七年级上册角度计算之旋转角压轴题
备战中考数学初中数学旋转-经典压轴题及详细答案
备战中考数学初中数学 旋转-经典压轴题及详细答案一、旋转1. 已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作EF 丄BD 交BC 于F ,连接DF , G 为DF 中点,连接 EG , CG.(1) 请问EG 与CG 存在怎样的数量关系,并证明你的结论;(2) 将图①中厶BEF 绕B 点逆时针旋转45°如图②所示,取DF 中点G ,连接EG,。
6.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3) 将图①中厶BEF 绕B 点旋转任意角度,如图 ③所示,再连接相应的线段,问( 的结论是否仍然成立?(请直接写出结果,不必写出理由)【分析】(1) 利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG. (2) 结论仍然成立,连接 AG ,过G 点作MN 丄AD 于M ,与EF 的延长线交于 N 点;再证 明厶DAG ^A DCG,得出 AG=CG;再证出 △ DMG ^ △ FNG ,得到 MG=NG ;再证明△ AMG ◎△ ENG,得出 AG=EG ;最后证出 CG=EG.(3 )结论依然成立.【详解】(1) CG=EG.理由如下:1•••四边形 ABCD 是正方形,••• / DCF=90 :在 RtA FCD 中,•/ G 为 DF 的中点,/• CG=—FD , 21 同理•在 Rt A DEF 中,EG=—FD, • CG=EG. 2(2) ( 1)中结论仍然成立,即 EG=CG.证法一:连接 AG ,过G 点作MN 丄AD 于M ,与EF 的延长线交于 N 点.在厶 DAG 与厶 DCG 中,•/ AD=CD, / ADG=Z CDG, DG=DG , • △ DAG ^ △ DCG (SAS , • AG=CG;在厶 DMG 与厶 FNG 中,•••/ DGM=Z FGN, FG=DG , / MDG=Z NFG, • △ DMG ^ △ FNG (ASA ), • MG=NG.•••/ EAM=Z AEN=Z AMN=90; •四边形 AENM 是矩形,在矩形 AENM 中,AM=EN.在△ AMG 与厶 ENG 中,•/ AM=EN , / AMG=Z ENG, MG=NG , • △ AMG ◎△ ENG ( SAS , • AG=EG, • EG=CG.1)中 【答案】(1)证明见解析(2)证明见解析【解析】 __£C (3)结论仍然成立证法二:延长 CG 至M ,使 MG=CG,连接 MF , ME , EC.在厶DCG 与厶FMG 中,•/ FG=DG , / MGF=Z CGD MG=CG, :, △ DCG^ △ FMG , /• MF=CD, / FMG=Z DCG, ••• MF // CD// AB, ••• EF ± MF .在 Rt A MFE 与 Rt A CBE 中,•/ MF=CB, / MFE=Z EBC=90° ° EF=BE , • △ MFE ^ △ CBE •••/MEF=Z CEB • / MEC=Z MEF+Z FEC=Z CEB /CEF=90 ° • △ MEC 为直角三角形.1•/ MG=CG, • EG= —MC , • EG=CG. 2(3) ( 1)中的结论仍然成立•理由如下:过F 作CD 的平行线并延长 CG 交于M 点,连接EM 、EC 过F 作FN 垂直于AB 于N . 由于G 为FD 中点,易证 △ CDG ^A MFG ,得到 CD=FM ,又因为 BE=EF,易证/ EFM=Z EBC,贝^厶 EFM BA EBC / FEM=Z BEC EM=EC••• / FEG Z BEC=90 ° • / FEG Z FEM=90 ° 即 / MEC=90 °MEC 是等腰直角三角形.•/ G 为 CM 中点,• EG=CG, EG 丄 CG2. 如图 1,在口 ABCDK AB=6 , / B= (60 < < 90。
专题06 几何图形初步—角度问题压轴真题(原卷版)-初中数学七年级上学期重难点题型必刷题(人教版)
专题06 高分必刷题-几何图形初步—角度问题压轴题真题(原卷版)专题简介:本份资料专攻《几何图形初步》这一章中求角度的压轴题,所选题目源自各名校月考、期末试题中的压轴题真题,大都涉及到角度的旋转问题,难度较大,适合于想挑战满分的学生考前刷题使用,也适合于培训机构的老师培训尖子生时使用。
1.(明德)已知120AOB ∠=,60COD ∠=,OE 平分∠BOC .(1)如图①,当∠COD 在∠AOB 的内部时.①若∠AOC =40°,则∠COE =_________;∠DOE =_________.②若∠AOC =α,则∠DOE =_________(用含α的代数式表示);(2)如图②,当∠COD 在∠AOB 的外部时①请写出∠AOC 与∠DOE 的度数之间的关系,并说明理由.②在∠AOC 内部有一条射线OF ,满足∠AOC +2∠BOE =4∠AOF ,写出∠AOF 与∠DOE 的度数之间的关系,并说明理由.2.(长梅)定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫作这个角的三分钱,显然,一个角的三分线有两条.(1)如图①,已知OC 是∠AOB 的一条三分钱,且BOC AOC ∠>∠,若75AOB AOC ∠=︒∠=, ;(2)如图②,已知90AOB ∠=︒,若OC ,OD 是∠AOB 的两条三分线.①求∠COD 的度数;②在①的基础上,现以O 为中心,将∠COD 顺时针旋转n °得到C OD ''∠.当OA 恰好是C OD ''∠的三分线时,求n 的值.图① 图②3.(师大)若A 、O 、B 三点共线,∠BOC =50°,将一个三角板的直角顶点放在点O 处(注:∠DOE =90°,∠DEO =30°).(1)如图1,使三角板的短直角边OD 在射线OB 上,则∠COE = ;(2)如图2,将三角板DOE 绕点O 逆时针方向旋转,若OE 恰好平分∠AOC ,则OD 所在射线是∠BOC 的 ;(3)如图3,将三角板DOE 绕点O 逆时针转动到使∠COD =∠AOE 时,求∠BOD 的度数;(4)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,OE 恰好与直线OC 重合,求t 的值.4.(雅礼)如图1,点O 为直线AB 上一点,过点O 作射线OC ,使130BOC ∠=︒。
中考数学——初中数学 旋转的综合压轴题专题复习含详细答案
中考数学——初中数学旋转的综合压轴题专题复习含详细答案一、旋转1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题2.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=102114. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =22AC BC -=6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD =125.故答案为125. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =223,∴BD =2114. 故答案为210或2114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.3.如图,矩形OABC 的顶点A 在x 轴正半轴上,顶点C 在y 轴正半轴上,点B 的坐标为(4,m )(5≤m≤7),反比例函数y =16x(x >0)的图象交边AB 于点D . (1)用m 的代数式表示BD 的长;(2)设点P 在该函数图象上,且它的横坐标为m ,连结PB ,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16,x∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.5.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α=度;发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.【答案】(1)60或240;(2) AC=BD,理由见解析;(3)13+1 2或1312-;(4)PC的最大值=3,PC的最小值=3﹣1.【解析】分析:(1)如图1中,易知当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.(2)结论:AC=BD.只要证明△AOC≌△BOD即可.(3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.详解:(1)如图1中,∵△ABC是等边三角形,∴∠AOB=∠COD=60°,∴当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.故答案为60或240;(2)结论:AC=BD,理由如下:如图2中,∵∠COD=∠AOB=60°,∴∠COA=∠DOB.在△AOC和△BOD中,OA OBCOA DOBCO OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△BOD,∴AC=BD;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH3Rt△AOH中,AH22OA OH-13,∴BD=AC=CH+AH113+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为131+或131-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.6.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.7.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =AD +AF =DF =DE ,即AD +BE =DE ;(2)解:如图②,在AD 上截取DF =DE .∵CD ⊥AE ,∴CE =CF ,∴∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =∠DCE +∠DCF =90°,∴∠BCE +∠BCF =∠ECF =90°.又∵∠ACB =90°,∴∠ACF +∠BCF =90°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD =AF +DF =BE +DE ,即AD =BE +DE ;故答案为:AD =BE +DE .(3)∵∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =45°+45°=90°,∴△ECF 是等腰直角三角形,∴CD =DF =DE =6.∵S △BCE =2S △ACD ,∴AF =2AD ,∴AD=112+×6=2,∴AE =AD +DE =2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.8.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=V.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.9.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△C P′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.10.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.11.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB 的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.12.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD 的关系式为∵图象过点B (0,4),D (4,)∴,解得∴直线BD 的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.13.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
七年级角旋转的经典例题
七年级角旋转的经典例题
摘要:
1.角旋转的定义和概念
2.七年级角旋转的经典例题
2.1 例题一:计算旋转后的图形
2.2 例题二:计算旋转角度
2.3 例题三:综合应用
3.角旋转的性质和应用
4.角旋转的解题技巧和方法
正文:
【1.角旋转的定义和概念】
角旋转是指将一个图形绕着某一点旋转一定的角度,得到一个新的图形。
这个过程叫做角旋转,被绕的点称为旋转中心,旋转的角度称为旋转角。
【2.七年级角旋转的经典例题】
【2.1 例题一:计算旋转后的图形】
题目:将图形ABC 绕点A 逆时针旋转90 度,得到新的图形A"B"C",请画出A"B"C"。
【2.2 例题二:计算旋转角度】
题目:将图形ABC 绕点A 逆时针旋转后,与x 轴的夹角为30 度,求旋转的角度。
【2.3 例题三:综合应用】
题目:将图形ABC 绕点A 逆时针旋转后,与y 轴的夹角为45 度,求旋转后的图形与x 轴的夹角。
【3.角旋转的性质和应用】
角旋转具有以下性质:
1.旋转前后的两个图形全等。
2.旋转前后对应点的连线所成的角等于旋转角。
3.旋转中心在旋转线上的点到旋转中心的距离等于旋转半径。
角旋转在实际生活中有广泛的应用,例如:钟表指针的运动、风车的旋转等。
【4.角旋转的解题技巧和方法】
1.确定旋转中心和旋转角。
2.利用旋转的性质,找到对应点之间的联系。
3.根据题目要求,计算旋转后的图形或旋转角度。
七年级数学角的旋转压轴题
七年级数学角的旋转压轴题
【原创实用版】
目录
1.题目背景
2.题目分析
3.解题思路
4.解题步骤
5.结论
正文
1.题目背景
在七年级的数学课程中,有一道关于角的旋转的压轴题,这道题目主要考察学生对角度旋转的理解和应用。
题目描述如下:一个正方形的一个角 A 旋转一定的角度后,与另外两个角 B 和 C 组成一个等腰三角形,求旋转的角度。
2.题目分析
题目给出了一个正方形,正方形有四个角,都是直角。
因为题目要求旋转后与另外两个角组成等腰三角形,所以可以推断出旋转后的角度应该是 45 度或者 135 度。
3.解题思路
对于这种题目,我们需要先通过画图来理解题意,然后找到解题的思路。
画出图后,我们可以发现,旋转后的角 A 与角 B、C 的关系,然后通过这个关系来求解旋转的角度。
4.解题步骤
步骤一:画出正方形,并标出角 A、B、C。
步骤二:假设角 A 旋转一定的角度后与角 B、C 组成等腰三角形,连接 AC,并标出 AC 的中点 D。
步骤三:通过画图,我们可以发现,角 B、C 的度数之和等于 90 度,也就是说,角 B、C 的度数都是 45 度。
步骤四:因为角 A 与角 B、C 组成等腰三角形,所以角 A 的度数也是 45 度。
步骤五:根据步骤四,我们可以知道,角 A 旋转的角度是 45 度。
七年级数学角的旋转压轴题
七年级数学角的旋转压轴题摘要:1.题目背景2.题目解析3.解题思路4.典型例题解析5.总结正文:【1.题目背景】七年级数学角的旋转压轴题,主要是针对初中生角的旋转概念的理解和运用能力的考查。
在数学学习中,旋转是一个重要的几何变换概念,掌握好角的旋转,有助于培养学生的空间想象能力和逻辑思维能力。
此题作为压轴题,难度相对较大,需要学生对角的旋转有一定的理解和解题技巧。
【2.题目解析】题目通常会给定一个图形,要求通过角的旋转,将图形变换到另一个位置。
这类题目主要考察学生对旋转中心的确定、旋转方向的判断以及旋转角度的计算。
在解题过程中,需要注意旋转前后图形的对应关系,特别是旋转过程中的重合点。
【3.解题思路】1) 确定旋转中心:观察题目给出的图形,找到旋转中心,通常是图形的某个顶点。
2) 判断旋转方向:根据题目要求,判断旋转方向是顺时针还是逆时针。
3) 计算旋转角度:观察旋转前后图形的对应关系,计算旋转角度。
4) 进行旋转:根据旋转中心、旋转方向和旋转角度,将图形旋转到目标位置。
5) 验证答案:将旋转后的图形与题目要求的图形进行比较,验证答案的正确性。
【4.典型例题解析】例题:如图,已知线段AB=3,线段AC=4,线段BC=5,求角度BAC 的度数。
解:通过勾股定理可知,三角形ABC 是一个直角三角形,∠BAC=90°。
因此,角度BAC 的度数为90°。
【5.总结】七年级数学角的旋转压轴题,主要考查学生对角的旋转概念的理解和解题技巧。
在解题过程中,要注重旋转中心的确定、旋转方向的判断以及旋转角度的计算。
七年级角旋转的经典例题
七年级角旋转的经典例题
一、七年级角旋转的概念
在初中数学课程中,角旋转是图形的变换之一。
它指的是在平面内,将一个角绕着其顶点旋转一定角度,使其边的位置发生变化。
角旋转可分为正旋转和逆旋转两种。
七年级的学生需要掌握基础的角旋转概念,以便能在实际问题中灵活运用。
二、七年级角旋转的性质
1.角旋转前后,旋转角的大小和形状不变。
2.角旋转前后,顶点位置不变。
3.角旋转前后,旋转轴不变。
4.角旋转可以沿着任意一条射线进行。
三、七年级角旋转的经典例题解析
例题1:已知角α的顶点为O,边分别为OA、OB,α的旋转轴为OC,旋转角度为90°,求角α的旋转后的角α"的度数。
解:根据角旋转的性质,旋转前后角的大小不变,故α"的度数为90°。
例题2:已知角α的顶点为O,边分别为OA、OB,α的旋转轴为OC,旋转角度为180°,求角α"的度数。
解:根据角旋转的性质,旋转前后角的大小不变,故α"的度数为180°。
四、解题思路与技巧总结
1.熟记角旋转的性质,灵活运用旋转前后角的大小、形状不变这一关键点。
2.根据题目所给条件,判断旋转角度,从而求得旋转后的角。
3.在解题过程中,注意画图,直观地展示角旋转的过程。
通过以上四个步骤,我们可以更好地理解和解决七年级角旋转的经典例题。
角旋转问题初一压轴题
角旋转问题初一压轴题
角旋转问题是数学中一个常见的问题,通常涉及到图形旋转后角度的测量和计算。
这类问题可以作为初一的压轴题,因为它需要学生具备一定的几何知识和空间思维能力。
以下是一个角旋转问题的示例:
题目:一个直角三角形ABC,其中∠ACB = 90°,AC = 4,BC = 3。
现在将△ABC绕点C逆时针旋转90°得到△A'B'C'。
求旋转后点A所对应的位置A'的坐标。
解题思路:
1. 确定点A的坐标:由于△ABC是一个直角三角形,且∠ACB = 90°,AC = 4,BC = 3,我们可以使用勾股定理计算出AB的长度。
然后,我们可以使用直角三角形的性质确定点A的坐标。
2. 确定旋转中心和旋转角度:题目中指出△ABC是绕点C逆时针旋转90°得到△A'B'C'。
因此,旋转中心是点C,旋转角度是90°。
3. 确定点A'的坐标:旋转后,点A会移动到点A'的位置。
由于旋转中心是点C,我们可以使用坐标变换的原理来确定点A'的坐标。
具体来说,我们可
以将点A的坐标减去旋转中心的坐标,然后加上旋转后旋转中心的坐标,得到点A'的坐标。
这个问题需要学生具备一定的几何知识和空间思维能力,以理解图形旋转的概念和性质,并能够运用坐标变换的原理来解决问题。
通过解决这类问题,学生可以加深对图形旋转的理解,提高他们的几何思维能力和问题解决能力。
初一数学上册综合算式旋转变换练习题应用旋转变换求解问题
初一数学上册综合算式旋转变换练习题应用旋转变换求解问题旋转变换在数学中是一种重要的几何变换方法,它可以通过将图形绕着某个中心点旋转一定角度,从而改变图形的位置和形状。
在初一数学上册中,我们学习了综合算式的旋转变换,并通过练习题来应用这种变换方法解决实际问题。
本文将以综合算式旋转变换练习题为例,探讨如何应用旋转变换求解问题。
1. 题目一有一个正方形ABCD,其边长为5cm。
现将该正方形绕点O逆时针旋转60度,求旋转后正方形各顶点的坐标。
解析:首先确定旋转中心点O所在的坐标轴,设O点的坐标为(0,0)。
由于正方形边长为5cm,所以各顶点的坐标为A(2.5,2.5),B(-2.5,2.5),C(-2.5,-2.5),D(2.5,-2.5)。
接下来,我们需要将这个正方形绕点O逆时针旋转60度,根据旋转变换的公式,我们可以得到旋转后各顶点的坐标:A'(-1.25,4.33),B'(-4.33,-1.25),C'(1.25,-4.33),D'(4.33,1.25)。
2. 题目二已知三角形ABC,其中AB=6cm,BC=8cm,CA=10cm。
现将该三角形绕点O逆时针旋转45度,求旋转后三角形各顶点的坐标。
解析:同样地,首先确定旋转中心点O所在的坐标轴,设O点的坐标为(0,0)。
由于三角形AB=6cm,BC=8cm,CA=10cm,所以各顶点的坐标为A(0,0),B(6,0),C(6,8)。
对于三角形旋转变换,我们需要将旋转中心点O所在的坐标轴作为新的坐标系,将A、B、C三个点的坐标表示为相对于O点的坐标。
根据旋转变换的公式,我们可以得到旋转后各顶点的坐标:A'(0,0),B'(4.24,4.24),C'(-1.41,9.9)。
3. 题目三已知一个长方形ABCD,其中AB=6cm,BC=8cm。
现将该长方形绕点O逆时针旋转90度,求旋转后长方形各顶点的坐标。
人教版七年级上册数学期末动点旋转问题压轴题训练
人教版七年级上册数学期末动点旋转问题压轴题训练人教版七年级上册数学期末动点旋转问题压轴题训练-初中数学压轴题-初一七年级数学压轴题 -内容很多,建议先收藏保存。
码字不容易,觉得好的可以点一下支持一下!1.如图,在长方形ABCD中,AB=14cm,AD=8cm,动点P沿AB 边从点A开始,向点B以1cm/s的速度运动;动点Q从点D开始沿DA→AB边,向点B以2cm/s的速度运动.P,Q同时开始运动,当点Q到达B点时,点P和点Q同时停止运动,用t (s)表示运动的时间.(1)当点Q在DA边上运动时,t为何值,使AQ=AP?(2)当t为何值时,AQ+AP等于长方形ABCD周长的(3)当t为何值时,点Q能追上点P?2.如图,已知数轴上点A表示的数为8,B是数轴上位于点A 左侧一点,且AB=20,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)数轴上点B表示的数是,点P表示的数是;(用含t 的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时,P、Q之间的距离恰好等于2;(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,直接写出多少秒时,P、Q之间的距离恰好等于2.3.已知数轴上A,B两点对应的数分别为a,b,且a,b满足|a+9|=﹣(b﹣5)2,动点P从点A出发,以2cm/s的速度向右运动,同时点Q从点B出发以1cm/s的速度向左运动,设运动时间为t s.(1)直接写出a,b的值,并在下面的数轴上画出点A和点B;(2)分别用含t的式子表示OP和OQ的长;(3)当t为何值时,OP=OQ?(4)当t为何值时,OP=2OQ?5.如果A,B两点在数轴上分别表示有理数a,b,那么它们之间的距离表示为AB=|a﹣b|,如图,已知数轴上点A,B和C对应的数分别为﹣1,2和6,数轴上另有一个点P对应的数为x.(1)AB=;(2)已知|x﹣2|=3,则P对应的数x为;(3)动点M、N同时分别从A、B出发沿数轴正方向运动,点M的速度是每秒2个单位长度,点N的速度是每秒1个单位长度,求运动几秒后,M到C的距离与N到C的距离相等.7.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C 移动,设点P移动时间为t秒.(1)PA= ,PC= (用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇.9.已知数轴上有A、B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA= ,PC= .(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在运动过程中,t为何值时P与Q重合?②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.11.如图,数轴上有A,B两点,所表示的有理数分别为a、b,已知AB=12,原点O是线段AB上的一点,且OA=2OB.(1)a= ,b= .(2)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P到达点O时,动点M从点O出发,以每秒3个单位长度的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后再立即返回,以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动,求在此过程中点M行驶的总路程,并直接写出点M最后位置在数轴上所对应的有理数.人教版七年级上册数学期末动点旋转问题压轴题训练目前整理了几千份资料,绝对有你需要用的资料。
2020-2021中考数学——初中数学旋转的综合压轴题专题复习及答案解析
2020-2021中考数学一一初中数学旋转的综合压轴题专题复习及答案解析一、旋转1 .操作与证明:如图1,把一个含45 °角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB CD上, 连接AF.取AF中点M, EF的中点N,连接MD、MN.(1)连接AE,求证:4AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1: DM、MN的数量关系是结论2: DM、MN的位置关系是一;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF继而证明出△ ABE0^ADF,得到AE=AF从而证明出4AEF是等腰三角形;(2) DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出1 1MN//AE, MN='A E,利用三角形全等证出AE=AF,而DM=^AF,从而得到DM, MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到/DMN=/DGE=90,从而得到DM、MN的位置关系是垂直.试题解析:(1)二.四边形ABCD是正方形,,AB=AD=BC=CD / B=/ ADF=90 , = △ CEF 是等腰直角三角形,/C=90,,CE=CF . .BC- CE=C> CF,即BE=DF••.△ABE^AADF,AE=AFAAEF是等腰三角形;(2) DM、MN的数量关系是相等,DM、MN的位置关系是垂直;二,在Rt^ADF中DM是斜边AF的中线,,AF=2DM, / MN 是4AEF的中位线,AE=2MN, -. AE=AF, . . DM=MN ; -/ DMF=/ DAF+/ ADM ,AM=MD , ••• / FMN=Z FAE / DAF=Z BAE, / ADM= / DAF=Z BAE,・. / DMN=/FMN+/DMF=/DAF+/ BAE+Z FAE》BAD=90 . DM,MN ; (3) (2)中的两个结论还成立,连接AE,交MD于点G,二•点M为AF的中点,点N为EF的中点,1・.MN//AE, MN=?AE,由已知得,AB=AD=BC=CD / B=/ADF, CE=CF 又. ・ BC+CE=CD+C F 即BE=DF /. AABE^AADF, ,AE=AF,在Rt^ADF 中,••点M 为AF 的巴中点,DM=2AF, DM=MN , ••• AABE^ AADF, ,/1 = /2, -. AB// DF, ,/1 = /3,同理可证:Z2=Z4, .l. Z3=Z4, 1•• DM=AM , ,/MAD=/5,Z DGE=Z 5+Z 4=Z MAD+ Z 3=90 ,° / MN // AE, . . / DMN= / DGE=90 . DM,MN .所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.已知正方形ABCD的边长为4, 一个以点A为顶点的45。
七年级数学上册压轴题专题10 角度的计算
专题10 角度的计算(压轴题专项讲练)【典例1】如图,点O为直线AB上一点,∠BOC=40°,OD平分∠AOC.(1)求∠AOD的度数;∠COE,求∠COE的度数;(2)作射线OE,使∠BOE=23(3)在(2)的条件下,作∠FOH=90°,使射线OH在∠BOE的内部,若∠DOF=3∠BOH,求∠AOH的度数.【思路点拨】(1)根据平角定义和角平分线定义即可得结果;(2)根据题意分两种情况画图:∠如图1,当射线OE在AB上方时,∠如图2,当射线OE在AB下方时,∠COE,利用角的和差进行计算即可;∠BOE=23(3)根据题意分四种情况画图:∠如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,∠如图4,当射线OE在AB上方,OF在AB下方时,∠如图5,当射线OE在AB下方,OF在AB上方时,∠如图6,当射线OE在AB下方,OF在AB下方时,利用角的和差进行计算即可.【解答过程】解:(1)∠∠BOC=40°,∠∠AOC=180°﹣∠BOC=140°,∠OD平分∠AOC,∠AOC=70°;∠∠AOD=12∠COE,(2)∠如图1,当射线OE在AB上方时,∠BOE=23∠∠BOE+∠COE=∠BOC,∠COE+∠COE=40°,∠23∠∠COE=24°;∠COE,∠如图2,当射线OE在AB下方时,∠BOE=23∠∠COE﹣∠BOE=∠BOC,∠∠COE−2∠COE=40°,3∠∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)∠如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∠∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∠∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∠x°=5°,∠∠AOH=160°+3x°=175°;∠如图4,当射线OE在AB上方,OF在AB下方时,∠∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∠3x°﹣70°+90°﹣x°=180°,解得x°=80°,∠∠COB=40°,∠80°>40°,∠x°=80°不符合题意舍去;∠如图5,当射线OE在AB下方,OF在AB上方时,∠∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∠3x°+70°+90°﹣x°=180°,解得x°=10°,∠∠AOH=180°﹣∠BOH=180°﹣x°=170°;∠如图6,当射线OE在AB下方,OF在AB下方时,∠∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∠3x°﹣70°+90°+x°=180°,解得x°=40°,∠∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.1.如图所示,能用∠α,∠AOB,∠O表示同一个角的是()A.B.C.D.2.如图所示,AOB是直线,图中小于180°的角共有()A.7个B.9个C.8个D.10个3.(2020秋•锦江区校级期末)杨老师到几何王国去散步,刚走到“角”的家门,就听到∠A、∠B、∠C在吵架,∠A说:“我是48°15′,我应该最大!”∠B说:“我是48.3°,我应该最大!”.∠C也不甘示弱:“我是48.15°,我应该和∠A一样大!”听到这里,杨老师对它们说:“别吵了,你们谁大谁小,由我来作评判!”,杨老师评判的结果是()A.∠A最大B.∠B最大C.∠C最大D.∠A=∠C4.(2020秋•含山县期末)如图,已知点A在点O的北偏东42°40′方向上,点B在点O的正南方向,OE平分∠AOB,则E点相对于点O的方位可表示为()A.南偏东68°40′方向B.南偏东69°40′方向C.南偏东68°20′方向D.南偏东69°10′方向5.(2020秋•宁波期末)如图,点O在直线AB上,∠COB=∠EOD=90°,那么下列说法错误的是()A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOD与∠1互补D.∠AOE与∠COD互余6.(2020秋•成华区期末)亲爱的同学,现在是北京时间下午2:47,按正常做题速度,你应该做到此题了,此时钟表上的时针和分针的夹角度数是.7.(2020秋•皇姑区期末)看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了分钟.8.(2020秋•桥东区校级期中)观察下图,回答下列问题:(1)在图∠中有几个角?(2)在图∠中有几个角?(3)在图∠中有几个角?(4)以此类推,如图∠所示,若一个角内有n条射线,此时共有多少个角?9.(2020秋•兴业县期末)如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=70°,求∠COD和∠EOC的度数;(2)写出∠COD与∠EOC具有的数量关系并说明理由.10.(2020秋•江北区期末)将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若∠AOD=35°,求∠BOC的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.11.(2020秋•铁西区期末)(1)如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD 和∠BOD之间的数量关系,并说明理由;(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.求证:∠AOC与∠BOC互补;(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.12.(2021春•乳山市期末)【问题回顾】我们曾解决过这样的问题:如图1,点O在直线AB上,OC,OD分别平分∠AOE,∠BOE,可求得∠COD=90°.(不用求解)【问题改编】点O在直线AB上,∠COD=90°,OE平分∠BOC.(1)如图2,若∠AOC=50°,求∠DOE的度数;(2)将图2中的∠COD按图3所示的位置进行放置,写出∠AOC与∠DOE度数间的等量关系,并写明理由.13.(2020秋•温江区校级期末)已知∠AOB=60°,求:(1)如图1,OC为∠AOB内部任意一条射线,OM平分∠AOC,ON平分∠BOC,求∠MON=;(2)如图2,当OC旋转到∠AOB的外部时,∠MON的度数会发生变化吗?请说明原因;(3)如图3,当OC旋转到∠AOB(∠BOC<120°)的外部且射线OC在OB的下方时,OM平分∠AOC,射线ON在∠BOC内部,∠NOC=14∠BOC,求∠COM−23∠BON的值?14.(2020秋•南宁期末)如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.15.(2020秋•城厢区期末)已知∠AOB和∠COD是直角.(1)如图1,当射线OB在∠COD的内部时,请探究∠AOD和∠BOC之间的关系,并说明理由.∠BOC,∠DOF=(2)如图2,当射线OA,OB都在∠COD的外部时,过点O作射线OE,OF,满足∠BOE=143∠AOD,求∠EOF的度数.4(3)在(2)的条件下,在平面内是否存在射线OG,使得∠GOF:∠GOE=3:7?若存在,求出∠GOF的度数;若不存在,请说明理由.16.(2020秋•镇海区期末)新定义问题如图∠,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图∠,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为;【解决问题】(3)如图∠,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.17.(2020秋•和平区期末)如图,点O是直线AB上的一点,∠COD=80°,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数.(2)在图1中若∠AOC=α(其中20°<α<100°),请直接用含α的代数式表示∠DOE的度数,不用说明理由.(3)如图2,∠请直接写出∠AOC和∠DOE的度数之间的关系,不用说明理由.∠在∠AOC的内部有一条射线OF,满足∠AOC﹣4∠AOF=2∠BOE+∠AOF.试确定∠AOF与∠DOE的度数之间的关系,直接写出关系式即可,不用说明理由.18.(2020秋•越秀区校级月考)如图1,已知∠AOB =120°,∠COD =60°,OM 在∠AOC 内,ON 在∠BOD 内,∠AOM =13∠AOC ,∠BON =13∠BOD .(本题中所有角均大于0°且小于等于180°) (1)∠COD 从图1中的位置绕点O 逆时针旋转到OC 与OB 重合时,如图2,则∠MON = °;(2)∠COD 从图2中的位置绕点O 逆时针旋转n°(0<n <120且n≠60),求∠MON 的度数;(3)∠COD 从图2中的位置绕点O 顺时针旋转n°(0<n <180且n≠60a ,其中a 为正整数),直接写出所有使∠MON =2∠BOC 的n 值.19.(2020秋•渝中区校级期末)如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC=°;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.∠当OC′平分∠BON′时,求出对应的t的值;∠请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.20.(2020秋•江岸区期末)已知如图1,线段∠AOB=40°.∠BOC,则∠BOC=;(1)若∠AOC=13(2)如图2,∠AOC=20°,OM为∠AOB内部的一条直线,ON是∠MOC四等分线,且3∠CON=∠NOM,求4∠AON+∠COM的值;(3)如图3,∠AOC=20°,射线OM绕着O点从OB开始以5度/秒的速度逆时针旋转一周至OB结束,在旋转过程中,设运动的时间为t,ON是∠MOC四等分线,且3∠CON=∠NOM,当t在某个范围内4∠AON+∠BOM会为定值,请直接写出定值,并指出对应t的范围(本题中的角均为大于0°且小于180°的角).专题10 角度的计算(压轴题专项讲练)【典例1】如图,点O为直线AB上一点,∠BOC=40°,OD平分∠AOC.(1)求∠AOD的度数;∠COE,求∠COE的度数;(2)作射线OE,使∠BOE=23(3)在(2)的条件下,作∠FOH=90°,使射线OH在∠BOE的内部,若∠DOF=3∠BOH,求∠AOH的度数.【思路点拨】(1)根据平角定义和角平分线定义即可得结果;(2)根据题意分两种情况画图:∠如图1,当射线OE在AB上方时,∠如图2,当射线OE在AB下方时,∠COE,利用角的和差进行计算即可;∠BOE=23(3)根据题意分四种情况画图:∠如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,∠如图4,当射线OE在AB上方,OF在AB下方时,∠如图5,当射线OE在AB下方,OF在AB上方时,∠如图6,当射线OE在AB下方,OF在AB下方时,利用角的和差进行计算即可.【解答过程】解:(1)∠∠BOC=40°,∠∠AOC=180°﹣∠BOC=140°,∠OD平分∠AOC,∠AOC=70°;∠∠AOD=12∠COE,(2)∠如图1,当射线OE在AB上方时,∠BOE=23∠∠BOE+∠COE=∠BOC,∠COE+∠COE=40°,∠23∠∠COE=24°;∠COE,∠如图2,当射线OE在AB下方时,∠BOE=23∠∠COE﹣∠BOE=∠BOC,∠∠COE−2∠COE=40°,3∠∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)∠如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∠∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∠∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∠x°=5°,∠∠AOH=160°+3x°=175°;∠如图4,当射线OE在AB上方,OF在AB下方时,∠∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∠3x°﹣70°+90°﹣x°=180°,解得x°=80°,∠∠COB=40°,∠80°>40°,∠x°=80°不符合题意舍去;∠如图5,当射线OE在AB下方,OF在AB上方时,∠∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∠3x°+70°+90°﹣x°=180°,解得x°=10°,∠∠AOH=180°﹣∠BOH=180°﹣x°=170°;∠如图6,当射线OE在AB下方,OF在AB下方时,∠∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∠3x°﹣70°+90°+x°=180°,解得x°=40°,∠∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.1.如图所示,能用∠α,∠AOB,∠O表示同一个角的是()A.B.C.D.【思路点拨】角可以用一个大写字母表示,也可以用三个大写字母表示.角还可以用一个希腊字母表示,或用阿拉伯数字表示.【解答过程】解:能用∠α,∠AOB,∠O三种方法表示同一个角的图形是选项D中的图,选项B,C,D中的图都不能用∠α,∠AOB,∠O三种方法表示同一个角的图形,故选:D.2.如图所示,AOB是直线,图中小于180°的角共有()A.7个B.9个C.8个D.10个【思路点拨】按一定的规律数即可.【解答过程】解:有两种方法:(1)先数出以OA为一边的角,再数出以OB、OC、OD、OE为一边的角,把他们加起来.(2)可根据公式:n(n−1)来计算,其中,n指从点O发出的射线的条数.2图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10﹣1=9个.故选:B.3.(2020秋•锦江区校级期末)杨老师到几何王国去散步,刚走到“角”的家门,就听到∠A、∠B、∠C在吵架,∠A说:“我是48°15′,我应该最大!”∠B说:“我是48.3°,我应该最大!”.∠C也不甘示弱:“我是48.15°,我应该和∠A一样大!”听到这里,杨老师对它们说:“别吵了,你们谁大谁小,由我来作评判!”,杨老师评判的结果是()A.∠A最大B.∠B最大C.∠C最大D.∠A=∠C【思路点拨】根据度、分、秒的换算1度=60分,即1°=60′,1分=60秒,即1′=60″.将48°15′,48.3°,48.15°的单位统一,再进行大小的比较.【解答过程】)°=48.25°,∠B=48.3°,∠C=48.15°,解:∠∠A=48°15′=48°+(1560∠∠B>∠A>∠C,即∠B最大,故选:B.4.(2020秋•含山县期末)如图,已知点A在点O的北偏东42°40′方向上,点B在点O的正南方向,OE平分∠AOB,则E点相对于点O的方位可表示为()A.南偏东68°40′方向B.南偏东69°40′方向C.南偏东68°20′方向D.南偏东69°10′方向【思路点拨】根据方向角的定义以及角的和差,可得∠BOE的度数.【解答过程】解:∠点A在点O的北偏东42°40′方向上,点B在点O的正南方向,∠∠AOB=90°+(90°﹣42°40′)=137°20′,∠OE平分∠AOB,∠∠BOE=12∠AOB=12×137°20′=68°40′,∠E点相对于点O的方位为:南偏东68°40′方向,故选:A.5.(2020秋•宁波期末)如图,点O在直线AB上,∠COB=∠EOD=90°,那么下列说法错误的是()A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOD与∠1互补D.∠AOE与∠COD互余【思路点拨】根据余角和补角的定义逐一判断即可得.【解答过程】解:∠∠COB=∠EOD=90°,∠∠1+∠COD=∠2+∠COD=90°,∠∠1=∠2,故A选项正确;∠∠AOE+∠1=90°,∠∠AOE+∠2=90°,即∠AOE与∠2互余,故B选项正确;∠∠COB=90°,∠∠AOD+∠2=180°,∠∠1=∠2,∠∠AOD+∠1=180°,即∠AOD与∠1互补,故C选项正确;无法判断∠AOE与∠COD是否互余,D选项错误;故选:D.6.(2020秋•成华区期末)亲爱的同学,现在是北京时间下午2:47,按正常做题速度,你应该做到此题了,此时钟表上的时针和分针的夹角度数是.【思路点拨】根据时针每分钟转0.5度,分针每分钟转6度计算即可.【解答过程】解:下午2:47钟表上的时针和分针的夹角度数是360°﹣[47×6°﹣(60°+47×0.5°)]=161.5°,故答案为161.5°.7.(2020秋•皇姑区期末)看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了分钟.【思路点拨】11点30分时,时针与分针的夹角为165°,分针每分钟转过6°,而时针每分钟转过0.5°,此问题可以转化为追及问题,当分针从与时针的夹角为165°减少到还有11°时所用的时间,以及超过时针11°时所用的时间,设未知数,列方程解答即可,同时注意分钟在时针前11°和在时针后11°两种情况.【解答过程】解:11点30分时,时针与分针的夹角为165°,由钟表时针、分针的旋转规律得,分针每分钟转过6°,而时针每分钟转过0.5°,设小丽从家出发用x分钟到达图书馆,由题意得:(6°﹣0.5°)x=165°﹣11°或(6°﹣0.5°)x=165°+11°,解得:x=28或x=32,经检验,28分,32分钟均符合题意,故答案为:28或32.8.(2020秋•桥东区校级期中)观察下图,回答下列问题:(1)在图∠中有几个角?(2)在图∠中有几个角?(3)在图∠中有几个角?(4)以此类推,如图∠所示,若一个角内有n条射线,此时共有多少个角?【思路点拨】解答此题首先要弄清楚题目的规律:当角内有n条射线时,每条射线都与(n﹣1)条射线构成了(n﹣1)个角,则共有n(n﹣1)个角,由于两条射线构成一个角,因此角的总数为:n(n−1),可根据这个规律,直接求2出(1)(2)(3)的结论;在解答(4)题时,首先要弄清图中共有多少条射线,已知角内共n条射线,那么图中共有(n+2)条射线,代入上面的规律,即可得到所求的结论.【解答过程】解:由分析知:=1(个);(1)∠图中有2条射线,则角的个数为:2×(2−1)2=3(个);(2)∠图中有3条射线,则角的个数为:3×(3−1)2=6(个);(3)∠图中有4条射线,则角的个数为:4×(4−1)2(4)由前三问类推,角内有n条射线时,图中共有(n+2)条射线,则角的个数为(n+1)(n+2)个.29.(2020秋•兴业县期末)如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=70°,求∠COD和∠EOC的度数;(2)写出∠COD 与∠EOC 具有的数量关系并说明理由.【思路点拨】(1)根据角平分线的定义求出∠COD 的度数即可,先求出∠AOC 的度数,再根据角平分线的定义解答; (3)根据角平分线的定义表示出∠COD 与∠EOC ,然后整理即可得解. 【解答过程】解:(1)∠OD 平分∠BOC ,∠BOC =70°, ∠∠COD =12∠BOC =12×70°=35°, ∠∠BOC =70°,∠∠AOC =180°﹣∠BOC =180°﹣70°=110°, ∠OE 平分∠AOC ,∠∠EOC =12∠AOC =12×110°=55°; (2)∠COD 与∠EOC 互余,理由如下:∠OD 平分∠BOC ,OE 平分∠AOC , ∠∠COD =12∠BOC ,∠EOC =12∠AOC ,∠∠COD+∠EOC =12(∠BOC+∠AOC )=12×180°=90°, ∠∠COD 与∠EOC 互余.10.(2020秋•江北区期末)将一副三角板叠放在一起,使直角顶点重合于点O . (1)如图1,若∠AOD =35°,求∠BOC 的度数.(2)若三角板AOB 保持不动,将三角板COD 的边OD 与边OA 重合,然后将其绕点O 旋转.试猜想在旋转过程中,∠AOC 与∠BOD 有何数量关系?请说明理由.【思路点拨】(1)由于是两直角三角形板重叠,根据∠AOD的度数可得∠BOD,再根据∠DOC=90°可得∠BOC;(2)当分两种情况:∠AOB与∠DOC有重叠部分时和当∠AOB与∠DOC没有重叠部分时.【解答过程】解:(1)若∠AOD=35°,∠∠AOB=∠COD=90°,∠∠BOD=90°﹣35°=55°,∠∠BOC=90°﹣∠BOD=90°﹣55°=35°;(2)∠AOC与∠BOD互补.当∠AOB与∠DOC有重叠部分时,∠∠AOB=∠COD=90°,∠∠AOD+∠BOD+∠BOD+∠BOC=180°.∠∠AOD+∠BOD+∠BOC=∠AOC,∠∠AOC+∠BOD=180°,当∠AOB与∠DOC没有重叠部分时,∠AOB+∠COD+∠AOC+∠BOD=360°,又∠∠AOC=∠BOD=90°,∠∠AOB+∠DOC=180°.11.(2020秋•铁西区期末)(1)如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD 和∠BOD之间的数量关系,并说明理由;(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.求证:∠AOC与∠BOC互补;(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.【思路点拨】(1)根据角的计算,可求解∠BOC的度数,结合角平分线的定义求解∠BOD的度数,进而可求解∠AOD的度数,利用∠AOD+∠BOC的度数;(2)由角平分线的定义可得∠BOC=∠COD,利用补角的定义可证明结论;∠EPF,利用∠EPQ和∠FPQ互余可求解∠EPF (3)先根据题意画出图形,由考角平分线的定义可得∠MON=12=90°,进而可求解.【解答过程】解:(1)∠AOD+∠BOD=90°,理由如下:∠∠AOC=90°,∠AOB=38°,∠∠BOC=∠AOC﹣∠AOB=90°﹣38°=52°,∠OD平分∠BOC,∠BOC=26°,∠∠BOD=12∠∠AOD=∠AOB+∠BOD=38°+26°=64°,∠∠AOD+∠BOC=64°+26°=90°.(2)∠OC平分∠BOD,∠∠BOC=∠COD,∠∠AOC+∠COD=180°,∠∠AOC+∠BOC=180°,即∠AOC与∠BOC互补;(3)如图,∠PM平分∠EPQ,PN平分∠FPQ,∠∠MPQ=12∠EPQ,∠NPQ=12∠FPQ,∠∠MON=∠MPQ+∠NPQ=12∠EPQ+12∠FPQ=12∠EPF,∠∠EPQ和∠FPQ互余,∠∠EPQ+∠FPQ=90°,即∠EPF=90°,∠∠MON=45°,故答案为45°.12.(2021春•乳山市期末)【问题回顾】我们曾解决过这样的问题:如图1,点O在直线AB上,OC,OD分别平分∠AOE,∠BOE,可求得∠COD=90°.(不用求解)【问题改编】点O在直线AB上,∠COD=90°,OE平分∠BOC.(1)如图2,若∠AOC=50°,求∠DOE的度数;(2)将图2中的∠COD按图3所示的位置进行放置,写出∠AOC与∠DOE度数间的等量关系,并写明理由.【思路点拨】(1)先求∠COB,利用角平分线定义再求∠COE,最终求∠DOE的度数;(2)设∠AOC=α,再根据(1)的求解过程,用含α的式子表示两个角的数量关系.【解答过程】解:(1)∠∠COD=90°,∠∠AOC+∠BOD=90°.∠∠AOC=50°,∠∠BOD=40°.∠∠COB=∠COD+∠BOD=90°+40°=130°.∠OE平分∠BOC,∠∠COE=12∠BOC=12×130°=65°.∠∠DOE=∠COD﹣∠COE=90°﹣65°=25°.(2)设∠AOC=α.则∠BOC=180°﹣α.∠OE平分∠BOC,∠∠BOE=12∠BOC=12(180−α)=90°−12α.∠∠BOD=∠COD﹣∠BOC=90°﹣(180°﹣α)=α﹣90°,∠∠DOE=∠DOB+∠BOE=α−90°+90°−12α=12α..∠按图3所示的位置放置时,∠AOC与∠DOE度数间的等量关系为:∠DOE=12∠AOC.13.(2020秋•温江区校级期末)已知∠AOB=60°,求:(1)如图1,OC 为∠AOB 内部任意一条射线,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON = ; (2)如图2,当OC 旋转到∠AOB 的外部时,∠MON 的度数会发生变化吗?请说明原因;(3)如图3,当OC 旋转到∠AOB (∠BOC <120°)的外部且射线OC 在OB 的下方时,OM 平分∠AOC ,射线ON 在∠BOC 内部,∠NOC =14∠BOC ,求∠COM −23∠BON 的值? 【思路点拨】(1)先利用角平分线的性质得到∠MOC =12∠AOC ,∠NOC =12∠BOC ,再利用∠MON =∠COM+∠CON 计算; (2)根据角平分线的性质并结合∠MON =∠COM ﹣∠CON 解答即可;(3)根据题意得到∠COM =12∠AOC ,∠BON =34∠BOC ,再利用∠COM −23∠BON 计算,即可解答. 【解答过程】解:(1)∠OM 平分∠AOC ,ON 平分∠BOC ,∠AOB =60°, ∠∠MOC =12∠AOC , ∠∠NOC =12∠BOC ,∠∠MON =∠MOC+∠NOC =12∠BOC +12∠AOC =12∠AOB =12×60°=30°. 故答案为:30°; (2)不变,当OC 旋转到∠AOB 的外部时,∠OM 平分∠AOC ,ON 平分∠BOC ,∠AOB =60°, ∠∠MOC =12∠AOC ,∠∠NOC =12∠BOC ,∠∠MON =∠MOC ﹣∠NOC =12∠BOC −12∠AOC =12∠AOB =12×60°=30°. ∠∠MON 的度数不会发生变化;(3)当OC 旋转到∠AOB (∠BOC <120°)的外部且射线OC 在OB 的下方时, ∠OM 平分∠AOC ,∠NOC =14∠BOC , ∠∠COM =12∠AOC ,∠BON =34∠BOC ,∠∠COM −23∠BON =12∠AOC −23×34∠BOC =12∠BOC −12∠AOC =12∠AOB =30°.14.(2020秋•南宁期末)如图,已知∠AOB =120°,OC 是∠AOB 内的一条射线,且∠AOC :∠BOC =1:2.(1)求∠AOC ,∠BOC 的度数;(2)作射线OM 平分∠AOC ,在∠BOC 内作射线ON ,使得∠CON :∠BON =1:3,求∠MON 的度数;(3)过点O 作射线OD ,若2∠AOD =3∠BOD ,求∠COD 的度数.【思路点拨】(1)根据∠AOC :∠BOC =1:2,即可求解;(2)先求出∠COM ,再求出∠CON ,相加即可求解;(3)分OD 在∠AOB 内部和外部两种情况分类讨论即可求解.【解答过程】解:(1)∠∠AOC :∠BOC =1:2,∠AOB =120°,∠∠AOC =13∠AOB =13×120°=40°,∠BOC =23∠AOB =23×120°=80°; (2)∠OM 平分∠AOC ,∠∠COM =12∠AOC =12×40°=20°,∠∠CON :∠BON =1:3,∠∠CON =14∠BOC =14×80°=20°,∠∠MON =∠COM+∠CON =20°+20°=40°;(3)如图,当OD 在∠AOB 内部时,设∠BOD=x°,∠2∠AOD=3∠BOD,x°,∠∠AOD=32∠∠AOB=120°,x=120,∠x+32解得:x=48,∠∠BOD=48°,∠∠COD=∠BOC﹣∠BOD=80°﹣48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∠2∠AOD=3∠BOD,y°,∠∠AOD=32∠∠AOB=120°,y﹣y=120,∠32解得:y=240,∠∠BOD=240°,此时∠COD=320°,综上所述,∠COD的度数为32°或320°.15.(2020秋•城厢区期末)已知∠AOB和∠COD是直角.(1)如图1,当射线OB在∠COD的内部时,请探究∠AOD和∠BOC之间的关系,并说明理由.∠BOC,∠DOF=(2)如图2,当射线OA,OB都在∠COD的外部时,过点O作射线OE,OF,满足∠BOE=143∠AOD,求∠EOF的度数.4(3)在(2)的条件下,在平面内是否存在射线OG,使得∠GOF:∠GOE=3:7?若存在,求出∠GOF的度数;若不存在,请说明理由.【思路点拨】(1)根据已知条件,∠AOB和∠COD是直角,可得出∠BOD和∠AOC与∠BOC的关系式,再根据∠AOC 与∠AOB和∠BOD列出等量关系,即可得出答案;∠BOC,可设∠BOE=a,则∠BOC=4a,再根据周角的关系可得到∠AOD的等(2)根据已知条件∠BOE=14∠AOD,可得到∠AOF的等量关系式,由∠BOE、∠AOB和∠AOF可列出等量关量关系,再根据∠DOF=34系,即可得到答案;(3)分两种情况,∠当射线OG在∠EOF内部时,由∠GOF:∠GOE=3:7,可得出结果,当射线OG在∠EOF外部时,由∠GOF:∠GOE=3:7,可得出结果.【解答过程】(1)∠AOD+∠BOC=180°.证明:∠∠AOB和∠COD是直角,∠∠AOB=∠COD=90°,∠∠BOD+∠BOC=∠COD,∠∠BOD=90°﹣∠BOC,同理:∠AOC=90°﹣∠BOC,∠∠AOD=∠AOB+∠BOD=90°+90°﹣∠BOC=180°﹣∠BOC,∠∠AOD+∠BOC=180°;(2)解:设∠BOE=a,则∠BOC=4a,∠∠BOE+∠EOC=∠BOC,∠∠EOC=∠BOC﹣∠BOE=3a,∠∠AOD+∠COD+∠BOC+∠AOB =360°,∠∠AOD =360°﹣∠COD ﹣∠BOC ﹣∠AOB=360°﹣90°﹣4a ﹣90°=180°﹣4a ,∠∠DOF =34∠AOD , ∠∠DOF =34(180°﹣4a )=135°﹣3a ,∠∠AOF =14∠AOD =14(180°﹣4a )=45°﹣a , ∠∠EOF =∠BOE+∠AOB+∠AOF =a+90°+45°﹣a =135°,∠EOF 的度数为135°;(3)∠当射线OG 在∠EOF 内部时,∠∠GOF :∠GOE =3:7,∠∠GOF =33+7(∠GOF+∠GOE )=310∠EOF =310×135°=40.5°;∠当射线OG 在∠EOF 外部时,∠∠GOF :∠GOE =3:7,∠∠GOF =33+7(∠GOE ﹣∠GOF ) =310∠EOF =310(∠DOF+∠COD+∠EOC ) =310 (135°﹣3a+90°+3a )=67.5°.综上所述,∠GOF 的度数是40.5°或67.5°.16.(2020秋•镇海区期末)新定义问题如图∠,已知∠AOB ,在∠AOB 内部画射线OC ,得到三个角,分别为∠AOC 、∠BOC 、∠AOB .若这三个角中有一个角是另外一个角的2倍,则称射线OC 为∠AOB 的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图∠,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为;【解决问题】(3)如图∠,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.【思路点拨】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)分3种情况,根据幸运线定义得到方程求解即可.【解答过程】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)∠设∠AOC=x,则∠BOC=2x,由题意得,x+2x=45°,解得x=15°,∠设∠AOC=x,则∠BOC=x,由题意得,x+x=45°,解得x=22.5°,x,∠设∠AOC=x,则∠BOC=12x=45°,解得x=30°,由题意得,x+12故答案为:15°或22.5°或30°;(3)当0<t≤6时,∠MON=60+5t,∠AON=60﹣15t,若OA是射线OM与ON的幸运线,则∠AON =12∠MON ,即60﹣15t =12(60+5t ),解得t =127;∠AON =13∠MON ,即60﹣15t =13(60+5t ),解得t =125; ∠AON =23∠MON ,即60﹣15t =23(60+5t ),解得t =1211;当6<t <9时,∠MOA =20t ,∠AON =15t ﹣60,若ON 是射线OM 与OA 的幸运线,则∠AON =12∠MOA 即15t ﹣60=12×20t ,解得t =12(舍);∠AON =13∠MOA ,即15t ﹣60=13×20t ,解得t =365; ∠AON =23∠MOA ,即15t ﹣60=23×20t ,解得t =36(舍);故t 的值是127或125或1211或365. 17.(2020秋•和平区期末)如图,点O 是直线AB 上的一点,∠COD =80°,OE 平分∠BOC .(1)如图1,若∠AOC =40°,求∠DOE 的度数.(2)在图1中若∠AOC =α(其中20°<α<100°),请直接用含α的代数式表示∠DOE 的度数,不用说明理由.(3)如图2,∠请直接写出∠AOC 和∠DOE 的度数之间的关系,不用说明理由.∠在∠AOC 的内部有一条射线OF ,满足∠AOC ﹣4∠AOF =2∠BOE+∠AOF .试确定∠AOF 与∠DOE 的度数之间的关系,直接写出关系式即可,不用说明理由.【思路点拨】(1)由∠AOC 的度数可以求得∠BOC 的度数,由OE 平分∠BOC ,可以求得∠COE 的度数,又由∠DOC =80°可以求得∠DOE 的度数;(2)由第(1)问的求法,可以直接写出∠DOE 的度数;(3)∠首先写出∠AOC 和∠DOE 的度数之间的关系,由∠COD =80°,OE 平分∠BOC ,∠BOC+∠AOC =180°,可以建立各个角之间的关系,从而可以得到∠AOC和∠DOE的度数之间的关系;∠首先得到∠AOF与∠DOE的度数之间的关系,由∠AOC﹣4∠AOF=2∠BOE+∠AOF,∠COD=80°,OE平分∠BOC,∠AOC和∠DOE的关系,可以建立各个角之间的关系,从而可以得到∠AOF与∠DOE的度数之间的关系.【解答过程】解:(1)∠∠AOC=40°,∠∠BOC=180°﹣∠AOC=140°.∠OE平分∠BOC,∠∠COE=12∠BOC.∠∠COE=70°.∠∠DOE=∠COD﹣∠COE=80°﹣70°=10°.(2)∠DOE=α2−10°.∠∠AOC=α,∠∠BOC=180°﹣α.∠OE平分∠BOC,∠∠COE=12∠BOC.∠∠COE=90°−12α.∠∠DOE=∠COD﹣∠COE=80°﹣90°+α2=α2−10°.(3)∠∠AOC=2∠DOE+20°.理由:∠OE平分∠BOC,∠∠BOC=2∠COE.∠∠COD=80°,∠AOC+∠BOC=180°,∠∠DOE+∠COE=80°,∠∠COE=80°﹣∠DOE.∠∠AOC+2∠COE=180°.∠∠AOC+2(80°﹣∠DOE)=180°.化简,得:∠AOC=2∠DOE+20°;∠4∠DOE ﹣5∠AOF =140°.理由:∠∠AOC ﹣4∠AOF =2∠BOE+∠AOF ,∠∠AOC ﹣2∠BOE =5∠AOF .∠OE 平分∠BOC ,∠∠EOC =∠BOE ,∠∠AOC ﹣2∠EOC =5∠AOF .由(3)∠知:∠AOC =2∠DOE+20°,∠2∠DOE+20°﹣2∠EOC =5∠AOF .∠∠EOC =∠COD ﹣∠DOE =80°﹣∠DOE ,∠2∠DOE+20°﹣2(80°﹣∠DOE )=5∠AOF .∠4∠DOE ﹣140°=5∠AOF .即4∠DOE ﹣5∠AOF =140°.18.(2020秋•越秀区校级月考)如图1,已知∠AOB =120°,∠COD =60°,OM 在∠AOC 内,ON 在∠BOD 内,∠AOM =13∠AOC ,∠BON =13∠BOD .(本题中所有角均大于0°且小于等于180°)(1)∠COD 从图1中的位置绕点O 逆时针旋转到OC 与OB 重合时,如图2,则∠MON = 100 °;(2)∠COD 从图2中的位置绕点O 逆时针旋转n°(0<n <120且n≠60),求∠MON 的度数;(3)∠COD 从图2中的位置绕点O 顺时针旋转n°(0<n <180且n≠60a ,其中a 为正整数),直接写出所有使∠MON =2∠BOC 的n 值.【思路点拨】(1)当∠COD 从图1中的位置绕点O 逆时针旋转到OC 与OB 重合时,如图2,可得∠MON =∠MOB+∠BON ,再根据已知条件进行计算即可;(2)根据∠COD 从图2中的位置绕点O 逆时针旋转n°(0<n <120且n≠60),分两种情况画图:∠当0<n <60时,如(图1),∠当60<n <120时,如(图2),结合(1)进行角的和差计算即可;(3)根据∠COD 从图2中的位置绕点O 顺时针旋转n°(0<n <180且n≠60a ,其中a 为正整数),∠MON =2∠BOC ,分两种情况画图:∠当0<n <60时,如图3,∠当60<n <180时,如图4,结合(2)进行角的和差计算即可.【解答过程】解:(1)∠∠AOM =13∠AOC ,∠BON =13∠BOD ,∠∠MOC =23∠AOC ,∠DON =23∠BOD ,当∠COD 从图1中的位置绕点O 逆时针旋转到OC 与OB 重合时,如图2,∠∠MON =∠MOB+∠BON=23∠AOC +13∠BOD=23×120°+13×60°=80°+20°=100°;故答案为:100°;(2)∠COD 从图2中的位置绕点O 逆时针旋转n°(0<n <120且n≠60),∠当0<n <60时,如(图1),∠∠BOC =n°,∠∠AOC =∠AOB ﹣∠BOC =120°﹣n°,∠BOD =∠COD ﹣∠BOC =60°﹣n°,∠∠MON =∠MOC+∠BOC+∠BON=23(120°﹣n°)+n°+13(60°﹣n°)=100°;∠当60<n<120时,如(图2),∠∠BOC=n°,∠∠AOC=∠AOB﹣∠BOC=120°﹣n°,∠BOD=∠BOC﹣∠DOC=n°﹣60°,∠∠MON=∠MOC+∠DOC+∠DON=23(120°﹣n°)+60°+23(n°﹣60°)=100°;综上所述:∠MON的度数为100°;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<180且n≠60a,其中a为正整数),∠MON=2∠BOC,∠当0<n<60时,如图3,∠∠BOC=n°,∠∠MON=2∠BOC=2n°,∠∠AOC=∠AOB+∠BOC=120°+n°,∠BOD=∠BOC+∠DOC=n°+60°,∠∠MON=∠MOC+∠DOC﹣∠DON=23(120°+n°)+60°−23(n°+60°)=100°,∠2n°=100°∠n =50;∠当60<n <180时,如图4,∠∠BOC =n°,∠∠MON =2∠BOC =2n°,∠∠AOC =360°﹣(∠AOB+∠BOC )=360°﹣(120°+n°)=240°﹣n°,∠BOD =∠BOC+∠DOC =n°+60°,∠∠MON =360°﹣∠AOM ﹣∠AOB ﹣∠BON=360°−13(240°﹣n°)﹣120°−13(60°+n°) =140°,∠2n°=140°,∠n =70;综上所述:n 的值为50或70.19.(2020秋•渝中区校级期末)如图1,∠AOB =40°,∠COD =60°,OM 、ON 分别为∠AOB 和∠BOD 的角平分线.(1)若∠MON =70°,则∠BOC = °;(2)如图2,∠COD 从第(1)问中的位置出发,绕点O 逆时针以每秒4°的速度旋转;当OC 与OA 重合时,∠COD 立即反向绕点O 顺时针以每秒6°的速度旋转,直到OC 与OA 互为反向延长线时停止运动.整个运动过程中,∠COD 的大小不变,OC 旋转后的对应射线记为OC′,OD 旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP .设运动时间为t 秒.∠当OC′平分∠BON′时,求出对应的t 的值;∠请问在整个运动过程中,是否存在某个时间段使得|∠BOP ﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.【思路点拨】(1)根据角平分线的定义结合图形根据已知条件求角的大小;(2)∠分类讨论顺时针、逆时针转两种情况,根据角平分线的定义用t表示出角的度数,列出等量关系式求出t;∠分类讨论顺时针、逆时针转两种情况,当C′在B下方时,当C′在B上方时,根据角平分线的定义用t表示出角的度数,求在某个时间段使得|∠BOP﹣∠MON′|的值不变,求出这个定值及其对应的t的取值范围.【解答过程】解:(1)∠OM为∠AOB的角平分线、∠AOB=40°,∠∠MOB=20°.∠∠MON=70°,∠∠BON=∠MON﹣∠MOB=50°.∠ON为∠BOD的角平分线,∠∠BON=∠DON=50°.∠∠CON=∠COD﹣∠DON=10°∠∠BOC=∠DON﹣∠CON=40°.故答案为:40°.(2)如图∠:∠逆时针旋转时:。
部编数学七年级上册专题13与角相关的旋转(翻折)问题专项讲练(解析版)含答案
专题13 与角相关的旋转(翻折)问题专项讲练与角有关的旋转(翻折)问题属于人教版七年级上期必考压轴题型,是尖子生必须要攻克的一块重要内容,对考生的综合素养要求较高。
绝大部分学生对角度旋转问题信心不足,原因就是很多角度旋转问题需要自己画出图形,与分类讨论思想、数形结合思想等结合得很紧密,思考性强,难度大。
本专题重点研究与角有关的旋转问题(求值问题;定值问题;探究问题;分类讨论问题)和与角有关的翻折问题。
【与角相关的旋转问题】【解题技巧】1、角度旋转问题解题步骤:①找——根据题意找到目标角度;②表——表示出目标角度:1)角度一边动另一边不动,角度变大:目标角=起始角+速度×时间;2)角度一边动另一边不动,角度变小:目标角=起始角—速度×时间;3)角度一边动另一边不动,角度先变小后变大:变小:目标角=起始角—速度×时间;变大:目标角=速度×时间—起始角③列——根据题意列方程求解。
注:①注意题中是否确定旋转方向,未确定时要分顺时针与逆时针分类讨论;②注意旋转角度取值范围。
常见的三角板旋转的问题:三角板有两种,一种是等腰直角三角板(90°、45°、45°),另一种是特殊角的直角三角板(90°、60°、30°)。
三角板的旋转中隐藏的条件就是上面所说的这几个特殊角的角度。
总之不管这个角如何旋转,它的角度大小是不变的,旋转的度数就是组成角的两条射线旋转的度数(角平分线也旋转了同样的度数)。
抓住这些等量关系是解题的关键,三角板只是把具体的度数隐藏了起来。
【重要题型】题型1:求值问题例1.(2022·江苏·七年级期中)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ= ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ= ,(请用含m、n的代数式表示).【答案】(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB =60°,∠COD =40°,OP 平分∠AOC ,OQ 平分∠BOD ,∴∠BOP =12∠AOB =30°,∠BOQ =12∠COD =20°,∴∠POQ =50°,故答案为:50°;②解:∵∠AOB =60°,∠BOC =α=80°,∴∠AOC =140°,∵OP 平分∠AOC ,∴∠POC =12∠AOC =70°,∵∠COD =40°,∠BOC =α=80°,且OQ 平分∠BOD ,同理可求∠DOQ =60°,∴∠COQ =∠DOQ -∠DOC =20°,∴∠POQ =∠POC -∠COQ =70°-20°=50°;③解:补全图形如图3所示,∵∠AOB =60°,∠BOC =α=130°,∴∠AOC =360°-60°-130°=170°,∵OP 平分∠AOC ,∴∠POC =12∠AOC =85°,∵∠COD =40°,∠BOC =α=130°,且OQ 平分∠BOD ,同理可求∠DOQ =85°,∴∠COQ =∠DOQ -∠DOC =85°-40°=45°,∴∠POQ =∠POC +∠COQ =85°+45°=130°;(2)当∠AOB =m °,∠COD =n °时,如图2,∴∠AOC = m °+ a °,∵OP 平分∠AOC ,∴∠POC =12(m °+ a °),同理可求∠DOQ =12(n °+ a °),∴∠COQ =∠DOQ -∠DOC =12(n °+ a °)- n °=12(-n °+ a °),∴∠POQ =∠POC -∠COQ =12(m °+ a °)-12(-n °+ a °) =12m °+12n °,当∠AOB =m °,∠COD =n °时,如图3,∵∠AOB =m °,∠BOC =α,∴∠AOC =360°-m °-a °,∵OP 平分∠AOC ,∴∠POC =12∠AOC =180°12-(m °+ a °),∵∠COD =n °,∠BOC =α,且OQ 平分∠BOD ,同理可求∠DOQ =12(n °+ a °),∴∠COQ =∠DOQ -∠DOC =12(n °+ a °)-n °=12(-n °+ a °),∴∠POQ =∠POC +∠COQ =180°12-(m °+ a °)+12(-n °+ a °) =180°-12m °-12n °,综上所述,若∠AOB =m °,∠COD =n °,则∠POQ =12m °+12n °或180°-12m °-12n °.故答案为:12m °+12n °或180°-12m °-12n °.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.变式1.(2022•高新区期末)已知∠AOB =90°,∠COD =60°,按如图1所示摆放,将OA 、OC 边重合在直线MN 上,OB 、OD 边在直线MN 的两侧:(1)保持∠AOB 不动,将∠COD 绕点O 旋转至如图2所示的位置,则①∠AOC +∠BOD = ;②∠BOC ﹣∠AOD = .(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.【解题思路】(1)①将∠AOC+∠BOD拆分、转化为∠COD+∠AOB即可得;②依据∠BOC=∠AOB﹣∠AOC、∠AOD=∠COD﹣∠AOC,将原式拆分、转化为∠AOB﹣∠COD计算可得;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,只需表示出∠AOD即可得出答案,而∠AOD在OD与OA相遇前、后表达式不同,故需分OD与OA相遇前后即0<t≤20和20<t≤36两种情况求解;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,再分①射线OE、OF在射线OB同侧,在直线MN同侧;②射线OE、OF在射线OB异侧,在直线MN同侧;③射线OE、OF在射线OB异侧,在直线MN异侧;④射线OE、OF在射线OB同侧,在直线MN异侧;四种情况分别求解.【解答过程】解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;②∠BOC﹣∠AOD=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC﹣∠COD+∠AOC=∠AOB﹣∠COD=90°﹣60°=30°;故答案为:150°、30°;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,∴∠MOC﹣∠AOD=(8t﹣60)°;②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,∴∠MOC﹣∠AOD=(2t+60)°;(3)设OC 绕点O 逆时针旋转n °,则OD 也绕点O 逆时针旋转n °,①0<n °≤150°时,如图4,射线OE 、OF 在射线OB 同侧,在直线MN 同侧,∵∠BOF =12[90°﹣(n ﹣60°)]=12(150﹣n )°,∠BOE =(90−12n )°=12(180﹣n )°,∴∠EOF =∠BOE ﹣∠BOF =15°;②150°<n °≤180°时,如图5,射线OE 、OF 在射线OB 异侧,在直线MN 同侧,∵∠BOF =12(n−150)°,∠BOE =(90−12n )°=12(180﹣n )°,∴∠EOF =∠BOE +∠BOF =15°;③180°<n °≤330°时,如图6,射线OE 、OF 在射线OB 异侧,在直线MN 异侧,∵∠DOF =12(n−150)°,∠COE =12(360−n)°,∴∠EOF =∠DOF +∠COD +∠COE =165°;④330°<n °≤360°时,如图7,射线OE 、OF 在射线OB 同侧,在直线MN 异侧,∵∠DOF =12[360﹣(n ﹣150)]°=12(510﹣n )°,∠COE =12(360−n)°,∴∠EOF =∠DOF ﹣∠COD ﹣∠COE =15°;综上,∠EOF =15°或165°.变式2.(2022•浙江七年级期中)如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC Ð=°,将一直角三角板(30M Ð=°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(注:本题旋转角度最多180°.)(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转.如图2,经过t 秒后,AON Ð=______度(用含t 的式子表示),若OM 恰好平分BOC Ð,则t =______秒(直接写结果).(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转,如图3,经过t 秒后,AOC Ð=______度(用含t 的式子表示)若OC 平分MON Ð,求t 为多少秒?(3)若(2)问的条件不变,那么经过秒OC 平分BOM Ð?(直接写结果)【答案】(1)3t ,5;(2)306t +,5;(3)经过703秒OC 平分BOM Ð【解析】(1)3AON t Ð=,∵30AOC Ð=°,∴150BOC Ð=°∵OM 平分BOC Ð,90MON Ð=°,∴75COM Ð=°,∴15CON Ð=°∴301515AON AOC CON Ð=Ð-Ð=-=°°°,解得:1535t =¸=°°秒(2)()306AOC t Ð=+度∵90MON Ð=°,OC 平分MON Ð,∴45CON COM Ð=Ð=°∴45AOC AON CON Ð-Ð=Ð=°,∴306345t t +-=解得:5t =秒(3)如图:∵90AON BOM Ð+Ð=°,BOC COMÐ=Ð由题可设AON Ð为3t ,AOC Ð为()306t +°,∴()19032COM BOC t Ð=Ð=-°∵180BOC AOC Ð+Ð=°,()()130********t t ++-=,解得:703t =秒答:经过703秒OC 平分BOM Ð.题型2:定值问题(角度不变问题)例2.(2022·江苏南京·七年级期末)如图,两条直线AB ,CD 相交于点O ,且∠AOC =∠AOD ,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15°/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12°/s ,运动时间为t 秒(0<t <12,本题出现的角均小于平角)(1)图中一定有 个直角;当t=2时,∠MON的度数为 ,∠BON的度数为 ;(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;(3)当射线OM在∠COB内部,且7COM2BONMONÐ+ÐÐ是定值时,求t的取值范围,并求出这个定值.变式1.(2022•渝中区七年级期中)如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC= °;(2)如图2,∠COD从第(1)问中的位置出发,绕点O 逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.【解题思路】(1)根据角平分线的定义结合图形根据已知条件求角的大小;(2)①分类讨论顺时针、逆时针转两种情况,根据角平分线的定义用t 表示出角的度数,列出等量关系式求出t ;②分类讨论顺时针、逆时针转两种情况,当C ′在B 下方时,当C ′在B 上方时,根据角平分线的定义用t 表示出角的度数,求在某个时间段使得|∠BOP ﹣∠MON ′|的值不变,求出这个定值及其对应的t 的取值范围.【解答过程】解:(1)∵OM 为∠AOB 的角平分线、∠AOB =40°,∴∠MOB =20°.∵∠MON =70°,∴∠BON =∠MON ﹣∠MOB =50°.∵ON 为∠BOD 的角平分线,∴∠BON =∠DON =50°.∴∠CON =∠COD ﹣∠DON =10°∴∠BOC =∠DON ﹣∠CON =40°.故答案为:40°.(2)如图①:①逆时针旋转时:当C ′在B 上方时,根据题意可知,∠BOC ′=40°﹣4t ,∠BOD ′=∠BOD ﹣4t =100°﹣4t .∠BON ′=12∠BOD ′=12(100°−4t)=50°﹣2t ,∵OC ′平分∠BON ′,∴∠BOC ′=12∠BON′,即40°﹣4t =12(50°﹣2t ),解得:t =5(s ).当C ′在B 下方时,此时C ′也在N ′下方,此时不存在OC ′平分∠BON ′.顺时针旋转时:如图②,同理当C ′在B 下方时,此时C ′也在N ′下方,此时不存在OC ′平分∠BON ′.当C ′在B 上方时,即OC ′与OB 重合,由题意可求OC ′与OB 重合用的时间=∠AOC ÷4+∠AOB ÷6=(∠AOB +∠BOC )÷4+∠AOB ÷6=803(s ).∴OC ′与OB 重合之后,∠BOC ′=6(t −803)(s ).∴∠BOD ′=∠BOC ′+60°=6(t −803)+60°=6t ﹣100°.∴∠BON ′=12∠BOD′=12(6t ﹣100°)=3t ﹣50°,∵OC ′平分∠BON ′,∴∠BOC ′=12∠BON′,∴6(t −803)=12(3t ﹣50°),解得:t =30(s )综上所述t 的值为5或30.②逆时针旋转时:当C ′在B 上方时,如图③根据①可知,∠BOC ′=40°﹣4t ,∠BOD ′=100°﹣4t ,∠BON ′=50°﹣2t .∴∠AOD ′=∠AOB +∠BOD ′=140°﹣4t ,∴∠AOP =12∠AOD′=12∠(140°−4t)=70°﹣2t ,∴∠BOP =∠AOP ﹣∠AOB =30°﹣2t ,∵∠MON ′=∠MOB +∠BON ′=70°﹣2t ,∴|∠BOP ﹣∠MON ′|=|30°﹣2t ﹣70°+2t |=40°,此段时间0≤t ≤10s ;如图④当C ′在B 下方时,设经过OB 后运动时间为t 2,同理可知,∠BOC ′=4t 2,∠BOD ′=60°﹣4t 2,∴∠MON′=12∠BON′=30−2t 2,∴∠AOD ′=∠AOB +∠BOD ′=100°﹣4t 2,∴∠AOP =12∠AOD′=50°−2t 2,∴∠BOP =∠AOP ﹣∠AOB =10°﹣2t 2,∵∠MON ′=∠MOB +∠BON ′=50°﹣2t 2,∴|∠BOP﹣∠MON′|=|10°﹣2t2﹣50°+2t2|=40°.此时:10<t≤20;顺时针旋转时:当C′在B下方时,如图⑤,设经过OB后运动时间为t1,同理可知:∠BOC′=40°﹣6t1,∠BOD′=20°+6t1,∴∠BON′=12∠BOD′=10°+3t1,∴∠AOD′=60°+6t1,∠AOP=30°+3t1,∴∠BOP=∠AOP﹣∠AOB=3t1﹣10°,∵∠MON′=∠MOB+∠BON′=30°﹣3t1,∴|∠BOP﹣∠MON′|=|3t1﹣10°﹣30°﹣3t1|=40°,此时:20<t≤803;当C′在B上方时,如图⑥,设经过OB后运动时间为t3,同理可知:,∠BOC′=60°+6t3,∠BOD′=100°+6t3,∴∠BON′=12∠BON′=50°+3t3,∴∠AOD′=140°+6t3,∴∠AOP=70°+3t3,∴∠BOP=∠AOP﹣∠AOB=30°+3t3,∵∠MON′=∠MOB+∠BON′=70°+3t3,∴|∠BOP﹣∠MON′|=|30°+3t3﹣70°﹣3t3|=40°,此时:803<t≤50.综上所述:存在且定值为40°,0≤t≤50.变式2.(2022•碑林区七年级开学)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请直接写出结论:直线ON 平分 (平分或不平分)∠AOC.(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 10或40 .(直接写出结果)(3)将图1中的三角板绕点O顺时针旋转,请探究,当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解题思路】(1)设ON的反向延长线为OD,由角平分线的性质和对顶角的性质可求得∠BON=∠AOD=∠COD=30°;(2)由直线ON恰好平分锐角∠AOC可知旋转60°或240°时直线ON平分∠AOC,根据旋转速度可求得需要的时间;(3)由∠MON=90°,∠AOC=60°,可知∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,最后求得两角的差,从而可做出判断.【解答过程】解:(1)直线ON平分∠AOC.理由如下:设ON的反向延长线为OD,∵OM平分∠BOC,∠BOC=120°,∠BOC=60°,∴∠MOC=∠MOB=12又∠MOD=∠MON=90°,∴∠COD=90°﹣∠MOC=30°,∵∠AOC=180°﹣∠BOC=60°,∠AOC,∴OD平分∠AOC,∴∠COD=12即直线ON平分∠AOC,故答案为:平分;(2)∵∠BOC=120°,∴∠AOC=60°.∴∠BON=∠COD=30°.即旋转60°或240°时直线ON平分∠AOC.由题意得,6t=60或240.解得:t=10或40,故答案为:10或40;(3)∠AOM﹣∠NOC的差不变.∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON.∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.∴∠AOM与∠NOC的差不变,这个差值是30°.题型3:探究类问题(判断角的数量之间的关系)例3.(2022·四川·成都市七年级期末)如图所示:点P是直线AB上一点,∠CPD是直角,PE平分∠BPC.(1)如图1,若∠APC=40°,求∠DPE的度数;(2)如图1,若∠APC=a,直接写出∠DPE的度数(用含a的代数式表示);(3)保持题目条件不变,将图1中的∠CPD按顺时针方向旋转至图2所示的位置,探究∠APC和∠DPE的度数之间的关系,写出你的结论,并说明理由.变式1.(2022·广东七年级期中)如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB等于多少;若∠ACB=130°,则∠DCE等于多少;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.【答案】(1)∠ACB=155°;∠DCE=50°;(2)∠ACB+∠DCE=180°,理由见解析;(3)∠DAB+∠CAE=120°,理由见解析;(4)∠AOD+∠BOC=α+β,理由见解析.【分析】(1)先求出∠BCD,再代入∠ACB=∠ACD+∠BCD求出即可;先求出∠BCD,再代入∠DCE=∠BCE﹣∠BCD求出即可;(2)根据∠ACB=∠ACE+∠DCE+∠DCE求出即可;(3)根据∠DAB=∠DAE+∠CAE+∠CAB求出即可;(4)根据∠AOD=∠AOC+∠COB+∠BOD求出即可.【详解】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.【点睛】本题考查了角的运算,理解角的和差运算是解题的关键.变式2.(2022•喀喇沁旗七年级期中)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB 的度数;(2)将图1中的三角板绕点O顺时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.【解题思路】(1)根据对顶角求出∠BON ,代入∠BOM =∠MON ﹣∠BON 求出即可;(2)求出∠BOC =120°,根据角平分线定义请求出∠COM =∠BOM =60°,代入∠CON =∠MON +∠COM 求出即可;(3)用∠AOM 和∠CON 表示出∠AON ,然后列出方程整理即可得解.【解答过程】解:(1)如图2,∵∠AOC =60°,∴∠BON =∠AOC =60°,∵∠MON =90°,∴∠BOM =∠MON ﹣∠BON =30°,故答案为:30°;(2)∵∠AOC =60°,∴∠BOC =180°﹣∠AOC =120°,∵OM 平分∠BOC ,∴∠COM =∠BOM =60°,∵∠MON =90°,∴∠CON =∠MON +∠COM =90°+60°=150°;(3)∠AOM ﹣∠NOC =30°,理由是:∵∠MON =90°,∠AOC =60°,∴∠AON =90°﹣∠AOM ,∠AON =60°﹣∠NOC ,∴90°﹣∠AOM =60°﹣∠NOC ,∴∠AOM ﹣∠NOC =30°,故∠AOM 与∠NOC 之间的数量关系为:∠AOM ﹣∠NOC =30°.题型4:分类讨论问题例4.(2022·成都市七中育才学校七年级月考)一副三角板(直角三角板OAB 和直角三角板OCD )如图1所示放置,两个顶点重合于点O ,OC 与OB 重合,且60AOB Ð=°,30A Ð=°,45OCD ODC Ð=Ð=°,90COD ABO Ð=Ð=°.将三角板OCD 绕着点O 逆时针旋转一周,旋转过程中,OE 平分BOC Ð,OF 平分AOD Ð,(AOD Ð和BOC Ð均是指小于180°的角)探究EOF Ð的度数.(1)当三角板OCD 绕点O 旋转至如图2的位置时,OB 与OD 重合,AOC Ð=______°,EOF Ð=______°.(2)三角板OCD 绕点O 旋转过程中,EOF Ð的度数还有其他可能吗?如果有,请研究证明结论,若没有,请说明理由.(3)类比拓展:当COD Ð的度数为a ()0180a °<<°时,其他条件不变,在旋转过程中,请直接写出EOF Ð的度数.(用含a 的式子来表示)【答案】(1)150;75 (2)有,105° (3)1302EOF a =°+或11502a °-【分析】(1)利用两个角的和的定义,角的平分线的定义计算即可; (2)利用分类思想, 确定不同方式计算即可;(3)利用特殊与一般的思想,分类将问题抽象即可.【详解】(1)如图,由OB 与OD 重合,∵60AOB Ð=°,90COD BOC Ð=Ð=°,∴6090150AOC AOB BOC Ð=Ð+Ð=°+°=°.又∵OE 平分BOC Ð,OF 平分AOD Ð,∴1452BOE BOC Ð=Ð=°,1302DOF AOD Ð=Ð=°,∴453075EOF BOE EOF Ð=Ð+Ð=°+°=°.故答案为:150°;75°;(2)如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°()13602COD AOD =°-Ð-Ð+30°()1360902AOC =°-°-Ð+30°()12702AOD =°-Ð+30°11652AOD =°-Ð.∴EOF BOE AOF AOB Ð=Ð+Ð-Ð,∴111656010522EOF AOD AOD Ð=Ð+°-Ð-°=°.(3)如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°,()1111++2222AOF AOD COD AOC AOC a Ð=Ð=ÐÐ=Ð,∴EOF AOF AOB BOE Ð=Ð+Ð-Ð=11+22AOC a Ð+60°-1-302AOC а=1302a °+;如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°,()()1111136036018022222AOF AOD COD AOC AOC AOC a a Ð=Ð=°-Ð-Ð=°--Ð=°--Ð∴EOF BOE AOF AOB Ð=Ð+Ð-Ð111130180601502222AOC AOC a a =Ð+°+°--Ð-°=°-.综上所述,1302EOF a Ð=°+或11502a °-.【点睛】本题考查了两个角的和,角的平分线,周角的定义,灵活运用分类思想,角的平分线定义,角的和,差定义计算是解题的关键.变式1.(2022•广东七年级期末)如图(1),∠BOC 和∠AOB 都是锐角,射线OB 在∠AOC 内部,AOB a Ð=,BOC b Ð=.(本题所涉及的角都是小于180°的角)(1)如图(2),OM 平分∠BOC ,ON 平分∠AOC ,填空:①当40a =°,70b =°时,COM Ð=______,CON Ð=______,MON Ð=______;②MON Ð=______(用含有a 或b 的代数式表示).(2)如图(3),P 为∠AOB 内任意一点,直线PQ 过点O ,点Q 在∠AOB 外部:①当OM 平分∠POB ,ON 平分∠POA ,∠MON 的度数为______;②当OM 平分∠QOB ,ON 平分∠QOA ,∠MON 的度数为______;(∠MON 的度数用含有a 或b 的代数式表示)(3)如图(4),当40a =°,70b =°时,射线OP 从OC 处以5°/分的速度绕点O 开始逆时针旋转一周,同时射线OQ 从OB 处以相同的速度绕点O 逆时针也旋转一周,OM 平分∠POQ ,ON 平分∠POA ,那么多少分钟时,∠MON 的度数是40°?【答案】(1)135,55,20,2°°°a ;(2)12a ,11802a °-;(3)48分钟时,∠MON 的度数是40°【解析】(1)①Q OM 平分∠BOC ,ON 平分∠AOC ,当40a =°,70b =°时,COM Ð=113522BOC Ð=b =°,CON Ð=()111()55222AOC AOB BOC Ð=Ð+Ð=a +b =°,MON Ð=()11120222CON COM a b b a Ð-=+-==°②MON Ð()111222CON COM =Ð-=a +b -b =a ,故答案为:135,55,20,2°°°a (2)①Q OM 平分∠POB ,ON 平分∠POA ,\()12MON POB POA Ð=Ð+Ð 1122AOB =Ð=a ②Q OM 平分∠QOB ,ON 平分∠QOA ,\()12MON BOQ QOA Ð=Ð+Ð()1136018022AOB =°-Ð=°-a 故答案为:12a ,11802a °-(3)根据题意POQ BOC Ð=Ð=bQ OM 平分∠POQ ,113522POM POQ \Ð=Ð=b =°如图,当OP 在AOB Ð的外部时,Q MON 的度数是40°MON PON POM Ð=Ð+Q 5PON \Ð=°Q ON 平分∠POA ,210POA PON \Ð=Ð=°,120POC \Ð=°,则OP 旋转了360120240°-°=°240548\¸=分,即48分钟时,∠MON 的度数是40°如图,OP 在AOB Ð的内部时,MON POM PON Ð=Ð-ÐQ 即4035PON °=°-Ð5PON \Ð=-°此情况不存在,综上所述,48分钟时,∠MON 的度数是40°变式2.(2022·成都市七年级阶段练习)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角,如图1,若12COD AOB Ð=Ð,则COD Ð是ACB Ð的内半角.(1)如图1,已知80AOB °Ð=,25AOC °Ð=,COD Ð是AOB Ð的内半角,则BOD Ð=________;(2)如图2,已知68AOB °Ð=,将AOB Ð绕点O 按顺时针方向旋转一个角度()060a a °<<得COD Ð,当旋转的角度a 为何值时,COB Ð是AOD Ð的内半角;(3)已知30AOB °Ð=,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.如图2,∵BOC Ð是AOD Ð的内半角,AOC BOD a Ð=Ð=,如图4,∵AOD Ð是BOC Ð的内半角,360AOC BOD a Ð=Ð=-,【折叠(翻折)问题】【解题技巧】折叠前后对应角、对应边相等;出现角的比值或无角的具体度数却求度数常设x 列方程。
苏科版七年级上数学期末复习压轴题---角的旋转(难题)训练
七上期末复习压轴题---角的旋转(难题)训练一、计算题1.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120∘.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O以每秒6∘的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_____(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM−∠NOC的度数.2.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120∘.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O以每秒6∘的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_____(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM−∠NOC的度数.3.如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角,3∠AOC=∠BOD,求∠COD的度数;(2)在(1)中∠COD绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)在图1中,∠AOD=90°,∠AOC=30°,线段OC、OD绕着点O顺时针旋转,速度分别为每秒20°和每秒10°(当.OD..重合时旋转都停止........),OM、ON分别平..与.OB分∠BOC、∠BOD,多少秒时∠COM=∠BON(直接写出答案,不必写出过程).二、解答题4.如图1,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°(1)求∠COB的度数(2)经过点O作射线OD,使得∠AOC=4∠AOD,求∠BOD的度数(3)如图2,在∠AOB的内部作∠EOF,OM、ON分别为∠AOE和∠BOF的平分线,当∠EOF绕点O在∠AOB的内部转动时,请写出∠AOB、∠EOF、∠MON之间的数量关系,并说明理由。
人教版七年级数学上册期末压轴题动点类和角度的旋转专题含答案
人教版七年级数学上册期末压轴题专项突破数轴动点类和角度的旋转数轴动点:1.点A,B为数轴上的两点,点A对应的数为a,点B对应的数为3,a3=﹣8.(1)求A,B两点之间的距离;(2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A点的距离与点C到B点的距离之和最小.请写出你的猜想,并说明理由;(3)若P,Q为数轴上的两个动点(Q点在P点右侧),P,Q两点之间的距离为m,当点P到A点的距离与点Q到B点的距离之和有最小值4时,m的值为.2.已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc0,a+b0:(填“>”,“=”或“<”)(2)若a=﹣2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,则b的值为.3.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B 的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P关于A→B的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.4.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q 到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.5.如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是,并在数轴上将点B表示出来.(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P 到点A的距离的2倍?6.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示的数﹣3,将点A向右移动5个单位长度,那么终点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数3,将点A向左移动3个单位长度,再向右移动6个单位长度,那么终点B表示的数是.A、B两点间的距离是.(3)如果点A表示的数x,将点A向右移动p个单位长度,再向左移动n个单位长度,那么请你猜想终点B表示的数是.A、B两点间的距离是.7.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.8.阅读下面的材料:如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点A的距离CA=cm;若数轴上有一点D,且AD=4,则点D表示的数为;(3)若将点A向右移动xcm,则移动后的点表示的数为;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm 的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.角度的旋转:9.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE(图中所说的角都是小于平角的角).(1)如图1,若∠COF=58°,求∠BOE的度数;(2)将∠COE绕点O顺时针旋转到如图2所示的位置时,若∠COF=m°,求∠BOE的度数(用含字母m的代数式表示).10.如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD.(1)若∠AOC、∠BOD都是直角,∠BOC=60°,求∠AOB和∠DOC的度数.(2)若∠BOD=100°,∠AOC=110°,且∠AOD=∠BOC+70°,求∠COD的度数.(3)若∠AOC=∠BOD=α,当α为多少度时,∠AOD和∠BOC互余?并说明理由.11.已知∠AOB=90°,OC是一条可以绕点O转动的射线,ON平分∠AOC,OM平分∠BOC.(1)当射线OC转动到∠AOB的内部时,如图1,求∠MON的度数.(2)当射线OC转动到∠AOB的外时(90°<∠BOC<∠180°),如图2,∠MON的大小是否发生变化?变或者不变均说明理由.12.如图,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM 与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图,经过t秒后,OM恰好平分∠BOC.求t的值;并判断此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图,那么经过多长时间OC平分∠MON?请说明理由.13.如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.(1)求∠AOD的度数;(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.14.已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则①∠AOC+∠BOD=;②∠BOC﹣∠AOD=.(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.15.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF 绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF 绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.16.已知:O为直线AB上的一点,以O为观察中心,射线OA表示正北方向,ON 表示正东方向(即AB⊥MN),射线OC,射线OE的方向如各图所示.(1)如图1所示,当∠COE=90°时:①若∠AOE=20°,则射线OE的方向是.②∠AOE与∠CON的关系为.③∠AOC与∠EON的关系为.(2)若将射线OC,射线OE绕点O旋转至图2的位置,另一条射线OF恰好平分∠COM,旋转中始终保持∠COE=90°.①若∠AOF=24°,则∠EOF=度.②若∠AOF=β,则∠CON=(用含β的代数式表示).(3)若将射线OC,射线OE绕点O旋转至图3的位置,射线OF仍然平分∠COM,旋转中始终保持∠COE=90°,则∠CON与∠AOF之间存在怎样的数量关系,并说明理由.参考答案数轴动点1.解:(1)∵a3=﹣8.∴a=﹣2,∴AB=|3﹣(﹣2)|=5;(2)点C到A的距离为|x+2|,点C到B的距离为|x﹣3|,∴点C到A点的距离与点C到B点的距离之和为|x+2|+|x﹣3|,当距离之和|x+2|+|x﹣3|的值最小,﹣2<x<3,此时的最小值为3﹣(﹣2)=5,∴当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5;(3)设点P所表示的数为x,∵PQ=m,Q点在P点右侧,∴点Q所表示的数为x+m,∴PA=|x+2|,QB=|x+m﹣3|∴点P到A点的距离与点Q到B点的距离之和为:PA+QB=|x+2|+|x+m﹣3| 当x在﹣2与3﹣m之间时,|x+2|+|x+m﹣3|最小,最小值为|﹣2﹣(3﹣m)|=4,①﹣2﹣(3﹣m)=4,解得,m=9,②(3﹣m)﹣(﹣2)=4时,解得,m=1,故答案为:1或9.2.解:(1)由a,b,c.在数轴上的位置可知,a<0,0<b<c,∴abc<0,a+b>0,故答案为:<>,(2)①b2=16,b>0,∴b=4,∵a=﹣2,BC=AB,∴c﹣4=4﹣(﹣2),∴c=10;②设点P表示的数为x,点P在BC上,因此b<x<c,∴bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣10﹣1)x+c﹣10a,∵结果与x无关,∴b+c=11,又∵c﹣b=b+2,即,c=2b+2,∴b=3,故答案为:3.3.解:(1)∵数轴上两点A,B对应的数分别为﹣8和4,∴AB=4﹣(﹣8)=12,∵点P到点A、点B的距离相等,∴P为AB的中点,∴BP=PA=AB=6,∴点P表示的数是﹣2;(2)①当点P运动到原点O时,PA=8,PB=4,∵PA≠3PB,∴点P不是关于A→B的“好点”;故答案为:不是;②根据题意可知:设点P运动的时间为t秒,PA=t+8,PB=|4﹣t|,∴t+8=3|4﹣t|,解得t=1或t=10,所以点P的运动时间为1秒或10秒;(3)根据题意可知:设点P表示的数为n,PA=n+8或﹣n﹣8,PB=4﹣n,AB=12,分五种情况进行讨论:①当点A是关于P→B的“好点”时,|PA|=3|AB|,即﹣n﹣8=36,解得n=﹣44;②当点A是关于B→P的“好点”时,|AB|=3|AP|,即3(﹣n﹣8)=12,解得n=﹣12;或3(n+8)=12,解得n=﹣4;③当点P是关于A→B的“好点”时,|PA|=3|PB|,即﹣n﹣8=3(4﹣n)或n+8=3(4﹣n),解得n=10或1(不符合题意,舍去);④当点P是关于B→A的“好点”时,|PB|=3|AP|,即4﹣n=3(n+8),解得n=﹣5;或4﹣n=3(﹣n﹣8),解得n=﹣14;⑤当点B是关于P→A的“好点”时,|PB|=3|AB|,即4﹣n=36,解得n=﹣32.综上所述:所有符合条件的点P表示的数是:﹣4,﹣5,﹣12,﹣14,﹣32,﹣44.4.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.5.解:(1)10﹣4=6,∵点B位于点A的左侧,∴点B表示的数是﹣6,故答案为:﹣6.在数轴上将点B表示如图所示:(2)设经过多少秒点P与点A的距离是2个单位长度,∴2t+2=10或2t﹣2=10∴t=4或t=6∴经过4秒或6秒点P与点A的距离是2个单位长度;(3)设经过t秒,点Q到点B的距离是点P到点A的距离的2倍,∴2(10﹣2t)=10﹣t或2(2t﹣10)=10﹣t∴t=或t=6∴经过秒或6秒,点Q到点B的距离是点P到点A的距离的2倍.6.解:(1)∵﹣3+5=2,∴B表示的数为2,A、B两点间的距离为2﹣(﹣3)=5,故答案为:2,5;(2)∵3﹣3+6=6,∴B表示的数为6,A、B两点间的距离为6﹣3=3,故答案为:6,3;(3)根据题意,点B表示的数为x+p﹣n,A、B两点间的距离为|x+p﹣n﹣x|=|p﹣n|,故答案为:x+p﹣n,|p﹣n|.7.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.8.解:(1)如图所示:(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为:5,﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为:﹣1+x;(4)CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化.角度的旋转9.解:(1)∵∠COE是直角,∠COF=58°,∴∠EOF=90°﹣58°=32°.∵OF平分∠AOE,∴∠AOE=2∠EOF=64°,∴∠BOE=180°﹣64°=116°.答:∠BOE的度数为116°;(2)∵∠COF=m°,∴∠EOF=m°﹣90°.又∵OF平分∠AOE,∴∠AOE=2∠EOF=2m°﹣180°,∴∠BOE=180°﹣(2m°﹣180°)=360°﹣2m°.答:∠BOE的度数为360°﹣2m°.10.解:(1)∵∠AOC=90°,∠BOD=90°,∠BOC=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∠DOC=∠BOD﹣∠BOC=90°﹣60°=30°;(2)设∠COD=x°,则∠BOC=100°﹣x°,∵∠AOC=110°,∴∠AOB=110°﹣(100°﹣x°)=x°+10°,∵∠AOD=∠BOC+70°,∴100°+10°+x°=100°﹣x°+70°,解得:x=30即,∠COD=30°;(3)当α=45°时,∠AOD与∠BOC互余;理由是:要使∠AOD与∠BOC互余,即∠AOD+∠BOC=90°,∴∠AOB+∠BOC+∠COD+∠BOC=90°,即∠AOC+∠BOD=90°,∵∠AOC=∠BOD=α,∴∠AOC=∠BOD=45°,即α=45°,∴当α=45°时,∠AOD与∠BOC互余.11.解:(1)如图1所示:∵ON平分∠AOC,∴∠CON=,又∵OM平分∠BOC,∴∠COM=,又∵∠AOB=∠AOC+∠BOC=90°,∴∠MON=∠CON+∠COM===45°;(2)∠MON的大小不变,如图2所示,理由如下:∵OM平分∠BOC,∴∠MOC=,又∵ON平分∠AOC,∴∠AON=,又∵∠MON=∠AON+∠AOM,∴∠MON====45°.12.解:(1)旋转前∠MOC=90°﹣∠AOC=60°,当OM平分∠BOC时,,3t=75°﹣60°,t=5s,结论:ON平分∠AOC,理由:∵∠CON=90°﹣∠MOC,∠AOC=180°﹣∠BOC=2(90°﹣∠MOC),∴∠AOC=2∠CON,∴ON平分∠AOC(2)∠MOC=∠AOM﹣∠AOC=(3t+90°)﹣(30°+6t)=60°﹣3t若OC平分∠MON则,∴60°﹣3t=45°,∴t=5.13.解:如图所示:(1)设∠AOD=5x°,∵∠BOC=∠AOD∴∠BOC=•5x°=3x°又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,∠AOD=∠AOB+∠BOC+∠DOC,∴∠AOC+∠BOD=∠AOD+∠BOC,又∵∠AOC=∠BOD=120°,∴5x+3x=240解得:x=30°∴∠AOD=150°;(2)∵∠AOD=150°,∠BOC=∠AOD,∴∠BOC=90°,①若线段OB、OC重合前相差20°,则有:20t+15t+20=90,解得:t=2,②若线段OB、OC重合后相差20°,则有:20t+15t﹣90=20解得:,又∵0<t<6,∴t=2或t=;(3)∠MON的度数不会发生改变,∠MON=30°,理由如下:∵旋转t秒后,∠AOD=150°﹣5t°,∠AOC=120°﹣5t°,∠BOD=120°﹣5t°∵OM、ON分别平分∠AOC、∠BOD∴∠AOM=∠AOC=,∠DON==∴∠MON=∠AOD﹣∠AOM﹣∠DON=150°﹣5t°﹣﹣=30°.14.解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;②∠BOC﹣∠AOD=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC﹣∠COD+∠AOC=∠AOB﹣∠COD=90°﹣60°=30°;故答案为:150°、30°;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,∴∠MOC﹣∠AOD=(8t﹣60)°;②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,∴∠MOC﹣∠AOD=(2t+60)°;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,①0<n°≤150°时,如图4,射线OE、OF在射线OB同侧,在直线MN同侧,∵∠BOF=[90°﹣(n﹣60°)]=(150﹣n)°,∠BOE=(90﹣n)°=(180﹣n)°,∴∠EOF=∠BOE﹣∠BOF=15°;②150°<n°≤180°时,如图5,射线OE、OF在射线OB异侧,在直线MN同侧,∵°,∠BOE=(90﹣n)°=(180﹣n)°,∴∠EOF=∠BOE+∠BOF=15°;③180°<n°≤330°时,如图6,射线OE、OF在射线OB异侧,在直线MN异侧,∵°,°,∴∠EOF=∠DOF+∠COD+∠COE=165°;④330°<n°≤360°时,如图7,射线OE、OF在射线OB同侧,在直线MN异侧,∵∠DOF=[360﹣(n﹣150)]°=(510﹣n)°,°,∴∠EOF=∠DOF﹣∠COD﹣∠COE=15°;综上,∠EOF=15°或165°.15.解:(1)∵CF平分∠ACB,∴∠BCF=∠ACF=∠ACB=×90°=45°,∴∠ACE=∠ECF﹣∠ACF=90°﹣45°=45°;(2)∠ACE=∠BCF,∵∠BCF+∠ACF=90°=∠ACE+ACF,∴∠ACE=∠BCF;(3)∠BCF﹣∠ACD=45°,∵∠ACF+∠BCF=90°,∠ACD+∠ACF=∠DCF=45°,∴(∠ACF+∠BCF)﹣(∠ACD+∠ACF)=90°﹣45°,即:∠BCF﹣∠ACD=45°.16.解:(1)如图1①由方位角的表示方法得,射线OE的方向是北偏东20°,故答案为:北偏东20°;②∵∠AOE+∠EON=∠CON+∠EON=90°,∴∠AOE=∠CON;故答案为:∠AOE=∠CON;③∵∠AOE+∠EON=∠CON+∠BOC,∴∠EON=∠BOC,∵∠AOC+∠BOC=180°,∴∠AOC+∠EON=180°,故答案为:∠AOC+∠EON=180°,(2)如图2,①∵∠COE=90°.∴∠AOC+∠AOE=90°=∠AOE+∠EOM,∴∠AOC=∠EOM,∵OF恰好平分∠COM,∴∠MOF=∠OCF,即:∠MOE+∠EOF=∠AOC+∠AOF,∴∠EOF=∠AOF=24°故答案为:24°②∵∠CON+∠AOC=90°=∠AOC+∠AOE,∴∠CON=∠AOE,∵∠EOF=∠AOF=β,∴∠CON=2∠AOF=2β;故答案为:2β.(3)如图3,由同角的余角相等可得∠COM=∠BOE,∴∠CON=∠AOE,∵OF平分∠COM,∴∠COF=∠MOF,∴∠CON=∠AOE=2∠COF+2∠AOC=2∠AOF,∴∠CON=2∠AOF.。
人教版七年级上册数学期末角的旋转问题压轴题
人教版七年级上册数学期末角的旋转问题压轴题1.如图1,一副三角板的两个直角重叠在一起,∠A =30°,∠C =45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°< α< 180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC = ________;(2)若0°< α < 90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°< α< 180°,问题(2)中的结论还成立吗?并说明理由;2.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE ﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.3.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;∠AOQ?若存在,求出t的值;若不存在,请说明理由.(3)在旋转过程中,是否存在t的值,使得∠POQ=124.如图,O为直线AB上的一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°),的直角顶点放在O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 平分∠MOB?请画出图并说明理由.5.如图,将45°角三角板绕直角顶点旋转.(1)问∠AOC与∠BOD大小关系,并说明理由;(2)∠AOD与∠BOC的数量关系,并说明理由;(3)若∠AOD=3∠BOC,求∠AOC的大小.6.如果两个角的差的绝对值等于90°,就称这两个角互为垂角,例如:∠1=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1和∠2互为垂角,(本题中所有角都是指大于0°且小于180°的角)(1)如图1所示,O为直线AB上一点,OC⊥AB,OE⊥OD,图中哪些角互为垂角?(写出所有情况)(2)如图2所示,O为直线AB上一点,∠AOC=60°,将∠AOC绕点O顺时针旋转n°(0°<n<120),OA旋转得到OA′,OC旋转得到OC′,当n为何值时,∠AOC′与∠BOA′互为垂角?7.(1)如图1,∠AOC=α,∠BOC=β,若OM平分∠AOC,ON平分∠BOC,则∠MON=(用含α、β的式子表示);(2)如图2,若将∠BOC绕点O逆时针旋转30°后得到∠EOD,OM平分∠AOD,ON平分∠COE,求∠MON的度数(用含α、β的式子表示);(3)若∠BOC旋转90°至图3的位置,其他条件不变,则∠MON的度数是(用含α、β的式子表示).8.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=60°,将一直角三角板的直角顶点放在点O处,一边ON在射线OB上,另一边OM在直线AB的上方.(1)在图1中,∠COM=度;(2)将图1中的三角板绕点O按逆时针方向旋转,使得ON在∠BOC的内部,如图2,若∠NOC=15∠MOA,求∠BON的度数;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON恰好平分∠BOC时,旋转的时间是秒.9.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图,求∠EOF的度数.(2)如图,当OB、OC重合时,求∠AOE﹣∠BOF的值;(3)当∠COD从图的位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.10.如图,已知∠AOB=30°,∠AOE=130°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以O为观测中心,OA为正东方向,则射线OD的方位角是;(3)若∠AOC、射线OE分别以每秒5°、每秒3°的速度同时绕点O逆时针方向旋转,其他条件不变,当OA回到原处时,全部停止运动,则经过多长时间,∠BOE=28°?11.如图,已知∠AOB=90,射线OC绕点O从OA位置开始,以每秒4的速度顺时针方向旋转;同时,射线OD 绕点O从OB位置开始,以每秒1的速度逆时针方向旋转.当OC与OA成180时,OC与OD同时停止旋转.(1)当OC旋转10秒时,∠COD=___.(2)当OC与OD的夹角是30时,求旋转的时间.(3)当OB平分∠COD时,求旋转的时间.12.如图1,射线OC,OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM,ON分别平分∠AOD,∠BOC.(1)若∠AOC=60°,试通过计算比较∠NOD和∠MOC的大小;(2)如图2,若将图1中∠COD在∠AOB内部绕点O顺时针旋转.①旋转过程中∠MON的大小始终不变.求∠MON的值;②如图3,若旋转后OC恰好为∠MOA的角平分线,试探究∠NOD与∠MOC的数量关系.13.如图所示,将两块三角板的直角顶点重合.(1)写出以C为顶点的相等的角;(2)若∠ACB=150°,请直接写出∠DCE的度数;(3)写出∠ACB与∠DCE之间所具有的数量关系;(4)当三角板ACD绕点C旋转时,你所写出的(3)中的关系是否变化?请说明理由.14.将一副三角板60°角的顶点与45°角的顶点重合,如图①②,60AOB ∠=︒,45COD ∠=︒,OE 平分AOB ∠,OF 平分COD ∠,COD △绕着点O 旋转;(1)旋转过程中,当点C 在射线OB 上时,如图①,求EOF ∠的度数: (2)旋转过程中,当点D 在射线OB 上时,如图②,求EOF ∠的度数;15.如图,90AOB ∠=︒,AOB ∠绕顶点O 按逆时针方向旋转45°得到MON ∠.求:(1)AON ∠的度数 (2)MOB ∠的度数答案第1页,共1页参考答案1.(1)120°;(2)∠BOD+∠AOC=180° 2.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值;(3)4.3.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或18011或1807,使得∠POQ =12∠AOQ . 4.(1)10秒;(2)5秒;(3)703秒. 5.(1)∠AOC=∠BOD (2)∠AOD+∠BOC=180°;(3)45°. 6.(1)互为垂角的角有4对:∠EOB 与∠DOB ,∠EOB 与∠EOC ,∠AOD 与∠COD ,∠AOD 与∠AOE ;(2)当n =15°或n =105°,∠AOC′与∠BOA′互为垂角. 7.(1)2αβ+;(2)2αβ+;(3)2αβ+8.(1)30;(2)52.5°;(3)3或219.(1)∠EOF =75°;(2)∠AOE ﹣∠BOF =35°;(3)∠AOE ﹣∠BOF=35°. 10.(1)∠COD= 5°;(2)北偏东25°;(3)经过36秒或者64秒 11.(1)40°;(2)12秒或24秒;(3)30秒.12.(1)NOD MOC ∠=∠;(2)①60︒;②4NOD MOC ∠=∠.13.(1)∠ACD=∠BCE ;∠ACE=∠BCD (2)∠DCE=30°;(3)∠ACB+∠DCE=180°;(4)不变14.(1)52.5︒;(2)7.5︒; 15.(1)45︒;(2)135︒。
七年级上册角度计算之旋转角压轴题
七年级上册⾓度计算之旋转⾓压轴题2.如图1,点O为直线AB上⼀点,过点O作射线OC,使∠AOC=60°.将⼀直⾓三⾓板的直⾓顶点放在点O处,⼀边OM在射线OB上,另⼀边ON在直线AB的下⽅.(1)将图1中的三⾓板绕点O顺时针旋转⾄图2,使⼀边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(2)将图1中的三⾓板绕点O按每秒10°的速度沿顺时针⽅向旋转⼀周,在旋转的过程中,第t秒时,直线ON恰好平分锐⾓∠AOC,则t的值;(3)将图1中的三⾓板绕点O顺时针旋转⾄图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.4、已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的⼤⼩;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时求∠MON的⼤⼩;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.5、已知,O是直线AB上的⼀点,∠COD是直⾓,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数;(2)在图1中,若∠AOC=a°,直接写出∠DOE的度数;(3)将图1中的∠COD绕顶点O顺时针旋转⾄图2的位置.a.探究∠AOC和∠DOE的度数的关系,写出你的结论,并说明理由;b.在∠AOC的内部有⼀条射线OF,满⾜:,试确定∠AOF与∠DOE的度数之间的关系,说明理由.6、如图1,射线OC、OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM、ON分别平分∠AOD、∠BOC,(1)若∠AOC=60°,试通过计算⽐较∠NOD和∠MOC的⼤⼩;(2)求∠MON的⼤⼩,并说明理由;(3)如图2,若旋转后OC恰好为∠MOA的⾓平分线,试探究∠NOD与∠MOC的数量关系(4)如图2,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒钟,此时∠AOM︰∠BON=7︰11,如图3所⽰,求x的值.7.如图1,O为直线AB上⼀点,过点O作射线OC,∠AOC=30°,将⼀直⾓三⾓板(∠M=30°)的直⾓顶点放在点O处,⼀边ON在射线OA上,另⼀边OM 与OC都在直线AB的上⽅(1)将图1中的三⾓板绕点O以每秒3°的速度沿顺时针⽅向旋转⼀周,如图2,经过t秒后,OM恰好平分∠BOC﹒①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三⾓板在转动的同时,射线OC也绕点O以每秒6°的速度沿顺时针⽅向旋转⼀周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,探究经过多长时间OC平分∠MOB,并说明理由﹒8.如图1,已知∠AOB=80°,∠COD=80°,OM平分∠BOD,ON平分∠AOC(1)将图1中∠COD绕O点逆时针旋转,使射线OC与射线OA重合(如图2),其他条件不变,请直接写出∠MON的度数;(2)将图2中的∠COD绕O点逆时针旋转度,其他条件不变.(1)当,请完成图3,并求∠MON的度数;(2)当,请完成图4,并求∠MON的度数.9.已知将⼀副三⾓板(∠AOB=90°,∠COD=30°)如图1摆放,点O、A、C在⼀条直线上.将直⾓三⾓板OCD绕点O逆时针⽅向转动,变化摆放如图位置(1)如图1,当点O、A、C在同⼀条直线上时,∠BOD=度;如图2,若要OB恰好平分∠COD,则∠AOC=度;(2)如图3,当三⾓板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三⾓板OCD在∠AOB内绕点O任意动,∠MON的度数是否发⽣变化?如果不变,求其值;如果变化,说明理由.(3)当三⾓板OCD从图1的位置开始,绕点O逆时针⽅向旋转⼀周,保持射线OM平分∠AOC、射线ON平分,在旋转过程中,(2)中的结论是否保持不变?如果不变,请说明理由;如果变化,请说明变化的情况和结果(即旋转⾓度a在什么范围内时∠MON的度数是多少).10.点O为直线AB上⼀点,过点O作射线OC,使∠BOC=60°,将⼀直⾓三⾓板的直⾓顶点放在点O处.(1)如图(1),将三⾓板MON的⼀边ON与射线OB重合时,则∠MOC=_____;(2)如图(2),将三⾓板MON绕点O逆时针旋转⼀定⾓度,此时OC是∠MOB 的⾓平分线,求旋转⾓∠BON和∠CON的度数;(3)将三⾓板MON绕点O以每秒5°的速度逆时针旋转半周,则经过⼏秒,,使得。
七上期末复习压轴题---角的旋转难题专练(无答案)
七上期末复习压轴题---角的旋转难题专练一、解答题1.将如图,O为直线AD上的一点,射线OA表示O点的正北方向,射线OC表示O点的北偏东m∘方向,射线OE表示O点的南偏东n∘的方向,射线OF平分∠AOE,且2m+2n=180.(1)如图①,∠COE=______ ∘,∠COF和∠DOE之间的数量关系为______________(2)若将∠COE绕点O旋转至图②的位置,请写出∠COF和∠DOE之间有何数量关系⋅并说明理由;(3)若将∠COE绕点O旋转至图③的位置,射线OF仍然平分∠AOE时,请写出∠COF和∠DOE之间有何数量关系并说明理由。
2.26、如图,∠AOB=90°.∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)若∠BOC=60°,其他条件不变,则∠MON=______;(3)若∠AOB=α,其他条件不变,求∠MON的度数;(4)从上面的结果能看出什么规律?3.如图1,点A、O、B在同一直线上,射线OD、OE分别平分∠AOC、∠BOC.(1)求∠DOE的度数;(2)如图2,在∠AOD内引一条射线OF,使∠COF=90∘,其他不变,设∠DOF=α(0∘<α<90∘)①求∠AOF的度数(用含α的代数式表示).②若∠BOD=2∠AOF,求∠DOF的度数.4.如图①,已知射线OC、OD在∠AOB的内部(OC在OD右侧),∠AOB=120°,∠COD=60°.(1)如果射线OE平分∠BOC,∠DOE=10°,如图②,则∠BOC=____;(2)如果射线OD、ON分别平分∠BOM、∠DOC,如图③,求∠AOC+∠DOM的度数;(3)在(2)的条件下,当∠DOM=5∠MON时,求∠BOC的度数.5.已知:∠AOD=160∘,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20∘,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10∘,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.6.如图,∠AOB=20∘,∠AOE=110∘,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5∘和每秒3∘的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30∘?7.在数轴上A,B两点对应的数分别是6,−6,点C在数轴上,EC⊥CD,(1)如图1,C与O重合,D点在的正半轴,若CF平分∠ACE,则∠AOF=___________(2)如图2,将(1)中的∠DCE沿的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_____________②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与(1)中的∠DCE重合,将∠DCE沿的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α−β|=20°,请直接写出t的值为_______________8.如图,两条直线AB与CD相交于点O,且,射线OM从OB开始绕点O逆时针方向旋转,速度为15∘/s,射线ON同时从OD开始绕点O顺时针方向旋转,速度为12∘/s.运动时间为t秒(0<t<12,本题出现的角均小于平角)(1)图中一定有_____个直角;当t=2时,_____,_____;(2)若OE平分,OF平分,当为直角时,请求出t的值.(3)当射线OM在内部,且是定值时,求t的取值范围,并求出这个定值.9.将如图,O为直线AD上的一点,射线OA表示O点的正北方向,射线OC表示O点的北偏东m∘方向,射线OE表示O点的南偏东n∘的方向,射线OF平分∠AOE,且2m+2n=180.(1)如图①,∠COE=______ ∘,∠COF和∠DOE之间的数量关系为______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值;
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
4、已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.
(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;
(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时求∠MON的大小;
(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.
5、已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.
(1)如图1,若∠AOC=30°,求∠DOE的度数;
(2)在图1中,若∠AOC=a°,直接写出∠DOE的度数;
(3)将图1中的∠COD绕顶点O顺时针旋转至图2的位置.
a.探究∠AOC和∠DOE的度数的关系,写出你的结论,并说明理由;
b.在∠AOC的内部有一条射线OF,满足:,
试确定∠AOF与∠DOE的度数之间的关系,说明理由.
6、如图1,射线OC、OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM、ON分别平分∠AOD、∠BOC,
(1)若∠AOC=60°,试通过计算比较∠NOD和∠MOC的大小;
(2)求∠MON的大小,并说明理由;
(3)如图2,若旋转后OC恰好为∠MOA的角平分线,试探究∠NOD与∠MOC的数量关系
(4)如图2,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒钟,此时∠AOM︰∠BON=7︰11,如图3所示,求x的值.
7.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM 与OC都在直线AB的上方
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OM恰好平分∠BOC﹒①求t的值;②此时ON是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕点O以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;
(3)在(2)问的基础上,探究经过多长时间OC平分∠MOB,并说明理由﹒
8.如图1,已知∠AOB=80°,∠COD=80°,OM平分∠BOD,ON平分∠AOC
(1)将图1中∠COD绕O点逆时针旋转,使射线OC与射线OA重合(如图2),其他条件不变,请直接写出∠MON的度数;
(2)将图2中的∠COD绕O点逆时针旋转度,其他条件不变.
(1)当,请完成图3,并求∠MON的度数;
(2)当,请完成图4,并求∠MON的度数.
9.已知将一副三角板(∠AOB=90°,∠COD=30°)如图1摆放,点O、A、C在一条直线上.将直角三角板OCD绕点O逆时针方向转动,变化摆放如图位置
(1)如图1,当点O、A、C在同一条直线上时,∠BOD=度;
如图2,若要OB恰好平分∠COD,则∠AOC=度;
(2)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.
(3)当三角板OCD从图1的位置开始,绕点O逆时针方向旋转一周,保持射线OM
平分∠AOC、射线ON平分,在旋转过程中,(2)中的结论是否保持不变?如果不变,请说明理由;如果变化,请说明变化的情况和结果(即旋转角度a在什么范围内时∠MON的度数是多少).
10.点O为直线AB上一点,过点O作射线OC,使∠BOC=60°,将一直角三角板的直角顶点放在点O处.
(1)如图(1),将三角板MON的一边ON与射线OB重合时,则∠MOC=_____;(2)如图(2),将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB 的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O以每秒5°的速度逆时针旋转半周,则经过几秒,,使得
11.如图,两个形状,大小完全相同的含有30°,60°的三角板如图①放置,PA,PB与直线MN重合,且三角板PAC与三角板PBD均可绕点P逆时针旋转.
(1)试说明:∠DPC=90°;
(2)如图②,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定度数,PF 平分∠APD,PE平分∠CPD,求∠EPF
(3)如图③,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为每秒3°.同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为每秒2°,在两个
三角板旋转过程中(PC转到与PM重合时,三角板都停止转运),问的值是否变化?若不变,求出其值,若变化,说明理由.
12.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD
同时旋转,设旋转的时间为.
(1)当t为何值时,射线OC与OD重合;
(2)当t为何值时,射线;
(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB 与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.。