2016年武汉科技大学《概率论与数理统计》考研真题及标准答案

合集下载

概率论和数理统计考试试题和答案解析

概率论和数理统计考试试题和答案解析

一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。

2、一个袋子中有大小相同的红球6只、黑球4只。

(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。

3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为: 0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。

7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。

8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。

2016考研数学:概率真题解析

2016考研数学:概率真题解析

2016考研数学:概率真题解析从真题上可以看出,概率继续延续往年的出题特点:重基础,题型比较固定,解法比较单一,计算技巧要求相对低一些。

例如:数学三的第14题,主要考查二维正态分布的性质,一维正态分布的性质,随机变量的独立性,只要考生能够从已知条件中得到X,Y服从什么样的正态分布,再根据正态分布概率密度的对称性即可得到结果;数学三的两道概率大题仍然是我们近几年真题常考的题型,第22题是考查一维离散型随机变量的概率分布及数学期望,难度并不大;第23题主要考查点估计的两种方法,矩估计和最大似然估计,像这种题型解法比较单一,尤其是矩估计,那么对于最大似然估计,需要我们先写出似然函数,然后求当参数为何值时,似然函数能够取得最大值,所以只要我们按照常规步骤去做,就一定能求解出来,对于这种常考题型,在我们平时的钻卡课程中以及日常的测试中是频繁练习的。

下面中公考研数学名师李擂结合概率论这门学科的考试特点以及考试规律,给各位2016年的考生一些复习指导建议。

一、仔细分析考试大纲,抓住重点考试大纲是最重要的备考资料,一定要将大纲中要求的内容仔细梳理一下,在复习过程中一定要明确重点,对于不太重要的内容,如古典概型,只要求掌握一些简单的概率计算即可,不需要在复杂的题目上投入太多精力。

而对于概率的重点考查对象一定要重视,例如,随机变量函数的分布基本上每年都会以解答题的形式考查,其中离散型随机变量函数的分布是比较简单的,连续型随机变量函数的分布是考试频率最高的,也是较难的一类题目,在利用分布函数法求概率密度函数过程中,如何正确寻找分段点以及确定积分上下限是正确解决这类问题的关键,所以平时复习要加强这类题型的训练,一个离散型一个连续型随机变量函数的分布,求最大值、最小值函数的分布考频也是比较高的。

另外,二维连续型随机变量的边缘分布、条件分布也是考试的重点,大家在复习过程中一定要深刻理解他们的定义和计算方法。

随机变量的分布还经常与数字特征结合出题,所以数字特征也是概率的一大重点,但往往考生对于这部分知识掌握的不好,失分现象严重,所以要求大家复习时要灵活应用数字特征相应的计算公式及性质。

武汉大学《概率论与数理统计》期末考试历年真题及参考答案

武汉大学《概率论与数理统计》期末考试历年真题及参考答案

6、解:首先确定 f (x, y)
1[
1 x dy]dx
6,0 x 1, x2
y x;
0 x2
E(X)=
1[
0
x x2
x
6dy]dx
1 2
;E(X
2
)=
1[
0
x x2
x2
6dy]dx
3 10
;E(Y)=
1[
0
y
y y 6dx]dy
2 5
E(Y 2 )=
1[
0
y
y
(
1 2
x)(
1 2
y)
f
(x,
y), 所以X ,Y不独立;
(3)1[ 1h(x y) f (x, y)dy]dx 1[ x1 h(z)(x x z)dz]dx
00
0x
0 [ z1 h(z)(2x z)dx]dz 1 1 h(z)(2x z)dx]dz
1 0
0z
0 h(z)(z2 z 1)dz 1 h(z)(1 z2 z)dz
Z 0 1234
P
1 131 1
(Z) 16 4 8 4 16
武汉大学2011-2012 第一学期《概率论与数理统 计》期末试题及参考答案
一、解:(1)P(A+B)=P(A)+P(B)-P(A)P(B)=0.5+0.4-0.5×0.4=0.7
(2)P((A-B)|(A+B))=P((A-B)∩(A+B))/P(A+B)=[P(A)-P(A)P(B)]/P(A+B)=0.3/0.7=3/7 二、解:
y
2
6dx]dy
3 14
;E(XY)=

武汉科技大学831概率论与数理统计专业课考研真题及答案(2019年)

武汉科技大学831概率论与数理统计专业课考研真题及答案(2019年)

D( X − 2Y ) =
.
不负韶华 ∑ 5、设 X1, X2,, X10 是来自标准正态总体的简单随机样本,则
X
=
1 10
10 i =1
Xi
的方差

.
6、设随机变量 X 服从标准正态分布 N (0,1) ,α 为常数, P( X > α ) = 0.1,则
P( X ≤ −α ) =
.
三、计算题(共 9 小题,每小题 10 分,共 90 分)
注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考 完后试题随答题纸交回。
一、选择题(共 6 小题,每小题 4 分,共 24 分)
1、已知 P( A) = 0.5 , P(B) = 0.6 ,则 P( AB) 的最大值为(
).
A. 0.5;
B. 0.6;
C. 0.1;
D. 1
以梦为马 2、设随机变量 X : N(0,1) 为,=Y aX + b, a,b 为常数,且 a > 0 ,则下列结论正
0, 其它
的总体的样本,其中θ > 0 为未知参数,求未知参数θ 的最大似然估计量。
9、某车间用自动包装机包装葡萄糖,每袋净重 X 是一个随机变量,且 X ∼ N (µ,1) , 当包装机工作正常时,其均值 µ = 0.5 ,现随机抽查 9 袋,测得样均值为 0.508,本 标准差为 0.012(单位:kg),则包装机是否正常工作?(α = 0.05 , u0.025 = 1.96 , t0.025(8) = 2.3060 )
12
3
D. E( X 2 ) = 1
第 1/10页
报考专业:
姓名 :
武汉科技大学专业课考研真题(831概率论与数理统计)

武汉科技大学831概率论与数理统计专业课考研真题及答案(2020年)

武汉科技大学831概率论与数理统计专业课考研真题及答案(2020年)
考生姓名: 报考专业: 准考证号码:
年全国硕士研究生招生考试初试自命题试题( A 卷)
831 科目名称: 概率论与数理统计
注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。
6 小题,每小题 4 分,共24 分)
考生姓名: 报考专业: 准考证号码:
年全国硕士研究生招生考试初试自命题试题( A 卷)
831 科目名称: 概率论与数理统计
注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。
6 小题,每小题 4 分是( D )
第7 页共7 页

武汉科技大学高等数学2016--2019年考研真题(都有答案)

武汉科技大学高等数学2016--2019年考研真题(都有答案)

姓名:报考专业: 准考证号码:密封线内不要写题2016年攻读硕士学位研究生入学考试试题科目名称:高等数学( □A 卷√B 卷)科目代码:841考试时间:3小时 满分 150 分可使用的常用工具:√无 □计算器 □直尺 □圆规(请在使用工具前打√)注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。

一、选择题(共6小题,每小题 5 分,共30 分) 1、函数xxsin 在0=x 处间断,其类型应是( ) (A )可去间断点,属于第一类; (B )跳跃间断点,属于第一类; (C )无穷间断点,属于第二类; (D )跳跃间断点,属于第二类. 2、函数1123++=x x y 在区间(0,)+∞内,满足( )(A )单调增加,且是凸的 (B )单调减少,且是凸的; (C )单调增加,且是凹的; (D )单调减少,且是凹的。

3、由曲线x y sin =及直线π-=x 、π=x 、2-=y 围成区域的面积为( )(A ) 0; (B ) 2; (C ) 4; (D )π4。

4、5510(01)x x -+=方程 在,内,其根的情况是( )(A ) 无实根; (B ) 有唯一实根;(C )有两个实根; (D )有三个实根5、 若级数1n n a ∞=∑收敛,则下面正确的是( )(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 6、设221sin DI x y d σ=+⎰⎰,222sin()DI x y d σ=+⎰⎰,2223sin()DI x y d σ=+⎰⎰,其中}1),{(22≤+=y x y x D ,则正确的是( )姓名:报考专业: 准考证号码:密封线内不要写题2016年攻读硕士学位研究生入学考试试题科目名称:高等数学( □A 卷√B 卷)科目代码:841考试时间:3小时 满分 150 分可使用的常用工具:√无 □计算器 □直尺 □圆规(请在使用工具前打√)注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。

《概率论与数理统计》练习题参考答案与解题提示

《概率论与数理统计》练习题参考答案与解题提示

《概率论与数理统计》练习题参考答案与解题提示一、单项选择题1-5 DDACC 6-10 BDBAD 11-15 ACCDA 16-20 BCBDC 21-25 DCDDC 26-30 CDDBC 31-35 CDBBA 36-40 CCDBC 41-45 CBCAC 46-50 ABBDC 51-55 BDAAB 56-60 CBABA 61-65 BCBAA 66-68 DCC 6. ()()()()()()P ABC P AB P ABC P A P B P ABC =-=- 23. 001()1(0)2--Φ=-Φ 24. 2(,)(,)4F x y f x y xy x y∂==∂∂37. 若2~(,)X N μσ,则~(0,1)X N μσ-39. 25{1}1{0}1(1)9P Y P Y p ≥=-==--=解得13p =31{1}1{0}1(1)3P X P X ≥=-==-- 44. (,)()()X Y f x y f x f y =45. 画出01,01,1x y x y ≤≤≤≤+≤的公共区域,1111{1}1(1)2yP X Y dy dx y dy -+≤==-=⎰⎰⎰ 二、填空题1. 0.62. 0.33.116 4. 14 5. 63646. 0.67. 0.40968. 1149. 0.18 10. 13 11. 19 12. 183513. 1p - 14. 0.5 15. 0.4 16. 0.5 17. 0.42 18. 19 19. 815 20. 23 21. 0.522. 6581 23. 0.5 24. 0.25 25. 0.25 26. 13 27. 0.5 28. 0.75 29. ,00,x e x -⎧>⎨⎩其它30.101,0220x y ⎧≤≤≤≤⎪⎨⎪⎩其它 31. 3 32. 0.2 33. 0.4 34. 210x 35. 0.25 36. 0.2537. (0,1)N 38. 5356 39. 1927 40. 0.5100x e x -⎧-≥⎨⎩其它41.1342.43. 1,010100,y ⎧≤≤⎪⎨⎪⎩其它 44. 0,00x y e x y --⎧>>⎨⎩其它45. 0.5 46. 447.22x -48.312849. 5 50. 4(1)np p - 51. 8 52.23 53. 1 54. 89 55. 112 56. 0.5 57. 0 58. 0.8664 59. 0 60. 0.16 61. 16 62. 4 63. 2364. 0 65. 0.6826 66. 4 67. 2 68. 18 69. 070. 0.5 71. 112 72. 21(,)F n n 73. 20 74. 0 75. 12 76. n 77. 2212nσσ+78.23X 79. θ= 80. [7.7,12.3] 81. 19 82. 2 83. 1X 84. [9.804,10.196] 85. 0.5 86. 1X - 87. 0.9三、判断题1-5 对错错错对 6-10 对对错错对四、计算题、证明题1.答案:0.8。

概率论与数理统计习题集与答案

概率论与数理统计习题集与答案

第1章 概率论的基本概念§1 .8 随机事件的独立性1. 电路如图,其中A,B,C,D 为开关。

设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。

A B L R C D1. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。

第1章作业答案§1 .8. 1: 用A,B,C,D 表示开关闭合,于是 T = AB ∪CD, 从而,由概率的性质及A,B,C,D 的相互独立性P(T) = P(AB) + P(CD) - P(ABCD)= P(A)P(B) + P(C)P(D) – P(A)P(B)P(C)P(D)424222p p p p p -=-+=2: (1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38; (2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.第2章 随机变量及其分布§2.2 10-分布和泊松分布1 某程控交换机在一分钟接到用户的呼叫次数X 是服从λ=4的泊松分布,求(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率; (3)每分钟最多有1次呼叫的概率;2 设随机变量X 有分布律: X 23 , Y ~π(X), 试求: p 0.4 0.6(1)P(X=2,Y ≤2); (2)P(Y ≤2); (3) 已知 Y ≤2, 求X=2 的概率。

§2.3 贝努里分布2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?§2.6 均匀分布和指数分布2 假设打一次所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

概率论与数理统计考研资料真题练习题集及答案.doc

概率论与数理统计考研资料真题练习题集及答案.doc

1...___________,,40%60%,2%1%2.生产的概率是则该次发现是次品的一批产品中随机抽取一件和和现从由和的产品的次品率分别为和工厂设工厂A B A B A 数一考研题96的产品分别占考研真题一;__________)(,)(),()(,1.===B P p A P B A P AB P B A 则且两个事件满足条件已知数一考研题94品属._____,,,30,20,503.则第二个人取得黃球的概率是取后不放回随机地从袋中各取一球今有两人依次个是白球个是黃球其中个乒乓球袋中有数一考研题97).()()((D));()()((C));|()|((B));|()|((A)( ).),|()|(,0)(,1)(0,,4.B P A P AB P B P A P AB P B A P B A P B A P B A P A B P A B P B P A P B A ≠=≠==><<则必有且是两个随机事件设数一考研题98._______)(,169)(,21)()()(,:,5.==<==∅=A P C B A P C P B P A P ABC C B A 则且已知满足条件和设两两相互独立的三事件 数一考研题99._________)(,,916.=A P A B B A B A 则不发生的概率相等发生不发生发生都不发生的概率为和设两个相互独立的事件数一考研题00的概率与7.从数1,中任取一个数, 记为X , 再从X ,,1 中任取一个数, 记为Y , 则.__________}2{==Y P 2,3,4数一考研题05(C));()(A P B A P =(D)).()(B P B AP =(A));()(A P B A P >(B));()(B P B A P >( ).8.设B A ,为随机事件1)|(0)(=>B A P B P 则必有且,,,数一考研题069.某人向同一目标独立重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为( ).数一考研题072..(A)2)1(3p p -; 2)1(6p p -; 22)1(3p p -;22)1(6p p -.(B)(C)(D)3..考研真题二,0,0,0,)(x x e x f X x X 的概率密度为设随机变量⎪⎩⎪⎨⎧<≥=-1.).(y f e Y Y X 的概率密度求随机变量=数一考研题95._______,214),0),(2.22==++>μσσμ则无实根的概率为且二次方程服从正态分布设随机变量X y y N X 数一考研题02(3.在区间)1,0(中随机地取两个数,则这两个数之差的绝对值小于21概率为____________.的数一考研题074.设随机变量X 的分布函数为⎪⎭⎫⎝⎛-Φ+Φ=217.0)(3.0)(x x x F )(x Φ为标准正态分布函数,则)(X E ((A),.) (B) 0.3 (C) 0.7 (D) 1 0 ;;;.=其中数一考研题094..考研真题三.______________),max ,,1.的分布律为则随机变量的分布律为且具有同一分布律设相互独立的两个随机变量Y X Z X Y X =数一考研题941/21/210p X .__________}0),{max(,74}0{}0{,73}0,0{,2.=≥=≥=≥=≥≥Y X P Y P X P Y X P Y X 则且为两个随机变量和设数一考研题95(,,1,013.2二维随所围成及直线由曲线设平面区域====e x x y xy D 机变量.__________2),(,),(处的值为的边缘概率密度关于则上服从均匀分布在区域=x X Y X D Y X 数一考研题98.21}1{(D);21}0{(C);21}1{(B);21}0{(A)( ).),1,1()1,0(4.=≤-=≤-=≤+=≤+Y X P Y X P Y X P Y X P N N Y X 则和分别服从正态分布和设两个相互独立的随机变量数一考研题99.,),(,Y X Y X Y X 试将其余数值填入表中的边缘分布律中的部分数值和关于布律及关于联合分下表列出了二维随机变量相互独立与设随机变量5.数一考研题9911/6}{1/81/8}{21321ji i i p y Y P x x p x X P y y y XY⋅⋅====在的空白处,),10(,)0(表示以且中途下车与否相互独立乘客在中途下车的概率为每位的泊松分布服从参数为设某班车起点站上客人数Y p p X <<>λλ6.5..;)()((A)( ).),()(),()(,7.21212121必为某一随机变量的概率密度则和分布函数分别为和它们的概率密度是任意两个相互独立的连续型随机变量和设x f x f x F x F x f x f X X +分别为.)()((D);)()((C);)()((B)212121必为某一随机变量的分布密度必为某一随机变量的分布密度必为某一随机变量的概率密度x F x F x F x F x f x f +数一考研题02._________}1{.,0,10,6),(),(8.=≤+⎩⎨⎧≤≤≤=Y X P y x x y x f Y X 则其它的概率密度为设二维随机变量数一考研题039.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<=.,0,20,10,1),(其它x y x y x f .),((2);,(1):,的概率分布二维随机变量人下车的概率中途有个乘客的条件下在发车时有求Y X m n 数一考研题01在中途下车的人数求: ),(Y X 的边缘概率密度);(),(y f x f Y X (2)Y X Z -=2的概率密度).(z f Z (1)数一考研题0510.设二维随机变量),(Y X 的概率分布已知随机事件}0{=X 与}1{=+Y X 相互独立, 则( ).(A)0.3,0.2==b a ; 0.1,0.4==b a ; 0.2,0.3==b a ;0.4,0.1==b a .0.110.401b a X Y(C)(B)(D)数一考研题0511.设随机变量X 与Y 相互独立[0, 3]且均服从区间,上的均匀分布{}1},max{≤Y X P =.则,_____________数一考研题066..12.随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤<<-=其它,020,4/101,2/1)(x x x f X 令),(,2y x F X Y =为二维随机变量(的分布函数.(1) 求Y 的概率密度);(y f Y (2)).4,2/1(-F X Y ),数一考研题0613.设随机变量),(Y X 服从二维正态分布,且X 与Y ,)()(y f x f Y X 分别表示Y X ,的概率密度,则在y Y =,X 的条件概率密度)|(|y x f Y X 为( ).(A))(x f X ;(B))(y f Y ;)()(y f x f Y X ;)()(y f x f Y X .(C)(D),不相关的条件下14.设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,010,10,2),(y x y x y x f (Ⅰ)求};2{Y X P >(Ⅱ)求Y X Z +=的概率密度).(z f z ,设随机变量Y X ,独立同分布且X 分布函数为),(x F 则},max{Y X Z =分布函数为( ).);(2x F );()(y F x F [];)(112x F --[][])(1)(1y F x F --(A)(B)(D)(C)15..设随机变量X 与Y 相互独立X 的概率分布为Y i i X P ),1,0,1(31}{-===的概率密度为⎩⎨⎧=01)(y f Y 其它10≤≤y . 记Y X Z +=(1)求⎭⎬⎫⎩⎨⎧=≤021X Z P (2)求Z 的概率密度.16.;,.,,数一考研题08数一考研题07数一考研题07数一考研题08设随机变量X 与Y 相互独立,且X 服从标准正态分布)1,0(N ,Y 概率分布为{}{}2110====Y P Y P ,记z F Z 为随机变量XY 的分布函数,17.)(Z =的7..18.袋中有一个红色球,两个黑色球,三个白球,现有放回的从袋中取两,每次取一球,以X ,Y ,Z .求01==Z X P ;求二维随机变量Y X ,的概率分布.(){}次分别表示两次取球的红、黑、白球的个数(2)(1)数一考研题09则函数的间断点个数为( ).(B)1(C)2(D)3 z F Z )(;;;.(A)数一考研题098..考研真题四(D));()((C)(B));()((A)( ).,),(1.22Y E X E Y E X E YX Y X Y X =--=+=不相关的充分必要条件为与则随机变量服从二维正态分布设二维随机变量ηξ数一考研题00;)]([)()]([)(2222Y E Y E X E X E -=-.)]([)()]([)(2222Y E Y E X E X E +=+),10(p p 各产品合格与某流水生产线上每个产品不合格的概率为<<2.否相互独立.,设开机后第一次停机时当出现一个不合格产品时即停机检修).()(,X D X E X X 和方差的数学期望求数一考研题00已生产了产品个数为.1(D);21(C);0(B);1(A)( ).,,3.Y X Y X n -的相关系数等于和则分别表示正面向上和反面向上的次和以次将一枚硬币重复掷数一考研题01._________}2|)({|2,4.≤≥-X E X P X 则根据切比雪夫不等式有估计的方差为设随机变量数一考研题01数.,0,0,2cos 21)(其他的概率密度为设随机变量x x x f X π⎪⎩⎪⎨⎧≤≤=5.数一考研题02.,3,42的数学期求的次数表示观察值大于用次独立地重复观察对Y Y X π望.(2);(1):,3,3,33,从乙箱中任取一件产品是次品的概率的数学期望乙箱中次品件数求件产品放入乙箱中从甲箱中任取件合格品乙箱中仅装有次品件合格品和其中甲箱中装有已知甲、乙两箱中装有同种产品X 6.数一考研题03件.0,)1(,,,7.221σn X X X n >>令且其方差为独立同分布设随机变量9...1)((D);2)((C);),cov((B);),cov((A)( ).,1212121211σσσσnn Y X D nn Y X D Y X nY X X nY ni i +=-+=+===∑=则数一考研题04.,0,,1;,0,,1,21)|(,31)|(,41)(,,8.B B Y A A X B A P A B P A P B A 不发生发生不发生发生令且为随机事件设⎩⎨⎧=⎩⎨⎧====.(2);),((1):XY Y X Y X ρ的相关系数与的概率分布二维随机变量求数一考研题04(C)21μμ<(D)21μμ>;.(A)21σσ<(B)21σσ>;;),,(222σμN 且}1|{|}1|{|21<-><-μμY P X P 则( ).,9.设随机变量X 服从正态分布),,(211σμN Y 服从正态分布数一考研题0610.设随机变量X 服从参数为1的泊松分布==}{2(X P _______.则,设随机变量),1,0(~N X Y 且相关系数,1=XY ρ则( ).;1}12{=--=X Y P (A)11.~N (1, 4);1}12{=-=X Y P (B);1}12{=+-=X Y P (C).1}12{=+=X Y P (D)E X )数一考研题08数一考研题0810..考研真题五:,95.0)4.5,4.1(,)6,4.3(2n n N 标准正态分布表附表至少应取多大问样本容量内的概率不小于位于区间如果要求其样本均值的样本中抽取容量为从正态总体1.数一考研题98?990.0975.0950.0900.0)(33.296.1645.128.1z z Φ).()2(,21),2(,,,),0)(,(12212212Y E X X X Y X nX n X X X N X ni i n i ni i n 的数学期望求统计量其样本均值为该总体中抽取简单随机样本服从正态分布设总体∑∑=+=-+==≥> σσμ2.数一考研题0121)(22d tez z t πΦ∞--=).,1(~(D));1,(~(C));1(~(B));(~(A)( ).,1),1)((~3.222n F Y n F Y n Y n Y X Y n n t X -=>χχ则设随机变量数一考研题034.设)2(,,,21≥n X X X n 为来自总体)1,0(N 的简单随机样本,X 样本均值,2S 为样本方差, 则( ).(A))1,0(~N X n ; )(~22n nS χ;(C))1(~)1(--n t SX n ;)1,1(~)1(2221--∑=n F X X n ni i .为(B)(D)数一考研题055.设)2(,,,21>n X X X n 为来自总体)1,0(N 的简单随机样本, X 样本均值, 记.,,2,1,n i X X Y i i =-=求:i Y 的方差;,,2,1),(n i Y D i =(2)1Y 与n Y 的协方差).,cov(1n Y Y (1)数一考研题05为11..考研真题六.,,,,,1.,0,10,)1()(21试分别用矩估计法和最大似然估计法求的估计量的简单随的一个容量为是来自总体是未知参数其中其它的概率密度为设总体n X X X X x x x f X n ->⎪⎩⎪⎨⎧<<+=θθθ1.数一考研题97).((2);(1),,,.,0,0),(6)(213θθθθθθθD X X X X x x x x f X n 的方差求的矩估计量求的简单随机样本是取自总体其它的概率密度为设总体 ⎪⎩⎪⎨⎧<<-=2.数一考研题99求参数的一组样本观测值是又设为未知参数其中的概率密度为设某种元件的使用寿命θθθθθθ,,,,,0,,0,,2);(21)(2X x x x x x ex f X n x >⎪⎩⎪⎨⎧≤>=--3.机样本^^^的最大似然估计值数一考研题00.),1,():(5.从中随机服从正态分布单位已知一批零件的长度μN cm X ,)210(21)1(2321022的如下样本值利用总体是未知参数其中的概率分布为设总体θθθθθθθX p X X <<--4./.,3,2,1,3,0,3,1,3的矩估计值和最大似然估计值求θ数一考研题020.95),(40,16的置信的置信度为则得到长度的平均值为个零件μcm 地抽取)95.0)645.1(,975.0)96.1(:(.______=Φ=Φ标准正态分布函数值注数一考研题03区间是12..,,,,.0,,0,,2)(21)(2记中抽取简单随机样本从总体是未知参数其中的概率密度为设总体θθθθX X X X x x ex f X n x >⎪⎩⎪⎨⎧≤>=--6.).,,,min(21θX X X n =^);((1)的分布函数求总体x F X .,(3));((2)讨论它是否具有无偏性的估计量作为如果用的分布函数求统计量θθθθx F .(2);(1):,,,,,1,1,0,1,11);(7.21的最大似然估计量的矩估计量求的简单随机样本为来自总体其中未知参数的分布函数为设总体βββββX X X X x x x x F X n >⎪⎩⎪⎨⎧≤>-=数一考研题04数一考研题03^^^8.设总体X 的概率密度为⎪⎩⎪⎨⎧<≤-<<=其它,021,110,),(x x x f θθθ其中θ是未知参数)10(<<θ,n x x x ,,21 为来自总体的随机样本,,记N 样本值n x x x ,,21 中小于1的个数, 求θ,的最大似然估计.为数一考研题069.设总体X 的概率密度为⎪⎪⎩⎪⎪⎨⎧<≤-<<=其它,01,)1(210,21);(x x x f θθθθθ其中参数)10(<<θθ未知,n X X X ,,,21 是来自总体X ,X 是样本均值.的简单随机样本,数一考研题0713..(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.θ设n X X X ,,,21 是总体为),(2σμN 的简单随机样本.记,11∑==ni i X nX .1,)(1122212S n X T X X n S ni i -=--=∑=证T 是2μ的无偏估计量;当1,0==σμ时.D 10.求(1)(2),T )(数一考研题0811.设m X X X ,,,21 为来自二项分布总体),(p n B 的简单随机样本,X和2S 分别为样本均值和样本方差.若2kS X +为2np ,则=k __________.的无偏估计量数一考研题0912.设总体X 的概率密度为⎩⎨⎧>=-,00,2其他x xe x f x λλ,其中参数0>λλ未知,n x x x ,,21是来自总体X 的简单随机样本.求参数λ的矩估计量(2)求参数λ的最大似然估计量.()()(1);数一考研题09,14..考研真题七:.?70,05.0,15,5.66,36,t 分布表附表并给出检验过程分以认为这次考试全体考生的平均成绩为是否可下问在显著性水平分标准差为分算得平均成绩为位考生的成从中随机地抽取设某次考试的考生成绩服从正态分布1.数一考研题980281.26883.1360301.26896.135975.095.0)(n n t pp 绩)}()({p n t n t P p =≤15..考研真题答案.1p -1. 2.3/7.考研真题一.2/53..C 4..1/45..2/36..48137./考研真题二⎪⎩⎪⎨⎧≥<=.1,1,1,0)(2y y y y f Y 1..42..1.考研真题三3/41/410p Z .75/2..413..B 4.5..,2,1,0,0,!)1((2).,2,1,0,0,)1((1) =≤≤⋅-=≤≤----n n m n ep p C n n m p p C n m n m m n mn mm n λλ6.11/31/21/6}{3/41/43/81/81/41/121/81/24}{21321ji i i p y Y P x x p x X P y y y XY⋅⋅====D 7...418.B.(1)⎩⎨⎧<<=.,0,10,2)(其它x x x f X ⎪⎩⎪⎨⎧<<-=.,0,20,21)(其它y y y f Y (2)⎪⎩⎪⎨⎧<<-=.,0,20,211)(其它z z z f Z 9.10..C 8..9111.C.9.433.. C.4.16..B 1.;1p (1)(2)2..12p p -..A 7..1515(2)(1)=XY ρ8.1/121/611/122/3010XY .1/24.A 3...55.;3/26.(1).1/4(2);考研真题五.35至少应取n 1.考研真题四(1)=i D ;1nn -(2)=),cov(1n Y Y .1n-D.5.4.()Y .)1(22σ-n 2.C 3..考研真题六.ln 11∑=--ni iX n1.2X2.(1).52nθ(2)).,,,min(21n x x x 3.).49.40,51.39(5.;.12137-4..A 9.(1)(2))(y f Y =⎪⎩⎪⎨⎧⎪⎪<<10y ,83y <≤41y ,81y 其它,041.12.;;24714.(Ⅰ)(Ⅱ))(z f z ⎪⎩⎪⎨⎧=),2(-z z 10<<z ,)2(2-z 21<≤z ,0.其它A.13.A.15.16.(1);21)(z f ⎩⎪⎨⎧=21<≤z ,0.其它-31/,(2)121e -10...D 11.A.17.18.(1);94Y X012041613611319102910//////(2)17..可以1..考研真题七.ln ;11∑=-ni iX nX X(1)(2)7.nN .8.θ^;212-=X (Ⅰ)9.(Ⅱ)不是.10.(2)12n n )(-.1-11..12.(1)X2=λ;X2=λ.⎩⎨⎧≤>-=--θθθx x e x F x ,0;,1)()(26.(1)⎩⎨⎧≤>---.,0;,1)(2θθθx x e x n (2).不具有无偏性(3);(θx F ^=)(2)精品文档。

完整word版概率论与数理统计习题集及答案word文档良心出品

完整word版概率论与数理统计习题集及答案word文档良心出品

《概率论与数理统计》作业集及答案概率论的基本概念第1章随机试验及随机事件§1 .11. S= ;T 出现的情形. 样本空间是: (1) 一枚硬币连丢3次,观察正面H﹑反面S= ;次,观察出现正面的次数. 样本空间是:(2) 一枚硬币连丢3B= . 2,则;B:数点大于2.(1) 丢一颗骰子. A:出现奇数点,则A=A= ;次, A:第一次出现正面,则 (2) 一枚硬币连丢2C= .:至少有一次出现正面,则= ; CB:两次出现同一面,则随机事件的运算§1 .2C的运算关系表示下列各事件:、B、、B、C为三事件,用A1. 设A . 不发生表示为:,而CC都不发生表示为: .(2)A与B都发生(1)A、B、 . 中最多二个发生表示为:B、C,而C发生表示为: .(4)A、(3)A与B都不发生 . 中不多于一个发生表示为:B、C、C中至少二个发生表示为: .(6)A、(5)A、B}42??B?{x:{A?x:1?x?3},S?{x:0?x?5}, 2. 设:则?BA?AB??BA)(,2),(1),(3AB B?A= (4 )= ,(5)。

§1 .3 概率的定义和性质P(A?B)?0.8,P(A)?0.5,P(B)?0.6,则1.已知P(A?(AB)B)P?(AB)P= . )= , (2)( , (3) (1)P(AB),.30?.7,P(AB)?0P(A)= .2. 已知则§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率..,求有三个盒子各一球的概率个不同的球随机地投入到4个盒子中2. 将3§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。

P(A)?1/4,P(B|A)?1/3,P(A|B)?1/2,P(A?B)? 2. 已知则。

概率与数理统计历年考研试题及解答(数一、数三、数四).

概率与数理统计历年考研试题及解答(数一、数三、数四).

概率与数理统计历届真题第一章 随机事件和概率数学一:1(87,2分) 设在一次试验中A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为 ;而事件A 至多发生一次的概率为 。

2(87,2) 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球。

现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。

已知取出的球是白球,此球属于第二个箱子的概率为 。

3(88,2分)设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为。

4(88,2分)在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为。

5(89,2分) 已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B | A )=0.8,则和事件A B 的概率P (A B )= 。

6(89,2分) 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为。

7(90,2分)设随机事件A ,B 及其和事件A B 的概率分别是0.4, 0.3和0.6,若B 表示B 的对立事件,那么积事件A B 的概率P (A B )=。

8(91,3分)随机地向半圆0<y <22x ax -(a 为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比。

则原点与该点的连线与x 轴的夹角小于4π的概率为 。

9(92,3分)已知P (A )=P (B )=P (C )=161)()(,0)(,41===BC P AC P AB P ,则事件A 、B 、C 全不发生的概率为 。

10(93,3分) 一批产品有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 。

(完整版)概率论与数理统计课后习题答案

(完整版)概率论与数理统计课后习题答案

·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

1610《概率论与数理统计》真题

1610《概率论与数理统计》真题

2016年10月高等教育自学考试全国统一命题考试《概率论与数理统计》真题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 与B 是两个随机事件,则=-)(B A P ()A.)(A P B.)(B P C.)()(B P A P - D.)()(AB P A P -2.设随机变量X 的分布律为,则{}=≤<-11X P ()A.0.1B.0.2C.0.3D.0.53.设二维随机变量(X ,Y)的分布律为且X 与Y 相互独立,则下列结论正确的是()A.2.02.0==b a , B.3.03.0==b a ,C.2.04.0==b a , D.4.02.0==b a ,4.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧<<<<=其他,,,0,4040161),(y x y x f 则{}=<<<<20,20Y X P ()A.161B.41 C.169 D.15.设随机变量X 服从参数为21的指数分布,则D (X )=()A.41 B.21 C.2 D.46.设随机变量X 服从二项分布)6,0,10(B ,Y 服从均匀分布)2,0(U ,则=-)2(Y X E ()A.4B.5C.8D.107.设(X ,Y )为二维随机变量,且Y X ,0)(,0)(与为XY Y D X D ρ>>的相关系数,则=),(C Y X ov ()A.)()(Y D X D XY ⋅⋅ρB.)()(Y D X D XY ⋅⋅ρC.)()(Y E X E ⋅ D.)()(Y D X D ⋅8.设总体521,,)1,0(~x x x N X ,为来自X 的样本,则~512∑=i x ()A.)5,0(NB.)5(2x C.)5(t D.)5,1(F 9.设总体n x x x N X ,,),(~212,σμ为来自X 的样本,x 为样本均值,s 为样本标准差,则μ的无偏估计量为()A.sB.2s C.xD.2x 10.要检验变量y 与x 之间的线性关系εββ++=x y 10是否显著,春中ε为随机误差,即考察由一组观测数据n i y x i i ,2,1),,(=,得到的回归方程x y 10ˆˆˆββ+=是否有实际意义,则需要检验假设()A.0ˆ:,0ˆ:1110≠=ββH H B.0ˆ:,0ˆ:0100≠=ββH H C.0:,0:1110≠=ββH H D.0:,0:0100≠=ββH H 二、填空题(本大题共15小题,每小题2分,共30分)11.设随机事件A,B 互不相容,且===)(,3.0)(7.0)(AB P B P A P 则,12.设随机事件A,B 相互独立,且===)(,5.0)(9.0)(B A P B P A P 则,13.已知10件产品中有1件次品,从中任取2件,则未取到次品的概率为14.设随机变量X 的分布律为,则常数=a ⎩⎨≤≤其他,,,010,2x x 则当10≤≤x 时,X 的分布函数=)(x F 16.设随机变量)1,0(N ~X ,其分布函数为)(x Φ,则=Φ)0(17.设二维随机变量(X ,Y )的分布律为15.设随机变量X 的概率密度为f (x )=⎧则{}==+2Y X P 18.设随机变量X 的期望2E(X)=,随机变量Y 的期望4E(Y)=,又21E(XY)=,则=),(Y X Cov 19.设随机变量X 服从参数为2的泊松分布,则=)E(X 220.设随机变量X 与Y 相互独立,且N(0,4)~Y N(0,1),~X ,则=+Y)D(2X 21.设随机变量X~B (100,0.8),应用中心极限定理可算得{}≈<<8476X P (附:0.8413(1)=Φ)21.设总体2021,,)9,0(~x x x N X ,为来自X 的样本,x 为样本均值,则=)(x D 22.设总体X 服从均匀分布10021,,),3,(x x x U θθ是来自X 的样本,x 为样本均值,则θ的矩估计θˆ=23.设总体X 的概率密度含有未知参数θ,且n x x x ,,,4E(X)21θ=为来自X 的样本,x 为样本均值,若θ为x c 的无偏估计,则常数c=24.设一元线性回归模型为),0(~,,,2,1,210σεεββN n i x y i i i i =++=,且各i ε相互独立,则=)(i y E 三、计算题(本大题共2小题,每小题8分,共16分)26.设甲、乙、丙三个工厂生产同一种产品,由于各工厂规模与设备、技术的差异,三个工厂产品数量比例为1:2:1,且产品次品率分别为1%,2%,3%。

概率论与数理统计习题解答

概率论与数理统计习题解答

概率论与数理统计习题解答第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;(4)测量一汽车通过给定点的速度. 解 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生; (2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生; (6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B C A B C A B CA B CA B C A B CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立?(3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?(2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB 解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3,所以 P (AB )=0.4, 故()P AB= 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)= 18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B 的事件数为1111112a b b a a b A A A A A A +=, 则2211222()()a b a ba ba bA A A AP A P B A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则 333333101016()()120720或者====C A P A P A C A .(2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求: (1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2)()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+1()()()P A P B P AB =--+433532541100100100100=--+=(1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率; (3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则 3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C .(3) 设C={取三颗子中至少的一颗黑子} ()1()0.7=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则 500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有 2222770.000794A Ap A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法.设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式40()()(|)0.196===∑i i i P B P A P B A由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B故2()(|)0.588==∑i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05. 因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数},0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻(1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?由题意,有p=0.1, q=1-p=0.9, 故 (1) 223155(2)(0.1)(0.9)0.0729===P P C(2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=第二章 随机变量及其分布1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X 的分律. 解 X 的分布率如下表所示:2. 进行某种试验,设试验成功的概率为34,失败的概率为14,以X 表示试验首次成功所需试验的次数,试写出X的分布律,并计算X 取偶数的概率. 解 X 的分布律为:113(),1,2,3,44k P X k k -⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭X 取偶数的概率:2113{}(2)4411116331165116k k P X P X k -∞∞∞⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫==⨯=⎪-⎝⎭∑∑∑k=1k=1k=1为偶数 3. 从5个数1,2,3,4,5中任取三个为数123,,x x x .求:X =max (123,,x x x )的分布律及P(X ≤4); Y =min (123,,x x x )的分布律及P(Y>3). 解 基本事件总数为:3510C =,X 34 5(1)X 的分布律为:P(X ≤4)=P(3)+P(4)=0.4 (2)Y 的分布律为P(X>3) =04. C 应取何值,函数f(k) =!kC k λ,k =1,2,…,λ>0成为分布律?解 由题意, 1()1k f x ∞==∑, 即0110(1)1!!!0!kkk k k k C C C C e k k k λλλλλ∞∞∞===⎛⎫==-=-= ⎪⎝⎭∑∑∑ 解得:1(1)C e λ=-5. 已知X的分布律 X -112P162636求:(1)X 的分布函数;(2)12P X ⎛⎫< ⎪⎝⎭;(3)312P X ⎛⎫<≤ ⎪⎝⎭.解 (1) X 的分布函数为()()k k x xF x P X x p ≤=≤=∑0,11/6,11()1/2,121,2x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩;(2) 11(1)26P X P X ⎛⎫<==-= ⎪⎝⎭(3)31()02P X P ⎛⎫<≤=∅= ⎪⎝⎭6. 设某运动员投篮投中的概率为P =0.6,求一次投篮时投中次数X解 X 的分布函数00()0.60111x F x x x ≤⎧⎪=<≤⎨⎪>⎩7. 对同一目标作三次独立射击,设每次射击命中的概率为p ,求:(1)三次射击中恰好命中两次的概率;(2)目标被击中两弹或两弹以上被击毁,目标被击毁的概率是多少? 解 设A={三次射击中恰好命中两次},B=目标被击毁,则(1) P(A) =2232233(2)(1)3(1)P C p p p p -=-=-(2) P(B) =22323333233333(2)(3)(1)(1)32P P C p p C p p p p --+=-+-=-8. 一电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求:(1)每分钟恰有6次呼唤的概率;(2)每分钟的呼唤次数不超过10次的概率. 解(1) P(X=6) =6440.104!6!k e e k λλ--==或者P(X=6) =!kek λλ-446744!!k k k k e e k k ∞∞--===-∑∑= 0.21487 – 0.11067 =0.1042.(2) P(X ≤10)104401144110.00284!!kkk k e e k k ∞--====-=-∑∑ =0.997169. 设随机变量X 服从泊松分布,且P(X =1)=P(X =2),求P(X =4) 解 由已知可得,12,1!2!e e λλλλ--=解得λ=2, (λ=0不合题意)422,(4)4!P X e -==因此= 0.0910. 商店订购1000瓶鲜橙汁,在运输途中瓶子被打碎的概率为0.003,求商店收到的玻璃瓶,(1)恰有两只;(2)小于两只;(3)多于两只;(4)至少有一只的概率. 解 设X={1000瓶鲜橙汁中由于运输而被打破的瓶子数},则X 服从参数为n=1000, p=0.003的二项分布,即X~B(1000, 0.003), 由于n 比较大,p 比较小,np=3, 因此可以用泊松分布来近似, 即X~π(3). 因此(1) P(X=2)2330.2242!e -==(2)323(2)1(2)110.80080.1992!k k P X P X e k ∞-=<=-≥=-=-=∑(3)333(2)(2)0.5768!k k P X P X e k ∞-=>=>==∑(4)313(1)0.9502!k k P X e k ∞-=≥==∑11. 设连续型随机变量X 的分布函数为20,0(),011,1x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:(1)系数k ;(2)P(0.25<X<0.75);(3)X 的密度函数;(4)四次独立试验中有三次恰好在区间(0.25,0.75)内取值的概率.解 (1) 由于当0≤x ≤1时,有F(x )=P(X ≤x )=P(X<0)+P(0≤X ≤x )=k x 2 又F(1) =1, 所以k ×12=1因此k=1.(2) P(0.25<X<0.75) = F(0.75)-F(0.25) = 0.752-0.252=0.5(3) X 的密度函数为2,01()'()0,x x f x F x Other ≤≤⎧==⎨⎩(4) 由(2)知,P(0.25<X<0.75) = 0.5, 故P{四次独立试验中有三次在(0.25, 0.75)内} =334340.5(10.5)0.25C --=.12. 设连续型随机变量X 的密度函数为1()0,1x F x x ⎧<⎪=⎨⎪≥⎩求:(1)系数k ;(2)12P X⎛⎫<⎪⎝⎭;(3)X 的分布函数.解 (1)由题意,()1f x dx +∞-∞=⎰, 因此111()a r c s i n 111kf x d x d x k x kk ππ+∞+-∞====-=⎰⎰解得:(2)1/21/1/21111arcsin 1/22663k P x x ππππ--⎛⎫⎛⎫<===-= ⎪ ⎪-⎝⎭⎝⎭⎰ (3) X 的分布函数1()()1/2arcsin /11111/x x F x f x dx x x x k ππ-∞<-⎧⎪==+-≤≤⎨⎪>⎩=⎰解得: 13. 某城市每天用电量不超过100万千瓦时,以Z 表示每天的耗电率(即用电量除以100万千瓦时),它具有分布密度为212(1),01()0,x x x F x ⎧-<<=⎨⎩其他若该城市每天的供电量仅有80万千瓦时,求供电量不够需要的概率是多少?如每天供电量为90万千瓦时又是怎样的?解 如果供电量只有80万千瓦,供电量不够用的概率为: P(Z>80/100)=P(Z>0.8)=120.812(1)0.0272x x dx -=⎰如果供电量只有80万千瓦,供电量不够用的概率为:P(Z>90/100)=P(Z>0.9)=120.912(1)0.0037x x dx -=⎰ 14. 某仪器装有三只独立工作的同型号电子元件,其寿命(单位 小时)都服从同一指数分布,分布密度为6001,0()6000,xe x F x x⎧<⎪=⎨⎪≥⎩试求在仪器使用的最初200小时以内,至少有一只电子元件损坏的概率.解 设X 表示该型号电子元件的寿命,则X 服从指数分布,设A={X ≤200},则 P(A)=1200600311600x e dx e --=-⎰设Y={三只电子元件在200小时内损坏的数量},则所求的概率为:10033331(1)1(0)1()(1())1()1P Y P Y C P A P A e e--≥=-==--=-=- 15. 设X 为正态随机变量,且X ~N(2,2σ),又P(2<X<4) = 0.3,求P(X<0) 解 由题意知()222422(24)00.3X P X P σσσσ---⎛⎫⎛⎫<<=<<=Φ-Φ=⎪ ⎪⎝⎭⎝⎭即20.30.50.8σ⎛⎫Φ=+= ⎪⎝⎭故20222(0)10.2X P X P σσσσ---⎛⎫⎛⎫⎛⎫<=<=Φ=-Φ= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭16. 设随机变量X 服从正态分布N(10,4),求a ,使P(|X -10|<a ) = 0.9.解 由于()()10|10|10222a X a P X a P a X a P --⎛⎫-<=-<-<=<<⎪⎝⎭210.9222a a a -⎛⎫⎛⎫⎛⎫=Φ-Φ=Φ-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以0.952a ⎛⎫Φ= ⎪⎝⎭查表可得, 2a =1.65即 a = 3.3 17. 设某台机器生产的螺栓的长度X 服从正态分布N(10.05,0.062),规定X 在范围(10.05±0.12)厘米内为合格品,求螺栓不合格的概率. 解 由题意,设P 为合格的概率,则()10.05(|10.05|0.12)0.1210.050.12220.06X P P X P X P -⎛⎫=-<=-<-<=-<< ⎪⎝⎭(2)(2)2(2)120.977210.9544=Φ-Φ-=Φ-=⨯-=则不合格的概率=1-P = 0.045618. 设随机变量X 服从正态分布N(60,9),求分点x 1,x 2,使X 分别落在(-∞,x 1)、(x 1,x 2)、(x 2,+∞)的概率之比为3:4:5. 解 由题,111116060603()()0.253333456060()1()0.75,33x x X P X x P x x ---⎛⎫<=<=Φ== ⎪++⎝⎭--Φ-=-Φ=查表可得1600.673x --=解得, x 1 = 57.9922260606034()()0.5833333345x x X P X x P ---+⎛⎫<=<=Φ== ⎪++⎝⎭又查表可得2600.213x -=解得, x 2 =60.63. 19. 已知测量误差X (米)服从正态分布N(7.5, 102),必须进行多少次测量才能使至少有一次误差的绝对值不超过10米的概率大于0.98?解 设一次测量的误差不超过10米的概率为p , 则由题可知107.57.5107.5(10)101010(0.25)(1.75)(0.25)1(1.75)0.598710.95990.5586X p P X P ----⎛⎫=<=<< ⎪⎝⎭=Φ-Φ-=Φ-+Φ=-+= 设 Y 为n 次独立重复测量误差不超过10米出现的次数,则Y~B(n, 0.5586)于是 P(Y ≥1)=1-P(X=0)=1-(1-0.5586)n ≥0.98 0.4414n ≤0.02, n ≥ln(0.02)/ln(0.4414) 解得:n ≥4.784取n=5, 即,需要进行5次测量. 20.设随机变量X 的分布列为X -2 023P11 3 2试求:(1)2X 的分布列;(2)x 2的分布列. 解 (1) 2X 的分布列如下(2) x 2的分布列21. 设X 服从N(0,1)分布,求Y =|X |的密度函数.解 y=|x|的反函数为,0h(y)=,x x x x -<⎧⎨≥⎩,从而可得Y=|X|的密度函数为:当y>0时,222222()()|()'|()|'|yyy Y X X f y f y y f y y e e e---=--+==当y ≤0时,()Y f y =0 因此有 22,0()0,0yY e y f y y ->=≤⎩22. 若随机变量X 的密度函数为23,01()0,x x f x ⎧<<=⎨⎩其他求Y =1x的分布函数和密度函数.解 y=1x在(0,1)上严格单调,且反函数为 h(y)=1y,y>1, h ’(y)=21y -222411113()[()]|()|3Y X X f y f h y h y f y y y y y⎛⎫⎛⎫⎛⎫'==-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭因此有43,1()0,Y y y f y other ⎧>⎪=⎨⎪⎩Y 的分布函数为:433131,1()10,y Y y y dy y y y F y other---⎧=-=->⎪=⎨⎪⎩⎰23. 设随机变量X 的密度函数为22,0(1)()0,0x x f x x π⎧>⎪+=⎨⎪≤⎩试求Y =lnX 的密度函数.解 由于ln y x =严格单调,其反函数为(),'()y y h y e h y e ==且,则2()[()]|()|()2(1)2,()y yY X X yy y y f y f h y h y f e e e e y e e ππ-'===+=-∞<<+∞+24. 设随机变量X 服从N(μ,2σ)分布,求Y =x e 的分布密度.解 由于x y e =严格单调,其反函数为1()ln ,'(),h y y h y ==且yy>0,则221(ln )21()[()]|()|(ln ),0Y X X y f y f h y h y f y yey μσ--'===>当0y ≤时()0Y f y =因此221(ln )2,0()0,y Y e y f y y μσ--⎧>=≤⎩25. 假设随机变量X 服从参数为2的指数分布,证明:Y =21x e --在区间(0, 1)上服从均匀分布.解 由于21x y e -=-在(0, +∞)上单调增函数,其反函数为:1()ln(1),01,2h y y y =--<<并且1'()2(1)h y y =-,则当01y << 12(ln(1))2()[()]|()|11(ln(1))22(1)1212(1)Y X X y f y f h y h y f y y ey ---'==---==-当y ≤0或y ≥1时,()Y f y =0.因此Y 在区间(0, 1)上服从均匀分布. 26. 把一枚硬币连掷三次,以X 表示在三次中正面出现的次数,Y 表示三次中出现正面的次数与出现反面的次数之差的绝对值,试求(X ,Y )的联合概率分布.解 根据题意可知, (X ,Y)可能出现的情况有:3次正面,2次正面1次反面, 1次正面2次反面, 3次反面, 对应的X,Y 的取值及概率分别为P(X=3, Y=3)=18P(X=2,Y=1)=223113228C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭P(X=1, Y=1)=3113113228C -⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭P(X=0, Y=3)=31128⎛⎫= ⎪⎝⎭ 于是,(X ,27. 在10件产品中有2件一级品,7件二级品和1件次品,从10件产品中无放回抽取3件,用X 表示其中一级品件数,Y 表示其中二级品件数,求: (1)X 与Y 的联合概率分布;(2)X 、Y 的边缘概率分布; (3)X 与Y 相互独立吗?解 根据题意,X 只能取0,1,2,Y 可取的值有:0,1,2,3,由古典概型公式得:(1) 271310(,),i j k ijC C C p P X i Y j C====其中,3,0,1,2,i j k i ++==0,1,2,3j =0,1k =,可以计算出联合分布表如下j(2) X,Y 的边缘分布如上表(3) 由于P(X=0,Y=0)=0, 而P(X=0)P(Y=0)≠0, P(X=0,Y=0)≠P(X=0)P(Y=0), 因此X,Y 不相互独立. 28. 袋中有9张纸牌,其中两张“2”,三张“3”,四张“4”,任取一张,不放回,再任取一张,前后所取纸牌上的数分别为X 和Y ,求二维随机变量(X, Y)的联合分布律,以及概率P(X +Y>6)解 (1) X,Y 可取的值都为2,3,4, 则(X,Y)的联合概率j(2) P(X+Y>6) = P(X=3, Y=4) + P(X=4, Y=3) + P(X=4,Y=4)=1/6+1/6+1/6=1/2.29. 设二维连续型随机变量(X, Y)的联合分布函数为(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭,求:(1)系数A 、B 及C ; (2)(X, Y)的联合概率密度; (3)X ,Y 的边缘分布函数及边缘概率密度;(4)随机变量X 与Y 是否独立?解 (1) 由(X, Y)的性质, F(x, -∞) =0, F(-∞,y) =0, F(-∞, -∞) =0, F(+∞, +∞)=1, 可以得到如下方程组:a r c t a n 022arctan 023022122x A B C y A B C A B C A B C ππππππ⎧⎛⎫⎛⎫+-= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫-+=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪--= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎛⎫⎛⎫⎪++= ⎪ ⎪⎪⎝⎭⎝⎭⎩解得:21,,,22A B C πππ===(2)2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++(3) X 与Y 的边缘分布函数为:211()(,)arctan arctan 222222X x x F x F x ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 211()(,)arctan arctan 222322Y y y F y F y ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭X 与Y 的边缘概率密度为:'22()()(4)X X f x F x x π==+'23()()(9)Y Y f y F y y π==+(4) 由(2),(3)可知:(,)()()X Y f x y f x f y =, 所以X ,Y 相互独立.30. 设二维随机变量(X, Y)的联合概率密度为-(x+y)e ,0,(,)0,x f x y ⎧<<+∞=⎨⎩其他(1)求分布函数F(x, y);(2)求(X ,Y)落在由x =0,y =0,x +y =1所围成的三角形区域G 内的概率.解 (1) 当x>0, y>0时, ()00(,)(1)(1)yxu v x y F x y e dudv e e -+--==--⎰⎰ 否则,F (x, y ) = 0.(2) 由题意,所求的概率为11()10((,))(,)120.2642Gxx y P x y G f x y dxdydx e dy e --+-∈===-=⎰⎰⎰⎰31. 设随机变量(X ,Y )的联合概率密度为-(3x+4y)Ae ,0,0,(,)0,x y f x y ⎧>>=⎨⎩其他求:(1)常数A ;(2)X ,Y 的边缘概率密度;(3)(01,02)P X Y <≤<≤.解 (1) 由联合概率密度的性质,可得(34)00(,)1/12x y f x y dxdy Ae dxdy A +∞+∞+∞+∞-+-∞-∞===⎰⎰⎰⎰ 解得 A=12.(2) X, Y 的边缘概率密度分别为:(34)30123,0()(,)0,x y x X edy e x f x f x y dy other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰ (34)40124,0()(,)0,x y y Y edx e y f y f x y dx other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰(3) (01,02)P x y <≤<≤21(34)03812(1)(1)x y edxdye e -+--==--⎰⎰32. 设随机变量(X ,Y )的联合概率密度为2,01,02,(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他求 P(X +Y ≥1).解 由题意,所求的概率就是(X,Y)落入由直线x=0 ,x=1, y=0, y=2, x+y=1围的区域G 中, 则122012310((,))(,)3456532672G x P x y G f x y dxdyxy dx x dy x x x dx -∈==+=++=⎰⎰⎰⎰⎰33. 设二维随机变量(X, Y)在图2.20所示的区域G 上服从均匀分布,试求(X, Y)的联合概率密度及边缘概率密度.解 由于(X, Y)服从均匀分布,则G的面积A 为:2112001(,)()6x x GA f x y dxdy dx dy x x dx ===-=⎰⎰⎰⎰⎰,(X, Y)的联合概率密度为:6,01(,)0,x f x y other≤<⎧=⎨⎩.X,Y 的边缘概率密度为:2266(),01()(,)0,x x X dy x x x f x f x y dy other +∞-∞⎧=-≤<⎪==⎨⎪⎩⎰⎰ ),01()(,)0,y Y dy y y f y f x y dx other +∞-∞⎧=≤<⎪==⎨⎪⎩⎰34. 设X 和Y 是两个相互独立的随机变量,X 在(0, 0.2)上服从均匀分布,Y 的概率密度是55,0()0,0y y e y f y y -⎧ >=⎨≤⎩求:(1)X 和Y 和联合概率密度; (2)P(Y ≤X).解 由于X 在(0, 0.2)上服从均匀分布,所以()1/0.25X f x == (1) 由于X ,Y 相互独立,因此X, Y 525,0,00.2(,)()()0,y X Y e y x f x y f x f y other -⎧><<==⎨⎩(2) 由题意,所求的概率是由直线所围的区域,如右图所示, 因此0.2500.2511()(,)255111xy Gx P Y X f x y dxdy dx e dye dx e e ----≤===-=+-=⎰⎰⎰⎰⎰35. 设(X ,Y )的联合概率密度为1,01,02(,)20,x y f x y ⎧ ≤≤≤≤⎪=⎨⎪⎩其他求X 与Y中至少有一个小于12的概率.解 所求的概率为0.50.5120.50.511()()22111,221(,)15128P X Y P XY f x y dxdydxdy +∞+∞⎛⎫<< ⎪⎝⎭⎛⎫=-≥≥ ⎪⎝⎭=-=-=⎰⎰⎰⎰ 36. 设随机变量X 与Y 相互独立,且X -113 Y -3 1P1215310P 1434求二维随机变量(X ,Y )的联合分布律.解 由独立性,计算如下表37. 设二维随机变量(X ,Y )的联合分布律为X 1 2 3Y116191182 a bc(1)求常数a ,b ,c 应满足的条件;(2)设随机变量X 与Y 相互独立,求常数a ,b ,c. 解 由联合分布律的性质,有:11116918a b c +++++=, 即 a + b + c =12133-= 又,X, Y 相互独立,可得 111::::6918a b c =从而可以得到: 121,,399a b c ===38. 设二维随机变量(X ,Y )的联合分布函数为22232,0,1,1(,),0,01,10,x x y x x y F x y x y x⎧ >>⎪+⎪⎪= ><≤⎨+⎪⎪ ⎪⎩其他, 求边缘分布函数()x F x 与()y F y ,并判断随机变量X 与Y 是否相互独立.解 由题意, 边缘分布函数2222lim,0()(,)110,0y X x x x F x F x x x x →+∞⎧=>⎪=+∞=++⎨⎪≤⎩下面计算F Y (y )2332220,0()(,)lim ,011lim1,11Y x x y x y F y F y y y xx y x →+∞→+∞⎧⎪≤⎪⎪=+∞==<≤⎨+⎪⎪=>⎪+⎩可以看出,F(x,y)= F x (x ) F Y (y ), 因此,X ,Y 相互独立.39.设二维随机变量(X ,Y )的联合分布函数为132,1,1(,)0,ye x yf x y x -⎧ ≥≥⎪=⎨⎪ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <1时, ()0X f x =当x ≥1时,113331222()1y y X f x e dy e x x x+∞--+∞-===⎰再计算()Y f y , 当y <1时, ()0Y f y =当y ≥1时, 11132121()1y y y Y f y e dx e e x x+∞---+∞-===⎰可见, (,)()()X Y f x y f x f y =, 所以随机变量X, Y 相互独立40.设二维随机变量(X ,Y )的联合分布函数为,(,)0,x y x y f x y + 0≤,≤1,⎧=⎨ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <0或者x >1时, ()0X f x = 当1≥x ≥0时,1212011()02X f x x y dy xy y x =+=+=+⎰ 再计算()Y f y , 当y <0或者y >1时, ()0Y f y =当1≥y ≥0时, 120111()022Y f y x ydx xy x y =+=+=+⎰ 由于11(,)()()22X Y f x y x y f x f y x y ⎛⎫⎛⎫=+≠=++ ⎪⎪⎝⎭⎝⎭, 所以随机变量X,Y 不独立41.设二维随机变量(X ,Y )的联合分布函数为22,00(,)0,x y e x y f x y --⎧ >,>=⎨⎩其他求随机变量Z =X -2Y 的分布密度. 解 先求Z 的分布函数F(z ) :2()()(2)(,)D X Y zF z P Z z P X Y z f x y dxdy -≤=≤=-≤=⎰⎰当z<0时,积分区域为:求得2220()2z z yx y F z dy e dx +∞+---=⎰⎰224122z y y z z e e dy e +∞----=-=⎰ 当z ≥0时,积分区域为:z},2200()2z yx y F z dy e dx +∞+--=⎰⎰ 2401212yy zz eedy e +∞----=-=-⎰由此, 随机变量Z 的分布函数为11,02()1,02zz e z F z e z -⎧-≥⎪⎪=⎨⎪<⎪⎩ 因此, 得Z 的密度函数为:1,02()1,02zz e z f z e z -⎧≥⎪⎪=⎨⎪<⎪⎩42. 设随机变量X 和Y 独立,X ~2()N μ,σ,Y 服从[-b ,b ](b>0)上的均匀分布,求随机变量Z =X +Y 的分布密度. 解 解法一 由题意,22()21()()()2z y a bX Y F z f z y f y dy dy bσ---+∞-∞-=-=⋅⎰⎰令)/,,[,],z y a t dy dt y b b σσ--==-∈-(则()()()2211()22z b az b a t z b a z b aF z e dt b bσσσσ+----+---==Φ-Φ⎰ 解法二22()()(),()1()221122111212X Yz bz bF z f x f z x dx-b<z-x<b,z-b<x<z+bx aF z dxbz bx a z b a z b az bb ba zb a z bba z bbσσσσσσσ+∞-∞+-=-∴--=⋅+-⎛+---⎫⎛⎫⎛⎫⎛⎫=Φ=Φ-Φ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫--⎛-+⎫⎛⎫⎛⎫=-Φ--Φ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭-+⎛⎫=Φ ⎪⎝⎭⎰⎰a z bσ⎛--⎫⎛⎫-Φ ⎪⎪⎝⎭⎝⎭43.设X服从参数为12的指数分布,Y服从参数为13的指数分布,且X与Y独立,求Z=X+Y 的密度函数.解由题设,X~12120,0(),0X xxf xe x-≤⎧⎪=⎨>⎪⎩,Y~13130,0(),0Y xxf ye x-≤⎧⎪=⎨>⎪⎩并且,X,Y相互独立,则()()()Z X YF z f x f z x dx+∞-∞=-⎰由于()Xf x仅在x>0时有非零值,()Yf z x-仅当z-x>0,即z>x时有非零值,所以当z<0时,()Xf x=0, 因此()Zf z=0.当z>0时,有0>z>x, 因此1132()11()23z z xxZF z e e dx---=⎰1633216zz zz xe dx e e----==-⎰44.设(X,Y)的联合分布律为X0 1 2 3Y0 0 0.05 0.08 0.121 0.01 0.09 0.12 0.152 0.02 0.11 0.13 0.12求:(1)Z=X+Y的分布律;(2)U=max(X,Y)的分布律;(3)V=min(X,Y)的分布律.解(1) X+Y的可能取值为:0,1,2,3,4,5,且有P(Z=0)=P(X=0,Y=0) = 0P(Z=1)=P(X=1,Y=0) + P(X=0,Y=1) = 0.06P(Z=2)=P(X=2,Y=0) + P(X=0,Y=2) + P(X=1,Y=1) =0.19P(Z=3)=P(X=3,Y=0) + P(X=1,Y=2) + P(X=2,Y=1) =0.35P(Z=4)=P(X=2,Y=2) + P(X=3,Y=1) = 0.28P(Z=5)=P(X=3,Y=2) = 0.12同理,U=max(X,Y)的分布如下U∈{0,1,2,3}同理,V=min(X,Y)的分布分别如下V∈{0,1,2}概率论与数理统计 习题参考答案(仅供参考) 第三章 第30页 (共80页)第三章 随机变量的数字特征1. 随机变量X 的分布列为X -1 0 1212P13161611214求E(X),E(-X +1),E(X 2) 解 111111136261243()1012E X =-⨯+⨯+⨯+⨯+⨯=111111236261243(1)((1)1)(01)(1)(11)(21)E X -+=--+⨯+-+⨯+-+⨯+-+⨯+-+⨯=或者1233(1)()(1)()11E X E X E E X -+=-+=-+=-+= 22222235111111362612424()(1)(0)()(1)(2)E X -=-⨯+⨯+⨯+⨯+⨯=2. 一批零件中有9件合格品与三件废品,安装机器时从这批零件中任取一件,如果取出的废品不再放回,求在取得合格品以前已取出的废品数的数学期望. 解 设取得合格品之前已经取出的废品数为X, X 的取值为0, 1, 2, 3, A k 表示取出废品数为k 的事件, 则有:1391121230(),0,1,2,3,66()()0.3220k k k kk k C C P A k C C E X k P A -==∙==⋅==∑3. 已知离散型随机变量X 的可能取值为-1、0、1,E(X)=0.1,E(X 2)=0.9,求P(X=-1),P(X =0),P(X =1). 解 根据题意得:2222()1(1)0(0)1(1)0.1()(1)(1)0(0)1(1)0.9E X P X P X P X E X P X P X P X =-=-+=+===-=-+=+==可以解得 P(X =-1)=0.4, P(X=1)=0.5,P(X=0) = 1- P(X =-1) - P(X=1) = 1-0.4-0.5=0.14. 设随机变量X 的密度函数为2(1),()x x f x - 0<<1,⎧=⎨0, ⎩其他. 求E(X). 解 由题意,11()()2(1)3E X xf x dx x xdx ∞-∞==-=⎰⎰,5. 设随机变量X 的密度函数为,0()x e x f x x -⎧ ≥,=⎨0, <0.⎩ 求E(2X),E(2x e -). 解(2)2()2x E X xf x dx xe dx ∞∞--∞==⎰⎰()()0002|20|2x x x xe e dx e∞-∞--∞=+=-=⎰ 22230()()11|33Xx x xx E ee f x dxee dx e ∞---∞∞---∞===-=⎰⎰6. 对球的直径作近似测量,其值均匀分布在区间[a ,b ]上,求球的体积的数学期望.解 由题意,球的直接D~U(a,b), 球的体积V=()3432D π因此,341()()32bax E V Vf x dx dx b aπ∞-∞⎛⎫== ⎪-⎝⎭⎰⎰ 4220|()()24()24x a b a b b a ππ∞==++-7. 设随机变量X ,Y 的密度函数分别为22,0()x X e x f x x -⎧ >,=⎨0, ≤0.⎩ 44,0()y Y e y f y y -⎧ >,=⎨0, <0.⎩ 求E(X +Y),E(2X -3Y 2). 解()()(E X Y E X E Y+=+240()()24113244X Y x y x f x dx y f y dyxe dx ye dy+∞+∞-∞-∞+∞+∞--=+=+=+=⎰⎰⎰⎰22222400(23)2()3()2()3()223435188X Y xy E X Y E X E Y x f x dx y f y dyxedx y e dy+∞+∞-∞-∞+∞+∞---=-=-=-=-=⎰⎰⎰⎰8. 设随机函数X 和Y 相互独立,其密度函数为2,1()X x x f x 0≤≤,⎧=⎨ 0, .⎩其他5,5() 5y Y e y f y y -⎧ >,=⎨ 0, ≤.⎩(-)求E(XY).解 由于XY 相互独立, 因此有()()()12(5)05(5)(5)5(5)()()()()()225320553225(01)(6)433X Y y y y y E XY E X E Y x f x dx y f y dyx dx ye dyye e dy e +∞+∞-∞-∞+∞--+∞------===⎛⎫⎛+∞⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛+∞⎫=---- ⎪ ⎪ ⎪⎝⎭⎝⎭=-----=-⨯-=⎰⎰⎰⎰⎰9. 设随机函数X 的密度为()f x <,= 0, ≥⎩x 1x 1.求E(X), D(X). 解11()()0E X x f x dx +∞-∞-===⎰⎰π221122211001012()()2222211()arcsin |1422E X x f x dx x +∞-∞-====-=-+=-+=-+=⎰⎰⎰⎰⎰⎰ππππππππ()221()()()2D XE X E X =-=10. 设随机函数X 服从瑞利(Rayleigh)分布, 其密度函数为2222,0()x x e x f x x σ-⎧ >,⎪=σ⎨⎪ 0, ≤0.⎩其中σ>0是常数,求E(X),D(X). 解22222222()()x x x E X x f x dx edx xdeσσσ--+∞+∞+∞-∞===-⎰⎰⎰2222222222200/0022x x x u u x xe e dx e dxedu σσσσππσσσ---+∞+∞+∞-=⎛⎫+∞=--= ⎪⎝⎭−−−→===⎰⎰⎰22222222222222222232222200222()()2202220x x x x x x u u ux E X x f x dx edx x dex e xe dx xe dx e du e σσσσσσσσσσ=+∞+∞+∞---∞+∞+∞---+∞--===-⎛+∞⎫=--= ⎪⎝⎭+∞−−−→==-=⎰⎰⎰⎰⎰⎰ ()22222()()()2(2)22D XE X E X ππσσσ⎛⎫=-=-=- ⎪ ⎪⎝⎭11. 抛掷12颗骰子,求出现的点数之和的数学期望与方差.解 掷1颗骰子,点数的期望和方差分别为: E(X) = (1+2+3+4+5+6)/6= 7/2 E(X 2)=(12+22+32+42+52+62)/6=91/6 因此 D(X) = E(X 2)-(E(X)) 2 = 35/12掷12颗骰子, 每一颗骰子都是相互独立的, 因此有: E(X 1+X 2+…+X 12)=12E(X) = 42 D(X 1+X 2+…+X 12) =D(X 1)+D(X 2)+…+D(X 12)=12D(X)=35 12. 将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球,将一只球装入与球同号码的盒子中,称为一个配对,记X 为配对的个数,求E(X), D(X).解 (1)直接求X 的分布律有些困难,我们引进新的随机变量X k1,0,k k X k ⎧=⎨⎩第只球装入第k 号盒子第只球没装入第k 号盒子,则有:1nkk X X ==∑,X k 服0-1分布因此:11(0)11,(1),kk P X p P X p n n==-=-===()11111(),()11()1k k n nk k k k E X p D X n n n E X E X E X n n ==⎛⎫===- ⎪⎝⎭⎛⎫===⋅= ⎪⎝⎭∑∑ (2)k j X X 服从0-1分布,则有11(1)(1)(1)(1,1),()k j k j k j n n n n P X X P X X E X X --======1()n k k D X D X =⎛⎫= ⎪⎝⎭∑()112222(,)1112(()()())11112(1)1111112111(1)nk k j k k jnk j k j k k jk j n D X Cov X X E X X E X E X n n n n n n n C n n n n n n =<=<<=+⎛⎫=-+- ⎪⎝⎭⎛⎫=-+- ⎪-⎝⎭⎛⎫-⎛⎫=-+-=-+-= ⎪ ⎪-⎝⎭⎝⎭∑∑∑∑∑故,E(X)=D(X)=1.我们知道,泊松分布具有期望与方差相等的性质,可以认定,X 服从参数为1的泊松分布. 13. 在长为l 的线段上任意选取两点,求两点间距离的数学期望及方差.解 设所取的两点为X,Y, 则X,Y 为独立同分布的随机变量, 其密度函数为11,01,01(),(),0,0,X Y x x f x f y l l other other ⎧⎧≤≤≤≤⎪⎪==⎨⎨⎪⎪⎩⎩ 21,0,1(,)()(),0,Y Y x y f x y f x f y l other ⎧≤≤⎪==⎨⎪⎩依题意有()(,)E X Y x y f x y dxdy +∞+∞-∞-∞-=-⎰⎰()()2200011lxl l x x y dydx y x dydx l l=-+-⎰⎰⎰⎰222220011222l l x l x dx lx dx l l=+-+⎰⎰ 322322110032262l l x l x lx x l l ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 663l l l =+= ()22()(,)E X Y x yf x y dxdy +∞+∞-∞-∞-=-⎰⎰()22001l lx y dxdy l=-⎰⎰ ()222003222012103ll l dx x xy y dyl l yx y xy dxl =-+⎛⎫=-+ ⎪⎝⎭⎰⎰⎰ 3222033222213111032316ll x l xl dx l ll x l x l x l l =-+⎛⎫=-+⎪⎝⎭=⎰ D(X -Y) = E((X -Y)2)-(E(X -Y))2 = 2221116918l l l -= 14.设随机变量X 服从均匀分布,其密度函数为12,()2x f x ⎧0<<,⎪=⎨⎪0, .⎩其他,求E(2X 2),D(2X 2). 解12222201(2)2()2()226E X E X x f x dx x dx +∞-∞====⎰⎰ 124442011()()2,()8012E X x f x dx x dx E X +∞-∞====⎰⎰ ()()22242111(2)4()4()()48014445D X D X E X E X ⎛⎫==-=⨯-=⎪⎝⎭15. 设随机变量X 的方差为2.5,试利用切比雪夫不等式估计概率(()7.5)P X E X -≥。

概率论与数理统计习题(含解答,答案).

概率论与数理统计习题(含解答,答案).

概率论与数理统计习题(含解答,答案).概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率论与数理统计试卷及答案

概率论与数理统计试卷及答案

概率论与数理统计试卷及答案一、填空题(每空2分,共30分)1、 设随机变量ξ服从自由度为(n ,m)的F 分布,则随机变量函数1/ξ服从自由度为 的 分布。

2、设(0,1)N ξ:,2()n ηχ:,且,ξη相互独立,服从自由度为 的 分布。

3、均值μ未知,H 0:220σσ=,应选取统计量 ,在H 0为真的条件下,统计量服从自由度 为的 分布。

4、在单因子r 水平方差分析中,21e S Q U =+总被称为 ,e Q 被称为 ,1U 被称为 。

设r 个正态总体i ξ相互独立,且2(,),1,2,,i N i r ξμσ=:L ;欲检验假设:H 0:12r μμμ===L ,应选用统计量为 ,当H 0为真时,统计量服从 。

5、设,ξη为相互独立、数学期望为0、方差为1的随机变数,令t t ξξη=+,则()t E ξ= ,()t D ξ= ,12(,)K t t = 。

二、选择题(15分)11、设随机变数T 服从自由度为n 的t 分布,则随机变数T 2服从( )A .2(1)n χ- B. 2()n χ C.(,1)F n D. (1,)F n 12、设)1,(~μN X ,样本X 1,X 2,X 3,下列是μ的无偏估计量的有( )A 、3211ˆX X X ++=μB 、2123221ˆ555X X X μ=++ C 、3213414141ˆX X X ++=μD 、3214636161ˆX X X ++=μ 13、总体均值μ的95%的置信区间的意义是指( )A 、这个区间平均含总体95%的值B 、这个区间平均含样体95%的值C 、这个区间有95%的机会含μ的真值D 、这个区间有95%的机会含样本均值 14、在假设检验中,记H 1为备择假设,则称( )为犯第1类错误。

A 、若H 1为真,接受H 1 B 、若H 1不真,接受H 1 C 、若H 1为真,拒绝H 1 D 、若H 1不真,拒绝H 115、设总体),(~2σμN X ,其中μ已知,2σ未知,321,,X X X 是取自总体X 的样本,则下列样本函数不是统计量的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年武汉科技大学《概率论与数理统计》考研真题
(总分:150.00,做题时间:180分钟)
一、选择题(总题数:6,分数:24.00)
1.设P(A)=0.2,P(B)-0.5,P(AB)=0.1,则事件A,B()。

(分数:4.00)
A.相互独立√
B.相等
C.互不相容
D.互为对立事件
2.已知随机变量X,Y的方差存在,且cov(X,Y)=0,下列结论错误的是()。

(分数:4.00)
A.X,Y不相关
B.D(X-Y)=DX+DY
C.E(XY)=(EX)(EY)
D.D(XY)=DX.DY √
3.已知X~N(μ,1)μ为未知参数,X1,...,X5是来自X的样本。

下列式子是统计量的是()。

(分数:
4.00)
A.X1-X2
B.√
C.min{X1, (X5)
D.
4.在显著性水平为α的假设检验中,H0为原假设,下列说法正确的是()。

(分数:
4.00)
A.H0为真时,拒绝H0的概率不超过α。


B.H0为假时,接受H0的概率不超过α。

C.使用这种检验法,结论错误的概率为α。

D.使用这种检验法,结论正确的概率为1-α。

5.设EX=EY=2,Cov(X,Y)=则E(XY)=()。

(分数:4.00)
A.
B.√
C.4
6.设总体X~N(μ,σ2),X1,...,Xn为其样本,则服从()。

(分数:
4.00)
A.χ2(n-1)
B.χ2(n)√
C.t(n-1)
D.t(n)
二、填空题(总题数:6,分数:24.00)
7.把三个不同的球随机的放入三个不同的盒中,则出现两个空盒的概率为(分数:4.00)
填空项1:__________________
(正确答案:1/9)
8.设随机变量X~N(0,1),Φ(x)为其分布函数,则Φ(x)+Φ(-x)=(分数:4.00)
填空项1:__________________
(正确答案:1)
9.设总体X~N(μ,σ2),X1,X2,X3是来自总体的样本,则当常数a=________时,
是未知常数μ的无偏估计。

(分数:4.00)
填空项1:__________________
(正确答案:1/2)
10.设总体X1,...,X10是来自N(0.1)的样本,则(分数:4.00)
填空项1:__________________
(正确答案:9)
11.设总体X~N(μ,σ2)其中μ未知,x1,...,xn为其样本,若检验问题为H0:σ2=1,H1:σ2≠1,则采用的检验统计量应为(分数:4.00)
填空项1:__________________
(正确答案:)
12.设二维随机变量(X,Y)服从区域G:x2+y2≤1上的均匀分布,则(X,Y)的联合概率密度p(x,y)=(分数:4.00)
填空项1:__________________
三、计算题(总题数:9,分数:90.00)
13.已知P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,求P(A∪B)。

(分数:10.00)
_________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________
_____________________________________________________________________________________ _____________________________________________________________________________________ 正确答案:(
)
14.设随机变量X的概率密度为f(x)=Ce-|x|,-∞<x<+∞,求常数C和P(0<x<1)。

(分数:10.00)
_________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ____________________________________________________________________________________ 正确答案:(
)
15.已知EX=EY=0,DX=DY=1,X,Y的相关系数ρXY=0.5,求E(X+Y)2。

(分数:10.00)
_________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ____________________________________________________________________________________ 正确答案:(。

相关文档
最新文档