列{b n }中的任意不同的三项都不可能成等比数列.证明:(1)由条件可得:a 1=12,a 2=23,a 3=34,……猜想:a n =nn +1.(2)由(1)可知:b n =n + 2.假设数列{b n }中存在不同的三项b p ,b q ,b r 使其成等比数列,则b 2q =b p ·b r ,即(q +2)2=(p +2)(r +2),则有q 2+2+22q =pr +2+2(p +r ), 化简得q 2+22q =pr +2(p +r ).因为p ,q ,r ∈N *,所以有⎩⎪⎨⎪⎧q 2=pr ,2q =p +r ,消去q 得(p +r )2=4pr ,即(p -r )2=0,所以p=r .这与假设b p ,b q ,b r 为不同的三项矛盾,所以数列{b n }中的任意不同的三项都不可能成等比数列.。

高中数学 第二章 推理与证明单元测试 苏教版选修1-21

高中数学 第二章 推理与证明单元测试 苏教版选修1-21

第2章推理与证明单元检测一、填空题1.用反证法证明命题“若a2+b2=0,则a,b全为0(a,b∈R)”,其反设是__________.2.周长一定的平面图形中圆的面积最大,将这个结论类比到空间,可以得到的结论是________.3.下列说法正确的是__________.(写出所有正确命题的序号)①演绎推理是由一般到特殊的推理②演绎推理得到的结论一定是正确的③演绎推理的一般模式是“三段论”形式④演绎推理得到的结论的正误与大、小前提和推理形式有关4.对于等差数列{a n}有如下命题:“若{a n}是等差数列,a1=0,s,t是互不相等的正整数,则有(s-1)a t-(t-1)a s=0”.类比此命题,给出等比数列{b n}相应的一个正确命题:“__________________________________________”.5.若P=Q=a≥0),则P,Q的大小关系是__________.6.补充下列证明过程:要证a2+b2+c2≥ab+bc+ac,即证____________________,即证________________________________________________________________________.7.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为____________________.8.已知x,y为正数,当x2+y2=________时,有1=.9.一个等差数列{a n},其中a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(1≤n<19,n∈N*).一个等比数列{b n},其中b15=1.类比等差数列{a n},下列结论中,正确的是________.(填序号)①b1·b2·…·b n=b1·b2·…·b29-n(1≤n<29,n∈N*)②b1·b2·…·b n=b1·b2·…·b29-n③b1+b2+…+b n=b1+b2+…+b29-n(1≤n<29,n∈N*)④b1+b2+…+b n=b1+b2+…+b29-n10.已知不等边三角形的三边按从小到大的顺序排列成等比数列,则公比q的取值范围是________.,f(x+2)=f(x)+f(2),则f(5)=________.11.设f(x)为奇函数,f(1)=1212.(2012湖北高考,文17)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 012是数列{a n }中的第______项;(2)b 2k -1=______.(用k 表示)二、解答题13.已知0<a <1,求证:1491a a+≥-. 14.2012福建高考,文20)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.x x -+(a>1),用反证法证明方程f(x)=0没有负数根.15.已知函数f(x)=a x+21参考答案1.答案:a,b至少有一个不为02.答案:表面积一定的空间几何体中球的体积最大3.答案:①③④4.答案:若{b n}是等比数列,b1=1,s,t是互不相等的正整数,则有111 sttsbb--=5.答案:P<Q解析:假设P<Q,∵要证P<Q,只要证P2<Q2,只要证:2a+7+2a+7+只要证:a2+7a<a2+7a+12,只要证:0<12,∵0<12成立,∴P<Q成立6.答案:2(a2+b2+c2)≥2ab+2bc+2ac(a-b)2+(b-c)2+(a-c)2≥07.答答案:a n=3n-18.答案:1 解析:要使1=,只需x2(1-y2)=1+y2(1-x2)-2即21-x2+y2.只需使y)2=0,y,∴x2+y2=1.9.答案:①解析:等差数列{a n}中,a10=0,知以a10为等差中项的项和为0,如a9+a11=a8+a12=…=a2+a18=a1+a19=0.而等比数列{b n}中b15=1,类比,有b1b29=b2b28=…=b14b16=1.从而类似的总结规律应为各项之积.∵等差数列{a n}中,a10=0,∴a1+a19=a2+a18=…=a8+a12=a9+a11=0,即a 19-n +a n +1=0,a 18-n +a n +2=0,a 17-n +a n +3=0,…∴等比数列{b n }中,b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1,即b 29-n ·b n +1=1,b 28-n ·b n +2=1,…,从而比较知①正确.10. 答案:1<q解析:设三角形的三边长为a ,b ,c ,且a <b <c , 则b =aq ,c =aq 2.∴22.a aq aq a aq aq ⎧<<⎨+>⎩, ∵a >0,∴1<q<12. 11.答案:52 解析:∵f (1)=12,f (x )为奇函数, ∴f (-1)=-f (1)=12-,f (0)=0. ∵f (x +2)=f (x )+f (2),∴f (1)=f (-1+2)=f (-1)+f (2).∴f (2)=1,f (3)=f (1+2)=f (1)+f (2)=32, f (5)=f (2+3)=f (3)+f (2)=32+1=52. 12.答案:(1)5 030 (2)5512k k (-) 解析:(1)由题意可得,a 1=1,a 2=3,a 3=6,a 4=10,…,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n .以上各式相加得,a n -a 1=2+3+…+n =122n n (-)(+),故12n n n a (+)=.因此,b 1=a 4=10,b 2=a 5=15,b 3=a 9=45,b 4=a 10=55,…,由此归纳出b 2 012=a 5 030.(2)b 1=a 4=452⨯,b 3=a 9=9102⨯,b 5=a 14=14152⨯,…. 归纳出b 2k -1=5512k k (-). 13. 答案:证明:由于0<a <1,∴1-a >0. 要证明1491a a+≥-, 只需证明1-a +4a ≥9a -9a 2,即9a 2-6a +1≥0,只需证明(3a -1)2≥0,∵(3a -1)2≥0显然成立,∴原不等式成立.14. 答案:解法一:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=13144-=. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+2sin αcos α+14sin 2α-2sin αcos α-12sin 2α =34sin 2α+34cos 2α=34. 解法二:(1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1cos21cos(602)22αα-+︒-+-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-2sin αcos α-12sin2α=12-12cos 2α+12+14cos 2α+4sin 2α-4sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.15.答案:证法一:假设方程f(x)=0有负数根,设存在x0<0(x0≠-1),满足f(x0)=0,则0002 1x xax -=-+.又0<0x a<1,所以0<002 1x x --+<1,即12<x0<2.与假设x0<0矛盾,故方程f(x)=0没有负数根.证法二:假设方程f(x)=0有负数根,设存在x0<0(x0≠-1),满足f(x0)=0.(1)若-1<x0<0,则002 1x x -+<-2,0x a<1,所以f(x0)<-1,与f(x0)=0矛盾.(2)若x0<-1,则002 1x x -+>0,0x a>0,所以f(x0)>0,与f(x0)=0矛盾.故方程f(x)=0没有负数根.1。

高中数学 第2章 推理与证明章末复习课课件 苏教版选修1-2.pptx

高中数学 第2章 推理与证明章末复习课课件 苏教版选修1-2.pptx
第2章 推理与证明
章末复习课
1
学习目标
1.了解合情推理的含义,能利用归纳、类比进行简单的推理. 2.了解直接证明的两种基本方法:分析法和综合法,并会利用分析法 和综合法证明简单的问题. 3.了解反证法的思想,并能灵活应用.
2
内容索引
知识梳理 题型探究 当堂训练
3
知识梳理
4
1.合情推理 (1)归纳推理 ①定义:从个别事实中推演出 一般性 的结论的推理称为归纳推理.归纳推 理的思维过程大致是:实验、观察 →概括、推广→ 猜测一般性结论 . ②特点:由 部分 到整体、由个别 到一般的推理. (2)类比推理 ①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它 们在其他方面也相似或相同,像这样的推理通常称为类比推理.类比推理 的思维过程为:观察、比较 → 联想、类推 → 猜测新的结论 . ②特点:类比推理是由 特殊 到 特殊 的推理.
24
1
1
跟踪训练2 已知x>0,y>0,求证:(x2+y2)2 >(x3+y3)3.
1
1
证明 要证明(x2+y2)2>(x3+y3)3,
只需证(x2+y2)3>(x3+y3)2.
只需证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,
只需证3x4y2+3x2y4>2x3y3.
又x>0,y>0,∴x2y2>0,
5
(3)合情推理 合情推理是根据 已有的事实、 正确的结论、 实验和实践的结果, 以及个人的 经验 和直觉等推测某些结果的推理过程. 归纳推理 和
类比推理 都是数学活动中常用的合情推理. 2.演绎推理 (1)演绎推理 由一般性的命题推演出特殊性命题的推理方法叫演绎推理.简言之, 演绎推理是由 一般到特殊的推理.

苏教版高中数学高二选修1-2课件 第2章《推理与证明》章末复习

苏教版高中数学高二选修1-2课件 第2章《推理与证明》章末复习

章末复习提升
4
2.演绎推理与合情推理不同,是由一般到特殊的推理,是 数学中证明的基本推理形式.也是公理化体系所采用的推 理形式,另一方面,合情推理与演绎推理又是相辅相成的, 前者是后者的前提,后者论证前者的可靠性.
章末复习提升
5
3.直接证明和间接证明是数学证明的两类基本证明方法.直接 证明的两类基本方法是综合法和分析法:综合法是从已知条 件推导出结论的证明方法;分析法是由结论追溯到条件的证 明方法,在解决数学问题时,常把它们结合起来使用,间接 证法的一种方法是反证法,反证法是从结论反面成立出发, 推出矛盾的证明方法.
第2章——
章末复习提升
1 知识网络 2 要点归纳 3 题型研修
系统盘点,提炼主干 整合要点,诠释疑点 突破重点,提升能力
知识网络
章末复习提升
系统盘点,提炼主干
3
要点归纳
整合要点,诠释疑点
1.归纳和类比都是合情推理,前者是由特殊到一般,部分 到整体的推理,后者是由特殊到特殊的推理,但二者都能 由已知推测未知,都能用于猜想,推理的结论不一定为真, 有待进一步证明.
章末复习提升
30
2.使用反证法证明问题时,常见的“结论词”与“反设词” 列表如下:
原结论词 反设词
原结论词
反设词
至少有一个 一个也没有 对所有x成立 存在某个x不成立
至多有一个 至少有两个 对任意x不成立 存在某个x成立
章末复习提升
31
至少有n个 至多有n-1个
p或q
至多有n个
n+1个
p且q
¬p且¬ q ¬p或 ¬q
章末复习提升
21
反证法是高中数学的一种重要的证明方法,在不等式和立
体几何的证明中经常用到,在高考题中也经常体现,它所 反映出的“正难则反”的解决问题的思想方法更为重要.反

2017-2018版高中数学第2章推理与证明章末复习课学案苏教版选修1_2

2017-2018版高中数学第2章推理与证明章末复习课学案苏教版选修1_2

第2章推理与证明学习目标 1.了解合情推理的含义,能利用归纳进行简单的推理.2.了解合情推理的含义,能利用类比进行简单的推理.3.了解直接证明的两种基本方法:分析法和综合法,并能利用分析法和综合法证明简单的问题.4.了解反证法的思想,并能灵活应用.知识点一合情推理1.归纳推理(1)定义:从个别事实中推演出________的结论的推理称为归纳推理.归纳推理的思维过程大致是:____________→______________→__________________.(2)特点:由________到整体、由________到一般的推理.2.类比推理(1)定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理.类比推理的思维过程为:______________→______________→__________________.(2)特点:类比推理是由________到________的推理.3.合情推理合情推理是根据________________、________________、____________________,以及个人的________和直觉等推测某些结果的推理过程.__________和____________都是数学活动中常用的合情推理.知识点二演绎推理1.演绎推理由一般性的命题推演出特殊性命题的推理方法叫演绎推理.简言之,演绎推理是由________到________的推理.2.“三段论”是演绎推理的一般模式(1)大前提——已知的____________;(2)小前提——所研究的____________;(3)结论——根据一般原理,对____________做出的判断.知识点三直接证明1.综合法(1)定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.(2)推证过程:已知条件⇒…⇒…⇒结论(3)思维过程:由因导果.2.分析法(1)定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件吻合为止,这种证明方法常称为分析法.(2)推证过程:结论⇐…⇐…⇐已知条件(3)思维过程:执果索因.知识点四 间接证明用反证法来证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).类型一 归纳思想例1 已知数列{a n }满足a 1=1,a n a n +1=n n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5,并猜想通项公式a n ;(2)根据(1)中的猜想,有下面的数阵:S 1=a 1,S 2=a 2+a 3,S 3=a 4+a 5+a 6,S 4=a 7+a 8+a 9+a 10,S 5=a 11+a 12+a 13+a 14+a 15.试求S 1,S 1+S 3,S 1+S 3+S 5,并猜想S 1+S 3+S 5+…+S 2n -1的值.反思与感悟 归纳猜想是理性思维的重要体现,是获得发现的源泉.具有共同特征的归纳推理,首先要观察式子的共同结构特点,其次是式子中出现的数字、字母之间的关系,这样便于观察运算规律和结构上的共同点.跟踪训练1 设{a n }是集合{2t +2s|0≤s ≤t ,且s ,t ∈Z }中所有的数从小到大排列的数列,且a 1=3,a 2=5,a 3=6,a 4=9,a 5=10,a 6=12,….将数列{a n }中的各项按照上小下大、左小右大的原则写成如图所示的三角形数表:(1)写出这个三角形数表中的第4行、第5行各数;(2)求出a 100.类型二 类比思想例2 定义“等和数列”,在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫等和数列,这个常数叫该数列的公和.已知数列{a n }为等和数列,且a 1=2,公和为5.那么a 18的值为______,这个数列前n 项和S n 的计算公式为_______________________. 反思与感悟 事物的各个性质之间不是孤立的,而是相互联系相互制约的,等和数列与等差数列之间有着很多类似的性质,利用类比推理可得出等和数列的性质.跟踪训练2 已知面积为S 的凸四边形中,四条边长分别记为a 1,a 2,a 3,a 4,点P 为四边形内任意一点,且点P 到四条边的距离分别记为h 1,h 2,h 3,h 4,若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2S k.类比以上性质,体积为V 的三棱锥的每个面的面积分别记为S 1,S 2,S 3,S 4,此三棱锥内任一点Q 到每个面的距离分别为H 1,H 2,H 3,H 4,若S 11=S 22=S 33=S 44=K ,则H 1+2H2+3H3+4H4=________.类型三正难则反思想例3 已知△ABC中,∠C是直角,求证:∠B一定是锐角.反思与感悟反证法是假设原命题不成立,经过正确的推理,最后推出矛盾,这里得出的矛盾可以是与某个已知条件矛盾,可以是与某个事实、定理、公理相矛盾,也可以是自身相矛盾.反证法的使用范围:唯一性问题,“至少”“至多”问题,问题本身是否定语气提出的问题.跟踪训练3 证明:无论x,y取任何非零实数,等式1x+1y=1x+y总不成立.类型四综合法与分析法例4 已知x,y>0,x+y=1,求证:log2(x2y2+1)-log2x-log2y≥log217-2.反思与感悟 证明问题时,往往利用分析法寻找解题思路,用综合法书写证明过程.跟踪训练4 求证:sin 2α+β sin α-2cos(α+β)=sin βsin α.1.有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1};第二组含两个数{3,5};第三组含三个数{7,9,11};第四组含四个数{13,15,17,19};…,则每组内各数之和f (n )(n ∈N *)与组的编号数n 的关系式为____________.2.已知△ABC 中,AD ⊥BC 于D ,三边是a ,b ,c ,则有a =c cos B +b cos C ;类比上述推理结论,写出下列条件下的结论:四面体P —ABC 中,△ABC ,△PAB ,△PBC ,△PCA 的面积分别是S ,S 1,S 2,S 3,二面角P —AB —C ,P —BC —A ,P —AC —B 的度数分别是α,β,γ,则S =______________________.3.将下列给出的反证法证明过程填写完整.已知a ≠0,证明关于x 的方程ax =b 有且仅有一个根.证明 由于a ≠0,因此方程ax =b 至少有一个根x =b a.假设方程不止一个根,不妨设x 1,x 2是____________,即ax 1=b ,ax 2=b ,所以a (x 1-x 2)=0,因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与________矛盾,故假设错误.所以当a ≠0时,关于x 的方程ax =b 有且仅有一个根.4.若tan(α+β)=2tan α,求证:3sin β=sin(2α+β).直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用.间接证明的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.答案精析问题导学知识点一1.(1)一般性实验、观察概括、推广猜测一般性结论(2)部分个别2.(1)观察、比较联想、类推猜测新的结论(2)特殊特殊3.已有的事实正确的结论实验和实践的结果经验归纳推理类比推理知识点二1.一般特殊2.(1)一般原理(2)特殊情况(3)特殊情况题型探究例1 解(1)因为a1=1,由a na n+1=nn+1知a n+1=n+1n·a n,故a2=2,a3=3,a4=4,a5=5.可归纳猜想出a n=n(n∈N*).(2)根据(1)中的猜想,数阵为:S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,故S1=1=14,S1+S3=1+15=16=24,S1+S3+S5=1+15+65=81=34.可猜想S1+S3+S5+…+S2n-1=n4.跟踪训练1 解(1)第1行:3=21+20;第2行:5=22+20,6=22+21;第3行:9=23+20,10=23+21,12=23+22;由此归纳猜想:第4行:24+20=17,24+21=18,24+22=20,24+23=24;第5行,25+20=33,25+21=34,25+22=36,25+23=40,25+24=48.故第4行各数依次为17,18,20,24;第5行各数依次为33,34,36,40,48.(2)每行中数的个数与行数相同,即第1行1个数,第2行2个数,第3行3个数,……,由n n+12≤100(n∈N*),得n≤13.故前13行共有1+2+3+…+13=91(个)数.因此,a100应当是第14行中第9个数,所以a100=214+28=16 384+256=16 640.例2 3 S n =⎩⎪⎨⎪⎧52n n 为偶数 ,52n -12 n 为奇数解析 ∵{a n }是等和数列,a 1=2,公和为5,∴a 2=3,则a 3=2,a 4=3,知a 2n =3,a 2n -1=2(n ∈N *).∴a 18=3,数列{a n }形如:2,3,2,3,2,3,….∴S n =⎩⎪⎨⎪⎧52n n 为偶数 ,52n -12 n 为奇数 .跟踪训练2 3V K解析 根据三棱锥的体积公式,得13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4=V ,即KH 1+2KH 2+3KH 3+4KH 4=3V ,H 1+2H 2+3H 3+4H 4=3V K .例3 证明 假设∠B 不是锐角,则∠B ≥90°,因此∠C +∠B ≥90°+90°=180°,这与三角形的内角和等于180°矛盾.所以假设不成立.从而∠B 一定是锐角.跟踪训练3 证明 设存在非零实数x 1,y 1,使等式1x 1+1y 1=1x 1+y 1成立,则有y 1(x 1+y 1)+x 1(x 1+y 1)=x 1y 1,∴x 21+y 21+x 1y 1=0,即(x 1+y 12)2+34y 21=0.又∵x 1,y 1≠0,∴(x 1+y 12)2+34y 21>0,从而得出矛盾,故原命题成立.例4 解 方法一 (分析法)∵x ,y >0,∴欲证log 2(x 2y 2+1)-log 2x -log 2y ≥log 217-2,需证log 2x 2y 2+1xy ≥log 2174.∵由于对数的底数为2>1,∴为了证明上式成立,需证x 2y 2+1xy ≥174.由于x ,y >0,于是为了证明上式成立,只需证明4x 2y 2+4≥17xy ,即证4x 2y 2-17xy +4≥0.即证(4xy -1)(xy -4)≥0,即证xy ≤14或xy ≥4.①又∵x ,y >0,x +y =1,∴xy ≤(x +y 2)2=14.∴①式成立,这就证明了log 2(x 2y 2+1)-log 2x -log 2y ≥log 217-2成立.方法二 (综合法)由条件知log 2(x 2y 2+1)-log 2x -log 2y =log 2x 2y 2+1xy .设u = xy 2+1xy ,t =xy .由x +y =1,得xy ≤(x +y 2)2=14,∴t ∈(0,14].∴u = xy 2+1xy =xy +1xy =t +1t ,t ∈(0,14].∵u ′=(t +1t )′=1-1t 2=t2-1t 2<0,t ∈(0,14],∴u =t +1t 在t ∈(0,14]上是减函数,∴u ≥4+14=174.∴log 2u ≥log 2174,∴log 2x 2y 2+1xy ≥log 217-2,即log 2(x 2y 2+1)-log 2x -log 2y ≥log 217-2.跟踪训练4 证明 ∵sin(2α+β)-2cos(α+β)sin α=sin[(α+β)+α]-2cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α-2cos(α+β)sin α=sin(α+β)cos α-cos(α+β)sin α=sin[(α+β)-α]=sin β,两边同除以sin α得sin 2α+β sin α-2cos(α+β)=sin βsin α. 达标检测1.f (n )=n 3解析 由于1=13,3+5=8=23,7+9+11=27=33,13+15+17+19=64=43,…,猜想第n 组内各数之和f (n )与组的编号数n 的关系式为f (n )=n 3.2.S 1cos α+S 2cos β+S 3cos γ3.两不等根 a ≠04.证明 由tan(α+β)=2tan α,得sin α+β cos α+β =2sin αcos α, 即sin(α+β)cos α=2sin αcos(α+β).要证3sin β=sin(2α+β),即证3sin[(α+β)-α]=sin[(α+β)+α],即证3[sin(α+β)cos α-cos(α+β)sin α]=sin(α+β)cos α+cos(α+β)sin α,即证sin(α+β)cos α=2sin αcos (α+β),故3sin β=sin(2α+β).。

近年高中数学第2章推理与证明章末总结练习苏教版选修1-2(2021年整理)

近年高中数学第2章推理与证明章末总结练习苏教版选修1-2(2021年整理)

2018高中数学第2章推理与证明章末总结练习苏教版选修1-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第2章推理与证明章末总结练习苏教版选修1-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第2章推理与证明章末总结练习苏教版选修1-2的全部内容。

第2章推理与证明章末总结知识点一合情推理归纳和类比是常用的合情推理,都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理,从推理形式上看,归纳是由部分到整体,个别到一般的推理,类比是由特殊到特殊的推理.例1在平面上有n条直线,任何两条都不平行,并且任何三条都不交于同一点,问这些直线把平面分成多少部分?例2如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.知识点二演绎推理合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确.从二者在认识事物的过程中所发挥作用的角度考虑,它们又是紧密联系,相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得,合情推理可以为演绎推理提供方向和思路.演绎推理的一般模式是“三段论”.例3已知函数f(x)=ax+bx,其中a>0,b>0,x∈(0,+∞),确定f(x)的单调区间,并证明在每个单调区间上的增减性.知识点三综合法与分析法综合法和分析法是直接证明中的两种最基本的证明方法,但两种证明方法思路截然相反,分析法既可用于寻找解题思路,也可以是完整的证明过程,分析法和综合法可相互转换,相互渗透,充分利用这一辩证关系,在解题中综合法和分析法联合运用,转换解题思路,增加解题途径.例4已知a,b,c均为正实数,且a+b+c=1,求证:错误!错误!错误!≥8。

近年高中数学第2章推理与证明章末复习提升练习苏教版选修1-2(2021年整理)

近年高中数学第2章推理与证明章末复习提升练习苏教版选修1-2(2021年整理)

2018高中数学第2章推理与证明章末复习提升练习苏教版选修1-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第2章推理与证明章末复习提升练习苏教版选修1-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第2章推理与证明章末复习提升练习苏教版选修1-2的全部内容。

第2章推理与证明1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.题型一归纳推理和类比推理归纳推理和类比推理是常用的合情推理,两种推理的结论“合情"但不一定“合理”,其正确性都有待严格证明.尽管如此,合情推理在探索新知识方面有着极其重要的作用.运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳、类比的方法进行探索、猜想,最后用逻辑推理方法进行验证.例1 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=________.答案123解析记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123。

2018年高中数学第2章推理与证明2.2直接证明与间接证明学案苏教版选修1-2

2018年高中数学第2章推理与证明2.2直接证明与间接证明学案苏教版选修1-2

2.2 直接证明与间接证明第1课时直接证明1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式本题条件已知定义已知公理已知定理…?本题结论.2.综合法和分析法直接证明定义推证过程综合法从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件?…?…?结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法结论?…?…?已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[例1] 已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2≥1 3 .[思路点拨] 从已知条件出发,结合基本不等式,即可得出结论.[精解详析] ∵a2+19≥2a3,b2+19≥2b3,c2+19≥2c3,∴a2+19+b2+19+c2+19≥23a+23b+23c=23(a+b+c)=23.∴a2+b2+c2≥1 3 .[一点通] 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a,b,c为不全相等的正数,且abc=1,求证:1a+1b+1c>a+b+c.证明:∵a>0,b>0,c>0,且abc=1,∴1a+1b+1c=bc+ca+ab.又bc+ca≥2bc·ca=2abc2=2c,同理bc+ab≥2b,ca+ab≥2a.∵a、b、c不全相等.∴上述三个不等式中的“=”不能同时成立.∴2(bc+ca+ab)>2(c+a+b),即bc+ca+ab>a+b+c,故1a+1b+1c>a+b+c.2.(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n),因为a⊥b,所以a·b=0,又因为aπ,n⊥π,所以a·n=0,故a·c=0,从而a⊥c.法二:如图,记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.∵PO⊥π,aπ,∴直线PO⊥a.又a⊥b,b平面PAO,PO∩b=P,∴a⊥平面PAO.又c平面PAO,∴a⊥c.(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c 是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.[例2] 已知a>b>0,求证:(a-b)28a<a+b2-ab<(a-b)28b.[思路点拨] 本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析] 要证明(a-b)28a<a+b2-ab<(a-b)28b成立,只需证(a-b)24a<a+b-2ab<(a-b)24b成立,即证(a-b)24a<(a-b)2<(a-b)24b成立.只需证a-b2a<a-b<a-b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通] 在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥ a+b.证明:要证ab+ba≥ a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥ a+b.[例3] 已知0<a≤1,0<b≤1,0<c≤1,求证:1+ab+bc+caa+b+c+abc≥1.[思路点拨] 因为0<a≤1,0<b≤1,0<c≤1,所以要证明1+ab+bc+caa+b+c+abc≥1成立,可转化为证明1+ab+bc+ca≥a+b+c+abc成立.[精解详析] ∵a>0,b>0,c>0,∴要证1+ab+bc+caa+b+c+abc≥1,只需证1+ab+bc+ca≥a+b+c+abc,即证1+ab+bc+ca-(a+b+c+abc)≥0.∵1+ab+bc+ca-(a+b+c+abc)=(1-a)+b(a-1)+c(a-1)+bc(1-a)=(1-a)(1-b-c+bc)=(1-a)(1-b)(1-c),又a≤1,b≤1,c≤1,∴(1-a)(1-b)(1-c)≥0,∴1+ab+bc+ca-(a+b+c+abc)≥0成立,即证明了1+ab+bc+caa+b+c+abc≥1.[一点通] (1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC中,三个内角A、B、C成等差数列.求证:1a+b+1b+c=3a+b+c.证明:要证1a+b+1b+c=3a+b+c,只需证a+b+ca+b+a+b+cb+c=3,即ca+b+ab+c=1,只需证c(b+c)+a(a+b)(a+b)(b+c)=1,即a2+c2+ab+bcb2+ab+ac+bc=1.下面证明:a2+c2+ab+bcb2+ab+ac+bc=1.∵A+C=2B,A+B+C=180°,∴B=60°. ∴b2=a2+c2-ac.∴a2+c2+ab+bcb2+ab+ac+bc=a2+c2+ab+bca2+c2-ac+ab+ac+bc=1.故原等式成立.6.若a,b,c是不全相等的正数.求证:lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c.证明:要证lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c成立,即证lg a+b2·b+c2·c+a2>lg(abc)成立,只需证a+b2·b+c2·c+a2>abc成立,∵a+b2≥ab>0,b+c2≥bc>0,c+a2≥ca>0,∴a+b2·b+c2·c+a2≥abc>0,(*)又∵a,b,c是不全相等的正数,∴(*)式等号不成立,∴原不等式成立.1.综合法:由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法:执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P2;当由P1可以推出P2时,结论得证.一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是____________________.解析:a a+b b>a b+b a?a a-a b>b a-b ba(a-b)>b(a-b)?(a-b)(a-b)>0(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S在底面ABC上的射影为点O,∴SO⊥平面ABC,连接AO,BO,∵SA⊥BC,SO⊥BC,∴BC⊥平面SAO,∴BC⊥AO.同理可证,AC⊥BO.∴O为△ABC的垂心.答案:垂心5.已知函数f(x)=10x,a>0,b>0,A=f a+b2,B=f()ab,C=f2aba+b,则A,B,C的大小关系为____________________.解析:由a+b2≥ab≥2aba+b,又f(x)=10x在R上是单调增函数,所以fa+b2≥f()ab≥f 2aba+b,即A≥B≥C.答案:A≥B≥C二、解答题6.已知函数f(x)=log2(x+2),a,b,c是两两不相等的正数,且a,b,c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.解:f(a)+f(c)>2f(b).证明如下:因为a,b,c是两两不相等的正数,所以a+c>2ac.因为b2=ac,所以ac+2(a+c)>b2+4b,即ac+2(a+c)+4>b2+4b+4,从而(a+2)(c+2)>(b+2)2.因为f(x)=log2(x+2)是增函数,所以log2(a+2)(c+2)>log2(b+2)2,即log2(a+2)+log2(c+2)>2log2(b+2).故f(a)+f(c)>2f(b).7.已知a>0,用分析法证明:a2+1a2-2>a+1a-2.证明:要证a2+1a2-2≥a+1a-2,只需证a2+1a2+2≥a+1a+ 2.因为a>0,故只需证a2+1a2+22≥a+1a+22,即a2+1a2+4 a2+1a2+4≥a2+2+1a2+2 2a+1a+2,从而只需证2a2+1a2≥2a+1a,只需证4a2+1a2≥2a2+2+1a2,即a2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(江苏高考改编)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*).证明:由c=0,得b n=S nn=a+n-12d.又b1,b2,b4成等比数列,所以b22=b1b4,即a+d22=a a+32d,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.第2课时间接证明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a、b、c不可能都是奇数的反面是什么?还满足条件a2+b2=c2吗?提示:都是奇数.若a、b、c都是奇数,则不能满足条件a2+b2=c2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法(1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p则q”的过程可以用下面的框图表示:肯定条件p否定结论q→导致逻辑矛盾→“p且q”为假→“若p则q”为真(2)反证法证明命题“若p则q”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[例1] 已知平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1?平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P?平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P?平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a、b、c、d中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:原结论词至少有一个至多有一个至少有n个至多有n个反设词一个也没有(不存在)至少有两个至多有n-1个至少有n+1个6.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .证明:假设(1-a)b,(1-b)c,(1-c)a都大于1 4 .∵a,b,c∈(0,1),∴1-a>0,1-b>0,1-c>0,∴(1-a)+b2≥(1-a)b>14=12.同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .7.用反证法证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.证明:假设方程f(x)=0在区间[a,b]上至少有两个根,设α,β为其中的两个实根.因为α≠β,不妨设α<β,又因为函数f(x)在区间[a,b]上是增函数,所以f(α)<f(β).这与f(α)=0=f(β)矛盾.所以方程f(x)=0在区间 [a,b]上至多只有一个实根.1.反证法证明的适用情形(1)一些基本命题、基本定理;(2)易导出与已知矛盾的命题;(3)“否定性”命题;(4)“惟一性”命题;(5)“必然性”命题;(6)“至多”“至少”类命题;(7)涉及“无限”结论的命题.2.用反证法证明问题的三个注意点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、填空题1.命题“1+ba,1+ab中至多有一个小于2”的反设为__________________.答案:1+ba,1+ab都小于 22.(山东高考改编)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根.答案:方程x3+ax+b=0没有实根3.用反证法证明命题“若a2+b2=0,则a,b全为0(a、b为实数)”,其反设为____________________.解析:“a,b全为0”即是“a=0且b=0”,因此它的反设为“a≠0或b≠0”.答案:a,b不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②.答案:③①②5.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设为______________________.解析:对“且”的否定应为“或”,所以“x≠a且x≠b”的否定应为“x=a或x=b”.答案:x=a或x=b二、解答题6.(陕西高考)设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.解:(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n=a1(1-q n)1-q,∴S n=na1,q=1,a1(1-q n)1-q,q≠1.(2)证明:假设{a n+1}是等比数列,则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k+2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n+1}不是等比数列.7.设f(x)=x2+ax+b,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1 2 .证明:假设|f(1)|<12,|f(2)|<12,|f(3)|<12,则有-12<1+a+b<12,-12<4+2a+b<12,-12<9+3a+b<12.于是有-32<a+b<-12,①-92<2a+b<-72,②-192<3a+b<-172. ③由①、②得-4<a<-2,④由②、③得-6<a<-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P?直线a.求证:过点P和直线a平行的直线b有且只有一条.证明:(1)存在性:∵P?直线a,∴点P和直线a确定一个平面α.由平面几何知识知:在平面α内过点P能作出一条直线与直线a平行,故直线b存在.(2)惟一性:假设过点P还有一条直线c与a平行.∵a∥b,a∥c,∴b∥c,这与直线b、c有共点P矛盾.故假设不存在,因此直线b惟一.综上所述,过直线外一点有且只有一条直线和这条直线平形.。

18版高中数学第2章推理与证明2.1.3推理案例赏析学案苏教版选修1_2

18版高中数学第2章推理与证明2.1.3推理案例赏析学案苏教版选修1_2

2.1.3 推理案例赏析学习目标 1.通过对具体的数学思维过程的考察,进一步认识合情推理和演绎推理的作用、特点以及两者之间的联系.2.尝试用合情推理和演绎推理研究某些数学问题,提高分析问题、探究问题的能力.知识点 演绎推理与合情推理的区别与联系类型一 归纳推理的应用例1 已知数列的前4项为32,1,710,917,试写出这个数列的一个通项公式.反思与感悟 运用归纳推理猜测一般结论,关键在于挖掘事物的变化规律和相互关系,可以对式子或命题进行适当转换,使其中的规律明晰化.跟踪训练1 下列图形中线段有规则地排列,猜出第n 个图形中线段的条数为________.类型二 类比推理的应用 例2 通过计算可得下列等式: 23-13=3×12+3×1+1; 33-23=3×22+3×2+1; 43-33=3×32+3×3+1; …(n +1)3-n 3=3×n 2+3×n +1. 将以上各等式两边分别相加,得(n +1)3-13=3(12+22+…+n 2)+3(1+2+3+…+n )+n 即12+22+32+…+n 2=16n (n +1)(2n +1).类比上述求法,请你求出13+23+33+…+n 3的值.反思与感悟 (1)解答本题的关键在于弄清原题解题的方法,将所要求值的式子与原题的条件相类比,从而产生解题方法上的迁移.(2)解答此类问题要先弄清两类对象之间的类比关系及其差别,然后进行推测或证明. 跟踪训练2 如图,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e =________.类型三 合情推理与演绎推理的综合应用 例3 如图(1),在平面内有面积关系S △PA ′B ′S △PAB =PA ′PA ·PB ′PB,写出图(2)中类似的体积关系,并证明你的结论.反思与感悟 合情推理是提出猜想、提供解题的思路,而演绎推理则是证明猜想、判断猜想的正确性,通过合情推理得到的猜想缺少证明过程是不完整的,平时解题都是二者的结合. 跟踪训练3 读下列不等式的证法,再解决后面的问题. 已知m 1,m 2∈R ,m 1+m 2=1,求证:m 21+m 22≥12.证明:构造函数f (x )=(x -m 1)2+(x -m 2)2,则f (x )=2x 2-2(m 1+m 2)x +m 21+m 22=2x 2-2x +(m 21+m 22).因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-8(m 21+m 22)≤0,从而得m 21+m 22≥12.(1)若m 1,m 2,…,m n ∈R ,m 1+m 2+…+m n =1,请写出上述结论的推广式; (2)参考上述证法,对你推广的结论加以证明.1.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=________.2.若“f′(x0)=0,则x0是函数y=f(x)的极值点,因为f(x)=x3中,f′(x)=3x2且f′(0)=0,所以0是f(x)=x3的极值点”.在此“三段论”中,其中__________错误.3.将全体正整数排成一个三角形数阵:12 34 5 67 8 9 1011 12 13 14 15……………………按照以上排列的规律,第n行(n≥3)从左向右的第3个数为____________.4.在Rt△ABC中,若∠C=90°,则cos2A+cos2B=1,在立体几何中,给出四面体性质的猜想.1.归纳推理和类比推理是常用的合情推理.从推理形式上看,归纳推理是由部分到整体、特殊到一般的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理.2.从推理形式和所得结论的正确性讲,演绎推理与合情推理存在差异,从数学发现与认识事物的过程发挥的作用看,合情推理与演绎推理是相辅相成的、相互为用的,合情推理提出猜想、发现结论,为演绎推理确定确定了目标和方向.演绎推理不仅为合情推理提供了前提,而且对合情推理的结果进行“判决”和证明.两者的综合运用才能推动人们对事物的认识不断向前发展.提醒:完成作业 2.1.3答案精析问题导学 知识点根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程 三段论由一般到特殊的推理 在前提和推理形式都正确的前提下,得到的结论一定正确 按照严格的逻辑法则推理,利于培养和提高逻辑证明的能力 题型探究例1 解 把已知4项改写为32,55,710,917,记此数列的第n 项为a n ,则有a 1=2×1+112+1;a 2=2×2+122+1;a 3=2×3+132+1,a 4=2×4+142+1,….据此猜测a n =2n +1n 2+1. 跟踪训练1 2n +1-3解析 第1个图只有一条线段,则第2个图比第1个图增加4条线段,即线段上的端点上各增加2条,第3个图比第2个图增加8条线段,第4个图比第3个图增加2×8=24条线段,则第n 个图形中线段的条数为1+22+23+24+ (2)=-2n1-2-1=2n +1-3.例2 解 ∵24-14=4×13+6×12+4×1+1, 34-24=4×23+6×22+4×2+1, 44-34=4×33+6×32+4×3+1, …(n +1)4-n 4=4n 3+6n 2+4×n +1. 将以上各式两边分别相加,得(n +1)4-14=4×(13+23+…+n 3)+6×(12+22+…+n 2)+4×(1+2+…+n )+n , ∴13+23+…+n 3=14[(n +1)4-14-6×16n (n +1)(2n +1)-4×n n +2-n ]=14n 2(n +1)2.跟踪训练25+12解析 由题意,得b 2+c 2+c 2=(c +a )2,即c 2-ac -a 2=0,所以e 2-e -1=0,又e >1,解得e =5+12. 例3 解类比S △PA ′B ′S △PAB =PA ′PA ·PB ′PB, 有V P —A ′B ′C ′V P —ABC =PA ′PA ·PB ′PB ·PC ′PC证明:如图,设点C ′,C 到平面PAB 的距离分别为h ′,h . 则h ′h =PC ′PC, 故V P —A ′B ′C ′V P —ABC =13·S △PA ′B ′·h ′13S △PAB ·h=PA ′·PB ′·h ′PA ·PB ·h =PA ′·PB ′·PC ′PA ·PB ·PC.跟踪训练3 解 (1)已知m 1,m 2,…,m n ∈R ,且m 1+m 2+…+m n =1. 求证:m 21+m 22+…+m 2n ≥1n.(2)构造函数f (x )=(x -m 1)2+(x -m 2)2+…+(x -m n )2,则f (x )=nx 2-2(m 1+m 2+…+m n )x +(m 21+m 22+…+m 2n )=nx 2-2x +(m 21+m 22+…+m 2n ). 因为对一切x ∈R ,恒有f (x )≥0, 所以Δ=4-4n (m 21+m 22+…+m 2n )≤0, 从而得m 21+m 22+…+m 2n ≥1n.达标检测 1.-g (x )解析 由所给函数及其导数知,偶函数的导函数为奇函数.因此当f (x )是偶函数时,其导函数应为奇函数, 故g (-x )=-g (x ). 2.大前提解析 f ′(x 0)=0,x 0不一定是f (x )的极值点,还需看x 0附近左右导数符号是否异号. ∴大前提不正确. 3.n 2-n +62解析 前n -1行共有正整数1+2+…+(n -1)个,即n 2-n2个,因此第n 行第3个数是全体正整数中第n 2-n2+3个,即为n 2-n +62.4.解 如图,在Rt△ABC 中,cos 2A +cos 2B =(a c )2+(b c )2=a 2+b 2c2=1.把结论类比到四面体PABC 中,我们猜想,在三棱锥PABC 中,若三个侧面PAB ,PBC ,PCA 两两互相垂直,且与底面所成的二面角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.。

2018高中数学 第2章 推理与证明 2.2.2 间接证明(1)学案 苏教版选修1-2

2018高中数学 第2章 推理与证明 2.2.2 间接证明(1)学案 苏教版选修1-2

2.2.2 间接证明[学习目标] 1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.[知识链接]1.有人说反证法就是通过证明逆否命题来证明原命题,这种说法对吗?为什么?答这种说法是错误的,反证法是先否定命题,然后再证明命题的否定是错误的,从而肯定原命题正确,不是通过逆否命题证题.命题的否定与原命题是对立的,原命题正确,其命题的否定一定不对.2.反证法主要适用于什么情形?答①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.[预习导引]1.间接证明不是直接从原命题的条件逐步推得命题成立的证明方法称为间接证明.2.反证法从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).3.反证法步骤反证法的过程包括下面3个步骤:反设,归谬,存真.4.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.5.反证法中常用的“结论词”与“反设词”如下:要点一 用反证法证明“至多”“至少”型命题 例1 已知x ,y >0,且x +y >2. 求证:1+x y ,1+y x中至少有一个小于2.证明 假设1+x y ,1+y x都不小于2,即1+x y ≥2,1+yx≥2.∵x ,y >0,∴1+x ≥2y,1+y ≥2x . ∴2+x +y ≥2(x +y ),即x +y ≤2与已知x +y >2矛盾. ∴1+x y ,1+y x中至少有一个小于2.规律方法 对于含有“至多”、“至少”的命题适合用反证法,对于此类问题,需仔细体会“至少有一个”、“至多有一个”等字眼的含义,弄清结论的否定是什么,避免出现证明遗漏的错误.跟踪演练1 已知a ,b ,c ,d ∈R ,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明 假设a ,b ,c ,d 都是非负数, ∵a +b =c +d =1, ∴(a +b )(c +d )=1.又∵(a +b )(c +d )=ac +bd +ad +bc ≥ac +bd , ∴ac +bd ≤1.这与已知ac +bd >1矛盾,∴a ,b ,c ,d 中至少有一个是负数. 要点二 用反证法证明不存在、惟一性命题例2 求证对于直线l :y =kx +1,不存在这样的实数k ,使得l 与双曲线C :3x 2-y 2=1的交点A 、B 关于直线y =ax (a 为常数)对称.证明 假设存在实数k ,使得A 、B 关于直线y =ax 对称,设A (x 1,y 1)、B (x 2,y 2),则有(1)直线l :y =kx +1与直线y =ax 垂直;(2)点A 、B 在直线l :y =kx +1上;(3)线段AB 的中点⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22在直线y=ax 上, 所以错误!由⎩⎪⎨⎪⎧y =kx +1,y 2=3x 2-1,得(3-k 2)x 2-2kx -2=0.④当k 2=3时,l 与双曲线仅有一个交点,不合题意. 由②、③得a (x 1+x 2)=k (x 1+x 2)+2,⑤ 由④知x 1+x 2=2k3-k2,代入⑤整理得: ak =3,这与①矛盾.所以假设不成立,故不存在实数k ,使得A 、B 关于直线y =ax 对称.规律方法 证明“惟一性”问题的方法:“惟一性”包含“有一个”和“除了这个没有另外一个”两层意思.证明后一层意思时,采用直接证法往往会相当困难,因此一般情况下都采用间接证法,即用反证法(假设“有另外一个”,推出矛盾)或同一法(假设“有另外一个”,推出它就是“已知那一个”)证明,而用反证法有时比用同一法更方便.跟踪演练2 求证:过一点只有一条直线与已知平面垂直. 已知:平面α和一点P .求证:过点P 与α垂直的直线只有一条.证明 如图所示,不论点P 在α内还是在α外,设PA ⊥α,垂足为A (或P ).假设过点P 不止有一条直线与α垂直,如还有另一条直线PB ⊥α,设PA ,PB 确定的平面为β,且α∩β=a ,于是在平面β内过点P 有两条直线PA ,PB 垂直于a ,这与过一点有且只有一条直线与已知直线垂直相矛盾,∴假设不成立,原命题成立. 要点三 用反证法证明否定性命题例3 已知等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 设公差为d ,由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2),。

近年高中数学第2章推理与证明章末检测苏教版选修1-2(2021年整理)

近年高中数学第2章推理与证明章末检测苏教版选修1-2(2021年整理)

2018高中数学第2章推理与证明章末检测苏教版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第2章推理与证明章末检测苏教版选修1-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第2章推理与证明章末检测苏教版选修1-2的全部内容。

第2章推理与证明章末检测一、填空题(本大题共14小题,每小题5分,共70分)1.在△ABC中,E、F分别为AB,AC的中点,则有EF∥BC,这个问题的大前提为________.答案三角形的中位线平行于第三边解析这个三段论推理的形式为:大前提:三角形的中位线平行于第三边;小前提:EF为△ABC 的中位线;结论:EF∥BC。

2.对大于或等于2的自然数的正整数幂运算有如下分解方式:22=1+332=1+3+542=1+3+5+723=3+533=7+9+1143=13+15+17+19根据上述分解规律,若m2=1+3+5+…+11,n3的分解中最小的正整数是21,则m+n=________。

答案11解析∵m2=1+3+5+…+11=错误!×6=36,∴m=6.∵23=3+5,33=7+9+11,43=13+15+17+19,∴53=21+23+25+27+29,∵n3的分解中最小的数是21,∴n3=53,n=5,∴m+n=6+5=11。

3.用反证法证明命题“错误!+错误!是无理数"时,其反证假设是________.答案错误!+错误!是有理数解析应对结论进行否定,则错误!+错误!不是无理数,即错误!+错误!是有理数.4.已知f(x+1)=错误!,f(1)=1(x∈N*),猜想f(x)的表达式为________.答案2 x+1解析当x=1时,f(2)=错误!=错误!=错误!,当x=2时,f(3)=错误!=错误!=错误!;当x=3时,f(4)=错误!=错误!=错误!,故可猜想f(x)=错误!.5.对“a,b,c是不全相等的正数”,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a=b与b=c及a=c中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数为________.答案1解析若(a-b)2+(b-c)2+(c-a)2=0,则a=b=c,与“a,b,c是不全相等的正数”矛盾,故①正确.a=b与b=c及a=c中最多只能有一个成立,故②不正确.由于“a,b,c是不全相等的正数",有两种情形:至多有两个数相等或三个数都互不相等,故③不正确.6.我们把平面几何里相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.下列几何体中,一定属于相似体的有________个.①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥.答案2解析类比相似形中的对应边成比例知,①③属于相似体.7.数列{a n}满足a1=错误!,a n+1=1-错误!,则a2015等于________.答案-1解析∵a1=错误!,a n+1=1-错误!,∴a2=1-错误!=-1,a3=1-错误!=2,a4=1-错误!=错误!,a=1-错误!=-1,a6=1-错误!=2,5∴a n+3k=a n(n∈N*,k∈N*)∴a2015=a2+3×671=a2=-1。

2018-2019学年高中数学 第2章 推理与证明章末检测试卷 苏教版选修1-2

2018-2019学年高中数学 第2章 推理与证明章末检测试卷 苏教版选修1-2

第2章 推理与证明章末检测试卷(二)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分) 1.下列说法正确的是________.(写出全部正确命题的序号) ①演绎推理是由一般到特殊的推理; ②演绎推理得到的结论一定是正确的; ③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大、小前提和推理形式有关. 答案 ①③④解析 如果演绎推理的大前提和小前提都正确,则结论一定正确,在大前提和小前提中,只要有一项不正确,则结论一定也不正确.故②错误.2.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________. 答案 A解析 由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过A 城市,由此可知,乙去过的城市为A .3.已知f (x +1)=2f (x )f (x )+2,f (1)=1(x ∈N *),猜想f (x )的表达式为________.答案 f (x )=2x +1(x ∈N *) 解析 当x =1时,f (2)=2f (1)f (1)+2=23=22+1,当x =2时,f (3)=2f (2)f (2)+2=24=23+1,当x =3时,f (4)=2f (3)f (3)+2=25=24+1,故可猜想f (x )=2x +1(x ∈N *). 4.观察分析下表中的数据:猜想一般凸多面体中F ,V ,E 所满足的等式是____________________. 答案 F +V -E =2解析 在三棱柱中5+6-9=2; 在五棱锥中6+6-10=2; 在立方体中6+8-12=2, 由此可得F +V -E =2.5.某同学在纸上画出如下若干个三角形: △▲△△▲△△△▲△△△△▲△△△△△▲……若依此规律,得到一系列的三角形,则在前2015个三角形中▲的个数是________. 考点 归纳推理的应用 题点 归纳推理在图形中的应用 答案 62解析 前n 个▲中所包含的所有三角形的个数是1+2+3+…+n +n =n (n +3)2,由n (n +3)2=2015,解得n =62.6.如图,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1,过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;…,以此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.答案 14解析 根据题意易得a 1=2,a 2=2,a 3=1,所以{a n }构成a 1=2,q =22的等比数列, 所以a 7=a 1q 6=2×⎝⎛⎭⎪⎫226=14. 7.我们把平面几何里相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.下列几何体中,一定属于相似体的序号是________. ①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥. 答案 ①③解析 类比相似形中的对应边成比例知,①③属于相似体.8.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n (n >1,n ∈N *)个点,相应的图案中总的点数记为a n ,则9a 2a 3+9a 3a 4+9a 4a 5+…+9a 2018a 2019=________.答案20172018解析 由已知图形,可知a 2=1+2,a 3=1+2+3,a 4=1+2+2+4,a 5=1+2+2+2+5,故a n 等于n 个数的和,其中第一个数为1,最后一个数为n ,中间的n -2个数为2,所以a n =1+2(n -2)+n =3n -3=3(n -1). 故9a n a n +1=93(n -1)×3n =1n (n -1)=1n -1-1n (n >1,n ∈N *). 所以9a 2a 3+9a 3a 4+9a 4a 5+…+9a 2018a 2019=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫12017-12018=1-12018=20172018. 9.已知a >0,b >0,m =lg a +b2,n =lga +b2,则m ,n 的大小关系是________.考点 综合法及应用题点 利用综合法解决不等式问题 答案 m >n 解析 ab >0⇒ab >0⇒a +b +2ab >a +b ⇒(a +b )2>(a +b )2⇒a +b >a +b ⇒a +b2>a +b2⇒lga +b2>lga +b2.10.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长为a 的正方体,其中一个的某顶点在另一个中心,则这两个正方体重叠部分的体积恒为________.考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案a 38解析 解法的类比(特殊化),可得两个正方体重叠部分的体积为a 38.11.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为________.答案 8解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6+6(n -1)2×(n -1)=3n 2-3n +1.由题意得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8,故它的层数为8.12.观察下列由火柴杆拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________根;第n 个图形中,火柴杆有________根.答案 13 3n +113.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ](其中[x ]表示不大于x 的最大整数)可以表示为________. 答案 y =⎣⎢⎡⎦⎥⎤x +310解析 根据规定每10人推选一名代表,当各班人数除以10的余数大于6时,再增加一名代表,即余数分别为7,8,9时,可增选一名代表,也就是x 要进一位,所以最小应该加3,因此,利用取整函数可表示为y =⎣⎢⎡⎦⎥⎤x +310.14.如图,在平面直角坐标系xOy 中,圆x 2+y 2=r 2(r >0)内切于正方形ABCD ,任取圆上一点P ,若OP →=mOA →+nOB →(m ,n ∈R ),则14是m 2,n 2的等差中项;现有一椭圆x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,任取椭圆上一点P ,若OP →=mOA →+nOB →(m ,n ∈R ),则m 2,n 2的等差中项为________.答案 14解析 如图,设P (x ,y ),由x 2a 2+y 2b 2=1知,A (a ,b ),B (-a ,b ),由OP →=mOA →+nOB →,可得⎩⎪⎨⎪⎧x =(m -n )a ,y =(m +n )b ,代入x 2a 2+y 2b2=1,可得(m -n )2+(m +n )2=1,即m 2+n 2=12,所以m 2+n 22=14,即m 2,n 2的等差中项为14. 二、解答题(本大题共6小题,共90分)15.(14分)1,3,2能否为同一等差数列中的三项?说明理由.解 假设1,3,2能为同一等差数列中的三项,但不一定是连续的三项,设公差为d ,则 1=3-md,2=3+nd ,m ,n 为两个正整数,消去d ,得m =(3+1)n .∵m 为有理数,(3+1)n 为无理数,∴m ≠(3+1)n . ∴假设不成立.即1,3,2不可能为同一等差数列中的三项. 16.(14分)设a ,b 为实数,求证:a 2+b 2≥22(a +b ). 证明 当a +b ≤0时,∵a 2+b 2≥0, ∴a 2+b 2≥22(a +b )成立. 当a +b >0时,用分析法证明如下: 要证a 2+b 2≥22(a +b ),只需证(a 2+b 2)2≥⎣⎢⎡⎦⎥⎤22(a +b )2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .∵a 2+b 2≥2ab 对一切实数恒成立, ∴a 2+b 2≥22(a +b )成立. 综上所述,对任意实数a ,b 不等式都成立.17.(14分)已知实数p 满足不等式(2p +1)(p +2)<0,用反证法证明,关于x 的方程x 2-2x +5-p 2=0无实数根.证明 假设方程x 2-2x +5-p 2=0有实数根, 则该方程的根的判别式Δ=4-4(5-p 2)≥0, 解得p ≥2或p ≤-2.①而由已知条件实数p 满足不等式(2p +1)(p +2)<0, 解得-2<p <-12.②数轴上表示①②的图形无公共部分,故假设不成立, 从而关于x 的方程x 2-2x +5-p 2=0无实数根.18.(16分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解 (1)选择②式计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 19.(16分)(2017·江苏)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以AB ∥EF .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD . 因为AD ⊂平面ABD ,所以BC ⊥AD . 又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.20.(16分)如图,在直三棱柱ABC-A1B1C1中,E,F分别为A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.证明(1)因为E,F分别为A1B,A1C的中点,所以EF∥BC, 又EF⊄平面ABC,BC⊂平面ABC,所以EF∥平面ABC.(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1,BB1⊥A1D,又A1D⊥B1C,所以A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.。

【文库精品】高中数学 第2章 推理与证明章末检测(B)苏教版选修1-2

【文库精品】高中数学 第2章 推理与证明章末检测(B)苏教版选修1-2

第2章 推理与证明(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b”.以上的式子中,类比得到的结论正确的个数是________. 2.数列1,1,2,3,x,8,13,21,…中的x 值为________.3.若数列{a n }中,a 1=1,a 2=3+5,a 3=7+9+11,a 4=13+15+17+19,…,则a 8=________.4.p =ab +cd ,q =ma +nc ·b m +dn(m 、n 、a 、b 、c 、d 均为正数),则p 、q 的大小关系为________.5.凡自然数是整数,4是自然数,所以4是整数.对以上三段论推理下列说法正确的是__________(请填写相应的序号).①正确;②推理形式不正确;③两个“自然数”概念不一致; ④“两个整数”概念不一致. 6.观察下列等式: C 15+C 55=23-2, C 19+C 59+C 99=27+23, C 113+C 513+C 913+C 1313=211-25, C 117+C 517+C 917+C 1317+C 1717=215+27, …由以上等式推测到一个一般的结论:对于n ∈N *,C 14n +1+C 54n +1+C 94n +1+…+C 4n +14n +1=______________.7.对于等差数列{a n }有如下命题:“若{a n }是等差数列,a 1=0,s 、t 是互不相等的正整数,则有(s -1)a t =(t -1)a s ”.类比此命题,给出等比数列{b n }相应的一个正确命题是:“__________________________________________”.8.设f (x )是定义在实数集R 上的函数,且满足f (x +2)=f (x +1)-f (x ),如果f (1)=lg 32,f (2)=lg 15,则f (2 010)=__________. 9.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0~1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第________行;第61行中1的个数是________.第1行 1 1 第2行1 0 1 第3行1 1 1 1 第4行1 0 0 0 1 第5行1 1 0 0 1 1…………10.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么它的反设应该是______________________________.11.凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x n n≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n,已知函数y =sin x在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为_________________________.12.若不等式(-1)na <2+-n +1n对任意正整数n 恒成立,则实数a 的取值范围是________.13.由“等腰三角形的两底角相等,两腰相等”可以类比推出正棱锥的类似属性是__________________________________________________.14.船在流水中在甲地和乙地间来回行驶一次的平均速度v 1和在静水中的速度v 2的大小关系为_____________________________________________________________________.二、解答题(本大题共6小题,共90分)15.(14分)已知a 、b 、c 是互不相等的正数,且abc =1,求证:a +b +c <1a +1b +1c.16.(14分)把下面在平面内成立的结论类比地推广到空间,并判断类比的结论是否成立. (1)如果一条直线和两条平行线中的一条相交,则必和另一条相交; (2)如果两条直线同时垂直于第三条直线,则这两条直线互相平行.17.(14分)已知a >0,求证: a 2+1a 2-2≥a +1a-2.18.(16分)在不等边△ABC 中,A 是最小角, 求证:A <60°.19.(16分)先解答(1),再通过类比解答(2).(1)求证:tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ;(2)设x ∈R 且f (x +1)=1+f x1-f x,试问f (x )是周期函数吗?证明你的结论.20.(16分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.第2章 推理与证明(B)答案1.2解析 只有①②对,其余错误. 2.5解析 每相邻两数相加等于后面的数. 3.512解析 由a 1,a 2,a 3,a 4的形式可归纳,∵1+2+3+4+…+7=+2=28,∴a 8的首项应为第29个正奇数,即2×29-1=57. ∴a 8=57+59+61+63+65+67+69+71=+2=512.4.p ≤q 解析 q =ab +mad n +nbcm+cd≥ab +2abcd +cd =ab +cd =p .5.①解析 三段论中的大前提、小前提及推理形式都是正确的.6.24n -1+(-1)n 22n -17.若{b n }是等比数列,b 1=1,s ,t 是互不相等的正整数,则有b s -1t =b t -1s 解析 由类比推理可得. 8.-1解析 由f (1)=lg 32=lg 15-1,f (2)=lg 15,f (3)=f (2)-f (1)=1,f (4)=f (3)-f (2)=1-lg 15, f (5)=f (4)-f (3)=-lg 15, f (6)=f (5)-f (4)=-1,f (7)=f (6)-f (5)=lg 15-1, f (8)=f (7)-f (6)=lg 15,…,可以猜想到,从f (7)开始,又重复了上述数值, 即f (x +6)=f (x ),∴f (2 010)=f (335×6)=f (6)=-1.9.2n-1 32解析 (1)第一次全行的数都是1的是第1行,第二次全行的数都是1的是第3行,第三次全行的数都是1的是第7行,第n 次全行的数都是1的是第2n-1行.(2)1 1 0 0 ... 0 0 1 1......第61行 1 0 1 0 ... 0 1 0 1 ......第62行 1 1 1 1 ... 1 1 1 1 (63)由图可知第61行的数的特点是两个1两个0交替出现,最后两个数为1,所以在第61行的62个数中有32个1.10.“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|且|f (x 1)-f (x 2)|≥12”11.332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数, 且A 、B 、C ∈(0,π), ∴f A +f B +f C 3≤f ⎝ ⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3, 即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.12.-2≤a <32解析 当n 为偶数时,a <2-1n,而2-1n ≥2-12=32,∴a <32.当n 为奇数时,a >-2-1n,而-2-1n<-2,∴a ≥-2.综上可得-2≤a <32.13.正棱锥各侧面与底面所成二面角相等,各侧面都是全等的三角形或各侧棱相等 解析 等腰三角形的底与腰可分别与正棱锥的底面与侧面类比. 14.v 1<v 2解析 设甲地到乙地的距离为S ,船在静水中的速度为v 2,水流速度为v (v 2>v >0),则船在流水中在甲、乙间来回行驶一次的时间t =S v 2+v +S v 2-v =2v 2S v 22-v2,平均速度v 1=2S t =v 22-v2v 2. ∵v 1-v 2=v 22-v2v 2-v 2=-v 2v 2<0,∴v 1<v 2.15.证明 ∵a 、b 、c 是不等正数,且abc =1,∴a +b +c =1bc +1ca +1ab<1b +1c 2+1c +1a 2+1a +1b 2 =1a +1b +1c.故a +b +c <1a +1b +1c.16.解 (1)类比为:如果一个平面和两个平行平面中的一个相交,则必和另一个相交. 结论是正确的:证明如下: 设α∥β,且γ∩α=a ,则必有γ∩β=b ,若γ与β不相交,则必有γ∥β, 又α∥β,∴α∥γ,与γ∩α=a 矛盾, ∴必有γ∩β=b .(2)类比为:如果两个平面同时垂直于第三个平面,则这两个平面互相平行,结论是错误的,这两个平面也可能相交.17.证明 要证 a 2+1a 2-2≥a +1a-2,只要证 a 2+1a 2+2≥a +1a+ 2.∵a >0, 故只要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a2+4 ≥a 2+2+1a2+22⎝ ⎛⎭⎪⎫a +1a +2,从而只要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a ,只要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.18.证明 假设A ≥60°,∵A 是不等边三角形ABC 的最小角,∵B >A ≥60°,C >A ≥60°, ∴A +B +C >180°,与三角形内角和等于180°矛盾,∴假设错误,原结论成立,即A <60°.19.(1)证明 tan ⎝⎛⎭⎪⎫x +π4=tan x +tanπ41-tan x tanπ4=1+tan x1-tan x; (2)解 f (x )是以4为一个周期的周期函数. 证明如下:∵f (x +2)=f ((x +1)+1)=1+f x +1-f x +=1+1+f x 1-f x 1-1+f x 1-f x=-1f x ,∴f (x +4)=f ((x +2)+2)=-1f x +=f (x ),∴f (x )是周期函数.20.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2).(2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r ∈N *且互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),∴(q 2-pr )+2(2q -p -r )=0.∵p 、q 、r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0,∴p =r ,这与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成为等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 推理与证明(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”;③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b”. 以上的式子中,类比得到的结论正确的个数是________.2.数列1,1,2,3,x,8,13,21,…中的x 值为________.3.若数列{a n }中,a 1=1,a 2=3+5,a 3=7+9+11,a 4=13+15+17+19,…,则a 8=________.4.p =ab +cd ,q =ma +nc ·b m +d n(m 、n 、a 、b 、c 、d 均为正数),则p 、q 的大小关系为________.5.凡自然数是整数,4是自然数,所以4是整数.对以上三段论推理下列说法正确的是__________(请填写相应的序号).①正确;②推理形式不正确;③两个“自然数”概念不一致;④“两个整数”概念不一致.6.观察下列等式:C 15+C 55=23-2,C 19+C 59+C 99=27+23,C 113+C 513+C 913+C 1313=211-25,C 117+C 517+C 917+C 1317+C 1717=215+27,…由以上等式推测到一个一般的结论:对于n ∈N *,C 14n +1+C 54n +1+C 94n +1+…+C 4n +14n +1=______________.7.对于等差数列{a n }有如下命题:“若{a n }是等差数列,a 1=0,s 、t 是互不相等的正整数,则有(s -1)a t =(t -1)a s ”.类比此命题,给出等比数列{b n }相应的一个正确命题是:“__________________________________________”.8.设f (x )是定义在实数集R 上的函数,且满足f (x +2)=f (x +1)-f (x ),如果f (1)=lg 32,f (2)=lg 15,则f (2 010)=__________.9.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0~1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第________行;第61行中1的个数是________.第1行 1 1第2行1 0 1第3行1 1 1 1第4行1 0 0 0 1第5行1 1 0 0 1 1…………10.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么它的反设应该是______________________________.11.凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为_________________________.12.若不等式(-1)n a <2+-n +1n对任意正整数n 恒成立,则实数a 的取值范围是________. 13.由“等腰三角形的两底角相等,两腰相等”可以类比推出正棱锥的类似属性是__________________________________________________.14.船在流水中在甲地和乙地间来回行驶一次的平均速度v 1和在静水中的速度v 2的大小关系为_____________________________________________________________________.二、解答题(本大题共6小题,共90分)15.(14分)已知a 、b 、c 是互不相等的正数,且abc =1, 求证:a +b +c <1a +1b +1c.16.(14分)把下面在平面内成立的结论类比地推广到空间,并判断类比的结论是否成立.(1)如果一条直线和两条平行线中的一条相交,则必和另一条相交;(2)如果两条直线同时垂直于第三条直线,则这两条直线互相平行.17.(14分)已知a >0,求证: a 2+1a 2-2≥a +1a-2.18.(16分)在不等边△ABC 中,A 是最小角,求证:A <60°.19.(16分)先解答(1),再通过类比解答(2).(1)求证:tan ⎝ ⎛⎭⎪⎫x +π4=1+tan x1-tan x ;(2)设x ∈R 且f (x +1)=1+f x1-f x ,试问f (x )是周期函数吗?证明你的结论.20.(16分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.第2章 推理与证明(B)答案1.2解析 只有①②对,其余错误.2.5解析 每相邻两数相加等于后面的数.3.512解析 由a 1,a 2,a 3,a 4的形式可归纳,∵1+2+3+4+…+7=+2=28,∴a 8的首项应为第29个正奇数,即2×29-1=57.∴a 8=57+59+61+63+65+67+69+71 =+2=512.4.p ≤q 解析 q =ab +madn +nbcm +cd≥ab +2abcd +cd =ab +cd =p .5.①解析 三段论中的大前提、小前提及推理形式都是正确的.6.24n -1+(-1)n 22n -17.若{b n }是等比数列,b 1=1,s ,t 是互不相等的正整数,则有b s -1t =b t -1s解析 由类比推理可得.8.-1解析 由f (1)=lg 32=lg 15-1,f (2)=lg 15,f (3)=f (2)-f (1)=1,f (4)=f (3)-f (2)=1-lg 15,f (5)=f (4)-f (3)=-lg 15,f (6)=f (5)-f (4)=-1,f (7)=f (6)-f (5)=lg 15-1,f (8)=f (7)-f (6)=lg 15,…,可以猜想到,从f (7)开始,又重复了上述数值,即f (x +6)=f (x ),∴f (2 010)=f (335×6)=f (6)=-1.9.2n -1 32解析 (1)第一次全行的数都是1的是第1行,第二次全行的数都是1的是第3行,第三次全行的数都是1的是第7行,第n 次全行的数都是1的是第2n -1行.(2)1 1 0 0 ... 0 0 1 1 (61)1 0 1 0 ... 0 1 0 1 (62)1 1 1 1 ... 1 1 1 1 (63)由图可知第61行的数的特点是两个1两个0交替出现,最后两个数为1,所以在第61行的62个数中有32个1.10.“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|且|f (x 1)-f (x 2)|≥12” 11.332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π),∴f A +f B +f C 3≤f ⎝ ⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3, 即sin A +sin B +sin C ≤3sin π3=332, 所以sin A +sin B +sin C 的最大值为332. 12.-2≤a <32解析 当n 为偶数时,a <2-1n, 而2-1n ≥2-12=32,∴a <32. 当n 为奇数时,a >-2-1n, 而-2-1n<-2,∴a ≥-2. 综上可得-2≤a <32. 13.正棱锥各侧面与底面所成二面角相等,各侧面都是全等的三角形或各侧棱相等 解析 等腰三角形的底与腰可分别与正棱锥的底面与侧面类比. 14.v 1<v 2解析 设甲地到乙地的距离为S ,船在静水中的速度为v 2,水流速度为v (v 2>v >0),则船在流水中在甲、乙间来回行驶一次的时间t =S v 2+v +S v 2-v =2v 2S v 22-v2,平均速度v 1=2S t =v 22-v 2v 2. ∵v 1-v 2=v 22-v 2v 2-v 2=-v 2v 2<0, ∴v 1<v 2.15.证明 ∵a 、b 、c 是不等正数,且abc =1, ∴a +b +c =1bc +1ca +1ab<1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c. 故a +b +c <1a +1b +1c. 16.解 (1)类比为:如果一个平面和两个平行平面中的一个相交,则必和另一个相交. 结论是正确的:证明如下:设α∥β,且γ∩α=a ,则必有γ∩β=b ,若γ与β不相交,则必有γ∥β,又α∥β,∴α∥γ,与γ∩α=a 矛盾,∴必有γ∩β=b .(2)类比为:如果两个平面同时垂直于第三个平面,则这两个平面互相平行,结论是错误的,这两个平面也可能相交.17.证明 要证 a 2+1a 2-2≥a +1a-2, 只要证a 2+1a 2+2≥a +1a + 2. ∵a >0,故只要证⎝ ⎛⎭⎪⎫ a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22, 即a 2+1a2+4a 2+1a 2+4 ≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2, 从而只要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2, 即a 2+1a2≥2, 而上述不等式显然成立,故原不等式成立.18.证明 假设A ≥60°,∵A 是不等边三角形ABC 的最小角,∵B >A ≥60°,C >A ≥60°, ∴A +B +C >180°,与三角形内角和等于180°矛盾,∴假设错误,原结论成立,即A <60°.19.(1)证明 tan ⎝ ⎛⎭⎪⎫x +π4=tan x +tan π41-tan x tan π4=1+tan x 1-tan x; (2)解f (x )是以4为一个周期的周期函数. 证明如下:∵f (x +2)=f ((x +1)+1)=1+f x +1-f x +=1+1+f x 1-f x 1-1+f x 1-f x=-1f x , ∴f (x +4)=f ((x +2)+2)=-1f x +=f (x ),∴f (x )是周期函数.20.(1)解 由已知得⎩⎨⎧ a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S n n=n + 2. 假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r ∈N *且互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2),∴(q 2-pr )+2(2q -p -r )=0.∵p 、q 、r ∈N *,∴⎩⎪⎨⎪⎧ q 2-pr =0,2q -p -r =0,∴⎝ ⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0,∴p =r ,这与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成为等比数列.。

相关文档
最新文档