第六章_函数
应用数学第6章 第一节 二元函数-PPT精选文档
第六章 二元函数微分学
第一节 二元函数
二、二元函数的极限与连续
如果点 ( x , y ) 只取某些特殊方式,如沿一条给定的直线或给定的 曲线无限趋近于 ( x 0 , y 0 ) , 则即使这时函数值无限趋近于某一确 定的常数,也不能判定函数的极限就一定存在.
第六章 二元函数微分学
第一节 二元函数
y y0
x x0 yy0
时的极限,记作 ( )
lim f (x, y) A
或
f x, y A
, ,y xy x 0 0
( x , y ) 以任何方式趋近于 注意:在二元函数极限的定义中,
( x0 , y0 )
是指平的面上点 ( x , y ) 以任意路径无限趋近于点 ( x 0 , y 0 ) .
一元函数通常表示平面上的一条曲线. 二元函数z = f (x, y) , (x , y)D, 其定义域 D
y
y
图6-3
第六章 二元函数微分学
第一节 二元函数
二、二元函数的极限与连续
1. 二元函数的极限
x , y pxy ,0 0 时,对应的 0 二元函数的极限研究的是当点 p 函数值的变化趋势.由于二元函数的自变量有两个,自变量的变 化过程比一元函数的自变量变化过程更为复杂.这里 p p0 表示 点 p 以任何方式趋于点 p 0 ,也就是点 p 与点 p 0 间距离趋于0
图6-1
第六章 二元函数微分学
第一节 二元函数
一、二元函数的概念及几何意义
练习2 解 求二元函数 的定义域. 自变量 x, y 所取的值必须满足不等式
2 y 1 x
z arccos 2y x
y
且
x0
第六章 多元函数微积分
30
用坐标表示的向量的运算
→
设向量 a = ax , ay , az , b = bx , by , bz 则 a± b = ax ± bx , ay ± by , az ± bz
→ →Biblioteka {}→{
}
{
}
λ a = {λax , λay , λaz }
→
31
示
→ →
例
→ → → →
设向量a = {3,−5,6}, b = {2,−1,4} ,计算 a+ 2 b, 3 a− 4 b
例
14
简单的二次曲面
如果空间曲面Σ上的任一点的坐标( x、y、z )都满足方程
F(x、y、z) = 0 ,而满足 F(x、y、z) = 0 的( x、y、z )值均在
曲面Σ上,则称 F(x、y、z) = 0 为曲面Σ的方程.
若方程是二次的,所表示的曲面为二次曲面 二次曲面
15
简单的二次曲面
球面
空间中与一定点的距离为定长的点的轨迹称为球面, 定点称为球心,定长称为半径.
三角形法则
27
向量的几何运算
减法运算
由于a − b = a + (−b) ,将向 a 和 b 的起点移到同一点O,则以 b 的终点 为起点,以 a 的终点为终点的向量是a − b
三角形法则
28
向量的几何运算
数乘向量
设a 是一个非零向量,λ 是一个非零实数,则a 与λ 的乘积仍是向量, 称为数乘向量,记作λa
B( x2 , y2 , z2 ) ,
AB = {x2 − x1, y2 − y1, z2 − z1}
| AB |= (x2 − x1)2 + ( y2 − y1 )2 + (z2 − z1)2
第六章 频响函数脉冲响应函数
x(t )dt I (t )dt I
“冲量”一词原只用于力冲量,在此进行扩展,x(t)可 代表任意一种输入参量,随x(t)代表的物理量不同,I 的量纲也不同。 如当x(t) 代表加速度时, I的量纲为加速度×时间
系统对在 t=0 时作用的单位脉冲所产生的响应 h(t), 称为单位脉冲响应函数。 如图所示,由于系统在冲量作用之前是静止的,故当 t<0时,有h(t)=0。
0 (t ) (t 0) (t 0)
(t )dt (t )dt 1
0
0
若系统激励x(t)的作用时间非常短,可视为理想脉冲
(t )
量纲:[时间]
1
自读此页
x(t ) I (t )
当x(t)代表力时,则表示一次锤击或一个脉冲冲量,I 具有力乘时间的量纲。
频率响应函数是系统对单位简谐输入的响应。
若已知系统的运动微分方程,则将x(t)与y(t)代入运动 微分方程并消去 ejωt 项,可得到 H(ω) 的代数方程。求 解此代数方程,便可得到复数频率响应函数H(ω)。
例5.1 图示弹簧—阻尼器系统。假设在质量为 m的小车上作用激励力 x(t),小车的位移响应为 y(t)。试确定响应对激励的振幅比和相位角。 解:对于刚度为 k 的线性弹 簧和阻尼系数为 c 的线性阻 尼器,可得系统的运动微 分方程
§6-1
§6-2 §6-3 §6-4
频率响应函数
单位脉冲响应函数 单位脉冲响应函数与频率响应函数的关系
卷积定理
本章将讨论振动系统的激励与响应关系,且 仅限于讨论稳定的常参数线性振动系统。
常参数系统(非时变系统):振动系统的参数 (如质量、刚度和阻尼等)不随时间而变化。 线性系统:是指适用叠加原理的系统。 若系统在激励x1作用下,其响应为y1; 在激励x2作用下,其响应为y2; 则系统在激励ax1与bx2的联合作用下, 其响应为ay1+by2。
06第六章 三角函数【讲义】
第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,正割函数se cα=x r ,余割函数c s c α=.yr定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。
浙教版八年级上册第六章《一次函数》知识点及典型例题
新浙教版八年级上册第六章《一次函数》知识点总结及典型例题关于基本概念和性质的知识点1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vts=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。
在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
★★★判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应例题:1、下列说法正确的是:()A 变量x,y满足y2=x,则y是x的函数 B变量x,y满足x+3y=1,则y是x的函数C 等式43πr3是所含字母r的函数 D 在V=43πr3中,43是常量,r是自变量,V是πr的函数例题:2、下列解析式中,y不是x的函数的是()A y+x=0B |y|=2xC y=2|x|D y=2x2+4 例题:3、下列各曲线中,能表示y是x的函数的是()函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
例题:东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x(个)之间的函数关系式是_______________.例题:平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是__________.自变量取值范围:一般的,一个函数的自变量允许取值的范围。
确定函数自变量取值范围的方法:(1)必须使关系式成立。
第六章 函数的概念和图象
第六章函数的概念和图象一、内容综述:1.函数的有关概念:一般地,设在某变化过程中有两个变量x,y。
如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就说y是x的函数,x叫做自变量,y叫因变量。
对于函数的意义,应从以下几个方面去理解:(1)我们是在某一变化过程中研究两个变量的函数关系,在不同研究过程中,变量与常量是可以相互转换的,即常量和变量是对某一过程来说的,是相对的。
(2)对于变量x允许取的每一个值,合在一起组成了x的取值范围。
(3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都有唯一确定的值与它对应。
2.函数值与函数值有关的问题可以转化为求代数式的值。
二、例题分析:例1.判断y=x与y=是否是同一函数。
解:∵ y==|x|当x≥0时,y=x,当x<0时, y=-x.∴ y=x与y=不是同一函数。
说明:虽然这两个函数的自变量取值范围都是全体实数,但当x<0时,两个函数的对应关系不同(如当x=-2时,y=x=-2, 而y==2), 所以它们不是同一个函数。
例2.不画图象,求函数y=-x+的图象上一点P,使点P到x轴,y轴的距离相等。
解:当点P在第一,三象限内,依题意,设P(a,a)∴ a=-a+解得:a=1.当点P在第二,四象限内,设P(b,-b)∴ -b=-b+解得:b=-3,∴点P坐标为(1,1)或(-3,3)。
说明:由点P到x轴、y轴的距离相等知点P在各象限角平分线上,由于第一,三象限角平分线上的点M(x,y)满足x=y的关系,而第二,四象限角平分线上的点N(x,y)满足x=-y的关系,所以可根据点P的位置特点来设点P的坐标,通过此例训练分类讨论思想。
例3.某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元. 若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;分析:由一般车辆停放次数x表示变速停放的辆次数,由保管费列出函数关系再化简,但要在函数式后注明自变量x的取值范围。
苏科初中八年级上册数学《第六章 一次函数》PPT课件
例3: 柴油机在工作时油箱中的余油量Q(千克)
与工作时间t(小时)成一次函数关系,当工作开始时 油箱中有油40千克,工作3.5小时后,油箱中余油22.5 千克
求余油量Q与时间t的函数关系式;
解:由题意设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5 分别代入上式,得
b 40 22.5 3.5k b
5、一次函数y=kx+b(k ≠ 0)的性质: ⑴当k>0时,y随x的增大而___增__大____。 ⑵当k<0时,y随x的增大而___减__小____。 ⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图
中k、b的符号:
k__>_0,b__>_0
k__>_0,b_<__0
k_<__0,b_>__0 k_<__0,b_<__0
3、函数
2 y x4
3
的图像与x轴交点坐标为________,
与y轴的交点坐标为____________。
4 、(1)直线y kx b与 y 5x 1 平行,
且经过(2,1),则 k= ,b= .
12
(2)对于函数 y x , y的值随x值的____而减
小。
23
5、若函数y=kx+b的图像经过点(-3,-2) 和(1,6),求k、b及函数关系式。
(1)写出每户每月用水量不超过6米3和每户每月用 水量超过6米3时,y与x之间的函数关系式,并判断它 们是否为一次函数。
(2)已知某户5月份的用水量为16米3,求该用户5月 份的水费。
四、布置作业
五、小结 本节课你有哪些收获?
6、已知一次函数的图像经过点A(2,-1)
高一数学讲义 第六章 三角函数
高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。
第06章 随机变量函数
第六章 随机变量函数第一节 一维随机变量函数一、一维随机变量函数1、一元波雷尔函数:设)(x f 为一元实函数,若1B ∈∀B ,有11})(|{)(B ∈∈=-B x f x B f ,则称)(x f 为一元波雷尔函数. 可以证明:连续函数、单调函数都是波雷尔函数.2、定义:设),,(P S F 为一概率空间,X 为S 上的一维随机变量,)(x f 为一元波雷尔函数, S e ∈∀,规定: ))(()(e X f e Y =R ∈,称Y 为X 的函数. 记作)(X f Y =.显然,1B ∈∀B ,F ∈∈=∈=--)}()(|{}))((|{)(11B f e X e B e X f e B Y , 故Y 也是S 上的一维随机变量.二、离散型设X 的概率分布为X 1x 2x … k x… P1p 2p…kp…)(X f Y =为X 的函数,那么}{~k k y Y P q Y ==,其中 ∑-∈-=∈=====)(11)}({})({}{k i y fx i k k k k p y fX P y X f P y Y P q .特别,当f 为一一对应函数时,令)(k k x f y =, 有k k k k p x X P y fX P q ===∈=-}{)}({1,那么Y)(1x f )(2x f… )(k x f … P1p2p …kp…例1 设X 的概率分布为X-1 01 P1/3 1/2 1/6求:(1)1-X ;(2)X 2-;(3)2X 的概率分布. 解:列表计算1/3 1/2 1/6 X -1 0 1 1-X -2 -1 0 X 2- 2 0 -2 2X1 0 1所以 (1) 1-X 的概率分布为:1-X-2 -1 0 P1/3 1/2 1/6 (2) X 2-的概率分布为:X 2--2 0 2 P 1/6 1/2 1/3 (3) 2X 的概率分布为: 2X0 1 P1/2 1/2例2 设()kk X P X 2/1}{~==,N ∈k ,)2sin(X Y π=,求Y 的概率分布.解: 显然Y 的可能取值为1,0,1-.由已知条件知:∑∑∞=+∞=⎪⎭⎫⎝⎛=+===014021}14{}1{n n n n X P Y P ∑∑∑∞=-∞=∞==-⨯=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛====1112131411141414121}2{}0{n n n nn n X P Y P ,152}0{}1{1}1{==-=-=-=Y P Y P Y P .所以Y 的概率分布为:Y-1 0 1 P2/15 1/3 8/15三、连续型设)(~x X ϕ,)(X f Y = 1、 分布函数法先求出⎰≤=≤=≤=yx f Y dx x y X f P y Y P y F )()(})({}{)(ϕ;(2) 再求出)()(y F y Y Y '=ϕ.例3 设)(~x X ϕ,||X Y =,则)()()(y y y X X Y -+=ϕϕϕ,0>y . 解:(1)当0≤y ,0)(=y F Y ,因此0)(=y Y ϕ;(2) 当0>y ,)()(}{}|{|)(y F y F y X y P y X P y F X X Y --=≤≤-=≤=, 那么)()()()()(y y y F y F y X X X XY -+=-'-'=ϕϕϕ.2、公式法(1) 设)(~x X ϕ,)(X f Y =,0)(>'x f ,)(-∞=f α,)(+∞=f β,)(y h 为)(x f 的反函数,则 )()]([)(y h y h y X Y '=ϕϕ,βα<<y .证明:因0)(>'x f ,则)(x f y =存在反函数)(y h x =,且0)(>'y h ,那么)(y h 递增.显然βα≤≤)(X f ,且})({}{)(y X f P y Y P y F Y ≤=≤=.① 当α≤y 时, 0)(=y F Y ,⇒0)(=y Y ϕ; ② 当β≥y 时, 1)(=y F Y ,⇒0)(=y Y ϕ; ③ 当βα<<y 时,)]([)}({)}()]([{)(y h F y h X P y h X f h P y F X Y =≤=≤=, 所以 )()]([)()(y h y h y F y X Y Y '='=ϕϕ.(1)’ 设)(~x X ϕ,)(X f Y =,0)(<'x f ,)(+∞=f α,)(-∞=f β,)(y h 为)(x f 的反函数,则 |)(|)]([)(y h y h y X Y '=ϕϕ,βα<<y .证明:同(1),只是0)(<'y h ,那么)(y h 递减. 当βα<<y 时,)}({1)}({)}()]([{)(y h X P y h X P y h X f h P y F Y <-=≥=≥= )]([1y h F X -=, 所以|)(|)]([)()]([)()(y h y h y h y h y F y X X Y '='-='=ϕϕϕη.例4 设)(~x X ϕ,b aX Y +=,)0(≠a ,则⎪⎭⎫⎝⎛-=a b y a y X Y ϕϕ||1)(,+∞<<∞-y .解:令b ax x f y +==)(,那么-∞=α,+∞=β,ab y y h -=)(,ay h 1)(=',⎪⎭⎫⎝⎛-='=a b y a y h y h y X X Y ϕϕϕ||1|)(|)]([)(,+∞<<∞-y .例5 设),(~2σμN X ,σμ-=X Y ,,则)1,0(~N Y . 解: b aX Y +=,01>=σa ,σμ-=b ,于是()μσσϕϕϕ+=⎪⎭⎫⎝⎛-=y a b y ay XX Y 1)(,()22][222212yy ee --+-==πσπσσμμσ, +∞<<∞-y .例6 设),(~2σμN X ,b aX Y +=,)0(≠a ,则),(~22σμa b a N Y +.证明: 222)(||21||1)(σμσπϕϕ---=⎪⎭⎫⎝⎛-=a b y X Y ea ab y a y2222)]([||21ab a y e a σμσπ+--=,+∞<<∞-y所以 ),(~22σμa b a N Y +.(2)设)(~x X ϕ,b x a <<,)(X f Y =,0)(>'x f ,)(b f =α,)(a f =β,)(y h 为)(x f 的反函数,则)()]([)(y h y h y X Y '=ϕϕ,βα<<y . 证明:因0)(>'x f ,则)(x f y =在),(b a 上存在反函数)(y h x =,且0)(>'y h ,那么)(y h 递增.显然βα≤≤)(X f ,且})({}{)(y X f P y Y P y F Y ≤=≤=. ① 当α≤y 时, 0)(=y F Y ,⇒0)(=y Y ϕ; ② 当β≥y 时, 1)(=y F Y ,⇒0)(=y Y ϕ; ③ 当βα<<y 时,)]([)}({)}()]([{)(y h F y h X P y h X f h P y F X Y =≤=≤=, 所以 )()]([)()(y h y h y F y X Y Y '='=ϕϕ.(2)’ 设)(~x X ϕ,b x a <<,)(X f Y =,0)(<'x f ,)(a f =α,(b f =β,)(y h 为)(x f 的反函数,则|)(|)]([)(y h y h y X Y '=ϕϕ,βα<<y . 证明:同(2),只是0)(<'y h ,那么)(y h 递减. 当βα<<y 时,)}({1)}({)}()]([{)(y h X P y h X P y h X f h P y F Y <-=≥=≥= )]([1y h F X -=,所以|)(|)]([)()]([)()(y h y h y h y h y F y X X Y Y '='-='=ϕϕϕ.例7 设)2,2(~ππ-U X ,X A Y sin =,)0(>A ,求)(y Y ϕ.解:已知x A x f y sin )(==,0)(>'x f ,)2,2(ππ-∈x ,A -=α,A =β,Ay y h arcsin)(=,221)(yA y h -=',又 ⎩⎨⎧>≤=.2/|| ,0 ,2/|| ,1/ )(πππϕt t t X所以 ⎪⎩⎪⎨⎧<<--='=. ,0 , ,1|)(|)]([ )(22其他A y A yA y h y h y XY πϕϕ(3) 设)(~x X ϕ,)(X f Y =,)()(x f x f i =,i I x ∈,且在i I 导数恒不为零,)(y h i 为)(x f i 的反函数, }),(|{i i i I x x f y y J ∈==,i I 为互不相交的区间,.,,2,1m i =,则 iJ y i mi i XY y h y h y ∈='=∑|)(|)]([)(1ϕϕ.证明:由(2)知, |)(|)]([)()(y h y h y i i X X f i '=ϕϕ,i J y ∈.∑∑=∈≤=≤=≤=mi iI e X Y y X fP y X f e P y X f e P y F i1)(})({})(|{})(|{)(iJ y i mi i Xmi i Y Y y h y h y X f P dyd dyy dF y ∈=='=≤==∑∑|)(|)]([})({)()(11ϕϕ.例8 设)(~x X ϕ,2X Y =,则)]()([21)(y y yy X X Y -+=ϕϕϕ,0>y .证明:令0,0,)(,)(121><-===y x y y h x x f y ,0,0,)(,)(222><===y x y y h x x f y ,那么),0(21+∞==J J .由(3)知 )]()([21|)(|)]([)(021y y yy h y h y X X y i i i XY -+='=>=∑ϕϕϕϕ,0>y .例9 设)1,0(~N X ,2X Y =,则)1()21,21(~22χ∆=Γ=X Y .解: )(1)]()([21)(y yy y y y X X X Y ϕϕϕϕ=-+=()21121212)2/1(2/1211---Γ==eyeyy π,0>y .所以 )21,21(~2Γ=XY .四、随机变量存在定理设定义在R 上的函数)(x F 满足:(1)R ∈∀x ,1)(0≤≤x F ;(2))(x F 为单调不减函数;(3)0)(lim =-∞→x F x ,1)(lim =+∞→x F x ;(4))(x F 为右连续函数.则)(x F 必为某一维随机变量的分布函数.事实上,取)1,0(~U X ,定义})(|sup{)(x t F t x G <=,则)(X G Y =的分布函数为)(x F .说明: ① 由此可见满足分布函数(1)-(4)的)(x F 可确定一个随机变量.②利用数学或物理的方法产生)1,0(中均匀分布随机变量的子样(称为均匀分布随机数),再利用变换)(X G Y =可得到任意分布)(x F 的随机数.这在蒙特卡洛方法中具有重要性.证明:①先证明)(x G 单调不减,那么)(x G 是波雷尔函数.R ∈<∀21x x ,若1)(x t F <,有2)(x t F <⇒})(|{})(|{11x t F t x t F t <⊂<⇒})(|sup{})(|sup{21x t F t x t F t <≤<⇒)()(21x G x G ≤. 所以)(x G 单调不减.其次证明)(x G 的定义域)1,0(⊃D .因X 的值域为)1,0(, 这样)(X G 就是一维随机变量.)1,0(∈∀r ,因(3),必R ∈'''∃x x ,,使得)()(x F r x F ''<<'. 因r x F <')(,有})(|{r t F t x <∈',于是})(|{r t F t <非空;又})(|{r t F t s <∈∀,有)()(x F r s F ''<<,因(2),有x s ''<, 于是})(|{r t F t <有界,这样})(|sup{)(r t F t r G <=存在,. 于是D r ∈,那么D ⊂)1,0(.③ 再证明R ∈∀x ,有x y F x G y <⇔<)()(,这样 )()(y F x y x G ≤⇔≤.“⇐”x y F <)(,因(4),则y y >'∃,使得x y F y F <'<)()(, 这样 )(})(|sup{x G x t F t y y =<≤'<“⇒”)(x G y <,因})(|sup{)(x t F t x G <=,则})(|{ x t F t y <∈'∃, 使得y y x G x G '<--])([)(,即y y '<,又因(2),有x y F y F <'≤)()(. ④ 最后证明)(X G Y =的分布函数为)(x F .因)1,0(~U X ,故x x F X =)(,10≤≤x ,而由(1)知1)(0≤≤y F , 因此 R ∈∀y ,)()]([)}({})({}{)(y F y F F y F X P y X G P y Y P y F X Y ==≤=≤=≤=.第二节 n 维随机变量一、n 维随机变量1、定义:设),,(P S F 为一概率空间,k X ,)(n N k ∈为S 上的一维随机变 量,称),,,(21n X X X X =为S 上的n 维随机变量.符号约定:设nn n y y y y x x x x R ∈==),,,( ),,,,(2121 ,规定: ① y x <⇔k k y x <;n k ,,2,1 =.②y x ≤⇔k k y x ≤,)(n N k ∈.③将),,,(21n x x x x =写成列(column)向量) (21'n x x x ,即==),,,(21n x x x x ) (21'n x x x .) (),,,(2121'==n n X X X X X X X .2、X 关于J X 的边缘分布:),,,(21mk k k I X X X X =.)(),,,(21n N k k k I m ⊂= 表示)(},,,{21n N k k k m ⊂ .3、X 的分布:}{B P ∈X , n B B ∈. 其中可证:=∈}{B X F ∈∈∈},)(|{S e B e X e .4、分布函数(1)定义:设),,(P S F 为一概率空间,X 为S 上的n 维随机变量, n x R ∈∀,规定}{)(x X P x F ≤=.称)(x F 为X 的分布函数.(2) 性质① n x R ∈∀,1)(0≤≤x F .② )(x F 关于k x 为单调不减右连续函数,)(n N k ∈. ③ 0)(lim =-∞→x F J x ,)(n N J ⊂;1),,,(=+∞+∞+∞ F .④ ),,,(lim }{)(21n x J JJ x x x F x XP x FJ JX +∞→=≤=,)(n N J J =+.5、相互独立: 设),,,(21m X X X X =,)(x F 为X 的分布函数, 而),,,(21kkn k k k X X X X =为k n 维随机变量, )(k k x F 是k X 的分布函数,m k ,,2,1 =,恒有)(x F ∏==mk k kx F1)(,则称m X X X ,,,21 相互独立.注:① 若mmn m n X X ,,,,,,11111X X 独立,即X 独立, 则m X X X ,,,21 独立.②m X X X ,,,21 独立⇔kn k B B ∈∀,m k ,,2,1 =恒有}{}{}{},,,{22112211m m m m B X P B X P B X P B X B X B X P ∈∈∈=∈∈∈ .③ 若),,,(21m X X X X =相互独立 ⇒kJ J J X X X ,,,21独立,)(21m N J J J k ⊂+++ .6、随机变量序列}{n X 的独立:若}{n X 中任意有限个随机变量独立,则称}{n X 独立.n 维离散型随机变量1、定义:设),,(P S F 为一概率空间,),,,(21n X X X X =为S 上的n 维随机变量,若X 的取值为有限个或可数个(至多可数),称X 为S 上的n 维离散型随机变量.显然:X 为S 上的n 维离散型随机变量⇔i X ),,2,1(n i =均为S 上的一维离散型随机变量.2、概率分布:假设X 所有可能取的值为I x ),,,(21ni i i x x x =,nn i i i I N ∈=),,,(21 ,令},,,{}{2121ni n i i I I x X x X x X P x X P p ====== ,称其为n 维随机变量X 的概率分布.3、分布律性质(1)0≥I p ; (2) 1=∑II p ;(1)(2)为离散型随机变量的特征性质. 反之亦然.(3) ∑∈=∈Bx I I p B X P }{,n B B ∈;(4)n X X X ,,,21 独立⇔nI N∈∀,恒有}{}{}{}{2121n i n i i I x X P x X P x X P x X P ===== .4、IJ p Y X ~),(的边缘分布,n I N ∈,mJ N ∈(1)),(Y X 关于X 的边缘分布:∑=∙JIJ I p p X ~.(2)),(Y X 关于Y 的边缘分布:∑=∙IIJ J p p Y ~.5、IJ p Y X ~),(的条件分布(1)在I x X =的条件下Y 的分布:∙===I IJ I J p p x X y Y P }|{.在J y Y =的条件下X 的分布:JIJ J I p p y Y X X P ∙===}|{.三、n 维连续型随机变量1、定义:设),,(P S F 为一概率空间,X 为S 上的n 维随机变量,)(x F 为X 的分布函数,若存在非负可积函数)(x ϕ,对n x R ∈∀,有⎰≤=xt dt t x F )()(ϕ,则称X为n 维连续型随机变量. )(x ϕ为X 的概率密度函数.记作)(~x X ϕ. 注:(1) )(x F 为连续函数;(2) )(x ϕ意义与一维相同.2、性质(1)0)(≥x ϕ; (2)⎰∈=nx dxx R1)(ϕ;(1)(2)为连续型随机变量的特征性质. 反之亦然.(3)⎰∈=∈Bx dx x B X P )(}{ϕ,nB B∈;(4)n B B ∈∀,若0)(=B m ,有0}{=∈B X P .(5)n X X X ,,,21 独立⇔nn R x x x x ∈=∀),,,(21 ,恒有∏==nk k X X x x k1)()(ϕϕ.3、 X 关于J X 的边缘分布: ⎰=JJ dx x x )()(ϕϕ,)(n N J J =+.4、在J J x X =的条件下L X 的分布: )()()|(J L J J L x x x x ϕϕϕ+=,)(n N L J ⊂+. 例1 (均匀分布) 在n A B ∈(0)(>A m )中任取一点X ,则X 的密度函数为:⎪⎩⎪⎨⎧∉∈=. ,0 , )(1)(A x A x A m x ,ϕ 此时,记:)(~A U X .例2 (n 维正态分布) 设)(~),,,(21x X X X X n ϕ =,n R ∈μ,C 为n 阶正定对称矩阵,且)()(211212||)2(1)(μμπϕ-'---=x Cx eC x n,n x R ∈称X 服从n 维正态分布,记作),(~C N X μ.特别,当2=n 时, ),(21μμμ=,因⎪⎪⎭⎫ ⎝⎛=22211211c cc c C 为二阶正定对称矩阵,于是⎪⎪⎭⎫ ⎝⎛=22121211c cc c C ,且011>c ,0||2122211>=-C c c c ,那么022>c , 令111c =σ,222c =σ,221112c c c =ρ,这样1||<ρ,⎪⎪⎭⎫⎝⎛=22212121σσρσσρσσC , ⎪⎪⎭⎫ ⎝⎛--=-212121221||1σσρσσρσσC C, )1(||22222ρσσ-=C , 于是 )()(211212||)2(1)(μμπϕ-'---=x C x eC x n⎥⎥⎦⎤⎢⎢⎣⎡-+-------=2222212121212)())((2)()1(21221121σμσσμμρσμρρσπσy y x x e,这正是二维正态分布.第三节 n 维随机变量函数一、n 维随机变量函数1、n 元波雷尔函数:设)(x f 为n 元实函数,若1B ∈∀B , 有n B x f x B fB ∈∈=-})(|{)(1,则称)(x f 为n 元波雷尔函数.可以证明:连续函数是波雷尔函数.2、定义:设),,(P S F 为一概率空间,X 为S 上的n 维随机变量,)(x f 为n 元波雷尔函数, S e ∈∀,规定: ))(()(e X f e Y =R ∈,称Y 为X 的函数. 记作)(X f Y =.3、显然:1B ∈∀B ,F ∈∈=∈=--)}()(|{}))((|{)(11B fe X e B e Xf e B Y ,故Y 也是S 上的一维随机变量.二、离散型设X 的概率分布为}{I x X P =,n I N ∈,)(X f Y =为X 的函数, 则Y 的概率分布为)}({I x f Y P =.例1 设),(Y X 的概率分布为YX -1 1-1 1/4 1/3 1 1/6 1/4求:(1)Y X +;(2) Y X -2 的概率分布.解:列表计算P),(Y X Y X + Y X -2 1/4 (-1,-1) -2 -1 1/3 (-1,1) 0 -3 1/4 (1,1) 2 1 1/6 (1,-1) 0 3所以:(1) Y X +的概率分布为:Y X +-2 0 2 P1/4 1/2 1/4(2)Y X -2的概率分布为:Y Z -2-3 -1 13 P1/3 1/4 1/4 1/6例2 设)(~i i P X λ,2,1=i 独立, 21X X Z +=则 )(~2121λλ++=P X X Z . 解:Z 的可能取值为 ,2,1,0,而∑=-====+==ki i k X i XP k X X P k Z P 02121},{}{}{∑∑=---=-=-===ki ik iki ei k ei i k X P i XP 02102121)!(!}{}{λλλλ)(21210)(2121!)()!(!!!λλλλλλλλ+--=+-+=-=∑ek i k i k k eki k i ki ,0N k ∈,所以)(~2121λλ++=P X X Z .三、连续型1、分布函数法: 设),(~),(y x Y X ϕ,),(Y X f Z =,为S 上的二维随机变量, (1) 先求出⎰⎰≤=≤=≤=zy x f Z dxdyy x z Y X f P z Z P z F ),(),(}),({}{)(ϕ,R ∈∀z ;(2) 再求出)()(z F z Z Z '=ϕ.2、随机变量四则运算公式: 设二维随机变量),(~),(y x Y X ϕ.(1)Y X Z +=,则 ⎰+∞∞--=dx x z x z Z ),()(ϕϕ,或⎰+∞∞--=dyy y z z Z),()(ϕϕ.若X 与Y 独立,则⎰+∞∞--=dx x z x z Y XZ )()()(ϕϕϕ.证明:⎰⎰⎰⎰+∞∞--∞-≤+==xz z y x Z dyy x dx dxdyy x z F ),(),()(ϕϕ⎰⎰⎰⎰∞-+∞∞-+∞∞-∞-=--=-====zzyx t dx x t x dt dtx t x dx ),(),(ϕϕ⎰⎰⎰∞-∞-+∞∞-=⎥⎦⎤⎢⎣⎡-=zzdt t dt dx x t x )(),(ζϕϕ,所以⎰+∞∞--=dx x z x z Z ),()(ϕϕ.例3 设)1,0(~N X i ,2,1=i 独立,则)2,0(~21N X X Z +=. 证明:由 222222)(z xz x x z x +-=-+ 22222222)2(22222z z x z z zxx +⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛+-=, 从而 ⎰⎰+∞∞----+∞∞-=-=dx eedx x z x z x z xX X Z 2)(2222121)()()(πϕϕϕ⎰⎰∞+∞-⎪⎭⎫ ⎝⎛--⋅-∞+∞-⎪⎭⎫ ⎝⎛--⋅-⎪⎭⎫ ⎝⎛-==2221221222222222222222z x d eedx eez x z z x zπππ ()2222221⋅-=z eπ,R ∈z . 所以)2,0(~N Z .注:一般地,设),(~2i i i N Z σμ,2,1=i 独立,则),(~22212121σσμμ+++=N X X Z .4 设),(~λi i r X Γ,2,1=i 独立, 21X X Z +=则 ),(~2121λr r X X Z +Γ+=.证明: ⎰⎰+∞+∞∞--=-=)()()()()(2121dx x z x dx x z x z X X X X Z ϕϕϕϕϕ,① 当0≤z 时, 0)(=z Z ϕ; ② 当0>z 时,⎰⎰------ΓΓ=-=zx z r r r r zX X Z dx ex z r exr dx x z x z 0)( 12 x11 0221121)()()()()()(λλλλϕϕϕ⎰⎰---+-=--+--⋅ΓΓ===-ΓΓ=111121 0112121212121)1()()()()()()(dt t tz r r edx x z xr r er r r r zxzt zr r r r z λλλλλzr r e z A 121)(λλλ--+=,又因 ) ()()()(1210121r r A z d ez A dz z zr r Z +Γ===⎰⎰+∞--++∞∞-λλϕλ,⇒[]121) (-+Γ=r r A ,这样 []z121 1121212121)()() ()(λλλλλϕ--++--+-+Γ=+Γ=ezr r ez r r z r r r r zr r Z .所以),(~21λr r Z +Γ.(2)Y X Z -=,则 ⎰+∞∞--=dx z x x z Z ),()(ϕϕ.若X 与Y 独立,则⎰+∞∞--=dx z x x z Y XZ )()()(ϕϕϕ.证明:⎰⎰⎰⎰+∞∞--∞-≤-==zx z y x Z dy y x dx dxdyy x z F ),(),()(ϕϕ⎰⎰⎰⎰∞-+∞∞-+∞∞-∞-=--=-====zzyt x dx t x x dt dtt x x dx ),(),(ϕϕ,所以 ⎰+∞∞--=dx z x x z Z ),()(ϕϕ.独立时简单证明: 因 )()(y y Y Y -=-ϕϕ,于是⎰⎰+∞∞-+∞∞---+-=-==dx z x x dx x z x z z Y XY XY X Z )()()()()()()(ϕϕϕϕϕϕ.(3) XY Z =,则 ⎰+∞∞-=dy y yz y z Z ),(||1)(ϕϕ,或⎰+∞∞-=dx xzx x z Z ),(||1)(ϕϕ.若X 与Y 独立,则⎰+∞∞-=dx xzx x z Y X Z )()(||1)(ϕϕϕ.证明:⎰⎰⎰⎰⎰⎰∞+∞-∞-∞+≤+==),(),(),()(yzyzzxy Z dxy x dy dx y x dy dxdyy x z F ϕϕϕ⎰⎰⎰⎰∞+∞-∞-∞-=+===01),(1),(zzxyt dt yy yt dydt yy yt dyϕϕ⎰⎰⎰⎰∞+∞-∞-∞-+=00),(||1),(||1zzdt y yt y dydt y yt y dyϕϕ⎰⎰⎰⎰∞-+∞∞-+∞∞-∞-==zzdy y yt y dtdt y yt y dy),(||1),(||1ϕϕ所以 ⎰+∞∞-=dy y yz y z Z ),(||1)(ϕϕ.例5 设),(~),(y x Y X ϕ,且⎩⎨⎧<≤<= . ,0,10 8),(其他,y x xy y x ϕXY Z =,求)(z Z ϕ.解:⎰⎰==+∞∞-1),(1),(||1)(dy y yz ydy y yz y z Z ϕϕϕz z y d y yz yZZZ ln 481110-==+=⎰⎰⎰,10<<z .(4) YX Z =,则 ⎰+∞∞-=dy y yz y z Z ),(||)(ϕϕ.若X 与Y 独立,则⎰+∞∞-=dy y yz y z Y XZ )()(||)(ϕϕϕ.证明:⎰⎰⎰⎰⎰⎰+∞∞-∞-+∞≤+==),(),(),()(zyzyzyxZ dx y x dy dx y x dy dxdyy x z F ϕϕϕ⎰⎰⎰⎰+∞∞-∞--∞=+===00),(),(zzxty ydty ty dy ydt y ty dy ϕϕ⎰⎰⎰⎰+∞∞-∞-∞-+=00),(||),(||zzdt y ty y dy dt y ty y dy ϕϕ⎰⎰⎰⎰∞-+∞∞-+∞∞-∞-==zzdyy ty y dt dt y ty y dy ),(||),(||ϕϕ所以 ⎰+∞∞-=dy y yz y z Z ),(||)(ϕϕ.例5 设)(~i Exp X i ,2,1=i 独立, 21X X Z =,求)(z Z ϕ. 解: ⎰⎰+∞+∞∞-==)()()()(||)(2121dy y yz y dy y yz y z X X X X Z ϕϕϕϕϕ,① 当0≤z 时, 0)(=z Z ϕ;当0>z 时, ⎰+∞--=22)(dy eyez yzyZ ϕ22)2(122)2(2)2()2(2])2[()2()2(2z z y z d ez z yz +=+Γ=+++=⎰+∞+--.所以 ⎪⎩⎪⎨⎧≤>+=.0 ,0 ,0 ,)2(2)(2z z z z Z ϕ四、最大、最小公式设),,,(21n X X X 为S 上的n 维随机变量,且n X X X ,,,21 独立.(1) },,,max{21n X X X Z =,则∏==ni X Z z Fz F i1)()(.证明: }},,,{max{}{)(21z X X X P z Z P z F n Z ≤=≤= },,,{21z X z X z X P n ≤≤≤=∏==≤≤≤=ni X n z Fz X P z X P z X P i121)(}{}{}{ .(2)},,,min{21n X X X Z =,则∏=--=ni X Z z F z F i1)](1[1)(.证明: }},,,{min{1}{1}{)(21z X X X P z Z P z Z P z F n Z >-=>-=≤=},,,{121z X z X z X P n >>>-=∏=--=>>>-=ni X n z F z X P z X P z X P i 121)](1[1}{}{}{1 .例6 设)(~i i Exp X λ,2,1=i 独立,},max{211X X Z =,},min{212X X Z =, 求)(1z Z ϕ,)(2z Z ϕ.解:已知 xX i i ex F λ--=1)(,0>x ,那么① )1)(1()()()(21211zzX X Z eez F z F z F λλ----==,0>z ,zzzZ Z eeez F z )(2121212111)()()(λλλλλλλλϕ+---+-+='=,0>z .⎩⎨⎧≤>+-+=+---.0 ,0,0 ,)( )()(212121211z z e e e z z z z Z λλλλλλλλϕ② zX X Z ez F z F z F )(212121)](1)][(1[1)(λλ+--=---=,0>z ,zZ Z ez F z )(212122)()()(λλλλϕ+-+='=,0>z .所以 ⎩⎨⎧≤>+=+-.0 ,0,0 ,)( )()(21212z z e z z Z λλλλϕ五、函数的独立性设m X X X ,,,21 独立,),,,(21kkn k k k X X X X =,)(k k k X f Y =,m k ,,2,1 =.则 m Y Y Y ,,,21 也独立.证明:121,,,B ∈∀m B B B ,有},,,{2211m m B Y B Y B Y P ∈∈∈)}(,),(),({121221111m m m B f X B f X B f X P ---∈∈∈= )}({)}({)}({121221111m m m B f X P B f X P B f X P ---∈∈∈=}{}{}{2211m m B Y P B Y P B Y P ∈∈∈=例8 设),(~2i i i N X σμ,m i ,,2,1 =独立,则),(~1211∑∑∑====mi i mi i mi iN XY σμ.例9 设),(~λi i r X Γ,m i ,,2,1 =独立, 则),(~11λ∑∑==Γ=mi i mi ir XY .例10 设X 与Y 独立,且)(),(y x Y X ϕϕ,),(y x ϕ均连续, 而)(),(~),(22y x q y x Y X +=ϕ,则X 与Y 均服从正态分布.引理:设)(x f 与)(y g )0,(≥y x 都连续不恒为0,且0,≥∀y x 恒有)()()(y x h y g x f +=,则xka x f =)(,0≥x ,此处a k ,是常数, 0>a .证明:①先证明0)0(≠f .反证.假设0)0(=f ,则0)(≡x h .)(y g 不恒为0,故00≥∃y ,使得0)(0≠y g ,,那么0)()()(00≡+=y g y x h x f ,这与)(x f 不恒为0矛盾,故0)0(≠f .同理可证0)0(≠g .② 由于)()()0()0()(x h x g f g x f ==,那么)()0()0()()0()()0()(x p g f x h g x g f x f ===, 于是)()0()0()()0()()0()()()(y x p g f y x h g y g f x f y p x p +=+==,0,≥y x . ③ 再证明 0)1(≠p .反证. 假设0)1(=p ⇒0)1()1(==⎥⎦⎤⎢⎣⎡p n p n⇒0)1(lim )0(==→∞n p p n .而1)0()0()0(==f f p ,故0)1(≠p .④ 因)()()(y x p y p x p +=,0,≥y x .则 x a x p =)(⇒x x ka a f x f ==)0()(.此处a k ,是常数,且 0)21()21()1(>==p p p a .例10证明: 因X 与Y 独立,则)(),()()(22y x q y x y x Y X +==ϕϕϕ.考虑在第一象限1D 中,令)()()(22x x x f X X ϕϕ==,)()()(22y y x g Y Y ϕϕ==, 显然都连续不恒为0,再令 )()(2222y x q y x h +=+,于是 )()()(2222y x h y g x f +=,因此2)()(2x X ka x f x ==ϕ,0)0()0()1(>=g f h a .由于σπσπσπϕσ222)(12222k dx ek dx a kdx x xx====⎰⎰⎰+∞∞--+∞∞-+∞∞-,有σπ21=k ,其中,因⎰+∞∞-dx a x2收敛,于是10<<a ,这样0ln 21>-=aσ.从而22221)(σσπϕxX ex -=,在其他三象限同样有此结果,于是),0(~2σN X .由对称性知道, ),0(~2σN Y .六、随机变量的变换)(~x X ϕ为S 上的n 维随机变量,)(x f y =为nn R R →的变换,)(x f y =在其定义域x D 上雅可比行列式0≠∂∂=xyJ ,y D 为其值域, 则)(x f y =有逆变换)(y h x =,)(X f Y =也是S 上的n 维随机变量,且1)]([)]([)(-=∂∂=Jy h yx y h y X X Y ϕϕϕ,y D y ∈. 证明:n y R ∈∀,有⎰≤=≤=yx f XY dx x y X f P y F )()(})({)(ϕ,0≠∂∂xy ,x D x ∈,故)(x f t =有逆变换)(t h x =,且0≠∂∂tx ,那么⎰⎰≤≤∂∂==yt X yx f X Y dt tx t h dx x y F )]([)()()(ϕϕ.又⎰≤=yt YY dt t y F )()(ϕ,故 yx y h y X Y ∂∂=)]([)(ϕϕ,y D y ∈.华东师大《数学分析(下)》例11 设),(~),(y x Y X ϕ,Y X Z +=,则 ⎰+∞∞--=dx x z x z Z ),()(ϕϕ.证明:令Y X Z +=,X W =,定义域和值域都是2R ,且雅可比行列式为10111-==∂∂∂∂∂∂∂∂=y w x w yzx z J , 而逆变换),(w z h 为W X =,W Z Y -=.这样),(W Z 的密度函数为),(),()],([),(11w z w y x J w z h w z -===-ϕϕϕϕ,于是⎰⎰+∞∞-+∞∞--=-=dx x z x dww z w z Z ),(),()(ϕϕϕ.。
第六章--反比例函数(北师大新版)
第六章 反比例函数6.1 反比例函数1、反比例函数的概念 形如xky =(k 为常数,k≠0)的函数称为反比例函数.其中x 是自变量,y 是x 的函数,自变量x 的取值范围是不等于0的一切实数(即x≠0),函数值的取值范围,是不等于0的一切实数(即y≠0). 2、反比例函数的判断判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为xky =(k 为常数,k≠0)或y=kx -1(k 为常数,k≠0). 3、待定系数法求反比例函数解析式 在反比例函数xky =中,只有一个待定系数k ,因此只需要一对对应值或图像上的一个点的坐标(x ,y ),即可求出k 的值,从而确定其解析式。
反比例函数的概念1.下列函数中,是反比例函数的为( ) A .21y x =+ B .22 y x = C .15y x = D .2y x = 2.若函数()221my m x --=为反比例函数,则m 的值为 .3.若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A .正比例函数B .反比例函数C .一次函数D .不能确定 4.若2m y x=+是反比例函数,则m 必须满足( ) A .m ≠0 B .m =-2 C .m =2 D .m ≠-2 5.如果函数222k k y kx +-=是反比例函数,求函数的解析式.求反比例函数解析式1.如果双曲线y =xm经过点(2,-1),那么m= . 2.(2015无锡)若点A (3,-4)、B (-2,m )在同一个反比例函数的图像上,则m 值为 .3.若点A (a ﹣1,2)、B (3,a )在同一个反比例函数的图像上,则a 值为 . 4.若双曲线xky =与直线12+=x y 一个交点的横坐标为-1,则k 的值为 .5.如图,过原点O 的直线与反比例函数y 1、y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点.若点B 的坐标为(8,2),则y 1与x 的函数表达式是 .6.如图,正方形ABCD 的边长为5,点A 的坐标为(-4,0),点B 在y 轴上,若反比例函数y=xk(k≠0)的图象过点C ,则该反比例函数的表达式为 .7.如图所示,在平面直角坐标系中,矩形ABCD ,AB=2,BC=4,点B (1,1). (1)请直接写出点A ,C ,D 的坐标:A______,C______,D______;(2)将矩形ABCD 向左平移a 个单位,得到矩形A′B′C′D′,使点B′,D′恰好同时落在反比例函数y=xk(x<0)的图象上,求矩形ABCD 平移的距离a 及反比例函数的表达式.8.如图,在平面直角坐标系中有Rt △ABC ,已知∠CAB=90°,AB=AC ,A (-2,0),B (0,1). (1)点C 的坐标是______;(2)将△ABC 沿x 轴正方向平移得到△A′B′C′,且B ,C 两点的对应点B′,C′恰好落在反比例函数y=xk的图象上,求该反比例函数的解析式.6.2 反比例函数的图像与性质1、由于反比例函数中自变量x 0,函数y 0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
C语言教案:第6章 函数
1、在主调函数中说明被调函数的类型。 2、几种情况除外: (1)被调函数的返回值是int或char型时 (2)被调函数的定义出现在主调函数之前时
2013-8-6 20
如:
如:
long f()
{ …… }
float a();
main() {………… a(); ………....} float a() {…………}
§6.4函数调用 一、函数调用形式
函数名(实际参数表)
二、函数调用方式 1、作为语句调用 max(a,b); 调用无返回值函数
2、作为表达式调用 c=2*max(a,b);
调用有返回值函数 3、函数参数 m=max(a,max(b,c));
2013-8-6 18
三、对被调函数的说明
例:调用函数求n!。
2、数组元素作函数参数
例: 用数组元素作实参,输出1 ~ 5的平方。
2013-8-6
main() {int a[5],i; for(i=0;i<5,i++) { a[i]=i+1; sq(a[i]);} } sq(int n) {printf("%d\n",n*n); }
10
3、数组名作参数 注意:实参和形参的类型都必须是数组
15
例3: 将一组学生成绩从高分到低分排序。
#difine STUDENT_NUM 10 main() { int score[11],i; void sort(); 主函数: printf("输入学生的成绩:\n"); for(i=1;i<=STUDENT_NUM;i++) scnaf("%d",&score[i]); sort(score,STUDENT_NUM); printf(“从高到低的排列顺序为:\n"); for(i=1;i<=STUDENT_NUM;i++) printf("%d",score[i]); 2013-8-6 16 }
第六章-多元函数微分学基础
z
V
O
y
V
V
V
x
图6-3 八卦限示意图
下面将平面上两点间的距离公式推广到空间(证明从略)
设M
1
(
x1
,
y1
,
z1
)和M
2
(
x2
,
y2
,
z2
)为空间两点,
则点M
1与M
间的
2
距离为
M1M 2 (x2 x1)2 ( y2 y1)2 (z2 z1)2 (6-1)
例1 在x轴上求一点P,使它到点A(3,2, 2)的距离为3.
0和G(x, y, z) 0是两个曲面方程,它们交线上的每一点的坐标
都同时满足上述两个曲面方程;反过来,曲时满足上述两个曲面
方程的点都在这条交线上.因此,联立方程组
z
F(x, y, z) 0
L
F(x, y, z) 0 G(x, y, z) 0
G(x, y, z) 0
叫做空间曲线L的一般方程
由两点距离公式知
M1M (x a1)2 ( y b1)2 (z c1)2 M 2M (x a2 )2 ( y b2 )2 (z c2 )2 又因为 M1M M 2M ,故知
(x a1)2 ( y b1)2 (z c1)2 (x a2 )2 ( y b2 )2 (z c2 )2
称上式为平面的一般方程,式中,A, B,C, D分别为变量x, y, z的系数; D为常数 Nhomakorabea.z
p3 c
例2 求过点P1(a, 0, 0), P2 (0,b, 0),
P3 (0, 0, c)的平面方程(其中a,b, c 0)
(见图6 5)
p1 a
北师大版九年级上册数学第六章反比例函数第一节反比例函数
(k为常数,k
≠
0)的形式,那么称y是x的反
比例函数.
2. 反比例函数的三
;(2)y
=
kx-1;(3)xy
=
k.(其中k为常数,k
≠
0)
感悟新知
知1-讲
特别提醒:
形如y
=
1 x
+1,(x+1)y
=3,y
=
(x+1)-1等都不是
反比例函数.
感悟新知
知1-练
例 1 下列函数:①y = 2x-1;②y = 4x;③xy =8;④y=
感悟新知
知3-练
3-1. 反比例函数y = kx的图象经过点P(3,-4),则这个反比 例函数的表达式为( B )
A.y
=
12 x
B.y
=-
12 x
C.y
=
3 x
D.y
=
4 x
感悟新知
知3-练
3-2. 反比例函数y = 2k-x 2的图象过点(2,1),则k的值为
(A)
A.2
B.3
C.-2
D.-1
学习目标
第六章 反比例函数
6.1 反比例函数
学习目标
1 课时讲解 反比例函数的定义
反比例关系与反比例函数的关系 求反比例函数表达式
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 反比例函数的定义
知1-讲
1. 定义:一般地,如果两个变量x,y之间的对应关系可以
表示成y=
k x
知2-练
感悟新知
(2)当x=-1时,求y的值. 解:把 x=-1 代入 y=3x+4(x-2), 得 y=-3+4×(-1-2)=-15.
第六章 确定一次函数表达式
5.若直线 与两坐标轴所围成的三角形的面积是6个面积单位,则 的值是()
A、6 B、-6C、 D、
6.一次函数的图像如图所示,那么这个一次函数的解析式是()
A、 B、 C、 D、
7.已知点A在直线 上,若点A与原点及直线和 轴的交点所
围成的三角形的面积为2,则点A的坐标为()
11.如图,直线 是一次函数的图像.(1)写出
与 的函数关系式;
(2)当 时,求 的值;(3)当 时, 的值为多少?
本课作业
1.已知正比例函数 的图像上两点 , ,当 时,有 ,那么 的取值范围是()
A、 B、 C、 D、
2.一次函数 的图像不经过()
A、第一象限B、第二象限C、第三象限D、第四象限
3.一次函数 的图像过点()
A、(2,-3)B、(1,0)C、(-2,3)D、(0,-1)
4.直线 与 轴交点坐标是()
例3.根据下列要求分别写出相应的函数关系式:(1) 与 成正比例,其图象经过 ;(2)函数 的图象经过原点.
例4.已知 与 成正比例,且过(1,2)点,求此函数;并画出此函数图象.
例5.在弹性限度内,弹簧的长度 是所挂物体的质量 的一次函数.当所挂物体的质量为1 时,弹簧长10cm;当所挂物体的质量为3 时,弹簧长12cm,请写出 与 之间的关系式,并求出所挂物体的质量为6 时弹簧的长度.
第六章《一次函数》确定函数表达式
姓名________班级_________
【知识要点】
一、确定一次函数解析式的基本思想。
由于一次函数的表达式 中含有两个字母 和 ,因此要确定一个一次函数,即把 和 的值确定下来即可.
正比例函数由于图象经过原点,所以只需求出字母 即可.
《数学物理方法》第六章勒让德函数
《数学物理方法》第六章勒让德函数勒让德函数是数学物理方法中常用的一个函数类,在物理学中起到了非常重要的作用。
本文将主要介绍勒让德函数的定义、性质及其在物理学中的应用。
一、勒让德函数的定义勒让德函数是由法国数学家勒让德在18世纪末引入的一类特殊函数。
它定义为下面的级数形式:P(x)=(1/2^1*1!)-(1*3/2^3*3!)x^2+(1*3*5/2^5*5!)x^4-...其中x是实数,级数是一个无穷级数,并且级数的每一项都是有序的一系列多项式函数。
勒让德函数也可以通过勒让德方程的解来定义。
二、勒让德函数的性质1. 正交性:勒让德函数是正交的,即对于不同的n和m,有积分∫(-1,1) Pn(x) Pm(x) dx = 02. 归一性:勒让德函数可以通过归一化得到,即对于每个n,有∫(-1,1) Pn(x) Pn(x) dx = 2 / ( 2n + 1)3.递推关系:勒让德函数之间存在递推关系,即(n+1)Pn+1(x)=(2n+1)xPn(x)-nPn-1(x)。
这个关系可以用于计算勒让德函数的高阶项。
三、勒让德函数在物理学中的应用勒让德函数在物理学中有广泛的应用,下面介绍其中的几个重要应用:1.量子力学中的角动量:在量子力学中,勒让德函数可以用来描述角动量的量子态。
勒让德函数的特殊性质使其成为表示角动量本征态的一组完备的基函数。
2.球谐函数的展开:勒让德函数可以用来展开球谐函数,球谐函数在物理学中具有广泛的应用。
通过勒让德函数,我们可以得到球面上各点的球谐系数,从而描述球面上的物理量分布。
3.圆形波导中的电磁场分布:勒让德函数可以用来描述圆形波导中的电磁场分布。
圆形波导是一种常见的波导结构,在无线通信、微波技术等领域有着重要的应用。
总结:本文主要介绍了勒让德函数的定义、性质及其在物理学中的应用。
勒让德函数作为一种特殊的函数类,具有正交性、归一性和递推关系等重要的性质,广泛应用于量子力学、电磁场分布等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的返回值,必 须与函数类型一致
函数的定义
函数类型,无返回 值时void不可省略 函数名
void prn(void) { cout<<“the max is”; return; }
形式参数,无参 数时可省略void
函数类型为void,所 有无return语句
【例6.3】定义一个函数,打印一个菜单选项。
例1:阅读程序
#include<stdio.h> void p(int x) { if(x<50) p(x*2+1); printf(“%d\t”,x); } void main()
{
p(13);
}
例2:用递归方法求斐波那契数列第20项。 斐波那契数列: 1 1 2 3 5 8 13 21……
6.5变量的作用域
6.6变量的存储类型
存储类规定了变量的生存期,即何时为变量分配内存空间
以及何时回收为变量分配的内存空间。
动态存储变量。 静态存储变量。
36
6.6.2auto变量
用关键字auto说明的局部变量都是自动存储类 型变量。
动态存储变量,当执行到变量作用域开始
处,动态地分配存储空间,当执行到结束变 量作用域处收回空间。
函数的调用(先定义,后调用)
/* 调用函数add(), 将函数返回值存入变量sum */
sum = add(m, n);
main( ) {
/* m n为实参*/
add(int a, int b) {
调用函数 add
}
}
函数调用的使用方式如下: (1) 对于有返回值的函数,调用出现在表达式中。 (2) 对于没有返回值的函数,函数调用只能通过 函数调用语句实现。
明,指出函数的返回值类型和形式参数列表。如:
int add(int a, int b);
int add(int, int);
/* 函数原型说明 */
函数原型说明中的参数名也可以省略,如:
void main() 正确方法一 : 正确方法二 ?: void { int main() a=3,b=4; float max(int x,int 函数 编译时会出现语法错误 { int float a=3,b=4; c; y); 原型 float c=max(a,b); c; void main() 必须 float printf(“%f”,c); max(int x,int y); { int a=3,b=4; 以分 c=max(a,b); } float c; 号结 printf(“%f”,c); c=max(a,b); 束! float max(int x,int y) { } printf(“%f”,c); return((x>y)?x:y); }正确方法三: } float max(int x,int y) float max(int x,int y) {return((x>y)?x:y);} {return((x>y)?x:y);} float max(int x,int y) {return((x>y)?x:y);} void main() { int a=3,b=4; float c; c=max(a,b); printf(“%f”,c); }
〔return 语句〕
}
练习定义计算圆面积的函数,利用函数调用计算
圆面积 double { 函数体 area ( double r)
〔return 语句〕
}
练习定义计算圆面积的函数,利用函数调用计算
圆面积 double { area (double r)
double s; s = 3.14159 * r * r; return s; }
6.5.2全局变量
在函数和类外定义的变量,称为全局变量,全局变 量也称为外部变量 全局变量的作用域为文件作用域,有效作用范围 从变量定义处开始,到源程序文件结尾处结束。 全局变量系统自动初始化为0或NULL。 在函数中使用全局变量,一般应作全局变量说明,全局 变量的说明符为extern。 应谨慎使用全局变量。
6.2.3函数参数传递方式
函数的参数传递通常有两种模式:
值传递 地址传递
例: #include<stdio.h> void swap(int x,int y) { int temp; temp=x ; x=y ; y=temp; } void main() { int a=3,b=4; swap(a,b); printf(“%d%d”,a,b); }
a
3
b
4
传 值 !
x
? 4 3
y
? 3 4
执 行 函 数
输出结果:a=3,b=4
6.4 递归函数
在调用一个函数的过程中又出现直接或间接 地调用该函数本身,称为函数的递归调用。
f函数
f1函数 调用f2函数 调用f1函数
调用f函数
直接调用本函数
间接调用本函数
1、可以把要解决的问题转化为一个新问题,而这个新的问题 的解决方法仍与原来的解决方法相同,只是所处理的对象有 规律地递增或递减。 例如: N! =
age(5) =age(4)+2
age(5) =18
age(4) =age(3)+2
age(3) =age(2)+2 age(2) =age(1)+2 递推阶段 age(1) =10
age(4) =16 age(3) =14
age(2) =12 回归阶段
#include <stdio.h> int main() { int age(int n); printf("NO.5,age:%d\n",age(5)); return 0; } int age(int n) { int c; if(n==1) c=10; else c=age(n-1)+2; return(c); }
11.
12. 13.
练习定义计算圆面积的函数,利用函数调用计算
圆面积 函数类型 { 函数体 函数名 (形参表)
〔return 语句〕
}
练习定义计算圆面积的函数,利用函数调用计算
圆面积 函数类型 { 函数体 area (形参表)
〔return 语句〕
}
练习定义计算圆面积的函数,利用函数调用计算
圆面积 函数类型 { 函数体 area ( double r)
第6章 函数
2017年7月7日星期五
#include<stdio.h> 利用海伦公式 #include<math.h> 计算任意三角形的面积 int main() 调用库函数,求平方根 函数是具有特定功能的 { 相对独立的代码段。 double a,b,c; 库函数是在C编译系统 中已经预先定义的函数。 double p, area; 用户可根据自己的需要 将一段完成功能相对独立的 printf("请输入三条边长:"); 代码定义为一个函数,这类 scanf("%lf %lf %lf", &a, &b, &c); 函数称为用户自定义函数。 函数一经定义可被多次、 p = (a+b+c)/2; 反复调用。 area = sqrt(p*(p-a)*(p-b)*(p-c)); printf("三角形的面积是:%.2lf\n", area); return 0; }
1. 2. 3.
/*
函数功能: 参数: 返回值类型:
打印菜单选项 void void */
4. 5. 6. 7. 8. 9. 10.
void printMenu(void) { printf(" 请选择:\n"); printf(" 1. 功能A\n"); printf(" 2. 功能B\n"); printf(" 3. 功能C\n"); printf(" 0. 退出\n"); return ; }
【例6.16】外部变量与局部变量同名。
int a=100, b=1; int max(int a, int b) { return a>b?a:b; }
/*a,b为外部变量*/ /*a,b为局部变量*/ /*外部变量被屏蔽*/
int main(void) { int a = 10; printf("%d\n", max(a, b)); }
fac函数 n=4 f=fac(3)×4 fac(4)=24
fac函数 n=3 f=fac(2)×3 fac(3)=6
fac函数 n=1 f=1
fac(1)=1
fac函数 n=2 f=fac(1)×2
fac(2)=2
7.6 函数的递归调用
例7.6 有5个学生坐在一起
问第5个学生多少岁?他说比第4个学生大2岁 问第4个学生岁数,他说比第3个学生大2岁 问第3个学生,又说比第2个学生大2岁 问第2个学生,说比第1个学生大2岁 最后问第1个学生,他说是10岁 请问第5个学生多大
变量的作用域就是变量的作用范围。
根据作用域,变量可分为
局部变量 全局变量
6.5.1局部变量
C语言中用花括号括起来代码块称为复合语句
,又称作语句块,简称块。
在一个函数内部定义的变量或在一个语句块中
定义的变量,就称为局部变量。
例如: float f1(void) { int a,b; …… { int c; c=a+b; …… } …… }