高考数学一轮复习第9章第3节统计图表数据的数字特征用样本估计总体教师用书文

合集下载

【高优指导】2017版高考数学一轮复习 10.2 统计图表、数据的数字特征、用样本估计总体课件 文

【高优指导】2017版高考数学一轮复习 10.2 统计图表、数据的数字特征、用样本估计总体课件 文

答案
-9-
1 2 3 4 5
关闭
由题意,yi=2xi+1(i=1,2,…,n), 11 则������=2������+1=2×5+1=11.
解析
关闭
答案
-10-
1 2 3 4 5
5.为了了解一片经济林的生长情况,随机抽测了其中60株树木的 底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方 图如图所示,则在抽测的60株树木中,有 株树木的底部 周长小于100 cm.
85.3
10
关闭
解析
答案
-20考点1 考点2 考点3 知识方法 易错易混
思考:如何制作茎叶图?使用茎叶图统计数据有什么优缺点?如何 用茎叶图估计样本数据特征? 解题心得:1.一般制作茎叶图的方法是:将所有两位数的十位数字 作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大 顺序由上到下列出. 2.茎叶图的优缺点如下: (1)优点:一是所有的信息都可以从这个茎叶图中得到;二是茎叶 图便于记录和表示,能够展示数据的分布情况. (2)缺点:样本数据较多或数据位数较多时,不方便表示数据. 3.对于给定两组数据的茎叶图,估计数字特征,可根据“重心”下移 者平均数较大,数据集中者方差较小.
-6-
1 2 3 4 5
1.下列结论正确的打“√”,错误的打“×”. (1)平均数、众数与中位数都可以描述数据的集中趋势. ( √ ) (2)一组数据的方差越大,说明这组数据的波动越大. ( √ ) (3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该 区间内的频率越大. ( √ ) (4)从频率分布直方图中得不出原始的数据内容. ( √ ) (5)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记 一次. ( × )

高考文科数学一轮复习学案统计图表、数据的数字特征、用样本估计总体

高考文科数学一轮复习学案统计图表、数据的数字特征、用样本估计总体

第三节 统计图表、数据的数字特征、用样本估计总体[最新考纲] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.统计图表统计图表是表达和分析数据的重要工具,常用的统计图表有条形统计图、扇形统计图、折线统计图、象形统计图、茎叶图等.2.数据的数字特征 (1)众数、中位数、平均数①众数:在一组数据中,出现次数最多的数据叫作这组数据的众数.②中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数.③平均数:样本数据x 1,x 2,…,x n 的平均数x =1n(x 1+x 2+…+x n ).(2)方差和标准差 ①方差:s 2=1n []x 1-x2+x 2-x2+…+x n -x2.②标准差:s =s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数.标准差的单位与原始测量单位相同,在统计中,通常用标准差来刻画数据的离散程度.3.频率分布直方图与频率分布折线图(1)频率分布直方图:每个小矩形的宽度为Δx i (分组的宽度),高为f iΔx i,小矩形的面积恰为相应的频率f i ,我们称这样的图形为频率分布直方图.(2)频率分布折线图在频率分布直方图中,按照分组原则,再在左边和右边各加上一个区间,从所加的左边区间的中点开始,用线段依次连接频率分布直方图中各个矩形的顶端中点,直至右边所加区间的中点就得到频率分布折线图.4.用样本估计总体通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的频率分布,另一种是用样本的数字特征估计总体的数字特征.[常用结论]1.频率分布直方图的三个结论(1)频率分布直方图中相邻两横坐标之差Δx i 称为组距,纵坐标f i Δx i =频率组距,频率=组距×f iΔx i.(2)在频率分布直方图中,各小长方形的面积总和等于1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)小长方形的高=频率组距,所有小长方形高的和为1组距.2.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; ②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.一、思考辨析(正确的打“√”,错误的打“×”) (1)在频率分布直方图中,小矩形的高表示频率.( )(2)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )(3)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) (4)一组数据的方差越大,说明这组数据的波动越大. ( )[答案](1)× (2)√ (3)√ (4)√ 二、教材改编1.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( ) A .4B .8C .12D .16B [设频数为n ,则n 32=0.25,∴n =32×14=8.]2.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5 B.91.5和92 C.91和91.5 D.92和92A[∵这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5,平均数x=87+89+90+91+92+93+94+968=91.5.]3.如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有________人.25 [用水量为[2,2.5)的频率为0.5×0.5=0.25,则用水量为[2,2.5)的居民有100×0.25=25(人).]4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1 [5个数的平均数x=4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.] ⊙考点1 扇形图和折线图(1)通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.(2)折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.1.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半A[设新农村建设前经济收入的总量为x,则新农村建设后经济收入的总量为2x.建设前种植收入为0.6x,建设后种植收入为0.74x,故A不正确;建设前其他收入为0.04x,建设后其他收入为0.1x,故B正确;建设前养殖收入为0.3x,建设后养殖收入为0.6x,故C正确;建设后养殖收入与第三产业收入的总和占建设后经济收入总量的58%,故D正确.] 2.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳A[对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.]解答第1题时,理解“经济收入增加了一倍”是解题的关键.⊙考点2 茎叶图 茎叶图的应用(1)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.(2)给定两组数据的茎叶图,比较数字特征时,“重心”下移者平均数较大,数据集中者方差较小.1.(2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7A [由两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以15×[56+62+65+74+(70+x )]=15×(59+61+67+65+78),解得x =3,故选A.]2.在如图所示一组数据的茎叶图中,有一个数字被污染后模糊不清,但曾计算得该组数据的极差与中位数之和为61,则被污染的数字为( )A .1B .2C .3D .4B [由题图可知该组数据的极差为48-20=28,则该组数据的中位数为61-28=33,易得被污染的数字为2,故选B.]3.甲、乙两名篮球运动员5场比赛得分的原始记录如茎叶图所示,若甲、乙两人的平均得分分别为x 甲,x 乙,则下列结论正确的是( )A.x 甲<x 乙;乙比甲得分稳定B.x 甲>x 乙;甲比乙得分稳定C.x 甲>x 乙;乙比甲得分稳定D.x 甲<x 乙;甲比乙得分稳定 A [因为x 甲=2+7+8+16+225=11,x 乙=8+12+18+21+255=16.8,所以x 甲<x 乙且乙比甲成绩稳定,故选A.]第3题,从数据重心位置及数据离散程度,亦可知道答案. ⊙考点3 频率分布直方图1.由频率分布直方图进行相关计算时,需掌握的两个关系式 (1)频率组距×组距=频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数. 2.利用频率分布直方图估计样本的数字特征的方法(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.(2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和. (3)众数:最高的矩形的中点的横坐标.(1)在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1 000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分(2)(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.①求乙离子残留百分比直方图中a ,b 的值;②分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).(1)D [由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为 4 000×0.25=1 000,故B 正确;由频率分布直方图可得:平均分等于45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为70+10×0.050.3≈71.67,故D 错误.故选D.](2)[解] ①由已知得0.70=a +0.20+0.15,故a =0.35.b =1-0.05-0.15-0.70=0.10.②甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05, 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.频率分布直方图中各小长方形的面积之和为1,在求参数的值时,经常用到这个结论.[教师备选例题]某城市100户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.[解](1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,解得x =0.007 5.即直方图中x 的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,∴月平均用电量的中位数在[220,240)内.设中位数为a ,则0.45+0.012 5×(a -220)=0.5,解得a =224,即中位数为224. 行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.[解](1)由频率分布直方图可知:月均用水量在[0,0.5)内的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a +0.5×a , 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x <2.5.由0.50×(x -2)=0.5-0.48,解得x =2.04. 故可估计居民月均用水量的中位数为2.04吨. ⊙考点4 样本的数字特征利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小;标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.样本数字特征的计算(1)(2019·江苏高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是________. (2)(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.(1)53 (2)0.98 [(1)由题意,该组数据的平均数为6+7+8+8+9+106=8, 所以该组数据的方差是16[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=53. (2)x =10×0.97+20×0.98+10×0.9910+20+10=0.98.则经停该站高铁列车所有车次的平均正点率的估计值为0.98.] 本例(2)中实际上就是用样本的平均数估计总体平均数.样本的数字特征与频率分布直方图或茎叶图交汇(2019·全国卷Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[-0.20,0)[0,0.20) [0.20,0.40) [0.40,0.60) [0.60,0.80) 企业数22453147(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.[解](1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y =1100×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100∑5i =1n i (y i -y )2=1100×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6, s =0.029 6=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17. 求标准差时,应先求平均数,再求方差,最后求标准差.[教师备选例题]1.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )甲 乙A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 C [甲的平均数是4+5+6+7+85=6,中位数是6,极差是4,方差是-22+-12+02+12+225=2;乙的平均数是5+5+5+6+95=6,中位数是5,极差是4,方差是-12+-12+-12+02+325=125,故选C.]2.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲 10 8 9 9 9 乙1010799甲 [x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定.]甲、乙两人在相同条件下各射击10次,每次中靶环数情况如图所示:(1)请填写下表(写出计算过程):平均数 方差 命中9环及9环以上的次数甲 乙①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些); ③从折线图上两人射击命中环数的走势看(分析谁更有潜力). [解] 由题图,知甲射击10次中靶环数分别为9,5,7,8,7,6,8,6,7,7. 将它们由小到大排列为5,6,6,7,7,7,7,8,8,9. 乙射击10次中靶环数分别为2,4,6,8,7,7,8,9,9,10. 将它们由小到大排列为2,4,6,7,7,8,8,9,9,10. (1)x 甲=110×(5+6×2+7×4+8×2+9)=7(环), x 乙=110×(2+4+6+7×2+8×2+9×2+10)=7(环),s 2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.填表如下:甲乙∴甲成绩比乙稳定.②∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.③∵甲成绩在平均数上下波动,而乙处于上升势头,从第三次以后就没有比甲少的情况发生,∴乙更有潜力.。

2023年高考数学一轮复习 新高考方案 课件第九章 统计与成对数据的统计分析

2023年高考数学一轮复习 新高考方案 课件第九章  统计与成对数据的统计分析
解析:设 20 名女生的平均成绩为 x ,则 92=3500×90+2500× x ,解得 x =95.
答案:95
• 层级一/ 基础点——自练通关(省时间)
• 基础点(一) 抽样方法
• [题点全训]
• 1.某班有男生36人,女生18人,用分层随机抽样的方法从该班全 体学生中抽取一个容量为9的样本,则抽取的女生人数为
在一组数据中出现次数_最__多__的数
中位数 将一组数据按_大__小__顺__序___依次排列(相同的数据要重复列出), 处在最中间位置的那个数据(或最中间两个数据的平均数)
平均数
一组数据的_算__术__平__均__数___
方差
s2=n1[(x1- x )2+(x2- x )2+…+(xn- x )2](xn 是样本数据,n 是样本容量, x 是样本平均数),其中 s 是标准差
样本量
(3)平均数计算
在分层随机抽样中,如果层数分为 2 层,第 1 层和第 2 层包含的个体数分
别为 M 和 N,抽取的样本量分别为 m 和 n,第 1 层和第 2 层样本的平均数分别

x

y
,则样本的平均数
w

m m+n
x
+m+n n
y
M = M+N
x +M+N N y .
• 3.作频率分布直方图的步骤 • (1)求极_差____ (即一组数据中最大值与最小值的差);
• 8 44 2 17 8 31 57 4 55 6
•88 77 74 47 7 21 76 33 50 63
•解析:生成的随机数中落在编号1~100范围内的有8,44,2,17,8(重 复,舍弃),31……故选中的第5个个体的编号为31.

高考数学一轮复习 10.3 统计图表、数据的数字特征、用样本估计总体课件 理 北师大版

高考数学一轮复习 10.3 统计图表、数据的数字特征、用样本估计总体课件 理 北师大版
一次. ( × )
(5)频率分布表和频率分布直方图是一组数据频率分布的两种形 式,前者准确,后者直观. ( √ )
(6)在频率分布直方图中,最高的小长方形底边中点的横坐标是众 数. ( √ )
-7-
知识梳理 考点自诊
2.(2018全国1,文3)某地区经过一年的新农村建设,农村的经济收 入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变 化情况,统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:
度为 Δxi(分组的宽度)
,高为
������������ ������������
,小矩形的面积恰为相应
的 频率fi ,图中所有小矩形的面积之和为 1 .
②绘制频率分布直方图的步骤为: 求极差
;决定组距与
组数; 将数据分组
;列频率分布表;画频率分布直方图.
(2)频率分布折线图:在频率分布直方图中,按照分组原则,再在左
10.3 统计图表、数据的数字特征、
用样本估计总体
-2-
知识梳理 考点自诊
1.常用统计图表
四种常用的统计图表: 条形统计图 、折线统计图、扇形统
计图、 茎叶图
.
2.数据的数字特征
(1)平均数:
������
=
������1
+
������2
+ ������

+
������������
,它反映了一组数据的平均水平.
收入为0.6,建设后种植收入为2×0.37=0.74,故A不正确;建设前的其
他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6, 故B、C正确;建设后养殖收入与第三产业收入的总和所占比例为 58%,故D正确,故选A.

高三数学 第9章 第3节 统计图表、数据的数字特征、用样本估计总体导学案

高三数学 第9章 第3节 统计图表、数据的数字特征、用样本估计总体导学案

第三节统计图表、数据的数字特征、用样本估计总体[考纲传真] 1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.统计图表(1)条形统计图的特点:数据量很大时,能直观地反映数据分布的大致情况,且能清晰地表示出各个区间的具体数.(2)茎叶图表示数据有两个突出的优点:①统计图上没有信息的损失,所有的原始数据都可以从这个茎叶图中得到;②茎叶图可以随时记录,方便表示与比较.2.频率分布直方图(1)频率分布直方图:每个小矩形的宽度为Δx i(分组的宽度),高为f iΔx i,小矩形的面积恰为相应的频率f i,我们称这样的图形为频率分布直方图.(2)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差).②决定组距与组数.③将数据分组.④列频率分布表.⑤画频率分布直方图.(3)频率分布折线图在频率分布直方图中,按照分组原则,再在左边和右边各加上一个区间,从所加的左边区间的中点开始,用线段依次连接频率分布直方图中各个矩形的顶端中点,直至右边所加区间的中点就得到频率分布折线图. 3.数据的数字特征 (1)众数、中位数、平均数 ①在一组数据中,出现次数较多的数据叫作这组数据的众数. ②将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫作这组数据的中位数. ③如果有n 个数x 1,x 2,…,x n ,那么x =x 1+x 2+…+x n n叫作这n 个数的平均数.(2)标准差和方差①标准差是样本数据到平均数的一种平均距离.②s = 1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].③方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的方差越大,说明这组数据越集中. ( )(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )[解析] (1)正确.平均数、众数与中位数都在一定程度上反映了数据的集中趋势.(2)错误.方差越大,这组数据越离散.(3)正确.小矩形的面积=组距×频率组距=频率. (4)错误.茎相同的数据,叶可不用按从小到大的顺序写,相同的数据叶要重复记录,故(4)错误.[答案] (1)√ (2)× (3)√ (4)×2.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图9­3­1所示,则这组数据的中位数和平均数分别是( )图9­3­1A .91.5和91.5B .91.5和92C .91和91.5D .92和92A [这组数据由小到大排列为87,89,90,91,92,93,94,96.∴中位数是91+922=91.5,平均数x =87+89+90+91+92+93+94+968=91.5.] 3.(·南昌二模)如图9­3­2所示是一样本的频率分布直方图.若样本容量为100,则样本数据在[15,20)内的频数是( )图9­3­2A .50B .40C .30D .14C [因为[15,20)对应的小矩形的面积为1-0.04×5-0.1×5=0.3,所以样本落在[15,20)的频数为0.3×100=30,故选C.]4.(·江苏高考)已知一组数据 4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1 [5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1, 所以它们的方差s 2=15 [(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.]5.(·山东淄博模拟)某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图9­3­3,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.图9­3­32 [170+17×(1+2+x +4+5+10+11)=175,则17×(33+x )=5,即33+x =35,解得x =2.]样本的数字特征(1)(·广东高考)已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为________.(2)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.①若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差.并比较甲、乙两组的研发水平;②若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.【导学号:57962437】(1)11 [由条件知x =x 1+x 2+…+x n n=5,则所求均值x 0=2x 1+1+2x 2+1+…+2x n +1n =2(x1+x2+…+x n)+nn=2x+1=2×5+1=11.] (2)①甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x甲=1015=23.3分方差s2甲=115⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-232×10+⎝⎛⎭⎪⎫0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x乙=915=35.方差s2乙=115⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-352×9+⎝⎛⎭⎪⎫0-352×6=625.因为x甲>x乙,s2甲<s2乙,所以甲组的研发水平优于乙组.6分②记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个.因此事件E发生的概率为7 15.用频率估计概率,即得所求概率为P(E)=715.12分[规律方法] 1.平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行均值与方差的计算,关键是正确运用公式.2.可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种做出评价或选择.[变式训练1](·郑州模拟)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图9­3­4所示的茎叶图.考虑以下结论:图9­3­4①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的序号为()A.①③B.①④C.②③D.②④B[甲地5天的气温为:26,28,29,31,31,其平均数为x甲=26+28+29+31+315=29;方差为s2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s甲= 3.6.乙地5天的气温为:28,29,30,31,32,其平均数为x乙=28+29+30+31+325=30;方差为s2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s乙= 2.∴x甲<x乙,s甲>s乙.]茎叶图及其应用位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门359440448975122456677789(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.[解] (1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75. 3分50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.5分(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16. 8分(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大. 12分[规律方法] 1.茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.2.(1)作样本的茎叶图时,先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.(2)根据茎叶图中数据的数字特征进行分析判断,考查识图能力、判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息.[变式训练2] (·雅礼中学质检)已知甲、乙两组数据如茎叶图9­3­5所示,若两组数据的中位数相同,平均数也相同,那么m+n=________.【导学号:57962438】图9­3­511[∵两组数据的中位数相同,∴m=2+42=3.又∵两组数据的平均数也相同,∴27+33+393=20+n+32+34+384,∴n=8,因此m+n=11.]频率分布直方图(·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图9­3­6所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()图9­3­6A.56B.60C.120D.140D[由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.]☞角度2用频率分布直方图估计总体(·四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图9­3­7所示的频率分布直方图.图9­3­7(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.[解](1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.3分由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.5分(2)由(1),知100位居民每人的月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.8分(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.30×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.12分[规律方法] 1.准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,易误认为纵轴上的数据是各组的频率.2.(1)例3-2中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.(2)利用样本的频率分布估计总体分布.[思想与方法]1.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大.(3)茎叶图、频率分布表和频率分布直方图都是用图表直观描述样本数据的分布规律的.[易错与防范]1.使用茎叶图时,要弄清茎叶图的数字特点,切莫混淆茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.第11页共11页。

高三数学人教版A版数学(理)高考一轮复习教案:用样本估计总体 Word版含答案

高三数学人教版A版数学(理)高考一轮复习教案:用样本估计总体 Word版含答案

第三节用样本估计总体总体分布的估计(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.知识点一频率分布直方图1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.易误提醒 (1)易把直方图与条形图混淆:两者的区别在于条形图是离散随机变量,纵坐标刻度为频数或频率,直方图是连续随机变量,连续随机变量在某一点上是没有频率的.(2)易忽视频率分布直方图中纵轴表示的应为频率组距.必记结论 由频率分布直方图进行相关计算时,需掌握下列关系式: (1)频率组距×组距=频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数. [自测练习]1.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为( )A .0.006B .0.005C .0.004 5D .0.002 5解析:由题意知,a =1-(0.02+0.03+0.04)×102×10=0.005.答案:B2.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:设中间一组的频数为x ,依题意有x 80=14⎝⎛⎭⎫1-x 80,解得x =16,应选D. 答案:D知识点二 茎叶图 茎叶图的优点茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.易误提醒 在绘制茎叶图时,易遗漏重复出现的数据,重复出现的数据要重复记录,同时不要混淆茎叶图中茎与叶的含义.[自测练习]3.(2015·惠州模拟)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( )A .19、13B .13、19C .20、18D .18、20解析:由茎叶图可知,甲的中位数为19,乙的中位数为13.故选A. 答案:A知识点三 样本的数字特征 1.众数、中位数、平均数 数字特征定义与求法优点与缺点众数一组数据中重复出现次数最多的数众数通常用于描述变量的值出现次数最多的数.但显然它对其他数据信息的忽视使得无法客观地反映总体特征中位数把一组数据按从小到大的顺序排列,处在中间位置的一个数据(或两个数据的平均数)中位数等分样本数据所占频率,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点平均数如果有n 个数据x 1,x 2,…,x n ,那么这n 个数的平均数x =x 1+x 2+…+x nn平均数与每一个样本数据有关,可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低2.标准差、方差(1)标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = 1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)方差:标准差的平方s 2s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x 是样本平均数.易误提醒 (1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)平均数反映的是样本个体的平均水平,众数和中位数则反映样本中个体的“重心”.(3)实际问题中求得的平均数、众数和中位数应带上单位.必备方法 利用频率分布直方图求众数、中位数与平均数时易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.[自测练习]4.对于一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +C (i =1,2,3,…,n ),其中C ≠0,则下列结论正确的是( )A .平均数与方差均不变B .平均数变,方差保持不变C .平均数不变,方差变D .平均数与方差均发生变化解析:依题意,记原数据的平均数为x ,方差为s 2,则新数据的平均数为(x 1+C )+(x 2+C )+…+(x n +C )n =x +C ,即新数据的平均数改变;新数据的方差为1n {[(x 1+C )-(x +C )]2+[(x 2+C )-(x +C )]2+…+[(x n +C )-(x +C )]2}=s 2,即新数据的方差不变,故选B.答案:B5.(2015·高考陕西卷)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2 015=2×1 010,解得a 1=5.答案:5考点一频率分布直方图及应用|1.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值等于()A.0.12B.0.012C.0.18 D.0.018解析:依题意,0.054×10+10x+0.01×10+0.006×10×3=1,解得x=0.018,故选D.答案:D2.某市为了节约能源,拟出台“阶梯电价”制度,即制订住户月用电量的临界值a.若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费,未超出部分按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的月用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18,63,43,119,65,77,29,97,52,100.(2)根据已有信息,试估计全市住户的平均月用电量(同一组数据用该区间的中点值作代表);(3)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a.解:(1)(2)由题意,用每小组的中点值代表该小组的平均月用电量,则100户住户组成的样本的平均月用电量为10×0.04+30×0.12+50×0.24+70×0.30+90×0.25+110×0.05=65(度).用样本估计总体,可知全市居民的平均月用电量约为65度.(3)计算累计频率,可得下表:的总面积(频率)为0.75,故有0.7+(a-80)×0.012 5=0.75,解得a=84,由样本估计总体,可得临界值a为84.绘制频率分布直方图时需注意(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;(2)频率分布直方图的纵坐标是频率组距,而不是频率.考点二 茎叶图|1.如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值分别为( )A .2,4B .4,4C .5,6D .6,4解析:x 甲=75+82+84+(80+x )+90+936=85,解得x =6,由图可知y =4,故选D.答案:D2.(2016·长沙一模)右面的茎叶图是某班学生在一次数学测验时的成绩:根据茎叶图,得出该班男、女生数学成绩的四个统计结论,其中错误的一项是( )A .15名女生成绩的平均分为78B .17名男生成绩的平均分为77C.女生成绩和男生成绩的中位数分别为82,80D.男生中的高分段和低分段均比女生多,相比较男生两极分化比较严重解析:对于A,15名女生成绩的平均分为115×(90+93+80+80+82+82+83+83+85+70+71+73+75+66+57)=78,A正确;对于B,17名男生成绩的平均分为117×(93+93+96+80+82+83+86+86+88+71+74+75+62+62+68+53+57)=77,故B正确;对于D,观察茎叶图,对男生、女生成绩进行比较,可知男生两极分化比较严重,D正确;对于C,根据女生和男生成绩数据分析可得,两组数据的中位数均为80,C错误,故选C.答案:C使用茎叶图时,需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.考点三样本的数字特征|(2015·高考广东卷)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?[解] (1)依题意,20×(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)=1, 解得x =0.007 5.∴直方图中x 的值为0.007 5.(2)由图可知,最高矩形的数据组为[220,240), ∴众数为220+2402=230.∵[160,220)的频率之和为(0.002+0.009 5+0.011)×20=0.45,∴依题意,设中位数为y , ∴0.45+(y -220)×0.012 5=0.5. 解得y =224,∴中位数为224.(3)月平均用电量在[220,240)的用户在四组用户中所占比例为0.012 50.012 5+0.007 5+0.005+0.002 5=511,∴月平均用电量在[220,240)的用户中应抽取11×511=5(户).(1)平均数与方差都是重要的数字特征,是对总体的一种简明地描述,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)利用方差优化比较时方差越小,效果越好.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s2甲,故甲更稳定.答案:甲11.概率与统计的综合问题的答题模板【典例】(12分)(2015·高考全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:[思路点拨](1)因为在频率分布直方图上,纵坐标表示的是频率与组距的比值,根据频数求出频率,进而求出频率与组距的比值,根据频率分布直方图可看出满意度评分的平均值的大小和分散程度,中间的矩形面积越高越集中,越不分散;(2)B地区可直接借助低于70分的频数10求出不满意的概率,A地区利用频率分布直方图中小矩形的面积即为频率,可求出不满意的概率,进而比较大小.[规范解答](1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(6分)(2)A地区用户的满意度等级为不满意的概率大.(7分)记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,(8分)P(C B)的估计值为(0.005+0.02)×10=0.25.(10分)所以A地区用户的满意度等级为不满意的概率大.(12分)[模板形成]分析图表、审核数据↓作出频率分布直方图↓由直方图数据分析相应问题↓利用直方图求概率,作出判断↓反思解题过程注意规范化A组考点能力演练1.(2016·邢台摸底)样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其样本方差为( )A.105B.305C. 2 D .2解析:依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15(12+02+12+22+22)=2,即所求的样本方差为2,选D.答案:D2.10名工人某天生产同一零件,生产的零件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a解析:依题意,这些数据由小到大依次是10,12,14,14,15,15,16,17,17,17,因此a <15,b =15,c =17,c >b >a ,选D.答案:D3.(2015·高考全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关解析:根据柱形图易得选项A ,B ,C 正确,2006年以来我国二氧化硫年排放量与年份负相关,选项D 错误.故选D.答案:D4.(2015·高考山东卷)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:由题中茎叶图,知x 甲=26+28+29+31+315=29,s 甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2] =3105; x 乙=28+29+30+31+325=30,s 乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2] = 2.所以x 甲<x 乙,s 甲>s 乙,故选B. 答案:B5.(2016·内江模拟)某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如下:分组成[11,20),[20,30),[30,40]时,所作的频率分布直方图是( )解析:本题考查统计.利用排除法求解.由直方图的纵坐标是频率/组距,排除C 和D ;又第一组的频率是0.2,直方图中第一组的纵坐标是0.02,排除A ,故选B.答案:B6.(2015·郑州二检)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m 、n 的比值mn =________.解析:由茎叶图可知甲的数据为27、30+m 、39,乙的数据为20+n 、32、34、38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m =3.由此可以得出甲的平均数为33,所以乙的平均数也为33,所以有20+n +32+34+384=33,所以n =8,所以m n =38.答案:387.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679解析:由数据表可得出乙班的数据波动性较大,则其方差较大,甲班的数据波动性较小,其方差较小,其平均值为7,方差s 2=15(1+0+0+1+0)=25.答案:258.(2015·高考湖北卷)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 解析:(1)0.1×1.5+0.1×2.5+0.1×a +0.1×2+0.1×0.8+0.1×0.2=1,解得a =3; (2)区间[0.5,0.9]内的频率为1-0.1×1.5-0.1×2.5=0.6,则该区间内购物者的人数为10 000×0.6=6 000.答案:(1)3 (2)6 0009.甲、乙两人参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图.(1)指出学生乙成绩的中位数;(2)现要从中选派一人参加数学竞赛,你认为应该派哪位学生参加? 解:(1)依题意知,学生乙成绩的中位数为83+852=84.(2)派甲参加比较合适,理由如下:x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=35.5,s 2乙=41,∵x 甲=x 乙,且s 2甲<s 2乙,∴甲的成绩比较稳定.10.(2016·唐山统考)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m 名学生进行体育测试.根据体育测试得到了这m 名学生的各项平均成绩(满足100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到频率分布直方图(如图).已知测试平均成绩在区间[30,60)内有20人.(1)求m 的值及中位数n ;(2)若该校学生测试平均成绩小于n ,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?解:(1)由频率分布直方图知第1组,第2组和第3组的频率分别是0.02,0.02和0.06, 则m ×(0.02+0.02+0.06)=20,解得m =200.由直方图可知,中位数n 位于[70,80)内,则0.02+0.02+0.06+0.22+0.04(n -70)=0.5,解得n =74.5.(2)设第i (i =1,2,3,4,5,6,7)组的频率和频数分别为p i 和x i ,由图知,p 1=0.02,p 2=0.02,p 3=0.06,p 4=0.22,p 5=0.40,p 6=0.18,p 7=0.10,则由x i =200×p i ,可得x 1=4,x 2=4,x 3=12,x 4=44,x 5=80,x 6=36,x 7=20, 故该校学生测试平均成绩是x=35x1+45x2+55x3+65x4+75x5+85x6+95x7200=74<74.5,所以学校应该适当增加体育活动时间.B组高考题型专练1.(2015·高考陕西卷)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123C.137 D.167解析:由扇形统计图可得,该校女教师人数为110×70%+150×(1-60%)=137.故选C.答案:C2.(2015·高考湖南卷)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,故运动员人数为4.答案:43.(2015·高考江苏卷)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 解析:由平均数公式可得这组数据的平均数为4+6+5+8+7+66=6.答案:64.(2015·高考全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2. P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.。

第九章第三节

第九章第三节

高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
图9-3-1 A.s2 >s2 甲 乙 C.s2 =s2 甲 乙 B.s2 <s2 甲 乙 D.无法确定
课 时 知 能 训 练


一轮复习 · 新课标 ·数学(理)[山东专用]
自 主 落 实 · 固 基 础
【解析】 由题意,甲运动员命中的环数为4,4,5,7,7,7,8,9,9,10. 乙运动员命中的环数为5,6,6,7,7,7,7,8,8,9. 故s 2 = 甲 1 [(4-7)2+(4-7)2+(5-7)2+(7-7)2+(7-7)2+(7-7)2 10
所分的组数 样本容量
的增加,作图
高 考 体 验 · 明 考 情
增加, 组距
减小,相应的频率折线图会越来
典 例 探 究 · 提 知 能
越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 3.茎叶图 统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间 的一列数,叶是从茎的旁边生长出来的数.
课 时 知 能 训 练
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
(2)作出频率分布直方图; (3)根据国家标准,污染指数在0~50之间时,空气质量为优;在 51~100之间时,为良;在101~150之间时,为轻微污染;在151~ 200之间时,为轻度污染. 请你依据所给数据和上述标准,对该市的空气质量给出一个简 短评价.
高 考 体 验 · 明 考 情
[35.5,39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是
典 例 探 究 · 提 知 能
(
) 1 A. 6 1 B. 3 1 C. 2 2 D. 3

高考理科第一轮练习(9.3统计图表、数据的数字特征)

高考理科第一轮练习(9.3统计图表、数据的数字特征)

课时提升作业(六十三)一、选择题1.已知样本7,10,14,8,7,12,11,10,8,10,13,10,8,11,8,9,12,9,13,20,那么这组数据落在8.5~11.5的频率为( )(A)0.5 (B)0.4 (C)0.3 (D)0.22.(2013·马鞍山模拟)一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是( )(A)13,12 (B)13,13 (C)12,13 (D)13,143.(2013·上饶模拟)某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1 市场供给量表2 市场需求量根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在的区间是( )(A)(2.4,2.5) (B)(2.5,2.8) (C)(2.8,3) (D)(3,3.2)4.(2013·三明模拟)在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的错误!未找到引用源。

,且样本容量为160,则中间一组的频数为( )(A)32 (B)0.2 (C)40 (D)0.255.商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为( )(A)6万元(B)8万元(C)10万元(D)12万元6.为选拔运动员参加比赛,测得7名选手的身高(单位:cm)分布茎叶图为,记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数字记为x,那么x的值为( )(A)5 (B)6 (C)7 (D)87.(2013·中山模拟)已知一组正数x1,x2,x3,x4的标准差为s=错误!未找到引用源。

高考数学一轮复习 第9章 算法初步、统计与统计案例 第3节 用样本估计总体教师用书 文 新人教A版

高考数学一轮复习 第9章 算法初步、统计与统计案例 第3节 用样本估计总体教师用书 文 新人教A版

第三节 用样本估计总体———————————————————————————————— [考纲传真] 1.了解分布的意义与作用,能根据概率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.频率分布直方图 (1)频率分布表的画法:第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表.(2)频率分布直方图:反映样本频率分布的直方图(如图9­3­1).图9­3­1横轴表示样本数据,纵轴表示频率组距,每个小矩形的面积表示样本落在该组内的频率.2.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶是从茎的旁边生长出来的数.3.样本的数字特征1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) (2)一组数据的方差越大,说明这组数据越集中. ( )(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )[解析] (1)正确.平均数、众数与中位数都在一定程度上反映了数据的集中趋势. (2)错误.方差越大,这组数据越离散. (3)正确.小矩形的面积=组距×频率组距=频率.(4)错误.茎相同的数据,叶可不用按从小到大的顺序写,相同的数据叶要重复记录,故(4)错误.[答案] (1)√ (2)× (3)√ (4)×2.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图9­3­2所示,则这组数据的中位数和平均数分别是( )图9­3­2A .91.5和91.5B .91.5和92C .91和91.5D .92和92A [这组数据由小到大排列为87,89,90,91,92,93,94,96. ∴中位数是91+922=91.5,平均数x =87+89+90+91+92+93+94+968=91.5.]3.(2017·南昌二模)如图9­3­3所示是一样本的频率分布直方图.若样本容量为100,则样本数据在[15,20)内的频数是( )图9­3­3A .50B .40C .30D .14C [因为[15,20]对应的小矩形的面积为1-0.04×5-0.1×5=0.3,所以样本落在[15,20]的频数为0.3×100=30,故选C.]4.(2016·江苏高考)已知一组数据 4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1 [5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.]5.(2017·山东淄博模拟)某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图9­3­4,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.图9­3­42 [170+17×(1+2+x +4+5+10+11)=175,则17×(33+x )=5,即33+x =35,解得x =2.](1)(2015·广东高考)已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为________.(2)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.①若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差.并比较甲、乙两组的研发水平;②若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. (1)11[由条件知x =x 1+x 2+…+x nn=5,则所求均值x=2x 1+1+2x 2+1+…+2x n +1n=x 1+x 2+…+x n +nn=2x +1=2×5+1=11.](2)①甲组研发新产品的成绩为 1,1,1,0,0,1,1,1,0,1,0,1,1,0,1, 其平均数为x 甲=1015=23.3分方差s 2甲=115⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-232×10+⎝ ⎛⎭⎪⎫0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1, 其平均数为x 乙=915=35.方差s 2乙=115⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-352×9+⎝ ⎛⎭⎪⎫0-352×6=625.因为x 甲>x 乙,s 2甲<s 2乙, 所以甲组的研发水平优于乙组.6分 ②记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的概率为715.用频率估计概率,即得所求概率为P (E )=715.12分[规律方法] 1.平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行均值与方差的计算,关键是正确运用公式.2.可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种做出评价或选择.[变式训练1] (2017·郑州模拟)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图9­3­5所示的茎叶图.考虑以下结论:图9­3­5①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的序号为 ( ) A .①③ B .①④ C .②③D .②④B [甲地5天的气温为:26,28,29,31,31, 其平均数为x 甲=26+28+29+31+315=29;方差为s 2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s 甲= 3.6.乙地5天的气温为:28,29,30,31,32, 其平均数为x 乙=28+29+30+31+325=30;方差为s 2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s 乙= 2.∴x 甲<x 乙,s 甲>s 乙.]50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.[解](1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.3分50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.5分(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.8分(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.12分[规律方法] 1.茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.2.(1)作样本的茎叶图时,先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.(2)根据茎叶图中数据的数字特征进行分析判断,考查识图能力、判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息.[变式训练2] (2017·雅礼中学质检)已知甲、乙两组数据如茎叶图9­3­6所示,若两组数据的中位数相同,平均数也相同,那么m+n=________.【导学号:31222364】图9­3­611[∵两组数据的中位数相同,∴m =2+42=3.又∵两组数据的平均数也相同, ∴27+33+393=20+n +32+34+384,∴n =8, 因此m +n =11.]☞角度1 利用分布直方图求频率、频数(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图9­3­7所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )图9­3­7A .56B .60C .120D .140D [由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.] ☞角度2 用频率分布直方图估计总体(2016·四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图9­3­8所示的频率分布直方图.图9­3­8(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.[解](1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.5分(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.8分(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.10分由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.12分[规律方法] 1.准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,易误认为纵轴上的数据是各组的频率.2.(1)例3-2中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.(2)利用样本的频率分布估计总体分布.[思想与方法]1.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大.(3)茎叶图、频率分布表和频率分布直方图都是用图表直观描述样本数据的分布规律的.[易错与防范]1.使用茎叶图时,要弄清茎叶图的数字特点,切莫混淆茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.课时分层训练(五十六) 用样本估计总体A 组 基础达标 (建议用时:30分钟)一、选择题1.重庆市2016年各月的平均气温(℃)数据的茎叶图如图9­3­9,则这组数据的中位数是( )图9­3­9A .19B .20C .21.5D .23B [由茎叶图可知这组数据由小到大依次为8,9,12,15,18,20,20,23,23,28,31,32,所以中位数为20+202=20.]2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 ( )A .134石B .169石C .338石D .1 365石B [254粒和1 543石中夹谷的百分比含量是大致相同的,可据此估计这批米内夹谷的数量.设1 534石米内夹谷x 石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石.]3.某班的全体学生参加英语测试,成绩的频率分布直方图如图9­3­10,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )图9­3­10A.45 B.50C.55 D.60B[由频率分布直方图,知低于60分的频率为(0.010+0.005)×20=0.3.∴该班学生人数n=150.3=50.]4.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图9­3­11中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )图9­3­11A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个D[对于选项A,由题图易知各月的平均最低气温都在0 ℃以上,A正确;对于选项B,七月的平均最高气温点与平均最低气温点间的距离大于一月的平均最高气温点与平均最低气温点的距离,所以七月的平均温差比一月的平均温差大,B正确;对于选项C,三月和十一月的平均最高气温均为10 ℃,所以C正确;对于选项D,平均最高气温高于20 ℃的月份有七月、八月,共2个月份,故D错误.]5.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )A.8 B.15C.16 D.32C [已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16.]二、填空题6.如图9­3­12所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x +y =________.【导学号:31222365】图9­3­1210 [x 甲=75+82+84++x +90+936=85,x =6.又∵乙同学的成绩众数为84,∴y =4. ∴x +y =10.]7.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图9­3­13所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.【导学号:31222366】图9­3­1324 [底部周长在[80,90)的频率为0.015×10=0.15, 底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.] 8.(2017·郑州调研)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:2 [易知x 甲=90,x 乙=90.则s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4.s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.]三、解答题9.(2017·郑州调研)某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图9­3­14所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.【导学号:31222367】图9­3­14(1)求出m ,n 的值;(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s 2甲和s 2乙,并由此分析两组技工的加工水平.[解] (1)根据题意可知:x 甲=15(7+8+10+12+10+m )=10,x 乙=15(9+n +10+11+12)=10,3分∴m =3,n =8.5分(2)s 2甲=15[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2]=5.2,8分s 2乙=15[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2]=2,10分∵x 甲=x 乙,s 2甲>s 2乙,∴甲、乙两组的整体水平相当,乙组更稳定一些.12分10.(2016·北京高考)某市居民用水拟实行阶梯水价,每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:图9­3­15(1)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w =3时,估计该市居民该月的人均水费.[解] (1)由用水量的频率分布直方图,知该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.3分所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%. 依题意,w 至少定为3.5分(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表如下:根据题意,该市居民该月的人均水费估计为4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).12分B 组 能力提升 (建议用时:15分钟)1.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:【导学号:31222368】图9­3­16则7个剩余分数的方差为( ) A.1169B.367 C .36D.677B [由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=17(16+9+1+0+1+9+0)=367.]2.(2015·湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图9­3­17所示.图9­3­17(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.(1)3(2)6 000[(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.]3.(2017·广州模拟)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图9­3­18.图9­3­18(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?[解](1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x =0.007 5,∴直方图中x 的值为0.007 5.4分 (2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,则(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,解得a =224,即中位数为224.8分(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽样比为1125+15+10+5=15,∴从月平均用电量在[220,240)的用户中应抽取25×15=5(户).12分。

2022届高考数学统考一轮复习第9章统计与统计案例第2节用样本估计总体教师用书教案理新人教版2021

2022届高考数学统考一轮复习第9章统计与统计案例第2节用样本估计总体教师用书教案理新人教版2021

用样本估计总体[考试要求] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.常用统计图表(1)作频率分布直方图的步骤:①求极差(即一组数据中最大值与最小值的差).②决定组距与组数.③将数据分组.④列频率分布表.⑤画频率分布直方图.(2)频率分布直方图:反映样本频率分布的直方图(如图)横轴表示样本数据,纵轴表示频率组距,每个小矩形的面积表示样本数据落在该组内的频率.各小矩形的面积和为1.(3)频率分布折线图和总体密度曲线①频率分布折线图:将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起来,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(4)茎叶图的画法步骤:第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将最小茎与最大茎之间的数按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的右(左)侧.2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把x=x1+x2+…+x nn称为x1,x2,…,x n这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,x n的平均数为x,则这组数据的标准差和方差分别是s=1n[x1-x2+x2-x2+…+x n-x2];s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].[常用结论]1.频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为x,那么mx1+a,mx2+a,mx3+a,…,mx n +a的平均数是m x+a.(2)数据x1,x2,…,x n的方差为s2.①数据x1+a,x2+a,…,x n+a的方差也为s2;②数据ax1,ax2,…,ax n的方差为a2s2.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的方差越大,说明这组数据越集中.( )(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )[答案](1)√(2)×(3)√(4)×二、教材习题衍生1.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( ) A.4 B.8 C.12 D.16B[设频数为n,则n32=0.25,∴n=32×0.25=8.]2.若某校高一年级8个班参加合唱比赛的得分分别为87,89,90,91,92,93,94,96,则这组数据的中位数和平均数分别是( )A.91.5和91.5 B.91.5和92C.91和91.5 D.92和92A [∵这组数据为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5, 平均数x =87+89+90+91+92+93+94+968=91.5.] 3.如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)X 围内的居民有人.25[0.5×0.5×100=25.]考点一 样本的数字特征的计算与应用利用样本的数字特征解决决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)方差的简化计算公式:s 2=1n [(x 21+x 22+…+x 2n )-n x 2],或写成s 2=1n (x 21+x 22+…+x 2n )-x 2,即方差等于原数据平方的平均数减去平均数的平方.这8个数的平均数为x ,方差为s 2,则( )A .x =4,s 2<2B .x =4,s 2>2C .x >4,s 2<2D .x >4,s 2>2A [∵某7个数的平均数为4,∴这7个数的和为4×7=28,∵加入一个新数据4,∴x =28+48=4.又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s 2=7×2+4-428=74<2,故选A .] 2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )甲 乙A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差C [根据条形统计图可知甲的中靶情况为4环、5环、6环、7环、8环;乙的中靶情况为5环、5环、5环、6环、9环.x 甲=15(4+5+6+7+8)=6,x 乙=15(5×3+6+9)=6,甲的成绩的方差为4-62+5-62+6-62+7-62+8-625=2,乙的成绩的方差为5-62×3+6-62+9-625=2.4;甲的成绩的极差为4环,乙的成绩的极差为4环;甲的成绩的中位数为6环,乙的成绩的中位数为5环,综上可知C 正确,故选C .]3.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A .1B .2C .3D .4D [由题意可知⎩⎪⎨⎪⎧ 15x +y +10+11+9=10,15[x -102+y -102+1+1]=2,∴⎩⎪⎨⎪⎧x +y =20,x 2+y 2=208. ∴(x +y )2=x 2+y 2+2xy ,即208+2xy =400,∴xy =96.∴(x -y )2=x 2+y 2-2xy =16,∴|x -y |=4,故选D .]4.(2020·全国卷Ⅰ)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 AB C D 频数40 20 20 20等级 AB C D 频数28 17 34 21 (1)(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?[解](1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A 级品的概率的估计值为40100=0.4; 乙分厂加工出来的一件产品为A 级品的概率的估计值为28100=0.28. (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润 6525 -5 -75 频数 40 20 20 20因此甲分厂加工出来的100件产品的平均利润为65×40+25×20-5×20-75×20100=15. 由数据知乙分厂加工出来的100件产品利润的频数分布表为利润 730 0 -70 频数 28 17 34 21因此乙分厂加工出来的70×28+30×17+0×34-70×21100=10. 比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.考点二 茎叶图1.茎叶图的三个关注点(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一.(2)重复出现的数据要重复记录,不能遗漏.(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.注意“叶”中数不一定按大小次数排列.2.利用茎叶图解题的关键是抓住“叶”的分布特征,准确从中提炼信息.3.以茎叶图为载体,一般考查中位数、平均数、方差.1.(2020·某某模拟)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为( )A .2B .4C .5D .6A [由茎叶图可得,获“诗词达人”称号的有8人,据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为8×1040=2(人).] 2.(2020·某某质检)为比较甲乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:℃)制成如图所示的茎叶图,已知甲地该月11时的平均气温比乙地该月11时的平均气温高1 ℃,则甲地该月11时的平均气温的标准差为( )A .2B . 2C .10D .10B [甲地该月5天11时的气温数据(单位:℃)为28,29,30,30+m,32;乙地该月5天11时的气温数据(单位:℃)为26,28,29,31,31,则乙地该月11时的平均气温为(26+28+29+31+31)÷5=29(℃),所以甲地该月11时的平均气温为30 ℃,故(28+29+30+30+m +32)÷5=30,解得m =1.则甲地该月11时的平均气温的标准差为15×[28-302+29-302+30-302+31-302+32-302]= 2.] 3.空气质量指数 (Air Qualit y Inde x ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.从某地一环保人士某年的AQI 记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI 大于100的天数约为(该年为365天).146[该样本中AQI 大于100的频数是4,频率为25, 由此估计该地全年AQI 大于100的频率为25, 估计此地该年AQI 大于100的天数约为365×25=146.] 考点三 频率分布直方图频率、频数、样本容量的计算方法(1)频率组距×组距=频率. (2)频数样本容量=频率,频数频率=样本容量,样本容量×频率=频数.1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是( )A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5C.该校九年级学生1分钟仰卧起坐的次数超过30的人数约为320D.该校九年级学生1分钟仰卧起坐的次数少于20的人数约为32(2)(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图:甲离子残留百分比直方图乙离子残留百分比直方图记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.①求乙离子残留百分比直方图中a ,b 的值;②分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).(1)D [由频率分布直方图可知,中位数是频率分布直方图面积等分线对应的数值,是26.25;众数是最高矩形的中间值27.5;1分钟仰卧起坐的次数超过30的频率为0.2,所以估计1分钟仰卧起坐的次数超过30的人数为320;1分钟仰卧起坐的次数少于20的频率为0.1,所以估计1分钟仰卧起坐的次数少于20的人数为160.故选D .](2)[解]①由已知得0.70=a +0.20+0.15,故a =0.35.b =1-0.05-0.15-0.70=0.10.②甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.点评:(1)频率分布直方图的纵坐标是频率组距,而不是频率,切莫与条形图混淆. (2)频率分布直方图考查时,重视求平均数、中位数、方差,计算要准确,解决突破口是各个矩形面积之和为1.[跟进训练]1.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为( )A.64 B.54 C.48 D.27B[前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组为38.所以第三组频数为22.又最大频率为0.32,对应的最大频数为0.32×100=32.所以a=22+32=54.]2.(2020·某某模拟)“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45],得到如图所示的频率分布直方图,已知第一组有6人.(1)求x;(2)求抽取的x人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.(ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;(ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.[解](1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x=0.05,∴x =120. (2)设中位数为a ,则0.01×5+0.07×5+(a -30)×0.06=0.5,∴a =953≈32,则中位数为32. (3)(ⅰ)5个年龄组成绩的平均数为x 1=15×(93+96+97+94+90)=94,方差为s 21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x 2=15×(93+98+94+95+90)=94,方差为s 22=15×[(-1)2+42+02+12+(-4)2]=6.8.(ⅱ)从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定(感想合理即可).。

高考数学一轮总复习第九章概率与统计第9讲用样本估计总体课件理

高考数学一轮总复习第九章概率与统计第9讲用样本估计总体课件理
将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频
图 9-9-5
第二十页,共42页。
A
B
C
D
第二十一页,共42页。
解析:根据(gēnjù)题意,列频率分布表得:
分组
频数
频率
[0,5) [5,10)
1
0.05
1
0.05
[10,15)
4
0.20
[15,20)
2
0.10
9-9-7).
图 9-9-7
第二十四页,共42页。
(1)分别(fēnbié)估计该市的市民对甲、乙两部门评分的中位数; (2)分别(fēnbié)估计该市的市民对甲、乙两部门的评分高于 90 分 的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价. 解:(1)由所给茎叶图知,50 位市民对甲部门的评分由小到 大排序,排在第 25,26 位的是 75,75,故样本中位数为 75,所以
一个组距,然后以线段为底作一小长方形,它的高等于该组的
组上的频率.这些矩形就构成了频率分布直方图,各个长方形的 面积总和等于___1___.
第五页,共42页。
(2)频率(pínlǜ)分布折线图和总体密度曲线.
①频率分布(fēnbù)折线图:连接频率分布(fēnbù)直方图中各长方形上端
的中点,就得频率(pínlǜ)分布折线图. ②总体密度曲线:随着样本容量的增加,作图时所分的组
图 9-9-1
第十页,共42页。
3.从某小学随机抽取 100 名同学,将他们的身高(单位:cm)
数在据[1绘2制0,(1h3uì0z]h内ì)成的频学率分生布(x直u方é图sh(如en图g)9人C-9-数2)).为由图( 中数据可知身高

最新高考数学一轮复习课时规范练统计图表数据的数字特征用样本估计总体理北师大版

最新高考数学一轮复习课时规范练统计图表数据的数字特征用样本估计总体理北师大版

课时规范练53 统计图表、数据的数字特征、用样本估计总体基础巩固组1.(2018福建龙岩4月模拟,4)党的十八大以来,脱贫攻坚取得显著成绩.2013年至2016年4年间,累计脱贫5 564万人,2017年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3 000户家庭的2017年所有的年收入情况调查统计,年收入的频率分布直方图如图所示,数据(单位:千元)的分组依次为[20,40),[40,60),[60,80),[80,100],则年收入不超过6万的家庭大约为()A.900户B.600户C.300户D.150户2.(2018湖南长郡中学一模,7)某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如图.根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均值大于乙运动员的得分平均值D.甲运动员的成绩比乙运动员的成绩稳定3.(2018四川成都考前模拟,3)某教育局为了解“跑团”每月跑步的平均里程,收集并整理了2017年1月至2017年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳4.(2018山东、湖北冲刺二,3)当5个正整数从小到大排列时,其中位数为4,若这5个数的唯一众数为6,则这5个数的均值不可能为()A.3.6B.3.8C.4D.4.25.(2018内蒙古呼和浩特一模,8)如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值()A.3球以下(含3球)的人数B.4球以下(含4球)的人数C.5球以下(含5球)的人数D.6球以下(含6球)的人数6.(2018四省名校大联三,6)某校李老师本学期任高一A班、B班两个班数学课教学,两个班都有50名学生,下图反映的是两个班在本学期5次数学检测中的班级平均分对比,根据图表信息,下列不正确的结论是()A.A班的数学成绩平均水平好于B班B.B班的数学成绩没有A班稳定C.下次B班的数学平均分高于A班D.在第一次考试中,A、B两个班总平均分为78分7.(2018四川达州四模,10)已知数据x1,x2,…,x10,2的平均值为2,方差为1,则数据x1,x2,…,x10相对于原数据()A.一样稳定B.变得比较稳定C.变得比较不稳定D.稳定性不可以判断8.(2018江西景德镇盟校联考二,4)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则()A.=4,s2=2B.=4,s2>2C.=4,s2<2D.>4,s2<29.(2018山东春季高考,24)在一批棉花中随机抽测了500根棉花纤维的长度(精确到1 mm)作为样本,并绘制了如图所示的频率分布直方图,由图可知,样本中棉花纤维的长度大于225 mm的频数是.10.(2018广东东莞考前冲刺,13)已知样本x1,x2,x3,…,x n的方差s2=2,则样本2x1+1,2x2+1,2x3+1,…,2x n+1的方差为.11.(2018河南天一大联考三,15)一组样本数据按从小到大的顺序排列为:-1,0,4,x,y,14,已知这组数据的平均数与中位数均为5,则其方差为.12.(2018东北师大附中五模,18)长春市统计局对某公司月收入在1 000~4 000元内的职工进行一次统计,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示职工月收入在区间[1 000,1 500)内,单位:元).(1)请估计该公司的职工月收入在[1 000,2 000)内的概率;(2)根据频率分布直方图估计样本数据的中位数和平均数.综合提升组13.(2018宁夏银川一中三模,4)甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n的比值=()A. B. C.2 D.314.(2018湖南衡阳二模,4)已知样本x1,x2,…,x n的平均数为x;样本y1,y2,…,y m的平均数为y(x ≠y),若样本x1,x2,…,x n,y1,y2,…,y m的平均数z=ax+(1-a)y,其中0<a<,则n,m(n,m∈N+)的大小关系为()A.n=mB.n≥mC.n<mD.n>m15.(2018安徽太和中学一模,16)已知样本数据a1,a2,a3,a4,a5的方差s2=-20),则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为.16.(2018新疆维吾尔自治区二模,19)某市有甲、乙两位航模运动员参加了国家队集训,现分别从他们在集训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:8281797895889384乙:9295807583809085(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;(2)现要从中派一人参加国际比赛,从平均成绩和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.创新应用组17.(2018云南昆明二模,4)“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值18.(2018河北衡水模拟三,19)“日行一万步,健康你一生”的养生观念已经深入人心,由于研究性学习的需要,某大学生收集了手机“微信运动”团队中特定甲、乙两个班级n名成员一天行走的步数,然后采用分层抽样的方法按照[20,30),[30,40),[40,50),[50,60)分层抽取了20名成员的步数,并绘制了如下尚不完整的茎叶图(单位:千步):已知甲、乙两班行走步数的平均值都是44千步.(1)求x,y的值;(2)①若n=100,求甲、乙两个班级100名成员中行走步数在[20,30),[30,40),[40,50),[50,60)各层的人数;②若估计该团队中一天行走步数少于40千步的人数比处于[40,50)千步的人数少12人,求n的值.参考答案课时规范练53 统计图表、数据的数字特征、用样本估计总体1.A由频率分布直方图可得年收入不超过6万的家庭的概率为(0.005+0.01)×20=0.3,所以年收入不超过6万的家庭数大约为3 000×0.3=900(户),故选A.2.D由茎叶图知甲的极差为47-18=29,乙的极差是33-17=16,A正确;甲中位数是30,乙中位数是26, B正确;甲均值为29,乙均值为25,C正确;只有D不正确,甲的方差大于乙的方差,应该是乙成绩稳定,故选D.3.D由折线图知,月跑步平均里程的中位数为5月份对应的里程数;月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9、10月份,故A,B,C错,故选D.4.A设五个数从小到大为a1,a2,a3,a4,a5,依题意得a3=4,a4=a5=6,a1,a2是1,2,3中两个不同的数,符合题意的五个数可能有三种情形:“1,2,4,6,6”,“1,3,4,6,6”,“2,3,4,6,6”,其平均数分别为3.8,4,4.2.均值不可能为3.6,故选A.5.C因为共有35人,而中位数应该是第18个数,所以第18个数是5,从题图中看出第四个柱状图的范围在6以上,所以投4个球的有7人.可得3球以下(含3球)的人数为10人,4球以下(含4球)的人数为10+7=17(人),6球以下(含6球)的人数为35-1=34(人).故只有5球以下(含5球)的人数无法确定,故选C.6.C A班的5次数学测试平均分分别为81,78,81,80,85,5次的平均分=(81+78+81+80+85)=81,B班的5次数学测试平均分分别为75,80,76,85,80,5次的平均分为= (75+80+76+85+80)=79.2,A班的数学平均分好于B班,选项A正确;由于A班的成绩都在80分附近,而B班的平均分变化很大,所以A班成绩稳定些,选项B正确;下次考试A,B班的平均分不能预料,所以选项C错误;在第一次考试中,总平均分为==78分,选项D正确.故选C.7.C由题可得:=2,所以x1+x2+…+x10=20,所以平均值为2,由=1得=1.1>1,所以变得不稳定,故选C.8.C根据题意有==4,而s2=<2,故选C.9.235因为长度大于225 mm的频率为(0.004 4+0.005 0)×50=0.47,所以长度大于225 mm的频数是0.47×500=235.10.8由题意,样本数据x1,x2,x3,…,x n的方差s2=2,设样本2x1+1,2x2+1,2x3+1,…,2x n+1的方差为,则=22×s2=22×2=8.11. ∵-1,0,4,x,y,14的中位数为5,∴=5,∴x=6,∴这组数据的平均数是=5,即y=7,可得这组数据的方差是 (36+25+1+1+4+81)=,故答案为.12.解 (1)职工月收入在[1 000,2 000)内的概率为(0.000 2+0.000 4)×500=0.3.(2)根据条件可知,从左至右小矩形的面积分别是0.1、0.2,0.25,0.25,0.15,0.05,因此,中位数的估计值为2 000+=2 400;平均数的估计值为1 250×0.1+1 750×0.2+2 250×0.25+2 750×0.25+3 250×0.15+3 750×0.05=2 400.综上可知,中位数和平均数的估计值都是2 400.13.A由题意得,甲组数据为:24,29,30+m,42;乙组数据为:25,20+n,31,33,42,∴甲、乙两组数据的中位数分别为、31,且甲、乙两组数的平均数分别为==,==.由题意得解得∴==,故选A.14.C由题意得z=(nx+my)=x+1-y,∴a=.∵0<a<,∴0<<,∴n<m.故选C.15.5或-3设样本数据的平均数为a,则方差s2==(-2aa i+a2)=(-2aa i+5a2)=(-2a×5a+5a2)=(-5a2).结合s2=(++++-20)可得5a2=20,∴a=±2,即样本数据a1,a2,a3,a4,a5的平均数为2或-2,则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为2×2+1=5或2×(-2)+1=-3.16.解 (1)茎叶图如下:∴学生乙成绩的中位数为84.(2)派甲参加比较合适,理由如下:=(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,=(70×1+80×4+90×3+5+3+5+2+5)=85,=[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(95-85)2+(93-85)2]=35.5, =[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, 因为=,<,∴甲的成绩比较稳定,派甲参加比较合适.17.D根据走势图可知,这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A错;这半年中,网民对该关键词相关的信息关注度增减不确定,B错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11月份的搜索指数的稳定性,所以去年10月份的方差大于11月份的方差,C错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确.故选D.18.解 (1)因为甲班的平均值为44,所以=×(26+32+42+40+x+45+46+48+50+52+53)=44,解得x=6.同理,因为乙班平均值为44,所以=×(26+34+30+y+41+42+46+50+52+57+58)=44,解得y=4.(2)①因为抽样比为=,且抽取的20名成员中行走步数在[20,30),[30,40),[40,50),[50,60)各层的人数依次为2,3,8,7,所以甲、乙两个班级100名成员中行走步数在[20,30),[30,40),[40,50),[50,60)各层的人数依次为10,15,40,35.②该团队中一天行走步数少于40千步的频率为=,处于[40,50)千步的频率为=,则估计该团队中一天行走步数少于40千步的人数与处于[40,50)千步的人数的频率之差为-=.又因为该团队中一天行走步数少于40千步的人数比处于[40,50)千步的人数少12人,所以n ×=12,解得n=80.。

2024版高考数学一轮复习教材基础练第九章统计与成对数据的统计分析第二节用样本估计总体教学课件

2024版高考数学一轮复习教材基础练第九章统计与成对数据的统计分析第二节用样本估计总体教学课件
用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高,则下列说法正确的是
A.这组数据的平均数为0
B.这组数据的众数为7
7
8
9
7
5
4
10
9
4
7
C.这组数据的极差为6
D.这组数据的第75百分位数为9
答案
1
2.BCD 将这组数据从小到大依次排列,为4,4,5,7,7,7,8,9,9,10,则这组数据的平均数为10×(4+4+5+7+7+7+8+9+9+
教材素材变式
3. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座
前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图,则
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
座前问卷答题的正确率波动较大,讲座后问卷答题的正确率波动较小,所以讲座前问卷答题的正确率的标准差大于
讲座后问卷答题的正确率的标准差,所以C错误;对于D,讲座前问卷答题的正确率的极差是95%-60%=35%,讲座后
问卷答题的正确率的极差是100%-80%=20%,所以讲座前问卷答题的正确率的极差大于讲座后问卷答题的正确率
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
教材素材变式
答案
3.B 对于A,讲座前问卷答题的正确率的中位数是
70%+75%
=72.5%,所以A错误;对于B,讲座后问卷答题的正确率分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节统计图表、数据的数字特征、用样本估计总体 [考纲传真] 1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.统计图表(1)条形统计图的特点:数据量很大时,能直观地反映数据分布的大致情况,且能清晰地表示出各个区间的具体数. (2)茎叶图表示数据有两个突出的优点:①统计图上没有信息的损失,所有的原始数据都可以从这个茎叶图中得到;②茎叶图可以随时记录,方便表示与比较. 2.频率分布直方图 (1)频率分布直方图:每个小矩形的宽度为Δx i (分组的宽度),高为f i Δx i,小矩形的面积恰为相应的频率f i ,我们称这样的图形为频率分布直方图.(2)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差).②决定组距与组数. ③将数据分组.④列频率分布表.⑤画频率分布直方图.(3)频率分布折线图在频率分布直方图中,按照分组原则,再在左边和右边各加上一个区间,从所加的左边区间的中点开始,用线段依次连接频率分布直方图中各个矩形的顶端中点,直至右边所加区间的中点就得到频率分布折线图.3.数据的数字特征(1)众数、中位数、平均数①在一组数据中,出现次数较多的数据叫作这组数据的众数.②将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫作这组数据的中位数.③如果有n 个数x 1,x 2,…,x n ,那么x =x 1+x 2+…+x n n叫作这n 个数的平均数. (2)标准差和方差①标准差是样本数据到平均数的一种平均距离.②s = 1n [x 1-x 2+x 2-x 2+…+x n -x 2].③方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (x n 是样本数据,n 是样本容量,x 是样本平均数).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的方差越大,说明这组数据越集中. ( )(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )[解析] (1)正确.平均数、众数与中位数都在一定程度上反映了数据的集中趋势.(2)错误.方差越大,这组数据越离散.(3)正确.小矩形的面积=组距×频率组距=频率. (4)错误.茎相同的数据,叶可不用按从小到大的顺序写,相同的数据叶要重复记录,故(4)错误.[答案] (1)√ (2)× (3)√ (4)×图9­3­ 12.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图9­3­1所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92A [这组数据由小到大排列为87,89,90,91,92,93,94,96.∴中位数是91+922=91.5, 平均数x =87+89+90+91+92+93+94+968=91.5.] 3.(2017·南昌二模)如图9­3­2所示是一样本的频率分布直方图.若样本容量为100,则样本数据在[15,20)内的频数是( )图9­3­ 2A .50B .40C .30D .14C [因为[15,20)对应的小矩形的面积为1-0.04×5-0.1×5=0.3,所以样本落在[15,20)的频数为0.3×100=30,故选C.]4.(2016·江苏高考)已知一组数据 4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1 [5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1, 所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.]5.(2017·山东淄博模拟)某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图9­3­3,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.图9­3­ 32 [170+17×(1+2+x +4+5+10+11)=175,则17×(33+x )=5,即33+x =35,解得x =2.](1)(2015·广东高考)已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为________.(2)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.①若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差.并比较甲、乙两组的研发水平; ②若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.【导学号:66482437】(1)11 [由条件知x =x 1+x 2+…+x n n =5,则所求均值x 0=2x 1+1+2x 2+1+…+2x n +1n = 2x 1+x 2+…+x n +n n=2x +1=2×5+1=11.] (2)①甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x 甲=1015=23. 3分 方差s 2甲=115⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-232×10+⎝ ⎛⎭⎪⎫0-232×5=29. 乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x 乙=915=35. 方差s 2乙=115⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-352×9+⎝ ⎛⎭⎪⎫0-352×6=625. 因为x 甲>x 乙,s 2甲<s 2乙,所以甲组的研发水平优于乙组. 6分②记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的概率为715. 用频率估计概率,即得所求概率为P (E )=715. 12分[规律方法] 1.平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行均值与方差的计算,关键是正确运用公式.2.可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种做出评价或选择.[变式训练1] (2017·郑州模拟)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图9­3­4所示的茎叶图.考虑以下结论:图9­3­ 4①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的序号为 ( )A .①③B .①④C .②③D .②④B [甲地5天的气温为:26,28,29,31,31,其平均数为x 甲=26+28+29+31+315=29; 方差为s 2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6; 标准差为s 甲= 3.6.乙地5天的气温为:28,29,30,31,32,其平均数为x 乙=28+29+30+31+325=30;方差为s2乙=15 [(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s乙= 2.∴x甲<x乙,s甲>s乙.]茎叶图及其应用(2014·全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.[解](1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75. 3分50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67. 5分(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16. 8分(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大. 12分[规律方法] 1.茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.2.(1)作样本的茎叶图时,先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.(2)根据茎叶图中数据的数字特征进行分析判断,考查识图能力、判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息.[变式训练2] (2017·雅礼中学质检)已知甲、乙两组数据如茎叶图9­3­5所示,若两组数据的中位数相同,平均数也相同,那么m+n=________.【导学号:66482438】图9­3­ 511 [∵两组数据的中位数相同,∴m =2+42=3. 又∵两组数据的平均数也相同,∴27+33+393=20+n +32+34+384,∴n =8, 因此m +n =11.]☞角度1(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图9­3­6所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )图9­3­ 6A.56 B.60C.120 D.140D[由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.] ☞角度2 用频率分布直方图估计总体(2016·四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图9­3­7所示的频率分布直方图.图9­3­7(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.[解](1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30. 5分(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. 8分(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5. 10分由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨. 12分[规律方法] 1.准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,易误认为纵轴上的数据是各组的频率.2.(1)例3-2中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.(2)利用样本的频率分布估计总体分布.[思想与方法]1.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大.(3)茎叶图、频率分布表和频率分布直方图都是用图表直观描述样本数据的分布规律的.[易错与防范]1.使用茎叶图时,要弄清茎叶图的数字特点,切莫混淆茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.。

相关文档
最新文档