2009年九年级数学奥数题

合集下载

2009年数学九年级奥林匹克初中训练(含答案)

2009年数学九年级奥林匹克初中训练(含答案)

一、选择题(共6小题,每小题7分,满分42分)1、设a,b是实数,且,则等于()A、B、C、D、2、适合于(y﹣2)x2+yx+2=0的非负整数对(x,y)的个数是()A、1B、2C、3D、43、如图,凸五边形ABCDE内接于半径为1的⊙O,ABCD是矩形,AE=ED,且BE和CE把AD三等分.则此五边形ABCDE的面积是()A、B、C、D、4、若关于x的不等式|x+a|≥|x﹣3|的解中包含了”x≥a”,则实数a的取值范围是()A、a≥﹣3B、a≥﹣1或a=﹣3C、a≥1或a=﹣3D、a≥2或a=﹣35、如图所示,在△ABC中,M是边AB的中点,N是边AC上的点,且,CM与BN相交于点K,若△BCK 的面积等于1,则△ABC的面积等于()A、3B、C、4D、6、设a,b,c为实数,且a≠0,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,且抛物线的顶点在直线y=﹣1上.若△ABC是直角三角形,则Rt△ABC面积的最大值是()A、1B、C、2D、3二、填空题(共4小题,每小题7分,满分28分)7、设x是实数,则函数y=|x﹣1|+|x﹣2|﹣|x﹣3|的最小值是_________.8、设a、b为实数,方程x2+ax+b=0的两根为x1,x2,且x13+x23=x12+x22=x1+x2,则有序的二元数组(a,b)共有_________个.9、若,则a:b:c=_________.10、如图,正△EFG内接于正方形ABCD,其中E,F,G分别在边AB,AD,BC上,若,则=_________.三、解答题(共3小题,满分70分)11、如图,在锐角△ABC内有一点P,直线AP,BP,CP分别交对边于Q1,Q2,Q3,且∠PQ1C=∠PQ2A=∠PQ3B.试问:点P是否必为△ABC的垂心?如果是,请证明;如果不是,请举反例说明.12、是否存在这样的正整数n,使得3n2+7n﹣1能整除n3+n2+n+1?请说明理由.13、设p为素数,k是正整数.求证:方程x2+px+kp﹣1=0至少有一个整数根的充分必要条件是k=1.答案与评分标准一、选择题(共6小题,每小题7分,满分42分)1、设a,b是实数,且,则等于()A、B、C、D、考点:换元法解一元二次方程。

2009年全国初中数学竞赛试题及答案.doc

2009年全国初中数学竞赛试题及答案.doc

2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足24242a b a -+++=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )2【答】C . 解:由题设知a ≥3,所以,题设的等式为20b +=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A(B(C )1 (D )2 【答】A . 解:因为△BOC ∽ △ABC ,所以BO BC AB AC =,即11a a a =+,所以,2a 由0a >,解得a =. 3.将一枚六个面编号分别为1,2,3,4,5,6后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组322ax by x y +=⎧⎨+=⎩, 只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )3613 【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b 即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a 由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y看作x 的函数,函数的图像如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )32【答】B .解:根据图像可得BC 5,AB △ABC =12×8×4=16. 5.关于x ,y 的方程2x y =x ,y ).(A )2组 (B )3组 ( (D )无穷多组【答】C .解:可将原方程视为关于x 的二次方程,将其变形为22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数.由 2224(229)7116y y y ∆=--=-+≥0,解得 2y ≤11616.57≈.于是 显然,只有216y =时,4∆=是完全平方数,符合要求.当4y =时,原方程为2430x x ++=,此时121,3x x =-=-;当y =-4时,原方程为2430x x -+=,此时341,3x x == .所 以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kx ky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得 ()()250003000k x y k x y k +++=, 则 237501150003000x y +==+.7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AH AB的值为 . 解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中,EFA ∠=∠FAH EAF ∠=∠ 所以Rt △FHA ∽Rt △EF A , AH AF AF AE=. 而AF AB =以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .【答】 10. 解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=. 由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】7.解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 . 故由勾股定理逆定理知△ACB且90ACB ∠=︒.作EF ⊥BC,垂足为F .设EF =x ,由12ECF ∠=CF =x ,于是BF =20-x .由于EF ∥AC ,所以 EF BF AC BC =,即 15x =解得607x =.所以7CE ==. 10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 . 【答】2-. 解:设报3的人心里想的数是x ,则报5于是报7的人心里想的数是 12(8)4x x --=+,报9数是16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+是4(8)4x x -+=--.所以4x x =--,解得2x =-.三、解答题(共4题,每题20分,共80分)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x . (1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值.解:1.联立2y x =与c x t y --=)12(,消去y 得二次方程2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以2221212121[()()]2c x x x x x x ==+-+ =221[(21)(23)]2t t t --+-=21(364)2t t -+. ②………………5分 把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③………………10分 t 的取值应满足2221223t t x x +-=+≥0, ④ 且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0,⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 2t ≤2+所以,t 的取值范围为22-≤t ≤22+⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在22-≤t ≤22+22t =-时,2min 3111(21)2224c -=--+=. ………………20分 12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和.解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-. ………………5分 因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分又02009a <<,所以0110k =,,,.因此,满足条件的所有可能的正整数a 的和为11+192(1+2+…+10)=10571. ………………20分13.已知AB 为⊙O 的直径,弦//DC AB ,连接DO .过点D 作DO 的垂线,与BA 的延长线交于点E ,过点E 作AC 的平行线交CD 于点F ,过点D 作AC 的平行线交BF 于点G .求证:AG BG ⊥. (第13题)证明:连接AD ,BC ,因为四边形AEFC 是平行四边形,所以AE FC =.由于AD CB DAE BCF =∠=∠,,因此有DAE ∆≌BCF ∆,于是可得ADE CBF ∠=∠. ………………10分又因为DE 与⊙O 相切于点D ,所以DCA ADE ∠=∠.结合//DG AC ,可得 GDC DCA ADE GBC ∠=∠=∠=∠,于是D B C G ,,,四点共圆.因此点G 在⊙O 上,从而有AG BG ⊥.……………20分14.n 个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<=;且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =,,,.即 12()1n i i a a a a b n +++-=-. 于是,对于任意的1≤i j <≤n ,都有1j ii j a a b b n --=-, 从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故312251n -⨯. ………………10分 由()()()112211n n n n n a a a a a a a ----=-+-++- ≥()()()2111(1)n n n n -+-++-=-, 所以,2(1)n -≤2008,于是n ≤45. 结合312251n -⨯,所以,n ≤9. ……15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………20分情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

2009年全国初中数学联赛试题及答案

2009年全国初中数学联赛试题及答案

2009年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分) 1.设1a =,则32312612a a a +--=( )A.24.B. 25.C. 10. D. 12.2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC =( )A.103.用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解的个数为( ) A.1. B. 2. C. 3. D. 4.4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为( ) A.314. B. 37. C. 12. D. 47.5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则sin ∠CBE =( )23. C. 13.6.设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数是( )A.3.B. 4.C. 5.D. 6. 二、填空题(本题满分28分,每小题7分)1.已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是____________.2. 设D 是△ABC 的边AB 上的一点,作DE//BC 交AC 于点E ,作DF//AC 交BC 于点F ,已知△ADE 、△DBF 的面积分别为m 和n ,则四边形DECF 的面积为______.3.如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=_ ____.4.已知,a b是正整数,且满足是整数,则这样的有序数对(,)a b 共有_____对.第二试(A )一、(本题满分20分)已知二次函数2(0)y x bx c c =++<的图象与x 轴的交点分别为A 、B ,与y 轴的交点为C.设△ABC 的外接圆的圆心为点P.(1)证明:⊙P 与y 轴的另一个交点为定点.DC(2)如果AB 恰好为⊙P 的直径且2ABC S △=,求b 和c 的值.二、(本题满分25分)设CD 是直角三角形ABC 的斜边AD 上的高,1I 、2I 分别是△ADC 、△BDC 的内心,AC =3,BC =4,求1I 2I .三、(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++=14b c a c a b a b c bc ca ab +-+-+-++=.第二试(B )一、(本题满分20分)题目与(A )卷第一题相同. 二、(本题满分25分) 已知△ABC 中,∠ACB =90°,AB 边上的高线CH 与△ABC 的两条内角平分线 AM 、BN 分别交于P 、Q 两点.PM 、QN 的中点分别为E 、F.求证:EF ∥AB. 三、(本题满分25分)题目与(A )卷第三题相同.第二试(C )一、(本题满分20分)题目与(A )卷第一题相同. 二、(本题满分25分)题目与(B )卷第二题相同.三、(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++= 14b c a c a b a b c bc ca ab +-+-+-++=.NAB2009年全国初中数学联合竞赛试题答案第一试一、选择题:(本题满分42分,每小题7分) 1.A 2.C 3.C 4.B 5.D 6.B 二、填空题:(本题满分28分,每小题7分)1.3-2.3.1-4.7第二试 (A )一、(本题满分20分)解:(1)易求得点的坐标为,设,,则,. 设⊙P 与轴的另一个交点为D ,由于AB 、CD 是⊙P 的两条相交弦,它们的交点为点O ,所以OA ×OB =OC ×OD ,则.因为,所以点在轴的负半轴上,从而点D 在轴的正半轴上,所以点D 为定点,它的坐标为(0,1).(2)因为AB ⊥CD ,如果AB 恰好为⊙P 的直径,则C 、D 关于点O 对称,所以点的坐标为,即.又,所以,解得.二、(本题满分25分) 解:作E ⊥AB 于E ,F ⊥AB 于F.在直角三角形ABC 中,AC =3,BC =4,.又CD ⊥AB ,由射影定理可得,故,.因为E 为直角三角形ACD 的内切圆的半径,所以=. 连接D、D,则D、D分别是∠ADC 和∠BDC 的平分线,所以∠DC =∠DA =∠DC=∠DB =45°,故∠D =90°,所以D ⊥D ,.同理,可求得,. 所以=.三、(本题满分25分) 证明:①②证法1 将①②两式相乘,得,即,即,即,即,即,即,即,即,所以或或,即或或.因此,以为三边长可构成一个直角三角形.证法2 结合①式,由②式可得,变形,得③又由①式得,即,代入③式,得,.,所以或或.结合①式可得或或.因此,以为三边长可构成一个直角三角形.第二试(B)一、(本题满分20分)题目与(A)卷第一题相同.二、(本题满分25分)解:因为BN是∠ABC的平分线,所以.又因为CH⊥AB,所以因此.又F是QN的中点,所以CF⊥QN,所以,因此C、F、H、B四点共圆.又,所以FC=FH,故点F在CH的中垂线上.同理可证,点E在CH的中垂线上.因此EF⊥CH.又AB⊥CH,所以EF∥AB.三、(本题满分25分)题目与(A)卷第三题相同.第二试(C)一、(本题满分20分)题目与(A)卷第一题相同.二、(本题满分25分)题目与(B)卷第二题相同.三、(本题满分25分)解:①②解法1 将①②两式相乘,得,即,即,即,即,即,即,即,即,所以或或,即或或.因此,以为三边长可构成一个直角三角形,它的最大内角为90°.解法2 结合①式,由②式可得,变形,得③又由①式得,即,代入③式,得,即.,所以或或.结合①式可得或或.因此,以为三边长可构成一个直角三角形,它的最大内角为90°.。

奥数-2009-2010学年第一学期九年级数学合科竞赛试题(含答案)-参考答卷

奥数-2009-2010学年第一学期九年级数学合科竞赛试题(含答案)-参考答卷

2312222)31()2(24810-=-+-=--+--π22211211)1(1322)1)(1(3)1)(1(1213122==+=-=-++--=-+---+-=---+时,原式当)()(x x x x x x x x x x x x x x x 参考答案一、选择题:(每小题3分, 共30分)题 号 1234 56 789 10答 案CACDCDCDDD二、填空题:(每小题4分, 共24分)11、 a(x-4)(x+4) ; 12、 3 ; 13、 0.5 ;14、 3 ; 15、 -1<x <2 ; 16、 2, 2.5 , 324- 。

三、解答题:(本题有8小题, 共66分) 17、(本题满分 8分,每题4分)18、(本题满分6分)解:(1)集合{}2,1不是好的集合,{}7,4,1是好的集合。

(每个判断正确得1分,) (2)集合{}4、{}5,4,3、{}6,2、{}7,6,4,2,1等都可以举。

(每举出一个得2分) 19、(本题满分6分)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是 10% ; (3)扇形统计图中A 级所在的扇形的圆心角度数是 720; (4)若该校九年级有500名学生,请你用此样本估计体育测试中 A 级和B 级的学生人数共约为 330 人. 20、(本题满分 6分) 解:1204π21、(本题 满分8分) 解:设做竖式纸盒x 个,横式纸盒y 个。

根据题意,得 x+2y=500 ①4x+3y=1001 ② (4分)将①代入②,得2000-5y=10015y=999 (6分)y 不是自然数,不合题意。

所以不可能做成若干只纸盒,恰好把库存的纸板用完。

(8分) 22、(本题 8分)解:(1)反比例函数的解析式为 3y x=-………1分 一次函数的解析式为 4y x =-………3分 (2)∵34x x-=- ,∴2430x x -+= 解得123,1x x ==(不合题意,舍去) 分 ∴点B 的坐标为(3,1-)………4分当0<x <1 或x >3时,总有一次函数值大于反比例函数值。

2009年全国初中数学竞赛江西赛区预赛试题及答案

2009年全国初中数学竞赛江西赛区预赛试题及答案

2009年全国初中数学江西赛区预赛试题(九年级)(2009年3月22日上午9:30~11:30)喻老师整理一、选择题(共5小题,每小题7分,满分35分)以下每道小题均给出代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里,不填,多填或错填都的0分)1、已知非零实数a 、b 满足|2a -4|+|b+2|+(a-3)b 2 +4=2a ,则a+b 等于( )A 、-1B 、0C 、1D 、22、如图所示,菱形ABCD 边长为a ,点O 在对角线AC 上一点,且OA=a ,OB=OC=OD=1,则a 等于( )A 、5+12B 、5-12C 、1D 、2 3、将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方形骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则关于x 、y 的方程组⎩⎨⎧=+=+2y 2x 3by ax 只有正数解的概率为( ) A 、112 B 、29 C 、518 D 、13364、如图1所示,在直角梯形ABCD 中,AB ∥CD ,∠B=90°,动点P 从点B 出发,沿梯形的边由B →C →D →A 运动,设点P 运动的路程为x ,△ABP 的面积为y ,把y 看作x 的函数,函数图象如图2所示,则△ABC 的面积为( )A 、10B 、16C 、18D 、325、关于x 、y 的方程x 2+xy+y 2=29的整数解(x 、y )的组数为( )A 、2组B 、3组C 、4组D 、无穷多组二、填空题(共5小题,每小题7分,共35分)6、一自行车轮胎,若把它安装在前轮,则自行车行驶5000km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎。

如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆自行车将能行驶 ;7、已知线段AB 的中点为C ,以点C 为圆心,AB 长为半径作圆,在线段AB 的延长线上取点D ,使得BD=AC ;再以点D 为圆心,DA 的长位半径作圆,与⊙A分别相交于点F 、G 两点,连接FG 交AB 于点H ,则AH AB的值为 ;8、已知a 1,a 2、a 3、a 4、a 5满足条件a 1+a 2+a 3+a 4+a 5=9的五个不同的整数,若b 是关于x 的方程(x -a 1)(x -a 2)(x -a 3)(x -a 4)(x -a 5)=2009的整数根,则b 的值为 ;9、如图所示,在△ABC 中,CD 是高,CE 为∠ACB 的平分线,若AC=14,BC=20,CD=12,则CE 的长等于10、10个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实告诉两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来,若抱出来的数如图所示,则报3的人心里想的数是 ;三、解答题(共4小题,每题20分,共80分)11、函数y=x 2+(2k -1)x+k 2的图像与x 轴的两个交点是否都在直线x=1的右侧?若是,请说明理由;若不一定是,请求出两个交点都在直线x=1的右侧时k 的取值范围?12、在平面直角坐标系xoy中,我们把横坐标为整数,纵坐标为完成平方数的点称为“好点”,求二次函数y=(x-90)2-4907的图像上的所有“好点”的坐标.13、如图,给定锐角△ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过电D、E分别作l的垂线,垂足分别为F、G,试比较线段DF和EG的大小,并证明你的结论?14、n个正整数a1,a2,……a n满足如下条件:1=a1<a2<a3<……<a n=2009,且a1,a2,……a n中任意n-1个不同的数的算术平均数都是正整数,求n的最大值。

2009年数学奥林匹克九年级数学竞赛题六.doc18

2009年数学奥林匹克九年级数学竞赛题六.doc18

2009年数学奥林匹克九年级数学竞赛题六第 一 试一. 选择题.(每小题7分,共42分)( )1.设,a b 是实数,且11111a b b a -=++-,则11b a++等于:(A)12± (B)12+± (C)32± (D)32( )2.适合于2(2)20y x yx -++=的非负整数对(,)x y 的个数是:(A)1 (B)2 (C)3 (D)4( )3.如图1,凸五边形ABCDE 内接于半径为1的⊙O,ABCD 是矩形,AE=ED,且BE 和CE 把AD 三等分.则此五边形ABCDE 的面积是:( )4.若关于x 的不等式3x a x +≥-的解中包含了”x a ≥”,则实数a 的取值范围是:(A)3a ≥- (B)1a ≥-或3a =- (C)1a ≥或3a =- (D)2a ≥或3a =-( )5.如图2,在ΔABC 中,M 是边AB 的中点,N 是边AC 上的点,且2AN NC=,CM 与BN 相交于点K.若ΔBCK 的面积等于1,则ΔABC 的面积等于: (A)3 (B)103 (C)4 (D)133 ( )6.设,,a b c 为实数,且0a ≠,抛物线2y ax bx c =++与x 轴交于A,B 两点,与y 轴交于点C,且抛物线的顶点在直线1y =-上.若ΔABC 是直角三角形,则Rt ΔABC 面积的最大值是:(A)1 (C)2 (D)3二. 填空题.(每小题7分,共28分)1.设x 是实数,则函数123y x x x =-+---的最小值是 .2.方程20x a x b ++=的两根为12,x x ,且3322121212,x x x x x x +=+=+,则有序实数组(,)a b 共有 个.3.若2a b a c b c c a a b c+==++++,则::a b c = . 4.如图3,正ΔEFG 内接于正方形ABCD,其中E,F,G 分别在边AB,AD,BC 上,若2,AE EB =则BG BC= . 第 二 试一.(20分)如图4,在锐角ΔABC 内有一点P,直线AP,BP,CP 分别交对边于Q 1,Q 2,Q 3,且∠PQ 1C=∠PQ 2A=∠PQ 3B.试问:点P 是否必为ΔABC 的垂心?如果是,请证明;如果不是,请举反例说明.二.(25分)设p 为素数,k 是正整数.求证:方程210x px kp ++-=至少有一个整数根的充分必要条件是1k =。

2009中国数学奥林匹克解答.doc

2009中国数学奥林匹克解答.doc

2009中国数学奥林匹克解答一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;(2)若 EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论.解(1)设Q ,R 分别是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,则11,22EQ OB RM MQ OC RF ====,又OQMR 是平行四边形,所以OQM ORM ∠=∠,由题设A ,B ,C ,D 四点共圆,所以ABD ACD ∠=∠,于是 图1 22EQO ABD ACD FRO ∠=∠=∠=∠,所以 E Q M E Q OO Q M F R O O R M ∠=∠+∠=∠+∠=∠, 故 E Q M M R F ∆≅∆,所以 EM =FM , 同理可得 EN =FN , 所以 E M F N E N F M⋅=⋅. (2)答案是否定的.当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有EM FN EN FM ⋅=⋅,证明如下:如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则CB11,22NS OD EQ OB ==,所以N S O DE Q O B=. ① 又11,22ES OA MQ OC ==,所以ES OAMQ OC=. ② 而AD ∥BC ,所以OA ODOC OB=, ③ 由①,②,③得NS ESEQ MQ=. 因为 2NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠,()(1802)EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+︒-∠ (180)2AOE EOB AOD AOE =∠+︒-∠=∠+∠,即 NSE EQM ∠=∠, 所以 NSE ∆~EQM ∆, 故EN SE OAEM QM OC==(由②). 同理可得, FN OAFM OC =, 所以 EN FNEM FM =, 从而 EM FN EN FM ⋅=⋅.CB二、求所有的素数对(p ,q ),使得q p pq 55+.解:若pq |2,不妨设2=p ,则q q 55|22+,故255|+q q .由Fermat 小定理, 55|-q q ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.若pq 为奇数且pq |5,不妨设5=p ,则q q 55|55+,故6255|1+-q q . 当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1--q q ,故626|q .由于q 为奇素数,而626的奇素因子只有313,所以313=q .经检验素数对)313,5(合乎要求.若q p ,都不等于2和5,则有1155|--+q p pq ,故)(m od 05511p q p ≡+--. ①由Fermat 小定理,得 )(m od 151p p ≡- , ② 故由①,②得)(m od 151p q -≡-. ③设)12(21-=-r p k ,)12(21-=-s q l , 其中s r l k ,,,为正整数. 若l k ≤,则由②,③易知)(mod 1)1()5(5)5(1112121)12)(12(2)12(21)12(2p r r q s r s p s lkl kl -≡-≡==≡=----------,这与2≠p 矛盾!所以l k >.同理有l k <,矛盾!即此时不存在合乎要求的),(q p . 综上所述,所有满足题目要求的素数对),(q p 为)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.三、设m ,n 是给定的整数,n m <<4,1221+n A A A 是一个正2n +1边形,{}1221,,,+=n A A A P .求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.解 先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设这个凸m 边形为m P P P 21,只考虑至少有一个锐角的情况,此时不妨设221π<∠P P P m ,则)13(2122-≤≤>∠-=∠m j P P P P P P m m j ππ,更有)13(211-≤≤>∠+-m j P P P j j j π.而321P P P ∠+11P P P m m -∠>π,故其中至多一个为锐角,这就证明了引理. 由引理知,若凸m 边形中恰有两个内角是锐角,则它们对应的顶点相邻. 在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设i A 与j A 的劣弧上包含了P 的r 条边(n r ≤≤1),这样的),(j i 在r 固定时恰有12+n 对.(1) 若凸m 边形的其余2-m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1-r 个P 中的点,此时这2-m 个顶点的取法数为21--m r C .(2) 若凸m 边形的其余2-m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,所以,其余的2-m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,此时这2-m 个顶点的取法数为2-m r C .所以,满足题设的凸m 边形的个数为))()()(12()12()()12(11111111121211221∑∑∑∑∑==--+---=-=--=----+-+=⎪⎭⎫⎝⎛++=++nr nr m rm r m r m r n r m r n r m r nr m rm r C C C C n C C n CCn))(12(111--+++=m nm n C C n .四、给定整数3≥n ,实数n a a a ,,,21 满足 1min 1=-≤<≤j i nj i a a .求∑=nk k a 13的最小值.解 不妨设n a a a <<< 21,则对n k ≤≤1,有k n a a a a k k n k n k 2111-+≥-≥++-+-,所以()∑∑=-+=+=nk kn knk ka a a 13131321()()()∑=-+-+-+⎪⎭⎫ ⎝⎛++-+=n k k n k kn k k n k a a a a a a 121211414321 ()∑∑==-+-+≥+≥n k nk kn k k n a a 13131218181. 当n 为奇数时,222113313)1(412221-=⋅⋅=-+∑∑-==n i k n n i nk . 当n 为偶数时,32113)12(221∑∑==-=-+n i nk i k n⎪⎪⎪⎭⎫ ⎝⎛-=∑∑==21313)2(2ni n j i j)2(4122-=n n . 所以,当n 为奇数时,2213)1(321-≥∑=n a nk k,当n 为偶数时,)2(3212213-≥∑=n n a nk k,等号均在n i n i a i ,,2,1,21 =+-=时成立. 因此,∑=nk k a 13的最小值为22)1(321-n (n 为奇数),或者)2(32122-n n (n 为偶数).五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.问:对怎样的n ,存在一种染色方式,使得对于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分别被染为这3种颜色?解 当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。

初三数学奥数题及答案

初三数学奥数题及答案

初三数学奥数题及答案题目一:数列问题题目描述:已知数列 {a_n} 的前几项为 a_1 = 1, a_2 = 3, a_3 = 6, a_4 = 10, ... 求 a_5 的值以及数列的通项公式。

解题思路:观察数列的前几项,可以发现每一项与前一项的差值依次为 2, 3, 4, ... 这是一个等差数列的差值,差值为 1, 2, 3, ...。

因此,可以推断出数列 {a_n} 的通项公式为 a_n = 1 + n * (n - 1) / 2。

答案:根据通项公式,a_5 = 1 + 5 * (5 - 1) / 2 = 1 + 20 / 2 = 11。

题目二:几何问题题目描述:在三角形 ABC 中,已知 AB = 5, AC = 7, BC = 6。

求三角形 ABC 的面积。

解题思路:利用海伦公式,首先计算半周长 s = (AB + AC + BC) / 2 = (5 + 7 + 6) / 2 = 9。

然后根据海伦公式S = √(s * (s - AB) * (s - AC) * (s - BC)) 计算面积。

答案:S = √(9 * (9 - 5) * (9 - 7) * (9 - 6)) = √(9 * 4 * 2* 3) = 6√6。

题目三:组合问题题目描述:有 10 个不同的球,要将它们放入 3 个不同的盒子中,每个盒子至少放一个球。

求不同的放法总数。

解题思路:首先,将 10 个球分成 3 组,其中两组有 3 个球,另一组有 4 个球。

使用组合公式 C(n, k) 计算分组的方法数,然后将分组的结果分配到 3 个盒子中。

答案:首先计算分组的方法数,C(10, 3) = 120。

然后将 3 组分配到3 个盒子中,有 3! = 6 种方法。

因此,总的放法数为 120 * 6 = 720。

题目四:函数问题题目描述:已知函数 f(x) = x^2 - 6x + 8,求 f(x) 的最小值。

解题思路:观察函数 f(x),可以看出它是一个开口向上的二次函数。

2009年中国数学奥林匹克CMO试题和详细解答word版

2009年中国数学奥林匹克CMO试题和详细解答word版

2009中国数学奥林匹克解答、给定锐角三角形PBC, PB = PC •设A, D分别是边PB,PC上的点,连接AC, BD,相交于点O.过点O分别作0E丄AB, OF丄CD,垂足分别为E, F,线段BC, AD的中点分别为M, N.(1)若A, B, C, D 四点共圆,求证:EM FN =EN FM ;(2)若EM FN =EN FM ,是否一定有A, B, C, D四点共圆?证明你的结论.解(1)设Q, R分别是OB, OC的中点,EQ, MQ, FR, MR」1 1EQ 0B 二RM, MQ OC 二RF , 2 2又OQMR是平行四边形,所以.OQM —ORM ,由题设A, B, C, D四点共圆,所以ABD "ACD ,于是EQO =2 ABD =2 ACD = FRO ,所以EQM = /EQO. OQM/ FRO. O RM ,故.E Q M 二.:M R,F所以EM = FM ,同理可得EN = FN,所以EM F N E N F.M(2) 答案是否定的.当AD // BC时,由于.B = C,所以A, B, C, D四点不共圆,但此时仍然有EM FN二EN FM,证明如下:如图2所示,设S, Q分别是OA, OB的中点,连接ES, EQ, MQ, NS,贝UNS 二丄OD, E^-OB ,2 2 所以EQ O B1 1又ES^OA MQ^OC,所以ES OAMQ - OC而AD// BC,所以OA ODOC~~OBNS ESEQ 一MQ因为NSE 二NSA • ASE 二AOD 2 AOE , .EQM - MQO . OQE 二.AOE • EOB (180 -2 EOB)= /AOE (180 -. EOB)=/AOD 2 AOE ,即所以故同理可得,所以从而NSE 二EQM ,. NSE 〜. EQM ,EN SE OAEM -QM - OC(由②).FN OAFM - OC ,EN FNEM 一FM ,EM FN =EN FM .A NDE S 'FO由①,②,③得二、求所有的素数对(p, q),使得pq 5p+5q.解:若 2 | pq,不妨设p = 2,则2q|52- 5q,故q |5q• 25 .由Fermat小定理,q|5q—5,得q | 30,即q = 2, 3, 5 .易验证素数对(2,2)不合要求,(2,3),(2, 5)合乎要求.若pq为奇数且5| pq,不妨设p = 5,则5q |555q,故q |5q」625 .当q =5时素数对(5,5)合乎要求,当q=5时,由Fermat小定理有q | 5q」_ 1,故q|626 .由于q为奇素数,而626的奇素因子只有313,所以q=313 .经检验素数对(5,313)合乎要求.若p,q都不等于2和5,则有pq|5p「5q」,故5pJ 5q_* = 0(mod p). ①由Fermat小定理,得5pJ 1 (mod p),②故由①,②得5qJ= 1 (mod p). ③设p—1=2k(2r—1),q-1=2l2s-1),其中k,l,r,s 为正整数.若k空I,则由②,③易知1 彳上(Z =(5心)廿(Z =52l(2r4)(2s4) =(52)2r' =(-1)心=-1(modp),这与p = 2矛盾!所以k l .同理有k :l,矛盾!即此时不存在合乎要求的(p,q).综上所述,所有满足题目要求的素数对(P, q)为(2,3),(3,2),(2, 5),(5,2),(5, 5),(5,313)及(313, 5).三、设m, n是给定的整数, 4 :::m :::n , AA2 A2n d是一个正2n+1边形,P =:A,A2,…,A2「I 1求顶点属于P且恰有两个内角是锐角的凸m边形的个数.解先证一个引理:顶点在P中的凸m边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设这个凸m边形为RP2…P m,只考虑至少有一个锐角的情况,此时不妨设.P m P i P2 ,则2卩2吓-二 - P zR P m 尹一j 乞口-1),B亠K更有P j」P j P j i Q(3一j _ m -1) •而.RP2P3+. P m二P m R *二,故其中至多一个为锐角,这就证明了引理.由引理知,若凸m边形中恰有两个内角是锐角,贝尼们对应的顶点相邻.在凸m边形中,设顶点A i与A j为两个相邻顶点,且在这两个顶点处的内角均为锐角•设A i与A j的劣弧上包含了P的r条边(1兰r W n ),这样的(i, j)在r固定时恰有2n 1对.(1)若凸m边形的其余m-2个顶点全在劣弧A i A j上,而A A j劣弧上有r-1个P 中的点,此时这m-2个顶点的取法数为C^ .(2)若凸m边形的其余m - 2个顶点全在优弧AA j上,取A i,A j的对径点B i , B j,由于凸m边形在顶点A,A j处的内角为锐角,所以,其余的m-2个顶点全在劣弧B j B j 上,而劣弧B i B j上恰有r个P中的点,此时这m-2个顶点的取法数为C r m^ .所以,满足题设的凸m边形的个数为n ■- n n(2n 1p (bj C r m')=(2n 1) '。

2009年九年级数学奥林匹克竞赛题(五)

2009年九年级数学奥林匹克竞赛题(五)

2009年九年级数学奥林匹克竞赛题(五)第 一 试一. 选择题.(每小题7分,共42分)( )1.正实数,x y 满足1xy =,那么44114x y+的最小值为:(A)12 (B)58(C)1 ( )2.33333333(21)(31)(41)(1001)(21)(31)(41)(1001)----++++ 的值最接近于: (A)12 (B)23 (C)35 (D)58( )3.如图1, ΔABC 中,AB=AC,∠A=40O ,延长AC 到D,使CD=BC,点P 是ΔABD 的内心,则∠BPC=:(A)145O (B)135O (C)120O (D)105O( )4.,,,a b c d 为两两不同的正整数,且,a b cd ab c d +==+,则满足上述要求的四元数组 ,,,a b c d 共有: (A)4组 (B)6组(C)8组 (D)10组( )5. ΔABC 的三边长皆为整数,且24a bc b ca +++=,当ΔABC 为等腰三角形时,它的面积的答案有:(A)1种 (B)2种 (C)3种 (D)4种( )6. ΔABC 的∠A,∠B 皆为锐角,CD 是高,已知2()AD AC DB BC=,则ΔABC 是: (A) 直角三角形 (B)等腰三角形 (C)等腰直角三角形 (D)等腰三角形或直角三角形二. 填空题.(每小题7分,共28分)1.使方程1223x x x c ---+-=恰好有两个解的所有实数c 为 .2.如图2,正方形ABCD 中,延长边BC 到E,AE 分别交BD,CD 于点P,Q.当AP=QE时,PQ:AE= .3.如图3, ΔABC 内接于⊙O,,,BC a CA b ==∠A -∠B=90O ,则⊙O 的面积为 .4.某中学生暑期社会调查团共17人到几个地方去考察,事先预算住宿费平均每人每天不超过x 元.一日到达某地,该地有两处招待所A,B.A 有甲级床位8个,乙级床位11个;B 有甲级床位10个,乙级床位4个,丙级床位6个.已知甲,乙,丙床位每天分别为14元,8元,5元.若全团集中住在一个招待所里,按预算只能住B 处,则整数x = .第 二 试一.(20分)一批货物准备运往某地,有甲,乙,丙三辆卡车可雇用.已知甲,乙,丙三辆车每次运货量不变,且甲乙两车单独运这批货物分别用2,a a 次;若甲,丙两车合运相同次数,运完这批货物,甲车共运了180t ;若乙,丙两车合运相同次数,运完这批货物,乙车共运了270t .现甲,乙,丙合运相同次数把这批货物运完,货主应付车方运费各多少元?(按每吨运费20元计算)?二.(25分)如图4,在圆外切凸六边形ABCDEF 中,AB ∥DE,BC ∥EF,CD ∥FA.求证: 凸六边形ABCDEF 是中心对称图形.三. (25分)试求出所有这样的正整数a 使得关于x 的二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.。

2009年全国初中数学联赛试题及解答

2009年全国初中数学联赛试题及解答

2009年全国初中数学联合竞赛试题第一试一、选择题1.设1a =−,则32312612a a a +−−=( )A.24.B. 25.C. 10+.D. 12+.2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC =( )A..B. 10.C..D. 3.用[]x 表示不大于x 的最大整数,则方程22[]30x x −−=的解的个数为( ) A.1. B. 2. C. 3. D. 4.4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为( )A.314. B. 37. C. 12. D. 47. DC5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则CBE =()sin ∠A.3. B. 23. C. 13.D. 10.6.设是大于1909的正整数,使得n 19092009n n−−为完全平方数的n 的个数是( )A.3.B. 4.C. 5.D. 6.二、填空题(本题满分28分,每小题7分)1.已知是实数,若是关于t ,a b x 的一元二次方程221x x t 0−+−=的两个非负实根,则(1的最小值是____________.22)(1)a b −−22|21a b a b a 2. 设D 是△ABC 的边AB 上的一点,作DE//BC 交AC 于点E ,作DF//AC 交BC 于点F ,已知△ADE 、△DBF 的面积分别为和,则四边形DECF 的面积为______.m n 3.如果实数满足条件,|1,a b 221a b +=2−+++=−,则a b +=______. 4.已知是正整数,且满足,a b 是整数,则这样的有序数对共有 对. (,)a b第二试 (A)一.已知二次函数的图象与2(0y x bx c c =++<)x 轴的交点分别为A 、B ,与轴的交点为C.设△ABC 的外接圆的圆心为点P.y (1)证明:⊙P 与轴的另一个交点为定点.y (2)如果AB 恰好为⊙P 的直径且,求和的值.2ABC S △=b c 二.设CD 是直角三角形ABC 的斜边AD 上的高,I 、I 分别是△ADC 、△BDC 的内心,AC =3,BC =4,求I .1212I 三.已知为正数,满足如下两个条件:,,a b c 32a b c ++= ①14b c a c a b a b c bc ca ab+−+−+−++= ②.第二试 (B)一.题目和解答与(A )卷第一题相同.NB二.已知△ABC 中,∠ACB =90°,AB 边上的高线CH 与△ABC 的两条内角平分线 AM 、BN 分别交于P 、Q 两点.PM 、QN 的中点分别为E 、F.求证:EF ∥AB.三.题目和解答与(A )卷第三题相同.第二试 (C)一.题目和解答与(A )卷第一题相同. 二.题目和解答与(B )卷第二题相同. 三.已知为正数,满足如下两个条件:,,a b c 32a b c ++= ①14b c a c a b a b c bc ca ab +−+−+−++=② .2009年全国初中数学联合竞赛试题参考答案第一试一、选择题 1.A 2.C 3.C 4.B 5.D 6.B 二、填空题 1. 3−2. 3. 1−4.7第二试 (A)一.解 (1)易求得点的坐标为,设,,则C (0,)c 1A(,0)x 2B(,0)x 12x x b +=−,12x x c =.设P ⊙与轴的另一个交点为D ,由于AB 、CD 是P ⊙的两条相交弦,它们的交点为点O ,所以OA×OB =OC×OD ,则y 121x x c OA OB OD OC c c×====. 因为,所以点C 在轴的负半轴上,从而点D 在轴的正半轴上,所以点D 为定点,它的坐标为(0,1).0c <y y (2)因为AB CD ⊥,如果AB 恰好为P ⊙的直径,则C 、D 关于点O 对称,所以点的坐标为,即.C (0,1)−1c =−又12AB x x =−===,所以12ABC S ==△,解得b =±.二.解 作E ⊥AB 于E ,F ⊥AB 于F.1I 2I 在直角三角形ABC 中,AC =3,BC =4,AB =5=.又CD ⊥AB ,由射影定理可得2AC 9A D =AB 5=,故16BD =AB AD 5−=,12CD =5=.C 因为E 为直角三角形ACD 的内切圆的半径,所以I =1I 1E 13(AD CD AC)25+−=. 连接D 、D 2,则D 1I 、2I 分别是ADC ∠和∠BDC 的平分线,所1I DC =∠A =∠2I DC =∠2I DB 45°∠1I D 2I =90°,所以1ID 2D ,1I I D 以∠D =,故⊥1I I 1I E 1135DI sin ADI sin 45===5∠°.同理,可求得24I F 5=,2D I 5=. 所以1I 2I =. 三.证法1 将①②两式相乘,得()b c a c a b a b ca b c bc ca ab+−+−+−()8++++=, 即222222()()()8b c a c a b a b c bc ca ab +−+−+−++=, 即222222()()()44b c a c a b a b c bc ca ab +−+−+−−+−+=0, 即222222()()()0b c a c a b a b c bc ca ab−−−−+−++=, 即()()()()()()0b c a b c a c a b c a b a b c a b c bc ca ab −+−−−+−−+++−++=,即()[()()()]0b c a a b c a b c a b c a b c abc−+−−−−++++=,即222()[2]0b c a ab a b c abc −+−−+=,即22()[()]b c a c a b abc 0−+−−=,即()()()b c a c a b c a b abc−++−−+=0,所以或或,即0b c a −+=0c a b +−=0c a b −+=b a c +=或c a b +=或. c b a +=.证法2 结合①式,由②式可得32232232214a b c bc ca ab −−−++=, 变形,得222110242()4a b c abc −++=③ 又由①式得,即, 2()1024a b c ++=22210242()a b c ab bc ca ++=−++代入③式,得110242[10242()]4ab bc ca abc −−++=,即 16()4096abc ab bc ca =++−.3(16)(16)(16)16()256()16a b c abc ab bc ca a b c −−−=−+++++−3409625632160=−+×−=,所以或或16a =16b =16c =.结合①式可得b a 或或c b .c +=c a b +=a +=.第二试 (B)二.证明 因为BN 是∠ABC 的平分线,所以ABN CBN ∠=∠.又因为CH ⊥AB ,所以, CQN BQH 90ABN 90CBN CNB ∠=∠=°−∠=°−∠=∠因此.CQ NC =又F 是QN 的中点,所以CF ⊥QN ,所以CFB 90CHB ∠=°=∠,因此C 、F 、H 、B 四点共圆.又,所以FC =FH ,故点F 在CH 的中垂线上.FBH =FBC ∠∠N B同理可证,点E 在CH 的中垂线上. 因此EF CH.⊥又AB CH ⊥,所以EF AB. ∥第二试 (C)三. 解法1 将①②两式相乘,得()b c a c a b a b ca b c bc ca ab+−+−+−++++()8=, 即222222()()()8b c a c a b a b c bc ca ab +−+−+−++=, 即222222()()()44b c a c a b a b c bc ca ab +−+−+−−+−+=0, 即222222()()()0b c a c a b a b c bc ca ab −−−−+−++=, 即()()()()()()0b c a b c a c a b c a b a b c a b c bc ca ab −+−−−+−−+++−++=,即()[()()()]0b c a a b c a b c a b c a b c abc−+−−−−++++=, 即222()[2]0b c a ab a b c abc −+−−+=,即22()[()]b c a c a b abc 0−+−−=, 即()()()b c a c a b c a b abc−++−−+=0, 所以或0b c a −+=0c a b +−=或0c a b−+=,即b ac +=或c a b +=或.c b a +=90°. 解法2 结合①式,由②式可得32232232214a b c bc ca ab −−−++=, 变形,得22211024 ③ 2()4a b c abc −++=又由①式得,即, 2()1024a b c ++=22210242()a b c ab bc ca ++=−++代入③式,得110242[10242()]4ab bc ca abc −−++=,即 16()4096abc ab bc ca =++−.3(16)(16)(16)16()256()16a b c abc ab bc ca a b c −−−=−+++++−3409625632160=−+×−=,所以或或.16a =16b =16c =结合①式可得b a 或c a 或c b c +=b +=a +=.90°.。

九年级数学奥数题

九年级数学奥数题

九年级数学奥数题一、代数部分。

题1:若x + (1)/(x)=3,求x^2+(1)/(x^2)的值。

解析:我们对x + (1)/(x)=3两边平方,得到(x+(1)/(x))^2=x^2+ 2×x×(1)/(x)+(1)/(x^2)=x^2+2+(1)/(x^2)。

因为(x + (1)/(x))^2=3^2 = 9,所以x^2+(1)/(x^2)=(x+(1)/(x))^2-2=9 - 2=7。

题2:解方程(1)/(x - 1)+(1)/(x-2)=(2)/(x)解析:首先给方程(1)/(x - 1)+(1)/(x-2)=(2)/(x)两边同时乘以x(x - 1)(x-2)得:x(x - 2)+x(x - 1)=2(x - 1)(x - 2)展开得x^2-2x+x^2-x = 2(x^2-3x + 2)2x^2-3x=2x^2-6x + 4移项得2x^2-3x-2x^2+6x=43x=4,解得x=(4)/(3)经检验,当x = (4)/(3)时,x(x - 1)(x-2)≠0,所以x=(4)/(3)是原方程的解。

题3:已知a、b是方程x^2-3x - 4=0的两个根,求a^2+b^2的值。

解析:对于一元二次方程Ax^2+Bx + C=0(这里A = 1,B=-3,C = - 4),根据韦达定理,两根之和a + b=-(B)/(A)=3,两根之积ab=(C)/(A)=-4。

a^2+b^2=(a + b)^2-2ab将a + b = 3,ab=-4代入得a^2+b^2=3^2-2×(-4)=9 + 8 = 17题4:化简frac{x^2-1}{x^2+2x + 1}÷(x - 1)/(x+1)解析:先将分子分母因式分解,x^2-1=(x + 1)(x - 1),x^2+2x + 1=(x + 1)^2。

则原式=((x + 1)(x - 1))/((x + 1)^2)÷(x - 1)/(x+1)=((x + 1)(x - 1))/((x + 1)^2)×(x + 1)/(x - 1)=1题5:若y=(1)/(3)x^2-2x + 3,求当x为何值时,y有最小值,最小值是多少?解析:对于二次函数y = ax^2+bx + c(这里a=(1)/(3),b=-2,c = 3),其对称轴为x=-(b)/(2a)。

奥数-2009-2010学年第一学期九年级数学合科竞赛试题(含答案)-试题卷

奥数-2009-2010学年第一学期九年级数学合科竞赛试题(含答案)-试题卷

2009学年第一学期九年级数学合科竞赛试题卷考生须知:1.本试卷分试题卷和答题卷两部分。

满分120分,考试时间100分钟。

2.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

3.考试结束后,上交试题卷和答题卷。

一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。

1、甲型H1N1流感病毒变异后的直径为0.00000013米,将这个数写成科学计数法是( ▲ )A 、1.3×10-5B 、0.13×10-6C 、1.3×10-7D 、13×10-8 2、下列图形中,既是中心对称图形又是轴对称图形的是( ▲ )A 、正六边形B 、平行四边形C 、正三角形D 、等腰梯形3、如图a b ∥,M ,N 分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=(▲ )A 、︒180B 、︒270C 、︒360D 、︒5404、下列名人中:①比尔•盖茨 ②高斯 ③刘翔 ④诺贝尔 ⑤陈景润 ⑥陈省身 ⑦高尔基 ⑧爱因斯坦,其中是数学家的是( )A .①④⑦B .②④⑧C .②⑥⑧D .②⑤⑥ 5、下列调查方式合适的是( ▲ )A .了解炮弹的杀伤力,采用普查的方式B .了解全国中学生的视力状况,采用普查的方式C .了解一批罐头产品的质量,采用抽样调查的方式D .对载人航天器“神舟七号”零部件的检查,采用抽样调查的方式6、已知关于x 的一元二次方程x 2-kx -4=0的一个根为2,则另一个根是( ▲ ) A 、4 B 、1 C 、2 D 、-27、如果一个圆锥的主视图是边长为2的正三角形,那么这个圆锥的面积是( ▲ )A .πB .21πC .3π D. 2π8、如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( ▲ ) A 、2个B 、3个C 、4个D 、5 个9、在甲组图形的4个图中,每个图示由4种简单图形A 、B 、C 、D(不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B ,在乙组图形中的(a)(b)(c)(d)4个图中表示“A ·D ”和“A ·C ”的是 ( ▲ )BE DACOy xO AB (第14题)A65甲组 乙组A ·B B ·C C ·D B ·D (a) (b) (c) (d) A 、(a)(b)B 、(b)(c)C 、(c)(d)D 、(b)(d)10如下图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =1,AB =23,BC =2,P 是射线BC 的一个动点(点P 与点B 不重合),DE ⊥AP 于点E 。

2009年中国数学奥林匹克试题及解答

2009年中国数学奥林匹克试题及解答

2009中国数学奥林匹克解答一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O.过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;(2)若EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论.解(1)设Q ,R 分别是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,则11,22EQ OB RM MQ OC RF ====,又OQMR 是平行四边形,所以OQM ORM ∠=∠,由题设A ,B ,C ,D 四点共圆,所以ABD ACD ∠=∠,于是图122EQO ABD ACD FRO ∠=∠=∠=∠,所以EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠,故EQM MRF Δ≅Δ,所以EM =FM ,同理可得EN =FN ,所以EM FN EN FM ⋅=⋅.(2)答案是否定的.当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有EM FN EN FM ⋅=⋅,证明如下:如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则11,22NS OD EQ OB ==,所以NS OD EQ OB=.①CB又11,22ES OA MQ OC==,所以ES OAMQ OC=.②而AD∥BC,所以OA ODOC OB=,③由①,②,③得NS ES EQ MQ=.因为2NSE NSA ASE AOD AOE∠=∠+∠=∠+∠,()(1802) EQM MQO OQE AOE EOB EOB∠=∠+∠=∠+∠+°−∠(180)2AOE EOB AOD AOE=∠+°−∠=∠+∠,即NSE EQM∠=∠,所以NSEΔ~EQMΔ,故EN SE OAEM QM OC==(由②).同理可得,FN OAFM OC=,所以EN FN EM FM=,从而EM FN EN FM⋅=⋅.CB二、求所有的素数对(p ,q ),使得q p pq 55+.解:若pq |2,不妨设2=p ,则q q 55|22+,故255|+q q .由Fermat 小定理,55|−q q ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.若pq 为奇数且pq |5,不妨设5=p ,则q q 55|55+,故6255|1+−q q .当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1−−q q ,故626|q .由于q 为奇素数,而626的奇素因子只有313,所以313=q .经检验素数对)313,5(合乎要求.若q p ,都不等于2和5,则有1155|−−+q p pq ,故)(mod 05511p q p ≡+−−.①由Fermat 小定理,得)(mod 151p p ≡−,②故由①,②得)(mod 151p q −≡−.③设)12(21−=−r p k ,)12(21−=−s q l ,其中s r l k ,,,为正整数.若l k ≤,则由②,③易知)(mod 1)1()5(5)5(1112121)12)(12(2)12(21)12(2p r r q s r s p s lkl kl −≡−≡==≡=−−−−−−−−−−,这与2≠p 矛盾!所以l k >.同理有l k <,矛盾!即此时不存在合乎要求的),(q p .综上所述,所有满足题目要求的素数对),(q p 为)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.三、设m ,n 是给定的整数,n m <<4,1221+n A A A "是一个正2n +1边形,{}1221,,,+=n A A A P ".求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.解先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设这个凸m 边形为m P P P "21,只考虑至少有一个锐角的情况,此时不妨设221π<∠P P P m ,则)13(2122−≤≤>∠−=∠m j P P P P P P m m j ππ,更有)13(211−≤≤>∠+−m j P P P j j j π.而321P P P ∠+11P P P m m −∠>π,故其中至多一个为锐角,这就证明了引理.由引理知,若凸m 边形中恰有两个内角是锐角,则它们对应的顶点相邻.在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设i A 与j A 的劣弧上包含了P 的r 条边(n r ≤≤1),这样的),(j i 在r 固定时恰有12+n 对.(1)若凸m 边形的其余2−m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1−r 个P 中的点,此时这2−m 个顶点的取法数为21−−m r C .(2)若凸m 边形的其余2−m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,所以,其余的2−m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,此时这2−m 个顶点的取法数为2−m r C .所以,满足题设的凸m 边形的个数为))()()(12()12()()12(11111111121211221∑∑∑∑∑==−−+−−−=−=−−=−−−−+−+=⎟⎠⎞⎜⎝⎛++=++nr nr m rm r m r m rn r m r n r m r nr m rm r C C CCn C C n CCn ))(12(111−−+++=m nm n C C n .四、给定整数3≥n ,实数n a a a ,,,21"满足1min 1=−≤<≤j i nj i a a .求∑=nk k a 13的最小值.解不妨设n a a a <<<"21,则对n k ≤≤1,有k n a a a a k k n k n k 2111−+≥−≥++−+−,所以()∑∑=−+=+=n k kn k nk ka a a13131321()()()∑=−+−+−+⎟⎠⎞⎜⎝⎛++−+=n k k n k kn k k n k a a a a a a 121211414321()∑∑==−+−+≥+≥n k nk k n k k n a a 13131218181.当n 为奇数时,222113313)1(412221−=⋅⋅=−+∑∑−==n i k n n i nk .当n 为偶数时,32113)12(221∑∑==−=−+n i nk i kn ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=∑∑==21313)2(2ni nj i j )2(4122−=n n .所以,当n 为奇数时,2213)1(321−≥∑=n a nk k,当n 为偶数时,)2(3212213−≥∑=n n a nk k ,等号均在n i n i a i ,,2,1,21"=+−=时成立.因此,∑=nk k a 13的最小值为22)1(321−n (n 为奇数),或者)2(32122−n n (n 为偶数).五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.问:对怎样的n ,存在一种染色方式,使得对于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分别被染为这3种颜色?解当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年奥数题
第 一 试
一. 选择题.(每小题7分,共42分)
( )1.在11,,0.2002,722πn 是大于3的整数)这5个数中,分数的个数为: (A)2 (B)3 (C)4 (D)5
( )2.如图1,正方形ABCD 的面积为256,点F 在AD
上,点E 在AB
的延长线上,Rt ΔCEF 的面积为200,则BE 的长
为:(A)10 (B)11 (C)12 (D)15
( )3.已知,,a b c 均为整数,且满足2223
a b c +++<32ab b c ++.则以,a b c b +-为根的一元二次
方程是:(A)2320x x -+= (B)2280x x +-=
(C)2450x x --= (D)2230x x --=
( )4.如图2,在Rt ΔABC 中,AF 是高,∠BAC=90O ,且
BD=DC=FC=1,则AC 为:
( )5.若222a b c a
b c
k c b a ++
+===,则k 的值为:
(A)1 (B)2 (C)3 (D)非上述答案
( )6.设0,0,26x y x y ≥≥+=,则224363u x xy y x y =++--的最大值是: (A)27
2 (B)18 (C)20 (D)不存在
二. 填空题.(每小题7分,共28分)
1.方程2
221110
13x x x x ++=+的实数根是 .
2.如图3,矩形ABCD 中,E,F 分别是BC,CD 上的点,且
2,3,4A B E C E F A D F S S S === ,则AEF S = .
3.已知二次函数2(1)y x a x b =+++(,a b 为常数).当3
x =时,3;y =当x
为 . 为任意实数时,都有y x ≥.则抛物线的顶点到原点的距离
4.如图4,半径为2cm ,圆心角为90O 的扇形OAB 的 AB 上有一
运动的点P.从点P 向半径OA 引垂线PH 交OA 于点H.设ΔOPH 的内心
为I,当点P 在 AB 上从点A 运动到点B 时,内心I 所经过的路径长
为 .
第 二 试
一.(20分)在一个面积为1的正方形中构造一个如下的小正方形;将单位正方形的各边n 等分,然后将每个顶点和它相对应顶点最接近的分点连结起来,如图5所示.若小正方形的面积恰为13281,求n 的值.
二.(25分)一条笔直的公路l 穿过草原,公路边有一卫生站A,距公路30km 的地方有一居民点B,A,B 之间的距离为90km .一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60/km h ,在草地上行驶的最快速度是30/km h .问司机应以怎样的路线行驶,所用的行车时间最短?最短时间是多少?
三.(25分)从1,2,3,……,3919中任取2001个数。

证明:一定存在两个数之差恰好为98。

相关文档
最新文档