世上最伟大的十个公式(1)
十大最美的数学公式
十大最美的数学公式一、微积分基本定理在世界最美的十大数学公式中微积分基本定理是数学中微分和积分的总称,它的诞生可以说是人类史上最大的创举,如今在化学、生物学、地理学等领域都离不开这个公式。
二、麦克斯韦方程组麦克斯韦方程组被评价为是数学中最伟大的方程组之一,它很好的揭示了电场和磁场之间的关系,当时在牛顿发现相对论的时候该方程组可是给了他很大的启发。
三、圆的周长公式圆的周长公式,这个不论是喜欢还是不喜欢数学的朋友应该都是相当了解的,从初中到如今圆的周长公式好像有点如影随形一般,当下人们计算圆周率完全就是为了检验计算机的能力。
四、傅立叶变换傅立叶变换虽然很美,但相对来说是很难被理解通透的一个数学公式,它的出现对当代电子计算机的发展可以说是起到了重要在的推动作用。
五、薛定谔方程薛定谔方程是一位奥地利的物理学家提出来的,当时直到至今在物理学和数学界中都占有着极高的地位,1933年的时候创造者也凭借此公式获得了诺贝尔奖。
六、勾股定理在世界最美的十大数学公式中勾股定理又是一个几乎伴随着所有数学学习生涯的公式,简单的讲好多数学题都需要用此公式来解答,不是最美数学公式那是什么呢?七、欧拉公式不少是数学家都说如果第一次看到欧拉公式没有被它的美震撼到,那他便很难成为一位优秀的数学家,该公式将数学最常见的三个常数运用到了一起,就好像没有任何杂质一般。
八、德布罗意方程组德布罗意方程组在数学和物理中的应用非常广,光从公式的形式上来看就能感受到它的不同,很好的证明波长、能量等之间的关系。
九、牛顿第二定律牛顿第二定律的提出对当时和当下数学及物理学发展都有着极大的推动作用,公式很好的展现了物体运动状态下的相对变化,很美,很经典。
十、1+1=2在世界最美的十大数学公式中这个1+1=2的公式真的可以说是相当美啊,而且这个公式几乎可以说是伴随着我们的一生,即便是不喜欢数学的朋友应该都能感受到它的美吧!。
世界著名的十大公式
世界著名的十大公式一、傅立叶变换在世界最伟大的十大公式中傅立叶变换对于不喜欢数学的朋友们来说可能就很难懂了,简单讲它的出现对数字频率领域有很大的推动作用,而且支持任何不规则信号的变换。
二、1+1=21+1=2这个公式和上一个相比较应该就是无人不知了吧,从幼儿园开始它就伴随着我们,简单好理解,它的出现在整个数学领域可以说是引起轰动了的呢!三、毕达哥拉斯定理毕达哥拉斯定理也就是我们数学学习生涯中常见勾股定理,如今有四百多种图形被毕达哥拉斯定理给证明了,是非常伟大又典型的解决图形问题的公式。
四、麦克斯韦方程组人们评价说,如果没有麦克斯韦方程组就没有现代社会的文明,整个方程也是完美到无可挑剔,可以说宇宙间的任何电磁用这个方程组都能很好的被解释。
五、欧拉公式这个欧拉公式从形式上看非常的巧妙,没有任何多余的“杂质”,数学家们评论说凡是第一眼爱上这个公式的人必定会成为数学家,可见该公式的伟大之处。
六、质能方程在世界最伟大的十大公式中质能方程著名的物理学家爱因斯坦提出来的,该公式很好的揭示了质量和能量之间的关系,也正是质能方程的出现才有了当今的原子弹,氢弹等。
七、德布罗意方程组德布罗意方程组揭示出了任何物质都是有粒子性和波动性的,让波长和能量等之间有了一个很好的关系解释,提出者也在1929年获得了诺贝尔奖。
八、圆的周长公式圆的周长公式,这个伴随着整个数学学习生涯,如果用圆的周长公式来说计算太阳系包起来的周长,误差的直径不到百万分之一。
九、牛顿第二定律牛顿第二定律可以说是当下物理学的核心公式,它的出现可以是标志着真正物理学研究的开始,学习上好多的方程也都要依靠牛顿第二定律导出来。
十、薛定谔方程在世界最伟大的十大公式中薛定谔方程可谓是经典中的经典,它的出现很好的揭示了力学中位移和速度的关系,如今该公式在物理学的应用极为广泛,影响力也很大。
世界上最美的十个公式
世界上最美丽的十个公式英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle)这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的圆周率值,有十几位已经足够了。
如果用35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
世界上最伟大的十个公式
世界上最伟大的十个公式1.万有引力定律(公式:F=G*(m1*m2)/r^2)万有引力定律由牛顿提出,描述了两个物体之间的引力作用。
该公式说明了它们之间的引力与质量和距离的平方成反比。
2. 波尔-爱因斯坦关系(公式:E = mc^2)这个公式由爱因斯坦在相对论理论中提出,它描述了质量和能量之间的等价关系。
其中,E是能量,m是物体的质量,c是光速。
3.海森堡不确定性原理(公式:Δx*Δp≥h/4π)海森堡提出了这个原理,它描述了量子物理学中的粒子位置和动量的测量不可能完全精确。
该公式说明了测量粒子位置和动量的不确定性之间的关系。
4. 斯托克斯定律(公式:∮C F · dr = ∬S (curl F) · dS)斯托克斯定律描述了矢量场中环路曲线上的环流和场的偏转之间的关系。
该公式表明,环路曲线上的环流等于曲线包围的表面上的场的旋度。
5.波尔半径(公式:r=(n^2*h^2)/(4π^2*m*e^2*Z))波尔半径是描述原子中电子轨道半径的公式。
其中,n是主量子数,h是普朗克常数,m是电子质量,e是元电荷,Z是原子核的原子序数。
6.相对论质能关系(公式:E=m*c^2/√(1-v^2/c^2))这个公式是相对论中描述质能和速度之间关系的公式。
其中,E是质能,m是物体的质量,c是光速,v是物体的速度。
7.热力学恒等方程(公式:dU=TdS-PdV)热力学恒等方程描述了系统的内能与温度、熵和压强之间的关系。
该公式表明,内能的变化取决于温度和熵的变化以及压强和体积的变化。
8.波动方程(公式:∂^2u/∂t^2=c^2∇^2u)波动方程描述了波的传播和振幅随时间和空间的变化。
其中,u是波函数,t是时间,c是波的传播速度,∇^2是拉普拉斯算符。
9.黎曼-默滕斯公式(公式:ζ(s)=1/1^s+1/2^s+1/3^s+...)黎曼-默滕斯公式是数论中的重要公式,描述了黎曼ζ函数与复数s 之间的关系。
最伟大的十个公式
最伟大的十个公式
最伟大的十个公式包括但不限于:
1. 1+1=2,它表明了最基本的算术基础,是数学中最基本的公理之一。
2. E=mc^2,它揭示了质量和能量之间的关系,是物理学中最重要的公式之一。
3. 圆周公式,即圆的周长与直径的比值等于π,它展示了圆的曲线美,是几何学中最重要的公式之一。
4. 欧拉公式,它将三角函数、指数和对数函数等基本数学概念联系在一起,是数学中最重要的公式之一。
5. 牛顿第二定律,即F=ma,它揭示了力与加速度之间的关系,是经典力学中最重要的公式之一。
6. 薛定谔方程,它是量子力学中的基本方程之一,揭示了微观世界中粒子的运动规律。
7. 麦克斯韦方程组,它描述了电磁场的运动规律,是电磁学中最重要的公式之一。
8. 爱因斯坦的相对论公式,它揭示了时间和空间的关系,是现代物理学中最重要的公式之一。
9. 德布罗意公式,即λ=h/p,它揭示了微观粒子波粒二象性的关系,是量子力学中重要的公式之一。
10. 狄拉克方程,它是描述电子运动的方程,是量子力学中重要的公式之一。
以上排名不分先后,仅供参考。
这些公式在科学、技术和工程领域都有着广泛的应用和重要的意义。
黎曼几何(十大著名数学公式)
原创不容易,【关注】店铺,不迷路!顶尖的数学家有多厉害,别人努力一辈子,有的人只需要努力一段时间!数学是一门很考验智力的学科,也是所有科学的基础。
顶尖数学家智商超群。
在人类历史上,一些超一流的数学家靠自己的努力推动了数十年甚至数百年的数学发展,给人类留下了丰富的遗产,如以下。
欧拉数学英雄欧拉在数学领域做出了很多贡献。
他在数学上的灵感和操纵技巧让世人佩服他。
让欧拉出名的是——3354巴塞尔系列的一个系列。
在欧拉之前,巴塞尔级数的问题困扰了数学界一个多世纪。
莱布尼茨是微积分的发明者之一,他在数学技能上达到了顶峰。
另外,他借助微积分这个工具,随意操纵数学级数。
莱布尼茨甚至对他的朋友惠更斯说:对于任何有收敛的无穷级数,只要全部遵循一定的规律,我一定会找到和。
然后,1673年,英国数学家佩尔拿出了巴塞尔级数,一下子就把莱布尼茨叫住了。
无论莱布尼茨怎么绞尽脑汁,都没有找到巴塞尔级数的和。
然后在1734年,27岁的欧拉突然解决了这个问题。
为什么说突然?我们来看看欧拉对巴塞尔级数的解法:整个过程只用了两个简单的数学知识,但是欧拉的技巧太巧妙了。
相信能看懂证明过程的人都很佩服欧拉过人的智慧。
黎曼德国数学家黎曼是伟大数学家高斯的学生。
他说名师是好老师。
高斯这个学生真的不简单。
他开创了黎曼几何和解析数论等新领域。
1859年,黎曼当选为柏林科学院院士。
为了表示感谢,黎曼向柏林科学院提交了一篇题为《论小于给定值的素数个数》的论文。
正是这篇论文让数学家们忙碌了100多年。
黎曼的一些似乎理所当然的结论还没有得到解决。
这篇论文短短几页就有六个猜想。
但是黎曼似乎并没有把它们当作猜想,而是用“显而易见”之类的术语提出来,或者直接使用而不做任何解释;在接下来的几十年里,其他数学家独立证明了五个猜想,其中一些获得了菲尔兹奖。
但是最后一个猜想还没有被证明,就是著名的黎曼猜想。
足以看出黎曼是一个远远超越那个时代的数学家,他创立的黎曼几何后来成为广义相对论的数学基础。
世界上最美丽的十个公式
英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle)这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的圆周率值,有十几位已经足够了。
如果用35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
世界上最伟大的十大公式
世界上最伟大的十大公式1. 欧拉公式(Euler's formula):e^(iπ) + 1 = 0。
2. 相对论的质能方程(E=mc^2):能量和质量间的等价关系。
阐述了质量和能量之间的相互转化关系,揭示了相对论中的重要概念,改变了人们对能量和物质本质的理解。
3. 波尔兹曼熵公式(Boltzmann's entropy formula):S = k *ln(W)。
描述了热力学中的熵(entropy)概念,将微观粒子的状态数与系统的熵关联起来,阐明了熵作为热力学量的重要性。
4. 麦克斯韦方程组(Maxwell's equations):电磁场理论的基础。
5. 傅里叶变换(Fourier transform):信号处理和频谱分析的基础。
将时间域的信号转换为频域表示,使得我们可以更好地理解和处理各种周期性和非周期性信号。
6. 黑-斯科尔定律(Black-Scholes formula):金融选项定价模型。
这个公式描述了金融市场中期权(options)的评估和定价,为金融学和投资领域提供了重要的工具和理论基础。
7. 广义相对论场方程(Einstein field equations):描述引力场的方程。
描述了引力场的形成和演化,揭示了时空的弯曲和质量-能量分布之间的关系,极大地推动了现代宇宙学和天体物理学的发展。
8. 热力学第二定律(Second law of thermodynamics):熵的增加性原理。
说明了自然系统总是趋向于熵增加的状态,解释了各种热力学现象和自然过程中的方向性和不可逆性。
9. 斯特克斯-爱尔德方程(Navier-Stokes equations):流体力学的基本方程。
描述了流体的运动和流动规律,为理解和研究气体和液体的流动性质提供了关键的工具和方程。
10. 黄金分割(Golden Ratio):数学中的神秘与美感。
这个公式描述了两个分割比例之间的关系,被广泛应用于艺术、建筑、设计和自然界中,赋予各种事物以和谐和美感。
数学十大神秘公式解读
数学十大神秘公式解读数学,作为一门抽象的科学,自古以来就充满了神秘感。
在这门科学中,有一些公式因其简洁、美妙和力量而闻名于世。
下面将为您解读其中的十大神秘公式。
1. E=mc²爱因斯坦的质能等价公式,表明了质量与能量之间的等价性。
其中,E 表示能量,m 表示质量,c 表示光速。
这个公式告诉我们,质量可以转化为能量,能量也可以转化为质量。
这是现代物理学,特别是核物理学和粒子物理学的基础。
2. π=4(1-1/3+1/5-1/7+1/9-...)π 是一个无理数,表示圆的周长与直径的比例。
这个公式揭示了π 的几何意义,同时也揭示了它的无穷级数展开式。
这个级数是交错级数,它的求和是无限大的,但级数的和却是一个有限的数,这就是π。
3. y=ln(x)自然对数函数,它的定义域是(0, +∞),值域是 R。
这个函数是微积分中的基本函数,也是解析数学中的重要工具。
它与 e(自然常数)有着密切的关系,e 是这个函数在 x=1 时的值。
4. 勾股定理在古希腊,人们发现了直角三角形两条直角边的平方和等于斜边的平方,即 a²+b²=c²。
这个定理不仅在几何学中有重要意义,也在物理学和工程学中有广泛应用。
5. 费马最后定理费马最后定理是数论中的一个著名问题,它表明对于任意大于2的自然数 n,方程aⁿ+bⁿ=cⁿ 无正整数解。
这个定理的证明被认为是数学史上的一件伟大事件。
6. 欧拉公式欧拉公式是复分析中的一个基本公式,表达了复指数函数与三角函数之间的关系,即e^(iθ)=cos(θ)+isin(θ)。
这个公式在量子物理学中有着重要应用。
7. 薛定谔方程薛定谔方程是量子力学中的基本方程,描述了微观粒子的运动规律。
这个方程将物质波的概念与波动方程相结合,是现代物理学的重要基石。
8. 麦克斯韦方程组麦克斯韦方程组是电磁学的基本方程,描述了电场、磁场、电荷和电流之间的关系。
这个方程组不仅统一了电学和磁学,还预测了电磁波的存在。
世界上最伟大的十个数学公式
世界上最伟大的十个数学公式以下是世界上被认为最伟大的十个数学公式(排序不分先后):1. 欧拉公式(Euler's formula):e^ix = cos(x) + i*sin(x),将三个基本数学常数e、i和π联系在一起,涵盖了实数、虚数、三角函数以及指数函数。
2. 二项式定理(Binomial theorem):(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n-1)*a^1*b^(n-1) +C(n,n)*a^0*b^n,展开了一个二项式的幂。
3. 黎曼猜想(Riemann hypothesis):数学家黎曼提出的假设,关于素数分布的一种描述,至今未被证明或者证伪。
4. 费马大定理(Fermat's Last Theorem):Pierre de Fermat于1637年提出的定理,指出当n大于2时,方程x^n + y^n = z^n没有正整数解。
5. 导数的定义(Derivative definition):f'(x) = lim(h->0) [f(x+h) - f(x)]/h,定义了函数在某一点的瞬时变化率。
6. 泰勒展开(Taylor series):将某个函数在某点附近展开成无穷级数的表达式,使得在该点附近的近似计算变得更加精确。
7. 傅里叶变换(Fourier transform):将一个函数表示为一系列正弦和余弦函数的和,用来分析信号的频谱和频域特性。
8. 十进制无理数的表示(Decimal representation of irrational numbers):证明了有些无理数能够以无限循环的小数形式表示,例如圆周率π=3.14159...9. 黄金分割比(Golden ratio):φ = (1 + √5) / 2,一种特殊的数学比例,在建筑、美学和自然界中有广泛的应用。
10. 矩阵乘法(Matrix multiplication):将两个矩阵相乘的操作,是线性代数中的基础运算,在图像处理、机器学习等领域具有重要作用。
世界上最伟大的十大公式
世界上最伟大的十大公式
1. 欧拉公式:e^(iπ) + 1 = 0。
它将数学中的五个基本常数(e、
i、π、1和0)结合在一起,以一种简洁而优雅的方式。
2. 直角三角形的勾股定理:a² + b² = c²。
这个公式描述了直角三角形中三条边之间的关系,是几何学中最重要的定理之一。
3. 爱因斯坦的质能方程:E = mc²。
这个公式描述了质量和能量之间的等价关系,揭示了相对论的基本原理。
4. 麦克斯韦方程组:这是一组描述电磁场的四个基本方程,包括高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律。
它们统一了电磁学的基本原理。
5. 黎曼猜想:尚未被证明的数学猜想,涉及到复数域上的素数分布规律。
如果该猜想成立,将对数论产生深远的影响。
6. 波尔兹曼熵公式:S = k ln W。
它描述了统计物理学中系统的熵和系统的微观状态数之间的关系,是热力学第二定律的基础。
7. 黑-施陶尔兹迈尔方程:描述流体运动的偏微分方程,是流体力学的基本方程之一。
8. 熵增定律:描述了自然界中系统总是趋向于熵增加的趋势,是热力学和统计物理学中基本的原理之一。
9. 维里定律:描述了电阻产生的焦耳热与电流、电阻和时间的关系,是电学中的基本定律之一。
10. 斯特雷克公式:描述了光谱线的位移与外加电场的关系,揭示了原子和分子的结构与性质之间的关联。
十个最优美数学公式
⼗个最优美数学公式英国科学期刊《物理世界》曾让读者投票评选了“最伟⼤的公式”,最终榜上有名的⼗个公式既有⽆⼈不知的1+1=2,⼜有著名的E=mc2;既有简单的圆周公式,⼜有复杂的欧拉公式……No.10 圆的周长公式(The Length of the Circumference of a Circle)⽬前,⼈类已经能得到圆周率的2061亿位精度。
还是挺⽆聊的。
现代科技领域使⽤的圆周率值,有⼗⼏位已经⾜够了。
如果⽤35位精度的圆周率值,来计算⼀个能把太阳系包起来的⼀个圆的周长,误差还不到质⼦直径的百万分之⼀。
现在的⼈计算圆周率,多数是为了验证计算机的计算能⼒,还有就是为了兴趣。
No.9 傅⽴叶变换(The Fourier Transform)这个挺专业的,⼀般⼈完全不明⽩。
不多作解释。
简要地说没有这个式⼦没有今天的电⼦计算机,所以你能在这⾥上⽹除了感谢党感谢政府还要感谢这个完全看不懂的式⼦。
另外傅⽴叶虽然姓傅,但是法国⼈。
No.8 德布罗意⽅程组(The de Broglie Relations)这个东西也挺⽜逼的,⾼中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这⼈觉得电⼦不仅是⼀个粒⼦,也是⼀种波,它还有“波长”。
于是搞啊搞就有了这个物质波⽅程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔⽅程(The Schrödinger Equation)也是⼀般⼈完全不明⽩的。
因此我摘录官⽅评价:“薛定谔⽅程是世界原⼦物理学⽂献中应⽤最⼴泛、影响最⼤的公式。
”由于对量⼦⼒学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。
另外薛定谔虽然姓薛,但是奥地利⼈。
No.5 质能⽅程(Mass–energy Equivalence)好像从来没有⼀个科学界的公式有如此⼴泛的意义。
在物理学“奇迹年”1905年,由⼀个叫做爱因斯坦的年轻⼈提出。
十大物理公式
十大物理公式十大物理公式之top10:那就是我们的牛顿第二定律:其中:F代表力的大小;m代表物体质量;v代表物体速度话说牛顿的第二定律可以被当成整个物理学的开端。
仍然记得当年初中学到牛顿第二定律之后心里面有一种豁然开朗的感觉,有一种全宇宙的秘密都尽在于此的感觉在这里我们为什么没有选用牛顿第二定律的通常形式F=ma呢?因为我们这里选用的形式才是牛顿当年提出这个定律时的原始形式,而且这个形式在爱因斯坦的狭义相对论中也是正确的。
但是话又说回来了,牛顿的第二定律终究还仅仅是力学中的基本定律,不能走出力学这个狭隘框架半步。
所以这个牛顿的式子排名第十。
十大物理公式之top9:薛定谔的波动方程:其中:h是折合普朗克常数,m是粒子质量,V 是势能函数,希腊字母phi是粒子的波函数,倒三角的平方是拉普拉斯算符薛定谔的波动方程背后确实没有什么引人入胜的传奇可讲,只是因为有一次,薛定谔先生在演讲宣传“德布罗意波”(就是我们常说的波函数所描述的波)时被一个听众问到“德布罗意波的波动方程是什么”,从而激发起了薛定谔寻找答案的冲动。
但是由这个波动方程的提出所引发的量子力学体系之建立确实是一段百听不厌的传奇。
在物理学史上,量子力学又被称为男孩物理学,因为创立量子力学主体的是一帮平均年龄不到30岁的大男孩。
他们在哥本哈根的“量子教父”:玻尔的带领下共同埋葬了经典物理的宏伟大厦,开辟了另一片崭新的物理天地。
在现代的量子力学体系中,薛定谔方程就像经典力学中的牛顿第二定律一样被作为一项公设来接受。
十大物理公式之top8牛顿的万有引力定律:其中:F是万有引力大小,G是万有引力常量,m1和m2分别是两个质点的质量,r是两质点直接的距离实际上要作一名成功的物理学家,想象力往往也是不可缺少的:他居然会把苹果掉落所受的力与月球围着地球的运动所受到的力认定是同一种力,并且在数学上严格的论证了这个想法!这在我们现代人看起来可能没什么,那是因为我们站在了像牛顿这样巨人的肩膀上,第一个产生这种想法的牛顿先生绝对有做上帝的气质。
有史以来十大公式定理
人类有史以来的十大公式No.1 麦克斯韦方程组(The Maxwell's Equations)积分形式:微分形式:这组公式融合了电的高斯定律、磁的高斯定律、法拉第定律以及安培定律。
比较谦虚的评价是:“一般地,宇宙间任何的电磁现象,皆可由此方程组解释。
”到后来麦克斯韦仅靠纸笔演算,就从这组公式预言了电磁波的存在。
我们不是总喜欢编一些故事,比如爱因斯坦小时候因为某一刺激从而走上了发奋学习、报效祖国的道路么?事实上,这个刺激就是你看到的这个方程组。
也正是因为这个方程组完美统一了整个电磁场,让爱因斯坦始终想要以同样的方式统一引力场,并将宏观与微观的两种力放在同一组式子中:即著名的“大一统理论”。
爱因斯坦直到去世都没有走出这个隧道,而如果一旦走出去,我们将会在隧道另一头看到上帝本人。
No.2 欧拉公式(Euler's Identity)这个公式是上帝写的么?到了最后几名,创造者个个神人。
欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。
数学史上称十八世纪为“欧拉时代”。
欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力。
他一生谦逊,很少用自己的名字给他发现的东西命名。
不过还是命名了一个最重要的一个常数——e。
关于e,以前有一个笑话说:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。
”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。
”这个公式的巧妙之处在于,它没有任何多余的内容,将数学中最基本的e、i、pie放在了同一个式子中,同时加入了数学也是哲学中最重要的0和1,再以简单的加号相连。
高斯曾经说:“一个人第一次看到这个公式而不感到它的魅力,他不可能成为数学家。
史上最伟大的十个公式
矣s B·dA=0
{ 矣坠sE·dl=-
坠ΦB,S 坠t
矣坠s H·dl=If,s+
坠ΦD,S 坠t
微分形式:
{荦·D=ρf 荦·B=0
荦×E=-
坠B 坠t
荦×H=Jf+
坠D 坠t
任何一个能把这组公式看 懂的人,一定会感到背脊发 凉— ——如果没有上帝,怎么解 释如此完美的方程?这组公式 融合了电的高斯定律、磁的高 斯定律、法拉第定律以及安培 定律,对它比较保守的评价是: “一般地,宇宙间任何电磁现 象,皆可由此方程组解释。”依 据这组公式,麦克斯韦仅凭纸 笔演算就预言了电磁波的存 在。我们不是总喜欢编一些故 事,比如爱因斯坦小时候因为 受到某种刺激而走上了发奋学 习以图报效祖国的道路么?事 实上,这个刺激就是你现在看 到的这个方程组。也正因为这 个方程组完美统一了整个电磁 场,所以成年后的爱因斯坦始 终想要以同样的方式统一引力 场,并将宏观与微观的两种力 放在同一组式子中 (即著名的 “大一统理论”)。爱因斯坦直到 去 世 都 没 有 走 出 这 个 隧 道 ,一 旦走出去,他将会在隧道另一 头看到上帝本人。
No.9 傅立叶变换公式:
乙∞
(ξ):= (f x)e-2πixξdx
-∞
这个挺专业的,一般人 完全看不明白。有关它的价 值,简要地说,没有这个式 子,就没有今天的电子计算 机。因此,你能上网,除了感 谢党感谢政府,还要感谢这 个完全看不懂的式子。另外, 傅 立 叶 虽 姓“ 傅 ”,但 其 实 是
最伟大的20个公式 -回复
以下是世界上最伟大的20个公式的一些介绍:
1. 公式一:毕达哥拉斯定理(勾股定理)
2. 公式二:欧拉定理(数论)
3. 公式三:牛顿第二定律(力学)
4. 公式四:欧拉-拉格朗日方程(微分方程)
5. 公式五:傅里叶变换(信号处理)
6. 公式六:哈密顿-雅可比方程(量子力学)
7. 公式七:斯托克斯定理(流体力学)
8. 公式八:麦克斯韦方程组(电磁学)
9. 公式九:玻意耳定律(气体力学)
10. 公式十:查普曼-柯西公式(热力学)
11. 公式十一:拉普拉斯变换(信号处理)
12. 公式十二:凯恩斯-史密斯方程(经济学)
13. 公式十三:泊松分布(统计学)
14. 公式十四:薛定谔方程(量子力学)
15. 公式十五:傅立叶级数(信号处理)
16. 公式十六:勾股级数(数学分析)
17. 公式十七:梅森素数定理(数学)
18. 公式十八:欧拉-伯努利数(数学)
19. 公式十九:欧拉-拉格朗日-庞加莱方程组(数学物理)
20. 公式二十:麦克斯韦-玻尔兹曼分布定律(热力学)
这些公式涵盖了数学、物理学、统计学、经济学等多个学科领域,它们在各自的领域中都有着广泛的应用和深远的影响。
这些公式的发现和证明都经历了漫长的历史过程,它们不仅推动了科学技术的进步,也促进了人类对自然世界的认识和理解。
麦克斯韦方程组--世上最伟大的公式 没有之一
麦克斯韦方程组--世上最伟大的公式没有之一英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle)这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
世界上最伟大的十个公式
世上最伟大的十个公式英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10圆的周长公式(The Length of the Circumference of a Circle)这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.71+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
世界上最伟大的十个公式
世上最伟大的十个公式英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10圆的周长公式(The Length of the Circumference of a Circle)这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.71+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
世上最伟大的十个公式,薛定谔方程排名第六,质能方程排名第五
既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle)这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
”由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
世上最伟大的十个公式,薛定谔方程排名第六,质能方程排名第五
英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上
有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单
的-圆周公式,又有复杂的欧拉公式……
从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle)
这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)
这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)
这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2
这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔方程(The Schrödinger Equation)
也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
”由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。
另外薛定谔虽然姓薛,但是奥地利人。
No.5 质能方程(Mass–energy Equivalence)
好像从来没有一个科学界的公式有如此广泛的意义。
在物理学“奇迹年”1905年,由一个叫做爱因斯坦的年轻人提出。
同年他还发表了《论动体的电动力学》——俗称狭义相对论。
这个公式告诉我们,爱因斯坦是牛逼的,能量和质量是可以互换的。
副产品:原子弹。
No.4 勾股定理/毕达哥拉斯定理(Pythagorean Theorem)
做数学不可能没用到过吧,不多讲了。
No.3 牛顿第二定律(Newton's Second Law of Motion)
有史以来最伟大的没有之一的科学家在有史以来最伟大没有之一的科学巨作《自然哲学的数学原理》当中的被认为是经典物理学中最伟大的没有之一的核心定律。
动力的所有基本方程都可由它通过微积分推导出来。
对于学过高中物理的人,没什么好多讲了。
No.2 欧拉公式(Euler's Identity)
这个公式是上帝写的么?到了最后几名,创造者个个神人。
欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。
数学史上称十八世纪为“欧拉时代”。
欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力。
他一生谦逊,很少用自己的名字给他发现的东西命名。
不过还是命名了一个最重要的一个常数——e。
关于e,以前有一个笑话说:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。
”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。
”
这个公式的巧妙之处在于,它没有任何多余的内容,将数学中最基本的e、i、pie放在了同一个式子中,同时加入了数学也是哲学中最重要的0和1,再以简单的加号相连。
高斯曾经说:“一个人第一次看到这个公式而不感到它的魅力,他不可能成为数学家。
”
No.1 麦克斯韦方程组(The Maxwell's Equations)
积分形式:
微分形式:
任何一个能把这几个公式看懂的人,一定会感到背后有凉风——如果没有上帝,怎么解释如此完美的方程?这组公式融合了电的高斯定律、磁的高斯定律、法拉第定律以及安培定律。
比较谦虚的评价是:“一般地,宇宙间任何的电磁现象,皆可由此方程组解释。
”到后来麦克斯韦仅靠纸笔演算,就从这组公式预言了电磁波的存在。
我们不是总喜欢编一些故事,比如爱因斯坦小时候因为某一刺激从而走上了发奋学习、报效祖国的道路么?事实上,这个刺激就是你看到的这个方程组。
也正是因为这个方程组完美统一了整个电磁场,让爱因斯坦始终想要以同样的方式统一引力场,并将宏观与微观的两种力放在同一组式子中:即著名的“大一统理论”。
爱因斯坦直到去世都没有走出这个隧道,而如果一旦走出去,我们将会在隧道另一头看到上帝本人。