fundamentals of soil behavior_ref

合集下载

土壤生态学读书笔记

土壤生态学读书笔记

《Fundamentals of soil ecology(第二版)》读书报告1 土壤与土壤环境适应性的历史概貌(Historical Overview of Soils and the Fitness of the Soil Evironment)1.1 土壤生态学的发展历史(The Historical Background of Soil Ecology)人类对土壤生态学的认知可能可追溯到史前时代——那时,一些植物的根系、真菌或者土壤动物是他们食物的一个来源。

在词汇中,Human这个词语与拉丁文humus(土壤中的有机物)有一定的联系。

在一份苏美尔文化的遗迹中,记载了一个公元前3300年的耕地,这篇510万公顷的土地在灌溉耕作了几个世纪后,由于盐碱问题在公元前1760年被遗弃。

这可能是人类史上最早的关于土壤生态学的记录。

古埃及利用尼罗河周期性的泛滥所创造出的肥沃土地进行耕作,为辉煌的古埃及文明奠定了基础。

在古代中国的认知中,土(earth),气,火,水和月使构成万物的基本元素。

早在尧舜时期,中国古人就开始尝试对土壤进行分类,并奠定了后人将土壤分为9个类型的基础。

中国古人还认为蚯蚓是“土壤的天使(angels of soil)”。

古希腊人认为世界由土,气,火和水四种基本元素组成。

阿里士多德认识到蚯蚓在土壤有机质分解中的作用,认为它是“土的肠道(intestine of earth)”。

古希腊人和古罗马人已经能清楚的分辨那种土壤适合作物生长。

后来,一些早期的学者开始认识到土壤的生物性状,他们包括列文虎克、林奈和达尔文。

Müller对腐殖质进行了分类,研究了腐殖质的形成,为土壤腐殖质的研究奠定了基础。

俄国的多库恰耶夫及等人将土壤视为自然的一部分,并认为它是地质结构在气候和生物的影响形成的。

欧洲的Müller则描述了土壤剖面的形成过程。

这两个观点被认为是最早的关于土壤的科学观点。

岩石颗粒破碎的尺寸效应

岩石颗粒破碎的尺寸效应

岩石颗粒破碎的尺寸效应徐永福;王益栋;奚悦;褚飞飞【摘要】固体颗粒破碎强度的“尺寸效应”是一种普遍存在的现象,冰块、岩石颗粒、陶瓷和混凝土块等的破碎强度都表现出随颗粒直径增加而减小的现象,分形模型为解释固体颗粒破碎强度的“尺寸效应”提供了可行的方法。

本文采用Steacy和Sammis分形模型模拟了岩石颗粒压碎特征,分析岩石颗粒破碎后的颗粒分布规律,给出颗粒破碎分维的确定方法,建立颗粒压碎强度与粒径的理论关系,颗粒破碎强度与颗粒粒径的关系用分维D表示为σf∝dD-3。

已有的颗粒破碎分布的数据表明,岩石颗粒破碎的分维大约为2.50~2.60,颗粒破碎强度符合用分维表示的尺寸效应。

%A significant“size effect”is observed in tensile strength of solid particles such as ice,rock,ceramics and concrete.The tensile strength is not independent of the fragment size,but decreases with increasing size. Recent developments in fractal theory suggest that fractals may provide a more realistic representation of solid particles.In this paper,a fractal model for crushing of rock particle is constructed using the Steacy and Sammis model.The size effect of crushing strength is then derived.The siz e effect of the crushing strength is expressed byσf∝dD-3 .It is shown by the published data that the fractal dimension of the rock particle distribution is nearly 2.5-2.6.The size effect of crushing strength can be expressed by the fractal model for particle crushing.【期刊名称】《工程地质学报》【年(卷),期】2014(000)006【总页数】5页(P1023-1027)【关键词】岩石颗粒;颗粒破碎;尺寸效应;分维【作者】徐永福;王益栋;奚悦;褚飞飞【作者单位】上海交通大学土木工程系上海 200240; 土工程技术研发中心文天学院马鞍山 243000;上海交通大学土木工程系上海 200240;上海交通大学土木工程系上海 200240;土工程技术研发中心文天学院马鞍山 243000【正文语种】中文【中图分类】TU420 引言岩石颗粒破碎是影响岩堆体剪切强度和变形的最主要因素[1,2],岩石颗粒的破碎现象在实际工程中经常见到,无论多么坚硬的岩石颗粒在接触点处应力很小时就可能产生破碎[3,4]。

比较经典的岩土工程英文书籍

比较经典的岩土工程英文书籍

比较经典的岩土工程英文书籍,推荐搞岩土研究的看看一。

土力学相关• 工程实践中的土力学"Soil Mechanics in Engineering Practice"by Karl Terzaghi, Ralph B. Peck , Gholamreza Mesri (从1996年第三版开始作者中加入了Mesri)• 土的特性基础(第二/三版)"Fundamentals of Soil Behavior, 2nd Edition"by James K. Mitchell"Fundamentals of Soil Behavior, 3rd Edition"(2005)by James K. Mitchell and Kenichi Soga.•土力学-临界状态土力学引论The Mechacnics of Soils--An Introduction to Critical State Soil Mechanics.by Atkinson.对土的临界状态理论描述非常言简意赅,适合初学者• 临界状态土力学Critical State Soil Mechanicsby Andrew Schofield and Peter Wroth剑桥大学的schofield教授的经典之作•土的性状和临界状态土力学Soil Behaviour and Critical State Soil Mechanics.by David Muir Wood. 1990 .Wood教授的呕心沥血之作,值得一读• 高等土力学(第三版)Advanced Soil Mechanics(3rd)by Braja M. Das2008出版,最新的这方面的专著,适合当研究生教材• 非饱和土土力学Soil Mechanics for Unsaturated Soilsby Fredlund这个不说了,经典,国内早年有中译本二。

土壤学部分专业名词

土壤学部分专业名词

土壤学部分专业名词1 土壤soil。

2 土壤学soil science3 发生土壤学pedology4 耕作土壤学edaphology5 土壤地理[学] soil geography6 土壤物理[学] soil physics7 土壤化学soil chemistry8 土壤生物化学soil biochemistry9 土壤矿物学soil mineralogy10 农业化学agrochemistry11 土壤分析化学soil analytical chemistry12 土壤生物学soil biology13 土壤微生物学soil microbiology14 土壤生态学soil ecology15 土壤微形态[学] soil micromor-phology16 土壤资源soil resources17 土壤区划soil regionalization18 土壤肥力soil fertility19 土壤管理soil management20 土壤利用soil utilizaion21 土壤改良soil amelioration, soil improvement22 土壤侵蚀[学] soil erosion23 水土保持soil and water conservation24 农业化学分析agrochemistry analysis25 土壤信息系统soil information system, SIS26 土壤遥感soil remote sensing27 土壤圈pedosphere28 土壤景观soil landscape29自然土壤natural soil30人为土壤anthropogenic soil31 耕作土壤cultivated soil32 森林土壤forest soil33 草原土壤steppe soil34 荒漠土壤desert soil 35 水田土壤paddy field soil 36 旱地土壤upland soil37低地土壤lowland soil38湿地土壤wetland soil39 盐渍土壤salt-affected soil40 山地土壤mountain soil41高山土壤slpine soil42 风化作用weathering43物理风化physical weathering44化学风化chemical weathering45 生物风化biological weathering46 风化产物weathering product47 风化残余物weathering residue48 风化强度weathering intensity49 风化指数weathering index50 风化淋溶系数ba value51 半风化体saprolite52 风化壳weathering crust53 碎屑风化壳clastic weathering crust54 含盐风化壳salic weathering crust55 碳酸盐风化壳carbonated weathering crust56 硅铝风化壳siallitic weathering crust57 铁铝风化壳ferrallitic weathering crust58[成土]母质parent material59 土壤发育soil development60 土壤发育序列soil development sequence61 年代序列chronosequence62 地形系列toposequence63 原始土壤primitive soil, initial soil64 幼年土壤young soil65 成熟土壤mature soil66 顶极土壤climax soil67 古土壤学paleopedology68 古土壤paleosol69 埋藏土buried soil70 裸露埋藏土exhumed soil71 残遗土relict soil72土壤年龄soil age73 土壤绝对年龄absolute age of soil 74土壤相对年龄relative age of soil75 放射[性]碳定年radiocarbon dating76 [表观]平均停留时间[aparent] mean residence time, AMRT77 土壤地球化学soil geochemistry78 土壤生物地球化学soil biogeochemistry79 土壤发生soil genesis80 土壤形成soil formation81 土壤形成因素soil-forming factor82 土壤形成过程soil-forming process83 淋溶作用eluviation84 淋洗作用leaching85 螯合淋溶作用cheluviation86 [机械]淋移作用mechanical eluviation, lessivage87 淀积作用illuviation88 淋淀作用eluviation-illuviation89生物积累作用biological accumulation90 腐殖质积累作用humus accumulation91 泥炭形成[作用] peat formation92 盐化[作用] salinization93碱化[作用] solonization94 次生盐化[作用] secondary salinization95脱盐作用desalinization。

土壤物理学优秀课件

土壤物理学优秀课件

Soil Physics
W.A.Jury, R. Horton 2004年第六版
土壤固相 土壤水分保持 土壤水分运动 自然条件下的土壤水流 土壤热状况 土壤通气 土壤中化学物质迁移
中国土壤物理学的发展
张君常(西北农大)1965年翻译了Baver的土壤物理学(第3版) 周传槐(江苏省农林厅)1983年翻译了Baver的土壤物理学(第4版) 姚贤良(土壤所)土壤结构研究 陈云生(土壤所)土壤空气研究 赵诚斋(土壤所)土壤机械力学研究 邓时琴(土壤所)土壤质地研究 陈志雄(土壤所)土壤水分动力学研究
绪论
我们要把人生变成一个科学的梦, 然后用孜孜不倦的学习和艰苦卓 绝的探求,来把这个梦变为现实。
-------居里夫人(波兰籍法国科学家)
定义
土壤物理学-
研究土壤的物理性质及土壤中的物理现象、 物质迁移过程和能量转换 及其农业、生态、环境效应的科学
范畴
物理性质及物理现象:
土壤固相组成与排列(质地、结构、孔隙) 气体组成与分压 溶质组成与浓度 土壤水、热状态 土壤力学、电、磁和放射性质
土壤物理学 1998版
郭素珍,内蒙古文化出版社
土壤物理学 2003版
秦耀东,高等教育出版社
土壤物理学 2006版
邵明安 王全九 黄明斌,高等教育出版社
土壤水动力学
雷志栋(2007年当选科学院院士),1988年版
土壤水的能态-土水势 土壤水动力学基本方程 土壤水的入渗 蒸发条件下土壤水分的运动 土壤-植物-大气连续体中水流的运动 土壤水分运动参数的测定 土壤水分运动的数值计算方法 土壤特性空间变异性与土壤水分运动问题的标定
L. D. Baver, W. H. Gardner, W. R. Gardner 1972年第四版

fundamentals of soil behavior (3)

fundamentals of soil behavior (3)

5CHAPTER 2Soil Formation2.1INTRODUCTIONThe variety of geomaterials encountered in engineering problems is almost limitless,ranging from hard,dense,large pieces of rock,through gravel,sand,silt,and clay to organic deposits of soft,compressible peat.All these materials may exist over a wide range of densities and water contents.A number of different soil types may be present at any site,and the composition may vary over intervals as small as a few millimeters.It is not surprising,therefore,that much of the geoengineer’s effort is directed at the identification of soils and the evaluation of the appropriate properties for use in a particular analysis or design.Perhaps what is surprising is that the application of the principles of mechanics to a material as diverse as soil meets with as much success as it does.To understand and appreciate the characteristics of any soil deposit require an understanding of what the material is and how it reached its present state.This requires consideration of rock and soil weathering,the erosion and transportation of soil materials,deposi-tional processes,and postdepositional changes in sed-iments.Some important aspects of these processes and their effects are presented in this chapter and in Chap-ter 8.Each has been the subject of numerous books and articles,and the amount of available information is enormous.Thus,it is possible only to summarize the subject and to encourage consultation of the references for more detail.2.2THE EARTH’S CRUSTThe continental crust covers 29percent of Earth’s sur-face.Seismic measurements indicate that the continen-tal crust is about 30to 40km thick,which is 6to 8times thicker than the crust beneath the ocean.Granitic(acid)rocks predominate beneath the continents,and basaltic (basic)rocks predominate beneath the oceans.Because of these lithologic differences,the continental crust average density of 2.7is slightly less than the oceanic crust average density of 2.8.The elemental compositions of the whole Earth and the crust are in-dicated in Fig.2.1.There are more than 100elements,but 90percent of Earth consists of iron,oxygen,sili-con,and magnesium.Less iron is found in the crust than in the core because its higher density causes it to sink.Silicon,aluminum,calcium,potassium,and so-dium are more abundant in the crust than in the core because they are lighter elements.Oxygen is the only anion that has an abundance of more than 1percent by weight;however,it is very abundant by volume.Silicon,aluminum,magnesium,and oxygen are the most commonly observed elements in soils.Within depths up to 2km,the rocks are 75percent secondary (sedimentary and metamorphic)and 25per-cent igneous.From depths of 2to 15km,the rocks are about 95percent igneous and 5percent secondary.Soils may extend from the ground surface to depths of several hundred meters.In many cases the distinction between soil and rock is difficult,as the boundary be-tween soft rock and hard soil is not precisely defined.Earth materials that fall in this range are sometimes difficult to deal with in engineering and construction,as it is not always clear whether they should be treated as soils or rocks.A temperature gradient of about 1ЊC per 30m exists between the bottom of Earth’s crust at 1200ЊC and the surface.1The rate of cooling as molten rock magma1In some localized areas,usually within regions of recent crustal movement (e.g.,fault lines,volcanic zones)the gradient may exceed 20ЊC per 100m.Such regions are of interest both because of their potential as geologic hazards and because of their possible value as sources of geothermal energy.C o p y r i g h t e d M a t e r i a l62SOIL FORMA TIONFigure 2.2Geologiccycle.Figure 2.3Simplified version of the rock cycle.from some other area.Sediment formation pertains to processes by which accumulated sediments are densi-fied,altered in composition,and converted into rock.Crustal movement involves both gradual rising of unloaded areas and slow subsidence of depositional ba-sins (epirogenic movements )and abrupt movements (tectonic movements )such as those associated with faulting and earthquakes.Crustal movements may also result in the formation of new rock masses through igneous or plutonic activity.The interrelationships of these processes are shown in Fig.2.3.More than one process acts simultaneously in na-ture.For example,both weathering and erosion take place at the surface during periods of uplift,or oro-genic activity (mountain building),and deposition,sed-iment formation,and regional subsidence are generally contemporaneous.This accounts in part for the wide variety of topographic and soil conditions in any area.e d M a t e r i a lROCK AND MINERAL STABILITY72.4ROCK AND MINERAL STABILITYRocks are heterogeneous assemblages of smaller com-ponents.The smallest and chemically purest of these components are elements,which combine to form in-organic compounds of fixed composition known as minerals .Hence,rocks are composed of minerals or aggregates of minerals.Rocks are sometimes glassy (volcanic glass,obsidian,e.g.),but usually consist of minerals that crystallized together or in sequence (metamorphic and igneous rocks),or of aggregates of detrital components (most sedimentary rocks).Sometimes,rocks are composed entirely of one type of mineral (say flint or rock salt),but generally they contain many different minerals,and often the rock is a collection or aggregation of small particles that are themselves pieces of rocks.Books on petrography may list more than 1000species of rock types.Fortunately,however,many of them fall into groups with similar engineering attributes,so that only about 40rock names will suffice for most geotechnical engineering purposes.Minerals have a definite chemical composition and an ordered arrangement of components (a crystal lat-tice);a few minerals are disordered and without defin-able crystal structure (amorphous).Crystal size and structure have an important influence on the resistance of different rocks to weathering.Factors controlling the stability of different crystal structures are considered in Chapter 3.The greatest electrochemical stability of a crystal is reached at its crystallization temperature.As temperature falls below the crystallization temper-ature,the structural stability decreases.For example,olivine crystallizes from igneous rock magma at high temperature,and it is one of the most unstable igneous-rock-forming minerals.On the other hand,quartz does not assume its final crystal structure until the temper-ature drops below 573ЊC.Because of its high stability,quartz is the most abundant nonclay mineral in soils,although it comprises only about 12percent of igneous rocks.As magma cools,minerals may form and remain,or they may react progressively to form other minerals at lower temperatures.Bowen’s reaction series,shown in Fig. 2.5,indicates the crystallization sequence of the silicate minerals as temperature decreases from 1200ЊC.This reaction series closely parallels various weathering stability series as shown later in Table 2.2.For example,in an intermediate granitic rock,horn-blende and plagioclase feldspar would be expected to chemically weather before orthoclase feldspar,which would chemically weather before muscovite mica,and so on.e d M a t e r i a l82SOIL FORMATIONFigure 2.5Bowen’s reaction series of mineral stability.Eachmineral is more stable than the one above it on the list.Mineralogy textbooks commonly list determinative properties for about 200minerals.The list of the most common rock-or soil-forming minerals is rather short,mon minerals found in soils are listed in Table 2.1.The top six silicates originate from rocks by physical weathering processes,whereas the other min-erals are formed by chemical weathering processes.Further description of important minerals found in soils is given in Chapter 3.2.5WEATHERINGWeathering of rocks and soils is a destructive process whereby debris of various sizes,compositions,and shapes is formed.2The new compositions are usually more stable than the old and involve a decrease in the internal energy of the materials.As erosion moves the ground surface downward,pressures and temperatures in the rocks are decreased,so they then possess an internal energy above that for equilibrium in the new environment.This,in conjunction with exposure to the atmosphere,water,and various chemical and biological agents,results in processes of alteration.A variety of physical,chemical,and biological proc-esses act to break down rock masses.Physical proc-esses reduce particle size,increase surface area,and increase bulk volume.Chemical and biological proc-esses can cause complete changes in both physical and chemical properties.2A general definition of weathering (Reiche,1945;Keller,1957)is:the response of materials within the lithosphere to conditions at or near its contact with the atmosphere,the hydrosphere,and perhaps more importantly,the biosphere.The biosphere is the entire space occupied by living organisms;the hydrosphere is the aqueous enve-lope of Earth;and the lithosphere is the solid part of Earth.Physical Processes of WeatheringPhysical weathering processes cause in situ breakdown without chemical change.Five processes are impor-tant:1.Unloading Cracks and joints may form to depths of hundreds of meters below the ground surface when the effective confining pressure is reduced.Reduction in confining pressure may re-sult from uplift,erosion,or changes in fluid pres-sure.Exfoliation is the spalling or peeling off of surface layers of rocks.Exfoliation may occur during rock excavation and tunneling.The term popping rock is used to describe the sudden spall-ing of rock slabs as a result of stress release.2.Thermal Expansion and Contraction The ef-fects of thermal expansion and contraction range from creation of planes of weakness from strains already present in a rock to complete fracture.Repeated frost and insolation (daytime heating)may be important in some desert areas.Fires can cause very rapid temperature increase and rock weathering.3.Crystal Growth,Including Frost Action The crystallization pressures of salts and the pressure associated with the freezing of water in saturated rocks may cause significant disintegration.Many talus deposits have been formed by frost action.However,the role of freeze–thaw in physical weathering has been debated (Birkeland,1984).The rapid rates and high amplitude of tempera-ture change required to produce necessary pres-sure have not been confirmed in the field.Instead,some researchers favor the process in which thin films of adsorbed water is the agent that promotes weathering.These films can be adsorbed so tightly that they cannot freeze.However,the wa-ter is attracted to a freezing front and pressures exerted during the migration of these films can break the rock apart.4.Colloid Plucking The shrinkage of colloidal materials on drying can exert a tensile stress on surfaces with which they are in contact.3anic Activity The growth of plant roots in existing fractures in rocks is an important weath-ering process.In addition,the activities of worms,rodents,and humans may cause consid-erable mixing in the zone of weathering.3To appreciate this phenomenon,smear a film of highly plastic clay paste on the back of your hand and let it dry.C o p y r i g h t e d M a t e r i a lWEA THERING9Table 2.1Common Soil MineralsName Chemical FormulaCharacteristicsQuartz SiO 2Abundant in sand and siltFeldspar (Na,K)AlO 2[SiO 2]3CaAl 2O 4[SiO 2]2Abundant in soil that is not leached extensively Mica K 2Al 2O 5[Si 2O 5]3Al 4(OH)4K 2Al 2O 5[Si 2O 5]3(Mg,Fe)6(OH)4Source of K in most temperate-zone soils Amphibole (Ca,Na,K)2,3(Mg,Fe,Al)5(OH)2[(Si,Al)4O 11]2Easily weathered to clay minerals and oxides Pyroxene (Ca,Mg,Fe,Ti,Al)(Si.Al)O 3Easily weathered Olivine (Mg,Fe)2SiO 4Easily weatheredEpidote Tourmaline Zircon Rutile Kaolinite Ca 2(Al,Fe)3(OH)Si 3O 12NaMg 3Al 6B 3Si 6O 27(OH,F)4ZrSiO 4TiO 2Si 4Al 4O 10(OH)8Highly resistant to chemical weathering;used as ‘‘index mineral’’in pedologic studiesSmectite,vermiculite,chlorite M x (Si,Al)8(Al,Fe,Mg)4O 20(OH)4,where M ϭinterlayer cation Abundant in clays as products of weathering;source of exchangeable cations in soils Allophane Si 3Al 4O 12⅐n H 2OAbundant in soils derived from volcanic ash depositsImogolite Si 2Al 4O 10⅐5H 2O Gibbsite Al(OH)3Abundant in leached soils Goethite FeO(OH)Most abundant Fe oxide Hematite Fe 2O 3Abundant in warm region Ferrihydrate Fe 10O 15⅐9H 2OAbundant in organic horizons Birnessite (Na,Ca)Mn 7O 14⅐2.8H 2O Most abundant Mn oxide Calcite CaCO 3Most abundant carbonate GypsumCaSO 4⅐2H 2OAbundant in arid regionsAdapted from Sposito (1989).Physical weathering processes are generally the forerunners of chemical weathering.Their main con-tributions are to loosen rock masses,reduce particle sizes,and increase the available surface area for chem-ical attack.Chemical Processes of WeatheringChemical weathering transforms one mineral to an-other or completely dissolves the mineral.Practically all chemical weathering processes depend on the pres-ence of water.Hydration,that is,the surface adsorption of water,is the forerunner of all the more complex chemical reactions,many of which proceed simulta-neously.Some important chemical processes are listed below.1.Hydrolysis,probably the most important chemi-cal process,is the reaction between the mineral and H ϩand (OH)Ϫof water.The small size ofthe ion enables it to enter the lattice of minerals and replace existing cations.For feldspar,Orthoclase feldspar:ϩϪK silicate ϩH OH ϩϪ→H silicate ϩK OH (alkaline)Anorthite:ϩϪCa silicate ϩ2H OH →H silicate ϩCa(OH)(basic)2As water is absorbed into feldspar,kaolinite is often produced.In a similar way,other clay min-erals and zeolites (microporous aluminosilicates)may form by weathering of silicate minerals as the associated ions such as silica,sodium,potas-sium,calcium,and magnesium are lost into so-C o p y r i g h t e d M a t e r i a l102SOIL FORMA TIONFigure 2.6Solubility of alumina and amorphous silica inwater (Keller,1964b).lution.Hydrolysis will not continue in the presence of static water.Continued driving of the reaction to the right requires removal of soluble materials by leaching,complexing,adsorption,and precipita-tion,as well as the continued introduction of H ϩions.Carbonic acid (H 2CO 3)speeds chemical weathering.This weak acid is formed by the so-lution in rainwater of a small amount of carbon dioxide gas from the atmosphere.Additional car-bonic acid and other acids are produced by the roots of plants,by insects that live in the soil,and by the bacteria that degrade plant and animal remains.The pH of the system is important because it influences the amount of available H ϩ,the solu-bility of SiO 2and Al 2O 3,and the type of clay mineral that may form.The solubility of silica and alumina as a function of pH is shown in Fig.2.6.2.Chelation involves the complexing and removal of metal ions.It helps to drive hydrolysis reac-tions.For example,Muscovite:K [Si Al ]Al O (OH)ϩ6C O H ϩ8H O26242042422ϩϩ0Ϫ→2K ϩ6C O Al ϩ6Si(OH)ϩ8OH 244Oxalic acid (C 2O 4H 2),the chelating agent,re-leases C 2O 42Ϫ,which forms a soluble complex with Al 3ϩto enhance dissolution of muscovite.Ring-structured organic compounds derived from humus can act as chelating agents by holding metal ions within the rings by covalent bonding.3.Cation exchange is important in chemical weath-ering in at least three ways:a.It may cause replacement of hydrogen on hydrogen bearing colloids.This reduces the ability of the colloids to bring H ϩto unweath-ered surfaces.b.The ions held by Al 2O 3and SiO 2colloids in-fluence the types of clay minerals that form.c.Physical properties of the system such as the permeability may depend on the adsorbed ion concentrations and types.4.Oxidation is the loss of electrons by cations,and reduction is the gain of electrons.Both are im-portant in chemical weathering.Most important oxidation products depend on dissolved oxygen in the water.The oxidation of pyrite is typical of many oxidation reactions during weathering (Keller,1957):2FeS ϩ2H O ϩ7O →2FeSO ϩ2H SO 222424FeSO ϩ2H O →Fe(OH)ϩH SO 42224(hydrolysis)Oxidation of Fe(OH)2gives4Fe(OH)ϩO ϩ2H O →4Fe(OH)22232Fe(OH)→Fe O ⅐n H O (limonite)3232The H 2SO 4formed in these reactions rejuvenates the process.It may also drive the hydrolysis of silicates and weather limestone to produce gyp-sum and carbonic acid.During the construction of the Carsington Dam in England in the early 1980s,soil in the reservoir area that contained pyrite was uncovered during construction follow-ing the excavation and exposure of air and water of the Namurian shale used in the embankment.The sulfuric acid that was released as a result of the pyrite oxidation reacted with limestone to form gypsum and CO 2.Accumulation of CO 2in construction shafts led to the asphyxiation of workers who were unaware of its presence.It is believed that the oxidation process was mediated by bacteria (Cripps et al.,1993),as discussed fur-C o p y r i g h t e d M a t e r i a lWEA THERING11Figure 2.7Microogranisms attached to soil particle sur-faces:(a )bacteria attached to sand particle (from Robertson et al.1993in Chenu and Stotzky,2002),(b )bacterial mi-croaggregate [from Robert and Chenu (1992)in Chenu and Stotzky (2002)],and (c )biofilm on soil surface (from Chenu and Stotzky (2002).ther in the next section.Many iron minerals weather to iron oxide (Fe 2O 3,hematite).The red soils of warm,humid regions are colored by iron oxides.Oxides can act as cementing agents between soil particles.Reduction reactions,which are of importance relative to the influences of bacterial action and plants on weathering,store energy that may be used in later stages of weathering.5.Carbonation is the combination of carbonate or bicarbonate ions with earth materials.Atmos-pheric CO 2is the source of the ions.Limestone made of calcite and dolomite is one of the rocks that weather most quickly especially in humid regions.The carbonation of dolomitic limestone proceeds as follows:CaMg(CO )ϩ2CO ϩ2H O3222→Ca(HCO )ϩMg(HCO )3232The dissolved components can be carried off in water solution.They may also be precipitated at locations away from the original formation.Microbiological EffectsSeveral types of microorganisms are found in soils;there are cellular microorganisms (bacteria,archea,al-gae,fungi,protozoa,and slime molds)and noncellular microorganisms (viruses).They may be nearly round,rodlike,or spiral and range in size from less than 1to 100␮m,which is equivalent to coarse clay size to fine sand size.Figure 2.7a shows bacteria adhering to quartz sand grains,and Fig.2.7b shows clay minerals coating around the cell envelope,forming what are called bacterial microaggregates.4A few billion to 3trillion microorganisms exist in a kilogram of soil near the ground surface and bacteria are dominant.Micro-organisms can reproduce very rapidly.The replication rate is controlled by factors such as temperature,pH,ionic concentrations,nutrients,and water availability.Under ideal conditions,the ‘‘generation time’’for bac-terial fission can be as short as 10min;however,an hour scale is typical.These high-speed generation rates,mutation,and natural selection lead to very fast adaptation and extraordinary biodiversity.Autotrophic photosynthetic bacteria,that is,photo-autotrophs,played a crucial role in the geological de-4Further details of how microorganisms adhere to soil surfaces are given in Chenu and Stotzky (2002).C o p y r i g h t e d M a t e r i a l122SOIL FORMA TIONvelopment of Earth (Hattori,1973;McCarty,2004).Photosynthetic bacteria,cyanobacteria,or ‘‘blue-green bacteria’’evolved about 3.5billion years ago (Proter-ozoic era—Precambrian),and they are the oldest known fossils.Cyanobacteria use energy from the sun to reduce the carbon in CO 2to cellular carbon and to obtain the needed electrons for oxidizing the oxygen in water to molecular oxygen.During the Archaean period (2.5billion years ago),cyanobacteria converted the atmosphere from reducing to oxidizing and changed the mineral nature of Earth.Eukaryotic algae evolved later,followed by the mul-ticellular eukaryotes including plants.Photosynthesis is the primary producer of the organic particulate mat-ter in shale,sand,silt,and clay,as well as in coal,petroleum,and methane deposits.Furthermore,cyano-bacteria and algae increase the water pH when they consume CO 2dissolved in water,resulting in carbonate formation and precipitation of magnesium and calcium carbonates,leading to Earth’s major carbonate forma-tions.Aerobic bacteria live in the presence of dissolved oxygen.Anaerobic bacteria survive only in the absence of oxygen.Facultative bacteria can live with or without oxygen.Some bacteria may resort to fermentation to sustain their metabolism under anaerobic conditions (Purves et al.,1997).For example,in the case of an-aerobic conditions,fermenting bacteria oxidize carbo-hydrates to produce simple organic acids and H 2that are used to reduction of ferric (Fe 3ϩ)iron,sulfate re-duction,and the generation of methane (Chapelle,2001).Microbial energy metabolism involves electron transfers,and the electron sources and acceptors can be both organic and inorganic compounds (Horn and Meike,1995).Most soil bacteria derive their carbon and energy directly from organic matter and its oxi-dation.Some other bacteria derive their energy from oxidation of inorganic substances such as ammonium,sulfur,and iron and most of their carbon from carbon dioxide.Therefore,biological activity mediates geo-chemical reactions,causing them to proceed at rates that are sometimes orders of magnitude more rapid than would be predicted solely on the basis of the ther-mochemical reactions involved.Bacteria tend to adhere to mineral surfaces and form microcolonies known as biofilms as shown in Fig.2.7c .Some biofilms are made of single-type bacteria,while others involve symbiotic communities where two or more bacteria types coexist and complement each other.For example,biofilms involved in rock weath-ering may involve an upper aerobic layer,followed by an intermediate facultative layer that rests on top of the aerobic layer that produces the weathering agents(e.g.,acids)directly on the rock surface (Ehrlich,1998).Biofilms bind cations in the pore fluid and fa-cilitate nucleation and crystal growth even at low ionic concentrations in the pore fluid (Konhauser and Urru-tia,1999).After nucleation is initiated,further mineral growth or precipitation can occur abiotically,including the precipitation of amorphous iron–aluminum sili-cates and poorly crystallized claylike minerals,such as allophone,imogolite,and smectite (Urrutia and Bev-eridge,1995;Ehrlich,1999;Barton et al.,2001).In the case of the Carsington Dam construction,Cripps et al.(1993)hypothesized that autotrophic bac-teria greatly accelerated the oxidation rate of the pyrite,so that it occurred within months during construction.The resulting sulfuric acid reacted with the drainage blanket constructed of carboniferous limestone,which then resulted in precipitation of gypsum and iron hy-droxide,clogging of drains and generation of carbon dioxide.Weathering ProductsThe products of weathering,several of which will gen-erally coexist at one time,include:1.Unaltered minerals that are either highly resistant or freshly exposed2.Newly formed,more stable minerals having the same structure as the original mineral3.Newly formed minerals having a form similar to the original,but a changed internal structure4.Products of disrupted minerals,either at or trans-ported from the site.Such minerals might include a.Colloidal gels of Al 2O 3and SiO 2b.Clay minerals c.Zeolitesd.Cations and anions in solutione.Mineral precipitates 5.Unused guest reactantsThe relationship between minerals and different weathering stages is given in Table 2.2.The similarity between the order of representative minerals for the different weathering stages and Bowen’s reaction se-ries given earlier (Fig.2.5)may be noted.Contrasts in compositions between terrestrial and lu-nar soils can be accounted for largely in terms of dif-ferences in chemical weathering.Soils on Earth are composed mainly of quartz and clay minerals because the minerals of lower stability,such as feldspar,oli-vine,hornblende,and glasses,are rapidly removed by chemical weathering.On the Moon,however,the ab-sence of water and free oxygen prevent chemical weathering.Hence,lunar soils are made up mainly of fragmented parent rock and rapidly crystallizedC o p y r i g h t e d M a t e r i a lWEA THERING13Table 2.2Representative Minerals and Soils Associated with Weathering Stages Weath-ering StageRepresentative MineralsTypical Soil GroupsEarly Weathering Stages12345Gypsum (also halite,sodium nitrate)Calcite (also dolomite apatite)Olivine-hornblende (also pyroxenes)Biotite (also glauco-nite,nontronite)Albite (also anorthite microcline,ortho-clase)Soils dominated by these minerals in the fine silt and clay frac-tions are the youthful soils all over the world,but mainly soils of the desert regions where limited water keeps chemical weathering to a mini-mum.Intermediate Weathering Stages678Quartz Muscovite (also illite)2Ϻ1layer silicates (in-cluding vermiculite,expanded hydrousmica)MontmorilloniteSoils dominated by these minerals in the fine silt and clay frac-tions are mainly those of temperate regions developed under grass or trees.Includes the major soils of the wheat and corn belts of the world.Advanced weathering stages10111213KaoliniteGibbsiteHematite (also geothite,limonite)Anatase (also rutile,zircon)Many intensely weath-ered soils of the warm and humid equatorialregions have clay fractions dominated by these minerals.They are frequently characterized by their infertility.From Jackson and Sherman (1953).glasses.Mineral fragments in lunar soils include pla-gioclase feldspar,pyroxene,ilmenite,olivine,and po-tassium feldspar.Quartz is extremely rare because it is not abundant in the source rocks.Carrier et al.(1991)present an excellent compilation of information about the composition and properties of lunar soil.Effects of Climate,Topography,Parent Material,Time,and Biotic FactorsThe rate at which weathering can proceed is controlled by parent material and climate.Topography,apart from its influence on climate,determines primarily the rate of erosion,and this controls the depth of soil accu-mulation and the time available for weathering prior to removal of material from the site.In areas of steep topography,rapid mechanical weathering followed by rapid down-slope movement of the debris results in formation of talus slopes (piles of relatively unweath-ered coarse rock fragments).Climate determines the amount of water present,the temperature,and the character of the vegetative cover,and these,in turn,affect the biologic complex.Some general influences of climate are:1.For a given amount of rainfall,chemical weath-ering proceeds more rapidly in warm than in cool climates.At normal temperatures,reaction rates approximately double for each 10ЊC rise in tem-perature.2.At a given temperature,weathering proceeds more rapidly in a wet climate than in a dry cli-mate provided there is good drainage.3.The depth to the water table influences weather-ing by determining the depth to which air is available as a gas or in solution and by its effect on the type of biotic activity.4.Type of rainfall is important:short,intense rains erode and run off,whereas light-intensity,long-duration rains soak in and aid in leaching.Table 2.3summarizes geomorphologic processes in different morphoclimatic zones.The nature and rate of these geomorphologic processes control landform as-semblages.During the early stages of weathering and soil for-mation,the parent material is much more important than it is after intense weathering for long periods of time.Climate ultimately becomes a more dominant factor in residual soil formation than parent material.Of the igneous rock-forming minerals,only quartz and,to a much lesser extent,feldspar,have sufficient chemical durability to persist over long periods of weathering.Quartz is most abundant in coarse-grained granular rocks such as granite,granodiorite,and gneiss,where it typically occurs in grains in the mil-limeter size range.Consequently,granitic rocks are the main source of sand.In addition to the microbiological activities dis-cussed previously,biological factors of importance in-clude the influences of vegetation on erosion rate and the cycling of elements between plants and soils.Mi-C o p y r i g h t e d M a t e r i a l。

土的应力应变特性

土的应力应变特性

研究生课程论文装题目:浅谈土的应力变形特性订线学院建筑工程学院学科门类工学专业建筑与土木工程学号20151777姓名杨雪萌指导教师冯震2015年12月25日浅谈土的应力变形特性摘要由于土是岩石风化而成的碎散颗粒的集合体,一般包含有固、液、气三相,在其形成的漫长的地质过程中,受风化、搬运、沉积、固结和地壳运动的影响,其应力应变关系十分复杂,并且与诸多因素有关。

其中主要的应力应变特性是其非线性、弹塑性和剪胀(缩)性。

主要的影响因素是应力水平、应力路径和应力历史,亦称 3S 影响。

关键词应力应变非线性弹塑性剪胀性1 概述土的应力应变关系十分复杂,除了时间外,还有温度、湿度等影响因素。

其中时间是一个主要影响因素。

与时间有关的土的本构关系主要是指反映土流变性的理论。

而在大多数情况下,可以不考虑时间对土的应力——应变和强度(主要是抗剪强度)关系的影响。

土的强度是土受力变形发展的一个阶段,即在微小的应力增量作用下,土单元会发生无限大(或不可控制)的应变增量。

因而它实际上是土的本构关系的一个组成部分。

但在长期的岩土工程实践中,在解决某些土力学问题时,人们常常只关心土体受荷的最终状态,亦即破坏状态。

因而土的强度成为土力学中一个独立的领域。

几十年关于土的本构关系的研究使人们对土的应力应变特性的认识达到了前所未有的深度;促使人们对土从宏观研究到微观、细观的研究;为解决如高土石坝、深基坑、大型地下工程、桩基础、近海工程和高层建筑中地基、基础和上层建筑共同作用等工程问题提供了更深刻的认识和理论指导。

2 土的应力应变关系的非线性由于土由碎散的固体颗粒组成,土宏观的变形主要不是由于颗粒本身变形,而是由于颗粒间位置的变化。

这样在不同应力水平下由相同应力增量而引起的应变增量就不会相同,亦即表现出非线性。

图 1 表示土的常规三轴压缩试验的一般结果,其中实线表示密实砂土或超固结粘土,虚线表示松砂或正常固结粘土。

从图 1(a)可以看到,正常固结粘土和松砂的应力随应变增加而增加,但增加速率越来越慢,最后逼近一渐近线;而在密砂和超固结土的试验曲线中,应力开始随应变增加而增加,达到一个峰值之后,应力随应变增加而下降,最后也趋于稳定。

fundamentals of soil behavior_symb

fundamentals of soil behavior_symb

523List of Symbolsa areaa coefficient for harmonics a cross-sectional area of a tubea crystallographic axis direction or distance a effective cluster contact area a volumetric air content a thermal diffusivitya c effective area of interparticle contact a m coefficient of compressibility with respect to changes in water contenta t coefficient of compressibility with respect to changes in (␴Ϫu a )a v coefficient of compressibility in one di-mensional compression A activity A areaA creep rate parameterA cross section area normal to the direction of flowA Hamaker constantA long-range interparticle attractions A Skempton’s pore pressure parameter A thermal diffusivityA van der Waal’s constant A Јshort-range attractive stress A pore pressure parameter ϭ⌬u /⌬(␴1Ϫ␴3)A 0concentration of charges on pore wall A 0surface charge density per unit pore vol-umeA c solid contact area A ƒarea of flow passagesA ƒpore pressure parameter at failure A h Hamaker constantA i state parameter in disturbed state A i total surface area of the i th grain 0A istate parameter at equilibriumA s specific surface area per unit weight of solidsA ˚Angstrom unit ϭ1ϫ10Ϫ10m b coefficient of harmonicsb crystallographic axis direction or distance b intermediate stress parameterB parameter in rate process equation ϭX (kT /h )B Bishop’s pore water pressure coefficient B q grain breakage parameterB r Hardin’s relative breakage parameter c cohesionc cohesion intercept in total stress c concentrationc molar concentrationc crystallographic axis direction or distance c undrained shear strength c velocity of lightc Јcohesion intercept in effective stressc 0equilibrium solution concentration,bulk solution concentrationc 0ϩcation equilibrium solution concentration c 0Ϫanion equilibrium solution concentration c amid-plane anion concentration c e ,c Јe Hvorslev’s cohesion parameter cec cation exchange capacityc ic ,c c mid-plane cation concentration c i 0equilibrium solution concentration c m mid-plane concentrationc Јm mid-plane anion concentration c u undrained shear strength c v coefficient of consolidation c w concentration of water C capacitanceC chemical concentration C clay content by weight CcompositionC op y r i g h t e d M a t e r i a l524LIST OF SYMBOLSC electrical capacitanceC short-range repulsive force between con-tacting particles C soil compressibilityC speed of light in vacuum or in air,3ϫ108m/secC volumetric heatC volumetric heat capacity C c compression indexC *c intrinsic compression index C l compressibility of pore fluid C n coordination number CR compression ratio CRR cyclic resistance ratio C s compressibility of a solid C s shape coefficient C s swelling indexC u coefficient of uniformityC u compressibility of soil skeleton by pore pressure changeC Wcompressibility of waterC ␣,C ␣e coefficient of secondary compression d diameter d distanced 10sieve size that 10%of the particles by weight pass throughd 60sieve size that 60%of the particles by weight pass throughdx incremental horizontal displacement at peakdy incremental vertical displacement at peak D diameter of particleD dielectric constant,relative permittivity D diffusion coefficient D deviator stressD stress level ϭD /D maxD 0molecular diffusivity of water vapor in air D 0self-diffusion coefficientD 50sieve size that 50%of the particles by weight pass through D eƒƒeffective diameterD eV isothermal vapor diffusivityD max strength at the beginning of creep D R ,D r relative densityD s characteristic grain size D TV thermal vapor diffusivity D *effective diffusion coefficiente electronic charge ϭ4.8029ϫ10Ϫ10esuϭ1.60206ϫ10Ϫ10coulombe void ratioe 0initial void ratioe *100intrinsic void ratio under effective vertical stress of 100kPa e cintracluster void ratioe cs void ratio at critical state e ƒƒvoid ratio at failuree g ,e G void ratio of the granular phase,granular void ratioe ini initial void ratioe L void ratio at liquid limit e max maximum void ratio e min minimum void ratio e p intercluster void ratio e T total void ratioE experimental activation energy E potential energy E Young’s modulusE voltage,electrical potentialE 50secant modulus at 50percent of peak strengthE max small strain Young’s modulus E r rebound modulusESP exchangeable sodium percentageE (␤)distribution function for interparticle con-tact plane normalsƒforce acting on a flow unit ƒfrequencyƒi fraction of particles between two sizes ƒn normal force ƒt tangential forceF force of electrostatic attraction F formation factor F free energy F freezing indexF pressure-temperature parameter F tensile strengthF ,F 0Faraday constant ϭ96,500coulombs F partial molar free energy on adsorption F dfree energy of the double layer per unit area at a plate spacing of 2d ⌬Ffree energy of activationF E electrical force per unit lengthF H hydraulic seepage force per unit length causing flow FI fabric indexF ϱfree energy of a single non-interacting double layerg acceleration due to gravity G shear modulus G source-sinkG 1000shear modulus measured after 1000minutes of constant confining pressure G g shear modulus of grains G max small strain shear modulus G s secant shear modulusG s specific gravity of soil solids G SC specific gravity of clay particlesG SGspecific gravity of the granular particlesC o p y r i g h t e d M a t e r i a lLIST OF SYMBOLS525h head or head lossh relative humidity of air in poresh Planck’s constant ϭ6.624ϫ10Ϫ27erg sec h m matrix or capillary head h s osmotic or solute headH maximum distance to drainage boundary H stress history H thickness H total headH water transport by ion hydration H partial molar heat content i gradient i unit vectori c chemical gradient i e electrical gradient i h hydraulic gradient i t thermal gradient I electrical current IintensityI 1,I 2,I 3stress invariantsI Gcoefficient of shear modulus increase with timeI R dilatancy index I v void indexJ c chemical flow rate J D chemical flow rate J i flux of constituent iJ i value of property i in clay-water system J s flow rate of salt relative to fixed soil layer J v volume flow rate of solution J w flow rate of water0J i value of property i in pure water k Boltzmann’s constant ϭ1.38045ϫ10Ϫ23J/ЊKk hydraulic conductivity,hydraulic perme-abilityk mean coordination number of a grain k selectivity coefficient k thermal conductivity k true cohesion in a solid k 0pore shape factor k c osmotic conductivityk e electro-osmotic conductivity k h hydraulic conductivityk i constant characteristic of a property k r relative permeability k s saturated conductivityk (S )saturation dependent hydraulic conductiv-ityk t thermal conductivityk ␪unsaturated hydraulic conductivityK absolute permeability or intrinsic perme-abilityKbulk modulusK double-layer parameter ϭ(8␲n 0e 2v 2/DRT )1/2K pore shape factorK rate of increase in tip resistance in loga-rithmic timeK 0coefficient of lateral earth pressure at rest K a coefficient of active earth pressure K c principal stress ratioK c principal stress ratio during consolidation K d distribution coefficientK p coefficient of passive earth pressure K so stress-optical material constantK ␣wavelengths of monochromatic radiation l lengthl material thicknessl total number of pore classes L latent heat of fusion L lengthL ijcoupling coefficient or conductivity coef-ficientLI liquidity indexLI eq equivalent liquidity index LL liquid limitL s latent heat of fusion of waterm slope of relationship between log creep strain rate and log timem total mass per unit total volume m total number of pore classes m c mass of claym s compressibility of mineral solids under hydrostatic pressurem Јs compressibility of mineral solids under concentrated loadings m v compressibilitym w compressibility of water m w mass of waterM constrained modulus or coefficient of vol-ume change M metal cationsM monovalent cation concentration n concentration,ions per unit volume n harmonic number n integern number of grains in an ideal breakage plane n porosityn total number of pore classes n unspecified atomic ration 0concentration in external solutionn 1number of bonds per unit of normal force n e effective porosityn i Refractive index in i directionNAvogadro’s number ϭ 6.0232ϫ1023mole Ϫ1C o p y r i g h t e d M a t e r i a l526LIST OF SYMBOLSN coordination numberN monovalent cation concentrationN normal load or forceN number of moles of hydration water per mole of ionN number of particles per cluster in a cluster structureN number of weeks since disturbanceN total number of harmonicsN1number of load cycles to cause liquefac-tionNe number of load cyclesNG normalized shear modulus increase with timeNs moles of water per unit volume of sedi-mentNw moles of salt per unit volume of sedimentOCR overconsolidation ratiop constant that accounts for the interaction of pores of various sizesp hydrostatic pressurep matrix or osmotic pressurep pressurep partial pressure of water vapor in pore spacep vertical consolidation pressurepЈmean effective pressurep o present overburden pressurep a atmospheric pressurep c preconsolidation pressurepЈcs mean effective pressure at critical statep s osmotic or solute pressurep z gravitational pressureP areaP bond strength per contact zone P concentration of divalent cations P power consumptionP total gas pressure in pore space P total pressureP wetted perimeterP c capillary pressureˆP c capillary pressure at air entryP ƒinjection pressure that causes clay to frac-turePI plasticity indexP inj injection pressurePL plastic limitP N probability distribution of normal contact forcePR peak ratioP s swelling pressureP Tprobability distribution of tangential con-tact forceq degree of connectivity between water-conducting poresq deviator stressqflow rateq hydraulicflow rateqcCPT tip resistanceqcsdeviator stress at critical stateqƒdeviator stress at failureqhhydraulicflow rateqhcosmoticflow rateqheelectro-osmoticflow rateqiconcentration of solidsqtheatflow rateqvapvaporflux densityqwwaterflow rateQ electrical chargeQ quantity of heatr pore radiusr radiusrkratio of horizontal to vertical hydraulicconductivitiesrppore sizerptube radiusR coefficient of roundnessR electrical resistanceR gas constantϭ1.98726cal/ЊK-mole8.31470joules/ЊK-mole82.0597cm3atm/ЊK-moleR long-range repulsion pressureR ratio of cations and anionsR source or sink mass transfer termR sphere radiusR tube radiusRdretardation factorRHhydraulic radiusRpaverage particle radiusR(␪)radius at angle␪s slope of stress relaxation curvesuundrained shear strengthS entropyS fraction of molecules striking a surfacethat stick to itS number offlow units per unit areaS partial molar entropyS saturationS specific surface area per unit volume ofsolidsS structureS swellS partial molar entropySspecific surface per unit volume of soilparticlesSAR sodium adsorption ratioCopyrightedMaterialLIST OF SYMBOLS527S t sensitivityS u undrained shear strength S wwater saturation ratioS x ,S y ,S z projected areas of interparticle contact surfacest average thicknesst tetrahedral coordinations t timet transport number t 1reference time t ƒtime to failuret m time for adsorption of a monolayer T intercluster tortuosity T shear force T temperature T time factorT 0initial temperature T c intracluster tortuosityT c temperature at consolidation T FP freezing temperature T s surface temperatureT s temperature of shear for consolidated un-drained direct shear tests T V time factoru excess pore pressure u ionic mobilityu midplane potential function u pore water pressureu pore water pressure in the interparticle zone u pressureu thermal energyu *effective ionic mobility u 0initial pore pressureu 0pore water pressure remote from the in-terparticle zoneU ƒpore pressure at failureUaverage degree of consolidation v flow velocityv frequency of activation v ionic valance v settling velocityv specific volume ϭ1ϩe v ave average flow velocityv c 0specific volume of the pure clay v cs specific volume at critical state v happarent water flow velocity V areaV difference in self-potentials V electrical potential V speed V valence VvoltageV volumeV 0initial volume V A attractive energyV DR volume of water drained V GS volume of granular solids V m total volume of soil mass V p compression wave velocity V R repulsive energy V s shear wave velocity V s volume of solidsV w partial molar volume of water V w volume of water w water content w L ,w l liquid limit w P ,w p plastic limit W water content W widthW fluid volume W water transport W weightx distance from the clay surface X distanceX friction coefficient X i driving forcey potential function ϭv e ⌿/kT z direction of gravityz distance from drainage surface z electrolyte z ionic valenceZ elevation or elevation headZnumber of molecules per second striking a surfaceZ potential function ϭ␷e ␺0/kT␣angle between b and c crystallographic axes␣directional parameter ␣disturbance factor␣geometrical packing parameter␣inclination of failure plane to horizontal plane␣slope of the relationship between loga-rithm of creep rate and creep stress ␣thermal ratio ␣tortuosity factor␣G normalized strain rate parameter␣s thermal expansion coefficient of soil sol-ids␣ST thermal expansion coefficient of soil structure␣w thermal expansion coefficient of water ␤angle between a and c crystallographic axes␤birefringence ratioC o p y r i g h t e d M a t e r i a l528LIST OF SYMBOLS␤disturbance factor␤geometrical packing parameter ␤rotation angle of yield envelope␤0,␤i constant characteristic of the property and the clay␹Bishop’s unsaturated effective stress pa-rameter␦clay plate thickness measured between centers of surface layer atoms␦deformation parameter in Hertz theory ␦displacement,distance␦solid fraction of a contact area ␦relative retardation␦p particle eccentricity distance ␧dielectric constant,permittivity ␧porosity ␧strain ˙␧strain rate␧0permittivity of vacuum,8.85ϫ10Ϫ12C 2/(Nm 2)␧1axial strain˙␧a vertical strain rate in one dimensional consolidation ␧ƒstrain at failure˙␧min minimum strain rate␧rd volumetric strain that would occur if drainage were permitted ␧s deviator strain ˙␧s deviator strain rate ␧v volumetric strain ˙␧v volumetric strain rate⌬Eenergy dissipated per cycle per unit vol-ume␾friction angle␾local electrical potential␾Јfriction angle in effective stress␾b angle defining the rate of increase in shear strength with respect to soil suction ␾c characteristic friction angle ␾Јcrit friction angle at critical state ␾e ,␾Јe Hvorslev friction parameter␾Јƒfriction angle corrected for the work of dilation␾Јm peak mobilized friction angle ␾Јrresidual friction angle ␾repose angle of repose␾v apparent specific volume of the water in a clay/water system of volume V ␾␮,␾Ј␮intergrain sliding friction angle ⌽dissipation function ␥activity coefficient␥angle between a and b crystallographic axes␥unit weight˙␥shear strain rate␥c applied shear strain or cyclic shear strain amplitude␥d dry unit weight ⌫double layer charge⌫specific volume intercept at unit pressure ␩dynamic viscosity␩fraction of pore pressure that gives effec-tive stress␩0initial anisotropy ␬swelling index␬Јreal relative permittivity␬؆polarization loss,imaginary relative per-mittivity␭compression index␭correction coefficient for frost depth pre-diction equation ␭damping ratio ␭decay constant␭pore size distribution index␭separation distance between successive positions in a structure ␭wave length of X ray ␭wave length of light␭cs critical state compression index ␮chemical potential ␮coefficient of friction ␮dipole moment ␮fusion parameter ␮Poisson’s ratio ␮viscosity⌴critical state stress ratio ␯Poisson’s ratio␯b Poisson’s ratio of soil skeleton ␲osmotic or swelling pressure␪angle of bedding plane relative to the maximum principal stress direction ␪contact angle␪geometrical packing parameter ␪liquid-to-solid contact angle ␪orientation angle␪volumetric water content␪m volumetric water content at full saturation ␪r residual water content␪s volumetric water content at full saturation ␳bulk dry density ␳charge density ␳mass density ␳d bulk dry density␳T resistivity of saturated soil ␳w density of water␳W resistivity of soil water␴area occupied per absorbed molecule on a surfaceC o p y r i g h t e d M a t e r i a lLIST OF SYMBOLS529␴double-layer charge ␴electrical conductivity ␴entropy production ␴normal stress␴surface tension of water ␴surface charge density ␴total stress ␴Јeffective stress␴Ј0initial effective confining pressure ␴1major principal total stress␴1tensile strength of the interface bond ␴Ј1major principal effective stress␴1cmajor principal stress during consolida-tion␴1ƒmajor principal stress at failure␴Ј1ƒƒmajor principal effective stress at failure ␴Ј2intermediate principal effective stress ␴3minor principal total stress ␴Ј3minor principal effective stress␴3c minor principal stress during consolida-tion␴Ј3ƒƒminor principal effective stress at failure ␴Јa axial effective stress ␴Јac axial consolidation stress␴as interfacial tension between air and solid ␴aw interfacial tension between air and water ␴c crushing strength of particles ␴c tensile strength of cement ␴e electrical conductivity␴Јe equivalent consolidation pressure ␴eƒƒeffective AC conductivity␴ƒpartial stress increment for fluid phase ␴Јƒeffective normal stress on shear plane ␴ƒƒnormal total stress on failure plane ␴Јƒƒnormal effective stress on failure plane ␴h electrical conductivity due to hydraulic flow␴Јh 0initial horizontal effective stress ␴Јi effective stress in the i -direction ␴Јi intergranular stress ␴Јi isotropic consolidation ␴iso isotropic total stress␴max maximum principal stress ␴min minimum principal stress ␴Јn effective normal stress ␴Јp preconsolidation pressure ␴r radial total stress ␴Јr radial effective stress ␴Јrc radial consolidation stress ␴s conductivity of soil surface␴s partial stress increment for solid phase ␴s tensile strength of the sphere␴Telectrical conductivity of saturated soil ␴T ,␴Јttensile strength of cemented soil␴v vertical stress␴Јv vertical effective stress␴v 0overburden vertical effective stress ␴Јv 0overburden effective stress␴Јv m maximum past overburden effective stress ␴Јv p vertical preconsolidation stress␴W electrical conductivity of pore water␴ws interfacial tension between water and solid␴y yield strength␴␪circumferential stress ␶shear strength ␶shear stress ␶surface tension␶swelling pressure or matric suction ␶undrained shear strength ␶a apparent tortuosity factor ␶c applied shear stress␶c contaminant film strength ␶cy undrained cyclic shear stress ␶d drained shear strength␶ƒƒshear stress at failure on failure plane ␶i shear strength␶i shear strength of contact␶mshear strength of solid material in yielded zone␶peak applied shear stress at peak ␶␣initial static shear stress ␷mass flow factor ␷cation valence␰distance function ϭKx ,double-layer the-ory␰ratio of average temperature gradient in air filled pores to overall temperature gra-dient␺dilation angle ␺electrical potential ␺intrinsic friction angle ␺matric suction␺0surface potential of double layer ␺d displacement pressure ⌿electrical potential ⌿state parameter⌿total potential of soil water⌿0electrical potential at the surface ⌿s gravitational potential⌿m matrix or capillary potential ⌿p gas pressure potential⌿s osmotic or solute potential ␻angular velocity ␻frequency␻osmotic efficiency⍀true electroosmotic flow ␨zeta potentialC op y r i g h t e d M a t e r i a l。

英文学术论文写作

英文学术论文写作

英文学术论文写作学术论文写作用英语写学术论文的目的主要有两个,一是参加国际学术会议,在会议上宣讲,促进学术交流;二是在国际学术刊物上发表,使国外同行了解自己的研究成果,同样也是出于学术交流的目的。

不同的学科或领域、不同的刊物对论文的格式有不同的要求,但各个领域的研究论文在文体和语言特点上都有许多共性。

了解了这些语言共性,便会起到触类旁通的作用。

对我国青年学者或学生来说,用英语写作的难点不是没有写作材料,不是不熟悉专业词汇,也不是没有打下良好的英语基础。

用英语写论文难,是因为不太了解学术英语的语言特点。

关于学术英语写作的语言技巧,我们已在第一部分作了较详细的介绍。

此部分讨论学术论文写作的方法,包括学术论文写作中常用的句型结构,我们都在此作较详细介绍,以便读者模仿练习,将写作工作化难为易。

一般来说,一篇完整规范的学术论文由以下各部分构成:Title(标题)Abstract(摘要)Keywords(关键词)Table of contents(目录)Nomenclature(术语表)Introduction(引言)Method(方法)Results(结果)Discussion(讨论)Conclusion(结论)Acknowledgement(致谢)Reference(参考文献)Appendix(附录)其中Title,Abstract,Introduction,Method,Result,Discussion,Conclusion,Reference等八项内容是必不可少的(其他内容根据具体需要而定)。

在这八项内容中,读者最多的是Title,Abstract和Introduction部分,读者会根据这些内容来决定是否阅读全文。

也就是说,一篇研究论文赢得读者的多少,在很大程度上取决于Title,Abstract和Introduction写得好坏。

因此这三项内容将各分章详细加以讲述。

学术论文的正文一般包括Method,Result,Discussion三个部分。

岩土葵花宝典

岩土葵花宝典

1.2.Bifurcations & Instabilities in Geomechanics《地质力学的分叉和不稳定》PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ONBIFURCATIONS & INSTABILITIES IN GEOMECHANICS, IWBI 2002,2-5 JUNE 2002, MINNEAPOLIS MN, USAJ.F. Labuz & A. DrescherUniversity of Minnesota, Minneapolis MN, USA3.Debris flow -Mechanics, Prediction and Countermeasures《泥石流的力学、预测和对策》Tamotsu TakahashiCRC Press4. Deformation Characteristics of Geomaterials- Recent Investigations and Prospects Edited by《土工材料的变形特征》H. Di Benedetto, T. Doanh, H. Geoffroy & C. SauzéatDépartement Génie Civil et Bâtiment (DGCB, CNRS), Ecole Nationale des Travaux Publics de l’Etat, Vaulx-en-Velin, FranceA.A. BALKEMA PUBLISHERS5.Geotechnical Slope Analysis《土质边坡分析》Robin ChowdhuryFaculty of Engineering, University of Wollongong, Wollongong, AustraliaCRC Press6.FUNDAMENTALS OF SOIL SCIENCE《土力学基础》HENRY D. FOTHMichigan State UniversityJOHN WILEY & SONS7.Terzaghi Lecture 2005 Lecture Notes《太沙基演讲集》Professor DelwynG. FredlundUniversity of SaskatchewanSaskatoon, SK, CanadaGeoFro ntiers2005Unsaturated Soil Mechanics in Engineering8. 300 Solved problems in Soil and Rocks《岩土300题》9. Problem Solving in Soil MechanicsA.AysenA.A. BALKEMA PUBLISHERS10. ADVANCED GEOTECHNICAL ANALYSESDevelopments in Soil Mechanics and Foundation Engineering—4P.K.BANERJEEDepartment of Civil Engineering, State University of New York at Buffalo, New York, USAR.BUTTERFIELDDepartment of Civil Engineering, University of Southampton, UKELSEVIER APPLIED SCIENCE11. Advanced Soil Mechanics(Third edition)Braja M. DasTaylor &Francis12. Advanced Unsaturated Soil Mechanics and EngineeringCharles W.W. Ng and Bruce MenziesTaylor & Francis13.An introduction to Geotechnical EngineeringHoltz, R. D. & Kovacs, W.D.Prentice Hall14. An introduction to soils and Foundations EngineeringJohn, AtkinsonMcGraw-Hill15. An Introduction to Geotechnical ProcessesJOHN WOODWARDSpon Press16. APPLIED SOIL MECHANICS with ABAQUS ApplicationsSAM HELWANYJOHN WILEY & SONS, INC.17. Limit Analysis in Soil MechanicsChen, W.F. & Liu, X. L.Elesvier18. Foundation Design- Principal and PracticeCunduto, D. P.Prentice Hall19. Craig’s Soil MechanicsR.F. CraigFormerlyDepartment of Civil EngineeringUniversity of Dundee UKSpon Press20. Advanced Soil Mechanics, 2ndDas, B. M.Taylor & Francis21. Geotechnical modellingDavid Muir Wood22. Disturbed soil properties and geotechnical designAndrew SchofieldThomas Telford Publishing, Thomas Telford Ltd23. PLASTICITY AND GEOMECHANICSR. O. DAVISUniversity of CanterburyA. P. S. SELVADURAIMcGill UniversityCambridge University Press24. Elastic Solution for Soil and Rock MechanicsPoulos, H.G & Daivd, E.H.University of Sydney25. Evaluation of Soil Shear Strengths for Slope and Retaining Wall Stability Analyse s with Emphasis on High Plasticity ClaysStephen G. WrightTexas Department of Transportation26. Introductory Geotechnical EngineeringAn environmental perspectiveHsai-Yang Fang and John L. DanielsTaylor & Francis Group27. GEOTECHNICAL AND GEOPHYSICAL SITE CHARACTERIZATION PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON SITE CHARACTERIZATION ISC’3, TAIPEI, TAIWAN, 1–4 APRIL, 2008Edited byAn-Bin HuangDepartment of Civil Engineering, National Chiao Tung University,Hsin Chu, TaiwanPaulW. MayneSchool of Civil & Environmental Engineering, Georgia Instituteof Technology, Atlanta, GA, USA28. Geotechnical Engineering: Principles and Practices of Soil Mechanics Murthy, V.N.S.Marcer Deeker, INC29. Plasticity and GeomechanicsYu, H.S.Springer30. Mathematics and Mechanics of Granular MaterialsJAMES M. HILLUniversity of Wollongong, AustraliaA.P.S. SELVADURAIMcGill Univeristy, Montreal, ON, CanadASpringer31. Mechanics of Ballasted Rail Tracks-A Geotechnical Perspective Indradratana, B.Taylor and Francis32. Soil MechanicsLambe, T.W. & Whiteman, R.V.33. Geotechnical Engineering, 2nd EDRenato LancellottaTaylor & Francis34. UNSATURATED SOIL MECHANICSLu, N. & WILLIAM J. LIKOSUniversity of Missouri–ColumbiaJOHN WILEY & SONS, INC.35. Fundamentals of Soil Behavior, 3rd EDJames K. MitchellKenichi SogaJOHN WILEY & SONS, INC.36. OFFSHORE SOIL MECHANICS《近海土力学》Arnold VerruijtDelft University of Technology1994, 200637. Principles of Geotechnical Engineering《岩土工程原理》FIFTH EDITIONBRAJA M. DASCalifornia State University, SacramentoThomson38. Probability methods in Geotechnical Engineering《》Fento and Griffith39. Reliability and Statistics in Geotechnical Engineering Gregory B. BaecherDepartment of Civil & Environmental Engineering, University of Maryland, USAJohn T. ChristianConsulting Engineer, Waban,Massachusetts, USAJohn Wiley & Son40. Critical State Soil MechanicsAndrew Schofield and Peter WrothLecturers in Engineering at Cambridge University41. Soil Behavior and Critical State Soil Mechanics Wood, D.M.42. SOIL MECHANICS AND FOUNDATIONSRobert W. DayChief Engineer, American GeotechnicalSan Diego, California43. Strength Analysis in GeomechanicsSerguey A. ElsoufievSpinger44. THEORY OF PLASTICITYJ. ChakrabartyFormerly, Professor of Mechanical Engineering,Texas A & M University System, USAElesvier举报删除此信息广告geozb(站内联系TA)45. Mechanics of Materials and Interfaces The Disturbed State Concept Chandrakant S. DesaiCRC Press46. Advanced Mechanics of MaterialsBoresi, A. P.Jonson and Wiley47. Generalized PlasticityYu, M. H.Spinger48. Applied Fuzzy ArithmeticAn Introduction with Engineering ApplicationsMichael HanssSpringer49. Introduction to Computational PlasticityFIONN DUNNE AND NIK PETRINICDepartment of Engineering ScienceOxford University, UKOxford University Press50. The mechanics of Constitutive ModelingOttosen,N.S.Elesvier51. Mohr Circles, Stress Paths and Geotechnics, 2nd EDR H G ParrySpon Press52. Geologic HazardsA Field Guide for Geotechnical EngineersRoy E. Hunt, P.E., P.G.Taylor and Francis58. Reliability-Based Design in Geotechnical EngineeringPhoon, K.K.Taylor and Francis59. Finite element analysis in geotechnical engineering(Theory)David M. Potts and Lidija ZdravkovicImperial College ofScience, Technology and MedicineThomasTelford60. Finite element analysis in geotechnical engineering (Application)David M. jPotts and lidija ZdravkovicImperial College ojScience, Technology and MedicineThomasTelford61. Geotechnical Calculation Rule of ThumbRajapakse,R.PUTATIONAL METHODS FOR PLASTICITY THEORY AND APPLICATIONSEA de Souza NetoD Peri´cDRJ OwenCivil and Computational Engineering Centre, Swansea UniversityWiley63. Modeling Soil Liquefaction Hazards for Performance-Based Earthquake Engineerin gSteven L. KramerUniversity of WashingtonAhmed-W. ElgamalUniversity of California, San Diego2001/06APRIL 1999Pacific Earthquake EngineeringResearch CenterPEER 2001/07AUG. 2001PEER 2001/09September 2001Pacific Earthquake EngineeringResearch CenterPEER 2001/10dec. 2001PEER 2001/12SEPTEMBER 200164. Geotechnical Laboratory Measurements for Engineers John T. Germaine and Amy V. GermaineJohn Wiley & Sons65. Geotechnical Earthquake EngineeringIkuo TowhataProfessor of Geotechnical EngineeringDepartment of Civil EngineeringUniversity of Tokyo7-3-1, Hongo, Bunkyo-KuSpringer66. Geotechnical Engineering forDisaster Mitigation andRehabilitationProceedings of the 2nd InternationalConference GEDMAR08, Nanjing, China30 May - 2 June, 2008Hanlong LinAn DengJian ChuSpringer67. Geotechnical Engineering of DamsFell, R.Belkema, A.A.68. Geotechnical Risk and SafetyPROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON GEOTECHNICAL SAFETY & RISK, GIFU, JAPAN, 11–12 JUNE, 2009EditorsY. HonjoDepartment of Civil Engineering, Gifu University, Gifu, JapanM. SuzukiCenter for Structural Safety and Reliability, Institute of Technology,Shimizu Corporation, Tokyo, JapanT. HaraDepartment of Civil Engineering, Gifu University, Gifu, JapanF. ZhangDepartment of Civil Engineering, Nagoya Institute of Technology, Nagoya, Japan CRC Press69. Introduction to HypoplasticityD. KOLYMBASUniversity of Innsbruck, Institute of Geotechnics and TunnellingA.A. BALKEMA/ROTTERDAM/BROOKFIELD/2000。

土质学与土力学绪论

土质学与土力学绪论
深埋处置方法中废料、周围土介质和地下水的相互作用 以及污染物的扩散规律等研究将大大加强。沙漠化、盐 碱化、区域性滑坡、洪水、潮汐、泥石流、地震等大环 境问题也将进入土力学的研究范畴。
(4)土工测试设备和测试技术将得到新的发展。高应力、粗 粒径、大应变、多因素和复杂应力组合的试验设备和方 法得到发展,原位测试、土工离心试验等得到更大应用, 计算机仿真成为特殊的土工试验手段,声波法、γ射线法、 CT识别法等也将列入土工试验方法的行列。
2. 土力学理论的发展
Байду номын сангаас
土 质 学 与 土 力 学
二十世纪初,一些重大土木工程事故的出现,如德国的桩基 码头大滑坡,瑞典的铁路坍方,美国的地基承载力问题等, 对地基问题提出了新的要求,推动了土力学理论的发展。例 如普朗德尔(Prandtl,1920年)发表了地基滑动面的数学公式。 彼德森(Peterson,1915年)提出、以后又由费伦纽斯(W. Fellenius,1936年)、泰勒(Taylor,1937年)等发展了的计算边 坡稳定性的圆弧滑动法等,就是这一时期的重要成果。
土力学特点
土 质 学 与 土 力 学
学科 理论力学 材料力学 结构力学 弹性力学 水力学 土力学 研究对象 质点或刚体 单个弹性杆件(杆、轴、梁) 若干弹性杆件组成的杆件结构 弹性实体结构或板壳结构 不可压缩的连续流体(水) 天然的三相碎散堆积物 连续流体 碎散材料
连续固体
土 质 (1) 进一步汲取现代数学、现代力学的成果和充分利用计算 机技术,深入研究土的非线性、各向异性、流变等特性, 学 建立新的更符合土体特性的本构模型和计算方法。 与 土 (2)充分考虑土和土工问题的不确定性,进行风险分析和优 化决策,岩土工程的定值设计方法逐步向可靠度设计转 力 化。 学

地基处理毕业论文开题报告

地基处理毕业论文开题报告

地基处理毕业论文开题报告1. 引言地基处理在工程项目中扮演着重要的角色,它对建筑物的稳定性和耐久性起着至关重要的作用。

随着人类对土地资源的不断开发利用,地基处理的需求也日益增长。

然而,目前存在着许多问题和挑战,如何选择合适的地基处理方法,如何评估地基处理效果等等。

本文旨在深入研究地基处理领域的相关理论和技术,以期能够为工程师们提供指导和借鉴。

2. 研究目标本论文的主要研究目标包括: - 系统总结地基处理的相关理论和方法; - 分析不同地基处理方法的适用条件和效果; - 探讨地基处理效果的评价指标; - 提出优化地基处理方法的策略。

3. 研究方法为了实现以上研究目标,本论文将采用以下研究方法: - 文献综述:对地基处理领域的现有研究进行全面系统的总结与归纳; - 专家访谈:与相关领域的专家进行讨论和交流,获取专业知识和经验; - 实地调研:到工程现场进行地基处理情况的实地调查和观察; - 数值模拟:使用有限元分析软件对不同地基处理方案进行数值模拟分析。

4. 预期结果通过本论文的研究,预期将获得以下结果: - 对现有的地基处理理论和方法进行全面系统的总结与归纳,形成一份综述性的文献; - 分析不同地基处理方法的适用条件和效果,为工程师们提供选择合适地基处理方法的参考; - 提出一套科学有效的地基处理效果评价指标体系; - 结合数值模拟结果,提出优化地基处理方法的策略和建议。

5. 计划安排本论文的主要计划安排如下表所示:时间安排研究内容第1-2周文献综述第3-4周专家访谈第5-6周实地调研第7-10周数值模拟分析第11-12周数据整理与结果分析第13-14周论文撰写第15周开题报告准备第16周开题报告答辩第17-18周答辩意见修改和论文修改6. 预期贡献本论文的研究成果将为地基处理领域的研究和实践做出以下贡献: - 系统总结和归纳现有的地基处理理论和方法,为地基处理的进一步研究提供基础和参考; -分析不同地基处理方法的适用条件和效果,为工程师们在实践中选择合适地基处理方法提供指导; - 提出优化地基处理方法的策略和建议,为工程师们提供改进地基处理效果的思路和方法。

水-土化学力学耦合作用研究进展

水-土化学力学耦合作用研究进展

水-土化学力学耦合作用研究进展杨国宝(甘肃科地工程咨询有限责任公司,甘肃兰州730010)1概述无论是自然沉积或是人工堆填的岩土介质都是由多种组份构成的,而且这种介质的固体骨架通常带有剩余的电荷(即具有电性)。

例如,对饱和粘性土,其骨架由不同的带电矿物成份构成,当它与土中水充分接触时,由于黏土颗粒与水分子均存在不平衡的电荷分布,加之土体孔隙水中包含着各种离子,使得在黏粒-水-电系统间存在显著的相互作用力[1,2]。

在温度变化、化学作用等环境荷载作用下,作为一种多相多组份孔隙材料的岩土介质表现出极为复杂的化学-力学耦合效应及工程力学行为。

例如,滨海地区因过度开采地下水,打破了咸淡水之间的平衡,引起海水倒灌,导致城市地面下沉;水库蓄水水位周期变化,引起库岸滑坡;垃圾填埋场中溶质迁移引起防护层的失效,导致二次污染等。

因此,岩土体化学-力学耦合作用及其机理研究是近年来国际岩土工程领域探索的一个热点。

2研究进展2.1定性研究阶段因一系列的环境问题引发了接连不断的工程问题,迫使国内外学者们从20世纪40年代初就开展了关于孔隙水化学环境变化对黏性土的化学-力学行为特性影响的研究[3,4]。

主要针对以膨润土和高岭土为研究对象,开展了一系列孔隙溶液为无机盐、酸和碱以及有机溶剂的液塑限、自由沉降、变形和强度等试验研究。

研究分析发现,水化学环境发生改变的情况下,黏性土内部组织物理化学成分和结构组成由于水化学作用而产生变化,从而引起黏土宏观物理力学特性的改变。

首先在土体的持水性方面,黏土矿物和空隙溶液相互作用后,因黏粒的选择性吸附,或表面分子自身的解离以及同晶替代作用,通常使黏粒表面吸附离子而带负电,进而在其周围形成电场,在静电引力的作用下,吸附空隙溶液中的水分子偶极子、阳离子聚集在其周围,形成双电层,如图1所示[1]。

当外界条件的变化,如溶液成分、浓度、pH值等变化,从而改变了双电层的性状,最终导致土体持水性的改变。

与土力学相关的英文文献

与土力学相关的英文文献

与土力学相关的英文文献
关于土力学的英文文献非常丰富,涵盖了土壤力学、地基工程、岩土工程等多个领域。

以下是一些与土力学相关的经典英文文献,
供您参考:
1. "Principles of Geotechnical Engineering" by Braja M. Das.
2. "Soil Mechanics in Engineering Practice" by Karl Terzaghi and Ralph B. Peck.
3. "Fundamentals of Soil Behavior" by James K. Mitchell and Kenichi Soga.
4. "Geotechnical Engineering: Principles and Practices" by Donald P. Coduto, Man-chu Ronald Yeung, and William A. Kitch.
5. "Introduction to Geotechnical Engineering" by Robert
D. Holtz and William D. Kovacs.
这些文献涵盖了土力学的基本原理、工程实践和地质工程等方面,是土力学领域的经典著作,对于深入了解土力学具有重要的参考价值。

希望这些信息能够对您有所帮助。

NaCl溶液对红黏土持水特性的影响研究

NaCl溶液对红黏土持水特性的影响研究

NaCl溶液对红黏土持水特性的影响研究作者:卢有谦张红日李红明陈泉余来源:《西部交通科技》2024年第06期摘要:文章以红黏土为研究对象,通过压力板法开展不同浓度NaCl溶液条件下的红黏土重塑压实样的持水特性研究。

结果表明:随着溶液浓度的增加,红黏土试样的进气值逐渐增加,持水能力不断增强;采用三种不同的持水模型对试验结果进行拟合对比,Fredlund-Xing 模型的拟合效果最佳;通过核磁共振试验和扫描电镜试验从宏观及微观角度,研究NaCl溶液影响下孔隙结构和土体颗粒排列结构对于红黏土持水特性的影响机理,发现随着NaCl溶液浓度的提高,红黏土小孔隙结构不断增加,红黏土的粒团结构向絮凝结构转变使土体更加致密均匀,进而增強土体的持水能力。

关键词:红黏土;NaCl溶液;持水特性;核磁曲线;扫描电镜中图分类号:U416.03A0200540 引言红黏土作为常见的地基土壤,其工程特征对基础建设的安全、稳定和可持续发展至关重要。

随着工业和城镇化的推进,环境问题凸显,生活垃圾和工业废料不断增加,对岩土环境造成严重影响[1-2]。

这些废弃物含各种金属离子,渗透至土体内会显著影响土体的物理力学特性,因此深入研究金属离子侵入土体的机理对理解土体性能变化至关重要[3-5]。

由于红黏土地区大多为高温湿热地区,常受到季风的影响,季风带来的风向交替和降水季节性变化影响了土壤的水分状况,土体的持水特性对于土体物理力学性质的影响尤为关键。

土体的持水特性主要通过土水特征曲线来表征,其是用于描述非饱和土含水量和土吸力之间本构关系的函数曲线。

目前对于土体持水特性的研究中,相关学者着重考虑初始干密度和孔径分布对土体持水特性的影响,并对得到的土水特征曲线进行函数拟合[6-7]。

刘奉银等[8]研究不同干密度和不同干湿循环次数下黄土的土水特征曲线,得到黄土土水特征曲线的滞回特性规律。

赵天宇等[9]也研究了不同干湿循环状态和干密度下黄土的土水特征曲线,得到黄土的进气值与残余含水率等土水特征参数,从扫描电镜上研究了黄土的微观结构特征,宏观上统计孔隙结构的变化情况,分析干密度和干湿循环对土水特征曲线的影响。

土壤学习题与答案.

土壤学习题与答案.

土壤学试题与答案一按章节复习第一章绪论一、填空1.德国化学家李比希创立了(矿质营养)学说和归还学说,为植物营养和施肥奠定了理论基础。

2.土壤形成的五大自然因素是(母质)、(气候)、(生物)、(地形)和时间。

3.发育完全的自然土壤剖面至少有(表土层)、(淀积层)和母质层三个层次。

4.土壤圈处于(岩石圈)、(大气圈)、(生物圈)、(水圈)的中心部位,是它们相互间进行物质,能量交换和转换的枢纽。

5.土壤四大肥力因素是指(水分)、(养分)、(空气)和(热量)。

6.土壤肥力按成因可分为(自然肥力)、(人工肥力);按有效性可分为(有效肥力)、(潜在肥力)二、判断题1.(√)没有生物,土壤就不能形成。

2.(×)土壤三相物质组成,以固相的矿物质最重要。

3.(×)土壤在地球表面是连续分布的。

4.(×)土壤的四大肥力因素中,以养分含量多少最重要。

5.(×)一般说来,砂性土壤的肥力比粘性土壤要高,所以农民比较喜欢砂性土壤。

6.(√)在已开垦的土壤上自然肥力和人工肥力紧密结合在一起,分不出哪是自然肥力,哪是人工能力。

三、名词解释1. 土壤:是具有肥力特性因而能生产植物收获物的地球陆地疏松表层。

2. 土壤肥力:土壤能适时地供给并协调植物生长所需的水、肥、气、热、固着条件和无毒害物质的能力。

3. 土壤剖面:在野外观察和研究土壤时,从地面垂直向下直到母质挖一断面。

四、简答题1. 土壤在农业生产和自然环境中有那些重要作用?(1)土壤是植物生长繁育和生物生产的基地,是农业的基本生产资料。

(2)土壤耕作是农业生产中的重要环节。

(3)土壤是农业生产中各项技术措施的基础。

(4)土壤是农业生态系统的重要组成部分。

2. 土壤是由哪些物质组成的?土壤和土壤肥力的概念是什么?土壤是由固体、液体和气体三相物质组成的疏松多孔体。

3. 简述“矿质营养学说”和“归还学说”。

矿质营养学说:土壤中矿物质是一切绿色植物唯一的养料,厩肥及其它有机肥料对于植物生长所起的作用,并不是其中所含的有机质,而是由于这些有机质在分解时形成的矿物质。

土壤学中英文对照名词

土壤学中英文对照名词

土壤学中英文对照名词土壤学中英文对照名词土壤soil 陆地表面由矿物质、有机物质、水、空气和生物组成,具有肥力,能生长植物的未固结层。

土壤学soil science 研究土壤的形成、分类、分布、制图和土壤的物理、化学、生物学特性、肥力特征以及土壤利用、改良和管理的科学。

发生土壤学pedology 侧重研究土壤的发生、演化、特性、分类、分布和利用潜力的土壤学。

耕作土壤学edaphology 侧重研究土壤的组成、性质及其与植物生长的关系,通过耕作管理提高土壤肥力和生产能力的土壤学。

土壤地理[学] soil geography 研究土壤的空间分布和组合及其地理环境相互关系的学科。

土壤物理[学] soil physics 研究土壤中物理现象或过程的学科。

土壤化学soil chemistry 研究土壤中各种化学行为和过程的学科。

土壤生物化学soil biochemistry 阐明土壤有机碳和氮素等物质的转化、消长规律及其功能的学科。

土壤矿物学soil mineralogy 研究土壤中原生矿物和次生矿物的类型、性质、成因、转化和分布的学科。

01.011 土壤分析化学soil analytical chemistry 研究用化学方法和原理测定土壤成分和性质的技术学科。

01.012 土壤生物学soil biology 研究土壤中生物的种类、分布、功能及其与土壤和环境间相互关系的学科。

01.013 土壤微生物学soil microbiology 研究土壤中微生物种类、功能和活性以及与土壤和环境间相互关系的学科。

01.014 土壤生态学soil ecology 研究土壤环境与生物间相互关系,以及生态系统内部结构、功能、平衡与演变规律的学科。

01.015 土壤微形态[学] soil micromor-phology 研究土壤显微形态特征的学科。

01.016 土壤资源soil resources 土壤类型的数量与质量。

黏土固结过程中结合水对黏滞系数影响研究

黏土固结过程中结合水对黏滞系数影响研究

黏土固结过程中结合水对黏滞系数影响研究杨琴【摘要】渗透系数作为土的基本力学指标参数,是孔隙比和黏滞系数的函数.为了研究黏土中结合水对黏滞系数的影响,开展固结试验得到各级压力下的渗透系数与黏滞系数;并由高速离心机分离试验定量测得结合水量.结果表明固结压力增大,孔隙比减小,渗透系数随之减小,由渗透系数计算公式反算出动力黏滞系数,随固结压力增大而线性增大.压力较小时,结合水量变化较小;自由水减少到一定程度变为结合水排出为主.结合水排出会导致结合水膜厚度变薄,黏滞系数随结合水膜厚度减小而线性增大.所以,对于结合水含量较高的黏土,固结压缩过程中存在结合水排出现象,计算渗透系数时需考虑结合水膜变薄导致黏滞系数增大进而对渗透系数产生的影响.%As one of the basic mechanical parameters of soil, permeability coefficient is a function of void ratio and viscosity coefficient.To explore the effect of bound water in the pore of clays on the viscosity coefficient, consolidation test was conducted for permeability coefficient and viscosity coefficient, and centrifuge test was carried out for bound water contents.The result shows that when consolidation pressure increasing, void ratio and permeability coefficient get smaller.Viscosity coefficient calculated based on calculation formulas of permeability coefficient increases lineally with logarithm of consolidation pressures.When pressure is low, bound water content has little change.When free water content decreases to a certain value, the main process is flowing out of bound water.Outflow of bound water leads to a decrease in thickness of bound water layer and viscosity coefficient decreases lineally with the thickness.Therefore, if clays of highbound water content are consolidated and compressed, bound water will flow out and an increase in viscosity coefficient caused by decrease in thickness of bound water layer should be taken into consideration when permeability coefficient needs to be calculated.【期刊名称】《科学技术与工程》【年(卷),期】2017(017)006【总页数】5页(P92-96)【关键词】黏土;结合水;黏滞系数;渗透系数【作者】杨琴【作者单位】河海大学岩土力学与堤坝工程教育部重点实验室, 江苏省岩土工程技术工程研究中心,河海大学,南京 210098【正文语种】中文【中图分类】TU411.3建筑科学渗透系数是土体基本力学性质参数之一,与土体固结、地下水渗流关系密切,关于固结过程中渗透系数方面的研究[1—6]已经有很多。

第四章 土的渗透性与渗透问题80

第四章 土的渗透性与渗透问题80

5
渗流的工程意义
• 土中水的渗流使大气降水补给地下水,或者增加土壤 含水量,这对于地球上蓬勃生长的草木等植物是至关 重要的,是地球生命的源泉之一。同时也使宝贵的水 资源得以存储,使大地充满了生机。 可是渗流也会引发许多严重的工程问题。我国大量 的挡水和输水建筑物及构造物的渗漏是一个严重的问 题。目前我国已建渠道80%没有防渗措施,渠系中水 的利用系数平均不足0.5,有的渠道渗漏量高达80%, 损失了大量宝贵的水资源,恶化了环境,也引起了土 壤的盐碱化。渗透变形引起的水利工程破坏是又一个 严重的问题。据美国的调查统计,他们破坏的206座土 坝中有39%是由于渗透引起的。
in总的水力坡降为iaikiaky?1129k3垂直渗透系数整个土层与层面垂直的等效渗透系数q3yaikaiknn???22总水头损失等于各层水头损失之和nnihihihhi?????2211代入nnnnyikikikhihihihk?????????221122111nnykhkhkhhk?????2211四例题分析?例30cm2厚度为4cm渗透仪细玻璃管的内径为04cm试验开始时的水位差为160cm经时段15分钟后观察得水位差为52cm试验时的水温为30试求试样的渗透系数设做变水头渗透试验的粘土试样的截面积为30解答已知试样截面积a30cm渗径长度l4cm细玻璃管的内截面积?44h1160cmh252cmt900s试样在30时的渗透系数
VL k hAt
24
2.变水头试验————整个试验过程水头随时间变化 适用于透水性差,渗透系数 截面面积a 小的粘性土 任一时刻t的水头差为h,经 时段dt后,细玻璃管中水位 降落dh,在时段dt内管内减 少水量 dV=-adh 在时段dt内流经试样的水量
dV=kiAdt=kAh/Ldt
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

531ReferencesAbdel-Hadi,O.N.,and Mitchell,J.K.1981.Coupled heat and water flows around buried cables,Journal of Geotechnical Engineering,ASCE,V ol.107,No.GT 11,pp.1461–1487.Abdel-Hady,M.,and Herrin,M.1966.Characteristics of soil-asphalt as a rate process,Journal of the Highway Division,ASCE,V ol.92,No.HW1,pp.49–69.Aboshi,H.1973.An experimental investigation on the similitude in the consolidation of a soft clay including secondary creep settle-ment,Proceedings of the Eighth International Conference on Soil Mechanics and Foundation Engineering,Moscow,V ol.4,pp.88.Acar,Y .B.,and Alshawabkeh,A.N.1993.Principles of electroki-netic remediation,Environmental Science and Technology,V ol.27,No.13,pp.2638–2647.Acar,Y .B.,Gale,R.J.,Hamad,J.,and Putnam,G.1990.Acid/base distributions in electrokinetic soil processing,Transportation Re-search Record,No.1288,pp.23–34.Adachi,T.,and Oka,F.1982.Constitutive equations for normally consolidated clay based on elasto-viscoplasticity,Soils and Foun-dations,V ol.22,No.4,pp.57–70.Adachi,T.,Oka,F.,Hirata,T.,Hashimoto,T.,Pradhan,T.B.S.,Nagaya,J.,and Mimura,M.1991.Triaxial and torsional hollow cylinder tests of sensitive natural clay and an elasto-viscoplastic constitutive model,Proceedings,European Conference on SMFE,Florence,pp.3–6.Adachi,T.,Oka,F.,and Mimura,M.1996.Modeling aspects asso-ciated with time dependent behavior of soils.In:T.C.Sheahan,and V .N.Kaliakin (Eds.),Measuring and Modeling Time Depen-dent Soil Behavior,ASCE Geotechnical Special Publication No.61,ASCE,New York,pp.61–95.Afifi,S.S.and Richart,F.E.,Jr.1973.Stress-history effects on shear modulus of soils,Soils and Foundations,V ol.13,No.1,pp.77–95.Ahmed,N.,and Sunada,D.K.1969.Nonlinear flow in porous media,ASCE Journal of Hydraulics Division,V ol.95,HY11,pp.1847–1857.AhnDan,L.Q.,Koseki,J.,and Tatsuoka,F.2001.Viscous defor-mation in triaxial compression of a dense well-graded gravel and its model simulation.In:F.Tatsuoka,S.Shibuya,and R.Kuwano (Eds.),Advanced Laboratory Stress-Strain Testing of Geomateri-als,Swets ϩZeilinger,Lisse,pp.187–194.Aitchison,G.D.,Russam,K.,and Richards,B.G.1965.Engineering concepts of moisture equilibrium and moisture changes in soils.In:Moisture Equilibrium and Moisture Changes in Soils Beneath Covered Areas,Butterworths,Sydney,Australia,pp.7–21.Akagi,H.1994.Physico-chemical approach to the consolidation mechanism of soft clays,Soils and Foundations,V ol.34,No.4,pp.43–50.Akai,K.,Adachi,T.,and Ando,N.1975.Existence of a unique stress-strain-time relation of clays,Soils and Foundations,V ol.15,No.1,pp.1–16.Alarcon-Guzman,A.,Leonards,G.A.,and Chameau J.L.1988.Undrained monotonic and cyclic strength of sands,Journal of Geo-technical Engineering,ASCE,V ol.114,No.10,pp.1089–1109.Alberro,J.,and Santoyo,E.1973.Long term behavior of Mexico City clay,Proceedings,8th ICSMFE,Moscow,V ol.1,pp.1–9.Aldrich,H.P.,Jr.1956.Frost penetration below highway and airfield pavements,Highway Research Board Bulletin No .135.Allersma,H.G.B.1999.‘‘Optical analysis of stress and strain in photoelastic assemblies.’’In:M.Oda and K.Iwashita (Eds.),Me-chanics of Granular Materials:An Introduction,Balkema,Rotter-dam,pp.265–270.Alonso,E.E.,Gens,A.,and Josa,A.1990.A constitutive model for partially saturated soils,Ge ´otechnique,V ol.40,pp.405–430.Al-Shamrani,M.A.,and Sture,S.1998.Time-dependent bounding surface model for anisotropic cohesive soils,Soils and Founda-tions,V ol.38,No 1,pp.61–76.Alshibli,K.A.,and Sture,S.2000.Shear band formation in plane strain experiments of sand,Journal of Geotechnical and Geoen-vironmental Engineering,ASCE,V ol.126,No.6,pp.495–503.Alshibli,K.A.,Batiste,S.N.,and Sture,S.2003.Strain localization in sand:Plane strain versus triaxial compression,Journal of Geo-technical and Geoenvironmental Engineering,V ol.129,No.6,pp.483–494.Alshewabkeh,A.N.2001.Basics and Applications of Electrokinetic Remediation./ϳaalsha/shortcourse.pdf.Alther,G.,Evans,J.C.,and Paneoski,anically mod-ified clays for stabilization of organic hazardous wastes,Proceed-ings of the Ninth National Conference,Silver Spring,MD,The Hazardous Materials Control Research Institute,pp.440–445.American Society for Testing and Materials.1970.Special Proce-dures for Testing Soil and Rock for Engineering Purposes,Special Technical Publication 479,5th ed.,ASTM,Philadelphia.American Society for Testing and Materials.1989.Standard Test Method for Classification of Soils for Engineering Purposes (D2487-85),and Standard Practice for Identification of Soils (D2488-84),Annual Book of Standards,V ol.4.08,pp.288–307,Philadelphia.American Society for Testing and Materials,2000.Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure (D5334-00),ASTM,Philadelphia.Anandarajah,A.,and Chen,J.(1997).Van der Waals attractive force between clay particles in water and contaminant,Soils and Foun-dations,V ol.37,No.2,pp.27–37.C o p y r i g h t e d M a t e r i a l532REFERENCESAndersland,O.B.,and Akili,W.1967.Stress effect on creep rates of frozen clay soil,Ge ´otechnique,V ol.17,No.1,pp.27–39.Andersland,O.B.,and Anderson,D.M.1978.Geotechnical Engi-neering for Cold Regions,McGraw-Hill,New York.Andersland,O.B.,and Douglas,A.G.1970.Soil deformation rates and activation energies,Ge ´otechnique,V ol.20,No.1,pp.1–16.Andersen,K.H.2004.Cyclic clay data for foundation design of structures subjected to wave loading.In:T.Triantafyllidis (Ed.),International Conference on Cyclic Behaviour of Soils and Liq-uefaction Phenomena,Balkema,Lisse,pp.371–387.Andersen,K.H.,Kleven,A.,and Heien,D.1988.Cyclic soil data for design of gravity structures,Journal of Geotechnical Engi-neering,ASCE,V ol.115,No.GT5,pp.517–539.Andersen,K.H.,Rawlings,C.G.,Lunne,T.A.,and By,T.H.1994.Estimation of hydraulic fracture pressure in clay,Canadian Geo-technical Journal,V ol.31,pp.817–828.Anderson,D.M.,and Hoekstra,P.1965.Crystallization of clay ad-sorbed water,Science,V ol.149,pp.318–319.Anderson,D.G.,and Stokoe,K.H.II.1978.Shear modulus:A time dependent soil property,Dynamic Geotechnical Testing,ASTM STP 654,ASTM,Philadelphia,pp.60–90.Anderson,M.P.,and Woessner,W.W.1992.Applied Groundwater Modeling:Simulation of Flow and Advective Transport,Academic,San Diego.Arbhabhirama,A.,and Dinoy,A.A.1973.Friction factor and Reyn-olds number in porous media flow,Journal of Hydraulics Division,ASCE,V ol.99,HY6,pp.1847–1857.Archie,G.E.1942.Electrical resistivity log as an aid in determining some reservoir characteristics,Transactions American Institute of Mining Engineers,V ol.146,pp.54–61.Arthur,J.,Dunstan,T.,Al-Ani,Q.,and Assadi,A.1977.Plastic deformation and failure in granular media,Ge ´otechnique,V ol.27,No.1,pp.53–74.Arulanandan,K.1991.Dielectric method for the prediction of po-rosity of saturated soil,Journal of Geotechnical Engineering,ASCE,V ol.117,No.2,pp.319–330.Arulanandan,K.,Shen,C.K.,and Young,R.B.1971.Undrained creep behaviour of a coastal organic silty clay,Ge ´otechnique,V ol.21,No.4,pp.359–375.Arulanandan,K.,Smith,S.S.,and Spiegler,K.S.1973.Soil structure evaluation by the use of radio frequency electrical dispersion,Pro-ceedings of the International Symposium on Soil Structure,Goth-enburg,Sweden,pp.29–49.Ashford,S.A.,Rollins,K.M.,and Lane,J.D.2004.Blast-induced liquefaction for full-scale foundation testing,Journal of Geotech-nical and Geoenvironmental Engineering,ASCE,V ol.130,No.8,pp.798–806.Astedt,B.,Weiner,L.,and Holm,G.1992.Increase in bearing ca-pacity with time for friction piles in silt and sand,Proceedings,Nordic Geotechnical Meeting,Aalborg,pp.411–416.ASTM.2000.Standard D4647-931998.D4647-93(1998)e1Stan-dard Test Method for Identification and Classification of Disper-sive Clay Soils by the Pinhole Test,ASTM,West Conshohocken,PA.Atkinson,J.H.2000.Non-linear soil stiffness in routine design,Ge ´o-technique,V ol.50,No.5,pp.487–508.Atkinson,J.H.,and Richardson,D.(1987).Effect of local drainage in shear zones on the undrained strength of overconsolidated clay,Ge ´otechnique,V ol.37,No.3,pp.393–403.Atkinson,J.H.,Richardson,D.,and Stallebrass,S.E.1990.Effect of recent stress history on the stiffness of overconsolidated soil,Ge ´otechnique,V ol.40,No.4,pp.531–540.Au,S.K.A.,Soga,K.,Jafari,M.R.,Bolton,M.D.,and Komiya,K.2003.Factors affecting long-term efficiency of compensation grouting in clays,Journal of Geotechnical and Geoenvironmental Engineering,ASCE,V ol.129,No.3,pp.254–262.Axelsson,G.2000.Long-term set-up driven piles in sands,Ph.D.thesis,Royal Institute of Technology,Stockholm.Aylmore,L.A.G.,and Quirk,J.P.1960.Domain or turbostratic structure of clays,Nature,V ol.187,p.1046.Aylmore,L.A.G.,and Quirk,J.P.1962.The structural status of clay systems,Proceedings of the Ninth National Conference on Clays and Clay Minerals,West Lafayette,IN,pp.104–130.Babcock,K.L.1963.Theory of the chemical properties of soil col-loidal systems at equilibrium,Hilgardia,V ol.34,No.11,pp.417–542.Bailey,S.W.,Brindley,G.W.,Johns,W.D.,Martin,R.D.,and Ross,M.1971.Summary of national and international recommen-dations on clay mineral nomenclature and Report of nomenclature committee,Clays and Clay Minerals,V ol.19,pp.129–133.Bain,D.C.,McHardy,W.J.,and Lachowski,E.E.1994.X-ray fluorescence spectroscopy and microanalysis,In:M.J.Wilson (Ed.),Clay Mineralogy:Spectroscopic and Chemical Determina-tion Methods,Chapman &Hall,London,pp.260–299.Balasubramonian,B.,and Morgenstern,N.R.1972.Discussion,Ge ´o-technique,V ol.22,pp.542–544.Ballou,E.V .1955.Electro-osmotic flow in homoionic kaolinite,Journal of Colloid Science,V ol.10,pp.450–460.Banerjee,S.,and Mitchell,J.K.1980.In-situ volume change prop-erties by electro-osmosis-theory,Journal of Geotechnical Engi-neering,ASCE,V ol.106,No.GT 4,pp.347–365.Barber,E.S.1958.Effect of water movement on soil,High-way Research Board Special Report,40,pp.212–225.Barbour,S.L.,and Fredlund,D.G.1989.Mechanisms of osmotic flow and volume change in clay soils,Canadian Geotechnical Journal,V ol.26,pp.551–562.Barden L.1973.Macro and microstructure of soils,Appendix to the Proceedings of the International Symposium on Soil Structure,Gothenburg,Sweden,pp.21–26.Barden,L.,and Sides,G.1971.Sample disturbance in the investi-gation of clay structure,Ge ´otechnique,V ol.21,No.3,pp.211–222.Barden,L.,McGown,A.,and Collins,K.1973.Collapse mechanism in partly saturated soils,Engineering Geology,V ol.7,No.1,pp.49–60.Barrett,P.1980.The shape of rock particles,a critical review,Sed-imentology,V ol.27,pp.291–303.Barton,M.E.1993.Cohesive sands:The natural transition from sands to sandstones.In:A.Anagnostopoulos,F.Schlosser,N.Kal-teziotis,and R.Frank (Eds.),Geotechnical Engineering of Hard Soils and Weak Rocks,Balkema,Rotterdam,pp.367–374.Barton,H.A.,Spear,J.R.,and Pace,N.R.2001.Microbial life in the underworld,Biogenicity in secondary mineral formations,Geomicrobiology Journal,V ol.18,pp.359–368.Bates,T.F.,Hildebrand,F.A.,and Swineford,A.1950.Morphology and structure of endellite and halloysite.American Mineralogist,V ol.35,p.463.Bawa,terite soils and their engineering characteristics,Journal of the Soil Mechanics and Foundations Division,ASCE,V ol.83,No.SM 4,pp.1428-1–1428-15.Baxter,C.D.P.,and Mitchell,J.K.2004.An experimental study on the aging of sands,Journal of Geotechnical and Geoenvironmental Engineering,ASCE,V ol.130,No.10,pp.1051–1062.Bear,J.1972.Dynamics of Fluids in Porous Media,Elsevier,New York.Becker,D.E.,Crooks,J.H.A.,Jeffries,M.J.,and McKenzie,K.1984.Yield behavior and consolidation,II:Strength gain,Pro-ceedings ASCE Symposium on Sedimentation Consolidation Mod-els,Prediction and Validation,San Francisco,pp.382–398.Been,K.,and Jefferies,M.G.1985.A state parameter for sands,Ge ´otechnique,V ol.35,No.2,pp.99–112.Been,K.,and Jefferies,M.G.1986.Reply:A state parameter for sands,Ge ´otechnique,V ol.36,No.1,pp.123–132.C o p y r i g h t e d M a t e r i a lREFERENCES533Been,K.,Jefferties,M.G.,and Hachey,J.1991.The critical state of sands,Ge ´otechnique,V ol.41,No.3,pp.365–381.Belgeri,J.J.,and Siegel,T.C.1998.Design and performance of foundations in expansive shale,Ohio River Valley Soils Seminar XXIX,Louisville,KY .Bellotti,R.,Ghionna,V .N.,and Morabito,P.1991.Uniformity tests in calibration chamber samples by the thermal probe method,ASTM Geotechnical Testing Journal,V ol.14,No.2,pp.195–205.Bellotti,R.,Jamiolkowski,M.,Lo Presti,D.C.F.,and O’Neill,D.A.1996.Anisotropy of small strain stiffness in Ticino sand,Ge ´o-technique,V ol.46,No.1,pp.115–131.Bennett,R.H.,and Hurlbut,M.H.1986.Clay Microstructure,In-ternational Human Resources Development Corporation,Boston/Houston/London.Bennett,R.H.,Bryant,W.R.,and Hulbert,M.H.1991.Microstruc-ture of Fine-Grained Sediments,Springer,New York.Benson,C.H.,and Daniel,D.E.1990.Influence of clods on hy-draulic conductivity of compacted clay,Journal of Geotechnical Engineering,ASCE,V ol.116,No.8,pp.1231–1248.Berggren,W.P.1943.Prediction of temperature distribution in frozen soils,Transactions of the American Geophysical Union,Part 3,pp.71–77.Bernal,J.D.1960.The structure of liquids,Scientific American,V ol.203,pp.124–134.Bernal,J.D.1964.The structure of liquids.The Bakerian Lecture,1962,Proceedings of the Royal Society London,A230,pp.299–322.Berry,P.L.,and Poskitt,T.J.1972.Consolidation of peat,Ge ´otech-nique,V ol.22,No.1,pp.27–52.Bhatia,S.,and Soliman,A.1990.Frequency distribution of void ratio of granular materials determined by an image analyzer,Soils and Foundations,V ol.30,No.1,pp.1–16.Biot,M.A.1941.General theory of three-dimensional consolidation,Journal of Applied Physics,V ol.12,pp.155–164.Biot,M.A.1955.Theory of elasticity and consolidation for a porous anisoptropic solid,Journal of Applied Physics,V ol.26,pp.182–185.Biot,M.A.1956a.Theory of propagation of elastic waves in fluid-saturated porous solid,I.Low frequency range,Journal of the Acoustic Society of America,V ol.28,pp.168–178.Biot,M.A.1956b.Theory of propagation of elastic waves in fluid-saturated porous solid,II.High frequency range,Journal of the Acoustic Society of America,V ol.28,pp.179–191.Biot,M.A.,and Willis,P.G.1957.The elastic coefficients of the theory of consolidation,Journal of Applied Mechanics,V ol.24,pp.594–601.Birkeland,P.W.1984.Soils and Geomorphology,Oxford University Press,New York.Bischoff,J.L.,Greer,R.E.,and Luistro,position of interstitial waters of marine sediments:Temperature of squeez-ing effect,Science,V ol.167,pp.1245–1246.Bishop,A.W.1960.The principle of effective stress,Norwegian Geotechnical Institute Publication No .32,pp.1–5.Bishop,A.W.1966.The strength of soils as engineering materials,Ge ´otechnique,V ol.16,No.2,pp.89–130.Bishop,A.W.,and Blight,G.E.1963.Some aspects of effective stress in saturated and partly saturated soils,Ge ´otechnique,V ol.13,pp.177–179.Bishop,A.W.,and Eldin,A.K.G.1950.Undrained triaxial tests on saturated sands and their significance in the general theory of shear strength.Ge ´otechnique,V ol.2,No.1,pp.13–32.Bishop,A.W.,and Garga,V .K.1969.Drained tension tests on London clay,Ge ´otechnique,V ol.19,pp.309–313.Bishop,A.W.,Webb,D.L.,and Lewin,P.I.1965.Undisturbed samples of London clay from the Ashford Common shaft:Strength-effective stress relationships,Ge ´otechnique,V ol.15,pp.1–31.Bishop.A.W.,Green,G.E.,Garga,V .K.,Andresen,A.,and Brown,D.J.1971.A new ring shear apparatus and its application to the measurement of residual strength,Ge ´otechnique,V ol.21,No.4,pp.273–328.Bjerrum,L.1954.Geotechnical properties of Norwegian marine clays,Ge ´otechnique,V ol.4,pp.49–69.Bjerrum,L.1967.Engineering geology of Norwegian normally con-solidated clays as related to settlements of buildings,Ge ´otech-nique,V ol.17,pp.214–235.Bjerrum,L.1973.Problems of soil mechanics and construction on soft clays and structurally unstable soils,Proceedings of the Eighth International Conference on Soil Mechanics and Foundation En-gineering,Moscow,V ol.3,pp.111–159.Bjerrum,L.,and Rosenqvist,I.Th.1956.Some experiments with artificially sedimented clays,Ge ´otechnique,V ol.6,pp.124–136.Bjerrum,L.,and Simons,parison of shear strength characteristics of normally consolidated clays,ASCE Research Conference on the Shear Strength of Cohesive Soils,Boulder,CO,pp.711–726.Bjerrum,L.,and Wu,T.H.1960.Fundamental shear strength prop-erties of the Lilla Edit clay,Ge ´otechnique,V ol.X,No.3,pp.101–109.Bjerrum,L.,Moum,J.,and Eide,O.1967.Application of electro-osmosis on a foundation problem in Norwegian quick clay,Ge ´o-technique,V ol.17,pp.214–235.Bjerrum,L.,Nash,J.K.L.,Kennard,R.M.,and Gibson,R.E.1972.Hydraulic fracturing in field permeability testing,Ge ´otechnique,V ol.22,pp.319–332.Black,W.,DeJongh,J.G.V .,Overbeek,J.Th.,and Sparnaay,M.J.1960.Transactions of the Faraday Society,London,V ol.56,p.1597.Blackmore,A.V .,and Miller,R.D.1962.Tactoid size and osmotic swelling in calcium montmorillonite,Soil Science Society of Amer-ica Proceedings,V ol.25,pp.169–173.Blaser,H.D.,and Arulanandan,K.1973.Expansion of soils con-taining sodium sulfate,Proceedings of the Third International Conference on Expansive Soils,Haifa,V ol.I,pp.13–16.Blaser,H.D.,and Scherer,O.J.1969.Expansion of soils containing sodium sulfate caused by drop in ambient temperature,Highway Research Board Special Report 103,pp.150–160.Blight,G.E.1997.Destructive mudflows as a consequence of tailings dyke failures,Journal of ICE Geotechnical Engineering,V ol.125,No.1,pp 9–18.Blight,G.E.,Troncoso,J.H.,Fourie,A.B.,and Wolski,W.2000.Issues in the geotechnics of mining watest and tailings,Proceed-ings of GeoEng2000,An International conference on Geotechnical and Geological Engineering,V ol.1,Technomic,Lancaster,PA,pp.1253–1285.Bolt,G.H.1955.Analysis of the validity of the Gouy–Chapman theory of the electric double layer,Journal of Colloid Science,V ol.10,p.206.Bolt,G.H.1956.Physico-chemical analysis of the compressibility of pure clays,Ge ´otechnique,V ol.6,No.2,pp.86–93.Bolt,G.H.,and Miller,R.D.1958.Calculation of total and com-ponent potentials for water in soil,Transactions of the American Geophysical Union,V ol.39,No.5,pp.917–928.Bolton,M.D.1986.The strength and dilatancy of sands,Ge ´otech-nique,V ol.36,No.1,pp.65–78.Bolton,M.D.2000.The role of micro-mechanics in soil mechanics.In:M.Hyodo,and Y .Nakata (Eds.),Proceedings of the Interna-tional Workshop on Soil Crushability,Yamaguchi University,Ja-pan.Bolton,M.D.,and Wilson,J.M.R.1989.Experimental and theo-retical comparison between static and dynamic torsional soil tests,Ge ´otechnique,V ol 39,No.4,pp.585–599.Bopp,P.A.,and Lade,P.V .1997.Effects of initial density on soil instability at high pressure,Journal of Geotechnical and Geoen-vironmental Engineering,ASCE,V ol.123,No.7,pp.671–677.C o p y r i g h t e d M a t e r i a l534REFERENCESBorja,R.1992.Generalized creep and stress relaxation model for clays,Journal of Geotechnical Engineering,ASCE,V ol.118,No.11,pp.1765–1786.Borja,R.,and Kavazanjian,E.,Jr.1985.A constitutive model for the stress-strain-time behavior of ‘‘wet’’clays,Ge ´otechnique,V ol.35,No.3,pp.283–298.Borja,R.I.,Tamagnini,C.,and Amorosi,A.1997.Coupling plas-ticity and energy-conserving elasticity models for clays,Journal of Geotechnical and Geoenvironmental Engineering,ASCE,V ol.123,No.10,pp.948–957.Boulanger,R.W.2003.High overburden stress effects in liquefaction analyses,Journal of Geotechnical and Geoenvironmental Engi-neering,ASCE,V ol.129,No.12,pp.1071–1082.Bowden,F.P.,and Tabor,D.1950.The Friction and Lubrication of Solids,Part I,Oxford University Press,London.Bowden,F.P.,and Tabor,D.1964.The Friction and Lubrication of Solids,Part II,Oxford University Press,London.Bowman,E.T.2002.The Ageing and Creep of Dense Granular Ma-terials,Ph.D.Thesis,University of Cambridge,Cambridge.Bowman,E.T.,and Soga,K.2003.Creep,ageing and microstructural change in dense granular materials,Soils and Foundations,V ol.43,No.4,pp.107–118.Bowman,E.T.,Soga,K.,and Drummond,T.2001.Particle shape characterization using fourier analysis,Ge ´otechnique,V ol.51,No.6,pp.545–554.Brandon,T.L.,and Mitchell,J.K.1989.Factors influencing the thermal resistivity of sands,Journal of Geotechnical Engineering,ASCE,V ol.115,No.12,pp.1683–1698.Brandon,T.L.,Mitchell,J.K.,and Cameron,J.T.1989.Thermal instability in buried cable backfills,Journal of Geotechnical En-gineering,ASCE,V ol.115,No.1,pp.38–55.Brekke,T.L.,and Selmer-Olsen,R.1965.Stability problems in un-derground construction caused by montmorillonite-carrying joints and faults,Engineering Geology,V ol.1,No.1,pp.3–19.Bresler,E.1973.Anion exclusion and coupling effects in nonsteady transport through unsaturated soils:I.Theory,Soil Science Society of America Proceedings,V ol.37,pp.663–669.Brewer,R.1964.Fabric and Mineral Analysis of Soils,Wiley,New York.Brinch-Hansen,J.,and Gibson,R.E.1949.Undrained shear strengths of anisotropically consolidated clays,Ge ´otechnique,V ol.I,No.3,pp.189–204.Brindley,G.W.,and Brown,G.(Eds.).1980.Crystal Structures of Clay Minerals and Their X-ray Identification,Mineralogical So-ciety Monograph No.5,Mineralogical Society,London.Brindley,G.W.,and MacEwan,D.M.C.1953.Structural aspects of mineralogy of clays and related silicates,In:A.T.Green and G.H.Steward (Eds.),Symposium on Ceramics,Stoke-on-Trent,British Ceramic Society,pp.15–19.British Standard 1377.1990.British Standard Methods of Test for Soils for Civil Engineering Purposes,British Standard Institution,London.Broderick,G.P.,and Daniel,D.E.1990.Stabilizing compacted clay against chemical attack,Journal of Geotechnical Engineering,ASCE,V ol.116,No.10,pp.1549–1567.Bromwell,L.G.1965.Adsorption and friction behavior of minerals in vacuum,Phase Report 2,Research in Earth Physics,Contract Report 3-101,Department of Civil Engineering,MIT,Cambridge,MA.Bromwell,L.G.1966.The friction of quartz in high vacuum,Phase Report 7,Research in Earth Physics,Contract Report 3-101,De-partment of Civil Engineering,M.I.T.,Cambridge,MA.Brooks,R.H.,and Corey,A.T.1966.Properties of porous media affecting fluid flow,Journal of Irrigation and Drainage Division,ASCE,V ol.92,No.IR2,pp.61–88.Brown,W.G.1964.Difficulties associated with predicting depth of freeze or thaw,Canadian Geotechnical Journal,V ol.1,No.4,pp.215–226.Brown,G.O.,Garbrecht,J.D.,and Hager,W.H.2003.Henry P .G.Darcy and Other Pioneers in Hydraulics:Contributions in Cele-bration of the 200th Birthday of Henry Philibert Gaspard Darcy,ASCE,Reston,V A.Bruggenwert,M.G.M.,and Kamphorst,A.1979.Survey of exper-imental information on cation exchange in soil systems.In:G.H.Bolt (Ed.),Soil Chemistry,Part B:Physico-Chemical Models,El-sevier,New York,pp.141–203.Bryant,L.,Mauldon,M.,and Mitchell,J.K.2003.Impact of pyrite on properties and behavior of soil and rock.In:P.J.Culligan,H.H.Einstein,and A.J.Whittle (Eds.),Proceedings Soil and Rock America 2003,Glu ¨ckauf,Essen,V ol.1,pp.759–766.Buckman,J.O.,Todd,A.C.,and Hill,P.I.2000.Observations on reservoir rock wettability using an environmental scanning electron microscope,Microscopy and Analysis,March,pp.35–37.Burkart,B.,Goss,G.C.,and Kern,J.P.1999.The role of gypsum in production of sulfate-induced deformation of lime-stabilizing soils,Environmental &Engineering Geoscience,V ol.2,pp.173–187.Burland,J. B.1989.Ninth Laurits Bjerrums memorial lecture:‘‘Small is beautiful’’—the stiffness of soils at small strains,Ca-nadian Geotechnical Journal,V ol.26,No.4,pp.499–516.Burland,J.B.1990.On the compressibility and shear strength of natural clays,Ge ´otechnique,V ol.40,No.3,pp.329–378.Burst,J.F.1969.Diagenesis of gulf coast clayey sediments and its possible relation to petroleum migration,American Association of Petroleum Geologists Bulletin,V ol.53,No.1,pp.73–93.Cady,J.G.,Wilding,L.P.,and Dries,L.R.1986.Petrographic mi-croscope techniques.In:Methods of Soil Analysis,2nd ed.,Amer-ican Society of Agronomy,Madison,WI,Agronomy No.9,Part 1,Chapter 8.Cameron,J.T.1986.A numerical model for coupled heat and mois-ture flow through porous media,Ph.D.Dissertation,University of California,Berkeley.Campanella,R.G.,and Mitchell,J.K.1968.Influence of temperature variations on soil behavior,Journal of the Soil Mechanics and Foundations Division,ASCE,V ol.94,No.SM 3,pp.709–734.Campanella,R.G.,and Vaid,Y .1972.Creep rupture of a natural saturated clay,Proceedings of the Sixth International Conference on Rheology,Soil Mechanics Series No.16,University of British Columbia,Vancouver,Canada.Campanella,R.G.,and Vaid,Y .1974.Triaxial and plane strain creep rupture of an undisturbed clay,Canadian Geotechnical Journal,V ol.11,No.1,pp.1–10.Campbell,W.E.1969.Solid lubricants,In:F.F.Ling,E.E.Klaus,and R.S.Fein (Eds.),Boundary Lubrication:An Appraisal of World Literature,ASME,pp.197–227.Carlslaw,H.S.,and Jaeger,J.C.1957.Conductivity of Heat in Sol-ids,Clarendon Press,Oxford.Carman,P.C.1956.Flow of Gases through Porous Media,Aca-demic,New York.Carnie,S.L.,and Torrie,G.M.1984.The statistical mechanics of the electrical double layer,Advances in Chemical Physics,V ol.56,pp.141–253.Carraro,J.A.H.,Bandini,P.,and Salgado,R.2003.Liquefaction resistance of clean and nonplastic silty sands based on cone pen-etration resistance,Journal of Geotechnical and Geoenvironmental Engineering,ASCE,V ol.129,No.11,pp.965–976.Carrier III,W.D.2003.Goodbye,Hazen;Hello,Kozeny-Carman,Journal of Geotechnical and Geoenvironmental Engineering,ASCE,V ol.129,No.11,pp.1054–1056.Carrier,W.D.III,Olhoeft,G.R.,and Mendell,W.1991.Physical properties of the lunar surface.In:G.H.Heiken,D.T.Vaniman,and B.M.French (Eds.),The Lunar Sourcebook,Cambridge Uni-versity Press,Cambridge,England,pp.475–594.Carroll,D.1970.Clay Minerals:A Guide to Their X-Ray Identifi-cation,Geological Society of America,Boulder,CO,Special Paper 126.C o p y r i g h t e d M a t e r i a lREFERENCES535Carroll,M.M.,and Katsube,N.1983.The role of Terzaghi effective stress in linearly elastic deformation,ASME Journal Energy Re-source Technology,V ol.105,pp.509–511.Carter,D.L.,Mortland,M.M.,and Kemper,W.D.1982.Specific surface.In:Methods of Soil Analysis,2nd ed.,American Society of Agronomy,Madison,WI,Agronomy No.9,Part 1,pp.413–423.Cary,J.W.,Kohl,R.A.,and Taylor,S.A.1964.Water adsorption by dry soil and its thermodynamic functions,Soil Science Society of America Proceedings,V ol.28,pp.309–314.Casagrande,A.1932a.The structure of clay and its importance in foundation engineering,Contributions to Soil Mechanics,1925–1940,Boston Society of Civil Engineers,Boston,pp.72–112.Casagrande,A.,1932b.Research on the Atterberg limits of soils,Public Roads,V ol.13,No.8,pp.121–136.Casagrande,A.1948.Classification and identification of soils,Trans-actions,ASCE,V ol.113,pp.901–991.Casagrande,L.1952.Electro-osmotic stabilization of soils,Journal of the Boston Society of Civil Engineers,V ol.XXXIX,No.1;reprinted in Contributions to Soil Mechanics,1941–1953.Casagrande,L.1959.A review of past and current work on electro-osmotic stabilization of soils,Harvard Soil Mechanics Series No.45,Harvard University,Boston.Casagrande,A.,and Wilson,S.D.1951.Effect of rate of loading on strength of clays and shales at constant water content,Ge ´otech-nique,V ol.2,No.3,pp.251–263.Casagrande,L.,Loughney,R.W.,and Matich,M. A.J.1961.Electro-osmotic stabilization of a high slope in loose saturated silt,Proceedings of the Fifth International Conference on Soil Me-chanics and Foundation Engineering,Paris,V ol.II,pp.555–558.Casimir,H.B.C.,and Polder,D.1948.The influence of retardation of the London–van der Waals forces,Physical Review,V ol.73,p.360.Castro,G.1975.Liquefaction and cyclic mobility of saturated sands.Journal of Geotechnical Engineering Division,ASCE,V ol.101,No.GT6,pp.551–569.Castro,G.,and Poulos,S.J.1977.Factors affecting liquefaction and cyclic mobility,Journal of Geotechnical Engineering Division,ASCE V ol.103,No.GT6,pp.501–516.Chambon,R.,Desrues,J.,and Vardoulakis,I.1994.Localisation and Bifurcation Theory for Soils and Rocks,Belkema,Rotterdam.Chan,H.R.,and Kenney,boratory investigation of the permeability ratio of New Liskeard varved soil,Canadian Geo-technical Journal,V ol.10,pp.453–472.Chandler,R.J.2000.Clay sediments in depositional basins:The Geotechnical cycle (3rd Glossop Lecture),Quarterly Journal of Engineering,Geology,and Hydrololgy,V ol.30,pp.5–39.Chandler,R.J.,de Freitas,M.H.,and Marinos,P.2004.Geotechnical characterisation of soils and rocks:A geological perspective,In:R.J.Jardine,D.M.Potts,and K.G.Higgins (Eds.),Advances in Geotechnical Engineering,The Skempton Conference,Thomas Telford,London,V ol.1,pp.67–102.Chang,C.S.,Misra,A.,and Sundaram,S.1991.Properties of gran-ular packings under low amplitude cyclic loading,Soil Dynamics and Earthquake Engineering,V ol.10,No.4,pp.201–211.Chapelle,F.H.2001.Ground-water Microbiology and Geochemistry,2nd ed.,Wiley,New York.Chapman,D.L.1913.A contribution to the theory of electrocapil-larity,Philosophical Magazine,V ol.25,No.6,pp.475–481.Chapuis,R.P.,and Aubertin,M.2003.On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils,Canadian Geotechnical Journal,V ol.40,pp.616–628.Charlie,W.A,Rwebyogo,M.F.J.,and Doehring,D.O.1992.Time-dependent cone penetration resistance due to blasting,Journal of Geotechnical Engineering,ASCE,V ol.118,No.8,pp.1200–1215.Chattopadhyay,P.K.1972.Residual shear strength of some pure clay minerals,Ph.D.Thesis,University of Alberta,Edmonton,Canada.Chen,F.H.1975.Foundations on Expansive Soils,Developments in Geotechnical Engineering 12,Elsevier Scientific,New York.Cheng,Y .P.,Nakata,Y .,and Bolton,M.D.2003.Discrete element simulation for crushable soils,Ge ´otechnique,V ol.53,No.7,pp.631–641.Chenu,C.,and Stotzky,G.2002.Interactions between microorgan-isms and soil particles:An overview.In:P.M.Huang,J.M.Bol-lag,and N.Senesi (Eds.),Interactions Between Soil Particles and Microorganisms,Wiley,Hoboken,NJ,pp.3–40Chilingar,G.V .,and Rieke,H.H.1967.Discussion,Journal of Soil Mechanics and Foundations Division,ASCE,V ol.93,No.SM 6,p.391.Chow,F.C.,Jardine,R.J.,Brucy,F.,and Nauroy,J.F.1998.Effects of time on capacity of pipe piles in dense marine sand,Journal of Geotechnical and Geoenvironmental Engineering,ASCE,V ol.124,No.3,pp.254–264.Christensen,R.W.,and Wu,T.H.1964.Analysis of clay deformation as a rate process,Journal of the Soil Mechanics and Foundations Division,ASCE,V ol.90,No.6,pp.125–157.Christenson,H.K.,Israelachvili,J.N.,and Pashley,R.M.1987.Properties of capillary fluids at the microscopic level,SPE Res-ervoir Engineering,May,pp.155–165.Clarke,F.W.1920.Data of Geochemistry,U.S.Geological Survey Bulletin 695,Washington,DC.Clayton,C.R.I.,Hight,D.W.,and Hopper,R.J.1992.Progressive destructuring of Bothkennar clay:Implications for sampling and reconsolidation procedures,Ge ´otechnique,V ol.42,No.2,pp.219–239.Clement,T.P.,1997.RT3D —A Modular Computer Code for Sim-ulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Aquifers.Pacific Northwest National Laboratory,Richland,WA,PNNL-11720.Clevenger,W.A.1958.Experiences with loess as a foundation ma-terial,Transactions,ASCE,V ol.123,pp.151–180.Clough,G.W.,Sitar,N.,Bachus,R.C.,and ShaffiRad,N.1981.Cemented sands under static loading,Journal of the Geotechnical Engineering Division,ASCE,V ol.107,No.GT 6,pp.799–817.Coleman,J.D.1962.Stress strain relations for partly saturated soil,Ge ´otechnique,V ol.12,pp.348–350.Collins,K.,and McGown,A.1974.The form and function of mi-crofabric features in a variety of natural soils,Ge ´otechnique,V ol.24,No.2,pp.223–254.Collis-George,N.,and Bozeman,J.M.,1970.A double layer theory for mixed ion systems as applied to the moisture content of clays under restraint,Australian Journal of Soil Research,V ol.8,No.3,pp.239–258.Colotta,T.,Cantoni,R.,Pavesi,U.,Ruberl,E.,and Moretti,P.C.1989.Correlation between residual friction angle,gradation and the index properties of cohesive soils,Ge ´otechnique,V ol.34,No.2,pp.343–346.Coop,M.R.1990.The mechanics of uncemented carbonate sands,Ge ´otechnique,V ol.40,No.4,pp.607–626.Coop,M.R.,and Airey,D.W.2003.Carbonate sands.In:T.S.Tan,K.K.Phoon,D.W.Hight,and S.Leroueil (Eds.),Characterisation and Engineering Properties of Natural Sands,Balkema,Lisse,pp.1049–1086.Coop,M.R.,and Lee,I.K.1993.The behaviour of granular soils at elevated stress,Predictive Soil Mechanics,Proc.Wroth Memo-rial Symposium,Thomas Telford,London,pp.101–112.Coop,M.R.,Sorensen,K.K.,Bodas Freitas,T.,and Georgoutsos,G.2004.Particle breakage during shearing of a carbonate sand,Ge ´otechnique,V ol.54,No.3,pp.157–163.Corey,A.T.1994.Mechanics of immiscible fluids in porous media,Water Resources Publications,Highlands Ranch,CO.Cornell University.1950.Final Report,Soil Solidification Research,Cornell University,Ithaca,NY .C o p y r i g h t e d M a t e r i a l。

相关文档
最新文档