曲线积分曲面积分的对称性
对称性在积分计算中的应用
㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。
01-积分的奇偶对称性
积分的奇偶对称性----定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分.)(2)()()2(;0)()()1(],,[0⎰⎰⎰==-∈--aa a a a dx x f dx x f x f dx x f x f a a C f 为偶函数,则若为奇函数,则若设01 定积分的奇偶对称性.),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f x y x f dxdy y x f y x f y x f x y x f y D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性.),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f y y x f dxdy y x f y x f y x f y y x f x D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f z z y x f dxdydz z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设;),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f x z y x f dxdydz z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f y z y x f dxdydz z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(2121L L Lds y x f ds y x f y x f y x f x y x f ds y x f y x f y x f x y x f y L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(2121L L Lds y x f ds y x f y x f y x f y y x f ds y x f y x f y x f y y x f x L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(2121dS z y x f dS z y x f z y x f z y x f z z y x f dS z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(2121dS z y x f dS z y x f z y x f z y x f x z y x f dS z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(2121dS z y x f dS z y x f z y x f z y x f y z y x f dS z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设。
积分的对称性问题
例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4
对称性在积分中的应用
华北水利水电学院数学实践报告华北水利水电学院对称性在积分中的应用学院:环境与市政工程学院专业:建筑环境与设备工程班级:2010108成员:王永辉 201010804朱虹光 201010810余维召 201010811对称性在积分中的应用积分的计算是积分运用中的一个难点.在某些积分的计算过程中,若能利用对称性,则可以简化积分的计算过程.本文介绍了几种常见的对称性在积分计算过程中的几个结论及其应用,并通过实例讨论了利用积分区域的对称性及被积函数的奇偶性简化重积分,曲线积分,曲面积分的计算方法.另外,对于曲面积分的计算,本文还给出了利用积分曲面关于变量的轮换对称性简化曲面积分的计算,是曲面积分的计算更加便捷.积分的对称性包括重积分,曲线积分,曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分相关的定理和结论,再结合相关的实例进行具体的探讨.本文结合积分域关于平行于坐标轴的直线,平行于坐标面的平面,平行于坐标轴对角线的直线的对称性定义,以及相应对称区域上定理中的函数约定在该区域都连续或偏导数连续定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D 关于a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a --D ∈,则D 关于直线z y ±=对称) 1、 二重积分的对称性定理定理1:设有界闭区域12D D D =,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)Dif x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)Dif x y d σ⎰⎰1(=i ,)2注释:设函数),(y x f 在有界闭区域D 上连续(ⅰ)若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f y x f d y x f !),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y x(ii )若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y x f d y x f 2),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中2D 是D 的上半部分:2D =}0|),{(≥∈y D y x定理2:设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续且),(y x f 关x 和y 均为偶函数,则⎰⎰⎰⎰=DD d y x f d y x f 3),(4),(σσ其中3D 是D 的第一象限的部分:3D =}0,0|),{(≥≥∈y x D y x 定理3:则设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y x 例1:计算⎰⎰Dxydxdy ,其中D 由下列双纽线围成:(1) )(2)(22222y x y x -=+ (2)xy y x 2)(222=+解:(1)由于)(2)(22222y x y x -=+围成的区域关于x 轴y 轴均对称,而被积函数xy 关于x (或y 轴)为奇函数则有⎰⎰Dxydxdy 0=(2)由)(2)(22222y x y x -=+围成的区域对称于原点,而被积函数xy 是关于x ,y 的偶函数则有⎰⎰Dxydxdy =2⎰⎰1D xydxdy由极坐标知θθsin ,cos r y r x ==,代入xy y x 2)(222=+得θ2sin =r 且由xy 0>,知02sin 212>θr则20πθ≤≤于是⎰⎰Dxydxdy 61cos 2sin 220sin 03=⎰⎰dr r d θθθπθ定理4:设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰例2:设函数f(x)在]1,0[上的正值连续函数 证明:()()1()()()2Daf x bf y dxdy a b f x f y +=++⎰⎰,其中b a,为常数,1}y x,0|y){(x,D ≤≤=证明:∵积分区域D 关于x y =对称∴(,)(,)DDf x y d f y x d σσ=⎰⎰⎰⎰设()()()()Daf x bf y I dxdy f x f y +=+⎰⎰由函数关于两个变量()()()()Daf x bf y I dxdy f x f y +=+⎰⎰,以上两式相,得2()DI a b dxdy a b =+=+⎰⎰,从而1()2I a b =+一般地,有以下定理:定理5:设有界闭区域12D D D =,1D 与2D 关于直线0:=++c by ax L 对称, 函数),(y x f 在D 上连续,那么:(ⅰ)若),(y x f 是关于直线L 的奇函数,则(,)Df x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于直线L 的偶函数,则(,)Df x y d σ=⎰⎰2(,)Dif x y d σ⎰⎰1(=i ,)22、三重积分的对称性定理定理6:设空间有界闭区域12Ω=ΩΩ,1Ω与2Ω关于xoy 坐标面对称,函数),,(z y x f 在Ω上连续,那么:(ⅰ)若),,(z y x f 是关于z 的奇函数,则(,,)f x y z dv Ω⎰⎰⎰=0(ⅱ)若),,(z y x f 是关于z 的偶函数,则:(,,)f x y z dv Ω⎰⎰⎰=2⎰⎰⎰Ω1),,(dv z y x f同时,若Ω关于yox 坐标面对称,),,(z y x f 关于奇函数或偶函数;或者若Ω关于xoz 坐标面对称),,(z y x f 关于y 为奇函数或偶函数,同样也有类似结论.例7:求下列曲面所界的均匀物体的重心坐标222x y z a b c++,c z =解: 若令cos ,sin ,x ar y br z z θθ===,则质量为203zcc abcM ab dz d rdr ππθ==⎰⎰⎰设重心坐标为0x ,0y ,o z 由对称性知000==y x ,而o z =22033..44z cc abc cdz d rdr abc ππθπ=⎰⎰⎰于是,重心为点(0,0,34c ) ※曲线积分的对称性1、第一型曲线积分的对称性定理定理7:设平面内光滑曲线12L L L =+,1L 与2L 关于x (或y )轴对称,函数),(y x f 在L 上连续,那么:(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)f x y ds ⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则(,)f x y ds ⎰=2(,)if x y ds ⎰1(i =,)2注:设平面分段光滑曲线L 关于y 轴对称,则10,(,)(,)(,),(,)LL f x y f x y ds f x y ds f x y x ⎧⎪=⎨⎪⎩⎰⎰如果关于变量x 为奇函数2如果关于变量为偶函数其中1L 是L 的右半段:1L =}0|),{(≥∈x D y x定理8:设平面内光滑曲线12L L L =+,1L 与2L 关于x 轴对称且方向相反,函数),(y x p 在L 上连续,那么:(ⅰ)若),(y x p 是关于x 的偶函数,则(,)p x y dx ⎰0=(ⅱ)若),(y x p 是关于y 的奇函数,则(,)2(,)ip x y dx p x y dx =⎰⎰1(i =,)2例4:求曲线积分[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰,其中c 是单位圆周221x y +=,方向为逆时针方向解: ∵曲线积分c 可分为上,下两个对称的部分,在对称点),(y x 与),(y x -上, 函数22()cos(2)xy e xy dx -+大小相同,但投影元素dx 在上半圆为负,下半圆为正∴22()cos(2)xy e xy dx -+在对称的两个半圆上大小相等,符号相反故22()cos(2)xy ce xy dx -+⎰0=类似可知22()sin(2)xy ce xy dy -+⎰0=因此[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰0=定理9:设L 是xoy 平面上关于直线a x =对称的一条曲线弧 (ⅰ)若),(y x f =),2(y x a f --,则(,)Lf x y ds ⎰0=(ⅱ)若),(y x f =),2(y x a f -,则(,)Lf x y ds ⎰=21(,)L f x y ds ⎰})|),{((1a x L y x L ≤∈=例5:计算3(2)LI y y x ds =+-⎰,其中L 是曲线22(2)4x y -+=所围成的回路解: ∵L 关于轴及直线2=x 对称∴3(2)(2)2LLLI y y ds x ds ds =+--+⎰⎰⎰设),(y x f =32y y + 则),(y x f =),(y x f -设 ),(y x g =2-x则),2(y x f --=2-x =),(y x f 即200I ++=lds ⎰=8π2、第二类曲线积分的对称性定理定理1:对于第二类曲线积分还需考虑投影元素的符号.当积分方向与坐标正方向之间的夹角小于2π时,投影元素为正,否则为负.就(,)p x y dx ⎰而言,考察(,)p x y dx 在对称点上的符号定理2:若积分曲线T 关于x ,y ,z 具轮换对称性,则(,,)(,,)(,,)tttp x y z dz p y z x dy p z x y dx ==⎰⎰⎰=13 (,,)(,,)(,,)tp x y z dz p y z x dy p z x y dx ++⎰ 定理3:设L 是xoy 平面上关于a x =对称的一条光滑曲线弧,12L L L =+,任意),(y x ∈L ,有),2(y x a -∈2L ,且1L ,2L 在y 轴投影方向相反,则(ⅰ)若θ),(y x =-θ),2(y x a -,则(,)Lx y dy θ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)L x y dy θ⎰=2(,)Lx y dy θ⎰定理3中,若1L ,2L 在x 轴投影方向相同,其他条件不变,则有 (ⅰ)若p ),(y x =-p ),2(y x a -,则(,)Lp x y dx ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)Lp x y dx ⎰=21(,)L p x y dx ⎰例:计算I =|2|(2)(1)LLx x y dx -+--⎰⎰,其中抛物线2(2)x -上从)1,1(A 到)1,3(B 的一段弧解:I =|2|(2)(1)LLx x y dx -+--⎰⎰=12I I +因为关于2=x 对称θ),4(y x =|2|-x θ),(y x由定理3有)1)(2(),4(---=-y x y x p =),(y x p -所以2I =0,即12I I I =+0=※曲面积分的对称性定义1:若∀)(),,(321N n R D x x x x p n n n ∈⊂∈⋅⋅⋅⋅⋅有),,(1211111-+⋯⋯i x x x x x x p n)2,1(n i D n ⋯=∈成立,则称n D 关于),,(321n x x x x p ⋅⋅⋅⋅⋅具有轮换对称性.定义2:若函数),,(321n x x x x F ⋅⋅⋅⋅⋅),,(321n x x x x F ⋅⋅⋅⋅⋅≡)2,1(n i X ⋅⋅⋅⋅⋅⋅=,则称函数),,(321n x x x x F ⋅⋅⋅⋅⋅关于函数n x x x x ⋅⋅⋅⋅⋅321,,具有轮换对称性. 1、第一类曲面积分对称性定理定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上被积函数的绝对值相等{即光滑曲面S 关于xoy (或yoz ,或zox )坐标面对称},则有(ⅰ)(,,)sf x y z ds ⎰⎰0=,在对称点上),,(z y x f 取相反的符号{即),,(z y x f 关于z(或x ,或y )的奇函数}(ⅱ)(,,)sf x y z ds ⎰⎰=2(,,)sf x y z ds ⎰⎰,在对称点上),,(z y x f 取相同的符号{即),,(z y x f 为关于z (或x ,或y )的偶函数}推论1:若光滑曲面S 可以分成对称的两部分12S S S =+,且关于原点对称, 则(ⅰ)(,,)sf x y z ds ⎰⎰0=,为关于z (或x ,或y )的奇函数(ⅱ)(,,)sf x y z ds ⎰⎰=81(,,)s f x y z ds ⎰⎰,),,(z y x f 为关于z (或x ,或y )的偶函数例1:计算下列面积的曲面积分,()x y z ds ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分解: 利用对称性知xds yds ∑∑=⎰⎰⎰⎰0=设xy D ={|),(y x 2222x y a h +≤-} 则()x y z ds ∑++⎰⎰=zds ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-例2:计算曲面积分x ∑⎰⎰,其中2222:x y z a ∑++=解: 令22221:x y z a ∑++=,0,0,0x a y a z a ≤≤≤≤≤≤ 则 2221:,0,0D x y a x a y a +≤≤≤≤≤ds ==∑关于原点对称,解被积函数),,(z y x f =x 为关于),,(z y x 的偶函数由推论1.1x ∑⎰⎰=8x ∑⎰⎰=a881D x dsdy ⎰⎰⎰⎰=189cos 8D d r a θθdr r d a a⎰⎰=209cos 8πθθ=a810117!!7.108!!264a a ππ= 定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)f x y z ds f y z x ds f z x y ds ∑∑∑==⎰⎰⎰⎰⎰⎰1(,,)(,,)(,,)3f x y z ds f y z x ds f z x y ds ∑∑∑=++⎰⎰⎰⎰⎰⎰ 例3:计算曲面积分2z ds ∑⎰⎰,其中s 是球面2222x y z a ++=解:如果按照常规方法来解,计算量比较大,如果利用对称函数的特性,非常简捷∵球面2222x y z a ++=关于x ,y ,z 具有对称性∴222x ds y ds z ds ∑∑∑==⎰⎰⎰⎰⎰⎰∴2z ds ∑⎰⎰=2221()3x y z ds ∑++⎰⎰ =21133a ds ds ∑∑=⎰⎰⎰⎰ 22214.433a a a ππ== 2、第二类曲面积分的对称性定理利用对称性计算第二类曲面积分同样需要注意投影元素的符号.现以曲面积分(,,)sf x y z ds ⎰⎰为例来讨论.当曲面指定侧上动点的法线方向与z 轴正向成锐角时,面积元素ds 在xoy 面上的投影dxdy 为正减钝角时为负.一般地,有如下定理:定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上|f|的值相等,则有(ⅰ)1(,,)s f x y z dxdy ⎰⎰0=,在对称点上fdxdy 取相反的符号(ⅱ)1(,,)s f x y z dxdy ⎰⎰=21(,,)s f x y z dxdy ⎰⎰,在对称点上fdxdy 的符号相同,对于积分1(,,)s f x y z dydz ⎰⎰,1(,,)s f x y z dzdx ⎰⎰也有类似的结论定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)p x y z dydz p y z x dzdx p z x y dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰=1(,,)(,,)(,,)3p x y z dydz p y z x dzdx p z x y dxdy ∑++⎰⎰ 例3:计算sxdydz ydxdy zdxdy ++⎰⎰,其中S 是球面2222x y z R ++=的外侧解: ∵球面2222x y z R ++=关于x ,y ,z 具有对称性∴sssxdydz ydxdz zdxdy ==⎰⎰⎰⎰⎰⎰先计算sxdydz ⎰⎰为此应分别考虑前半球面(记为1S )及后半球面(记为2S )上的曲面部分1S的方程为x =它在oyz 平面上的投影域y D 为圆域222y z R +≤,因此,若用1w S 表示前半球面的外侧则有:1S w Dyxdydz σ=⎰⎰=230023R d r R πθπ=⎰⎰ 对于在后半球面2S 上的曲面积分,由于2S的方程为:x =后外侧,故关于后半球面外侧(记为2w S )的曲面积分为:2S w xdydz =⎰⎰Dy σ=323R π 因此S xdydz =⎰⎰31243S w S wxdyxz xdydz R π+=⎰⎰⎰⎰ 3S Sxdydz ydxdz zdxdy xdyxz ++=⎰⎰⎰⎰ 334343R R ππ=⋅= ※小结应用对称性计算积分时应注意以下几点:1.必须兼顾被积函数和积分区域两个方面,只有当两个方面面都具有某种对称性是才能利用,如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,在考虑利用上述结论2.对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路 线的方向和曲面的侧,确定投影元素的符号,需慎重3.有些问题利用轮换对称性可得到简便的解答对于重积分,曲线积分,曲面积分等定理的研究,是积分学运用的一个难点.本 文在探讨相关定理的同时,特别是巧妙的运用其对称性的特点,通过具体实例对积分运用的几个重要的定理进行了一些列研究,发现积分区域与被积函数二者均具对称性时,运用上述对称性定理可以极大地简化计算过程,尤其对于第二类曲线积分和第二类曲面积分来说,应用此方法能够 方向和曲面侧的讨论,简化了计算的过程,给积分的运算带来了便捷,.在以后的学习中,只要我们能把对称性这个重要的特点结合在实际中,相信一定会达到了事倍功半的效果.。
积分轮换对称性
积分轮换对称性坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
特点及规律(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换。
(2) 对于第二类曲面积分只是将dxdy也同时变换即可,比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积分∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy。
(3) 将(1)中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称。
第二类和(2)总结相同。
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分区间没有发生变化,则被积函数作相应变换后,积分值不变。
积分对称性定理
关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。
(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。
(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。
(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。
3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。
对称性在积分中应用
对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。
积分对称性定理
关于积分对称性定理1、 定积分:设)(x f 在[],a a -上连续,则()()()()-00,d 2d ,a aaf x x f x x f x x f x x ⎧⎪=⎨⎪⎩⎰⎰为的奇函数,为的偶函数.2、 二重积分:若函数),(y x f 在平面闭区域D 上连续,则(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分()()()()10,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。
(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分()()()()20,,,d d 2,d d ,,DD f x y x f x y x y f x y x y f x y x ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:2D 为D 满足0x ≥的右半平面区域。
(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分()()()()20,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 在0≥y 上半平面的部分区域。
(4)如果积分区域D 关于直线x y =对称,则二重积分()()y x x y f y x y x f DDd d ,d d ,⎰⎰⎰⎰=.(二重积分的轮换对称性)(5)如果积分区域D 关于直线y x =-对称,则有10,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰当时当时利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。
积分对称性
定积分对称性
a
f
(
x
)dx
2
a
f ( x)dx
0
f (x) f (x)
a
0
f (x) f (x)
二重积分对称性
D关于ox轴对称
f
(x,
y)d
2
D1
f
( x,
y)d
D
0
D关于oy轴对称
f (x,y) f (x, y) f (x, y) f (x, y)
f
(x,
Q( x,
L
y)dy
2
0 Q( x,
L1
y)dy
若Q( x, y)关于x为偶函数 若Q( x, y)关于x为奇函数
第一型曲面积分对称性 S关于xoy对称
0,
若f ( x, y, z)关于z为奇函数
S
f
(x,
y, z)dS
2
S1
f
( x,
y, z)dS,若f
(x,
y, z)关于z为偶函数
若P( x, y)关于y为偶函数 若P( x, y)关于y为奇函数
Q( x,
L
y)dy
2
0 Q( x,
L1
y)dy
若Q( x, y)关于y为奇函数 若Q( x, y)关于y为偶函数
第二型曲线积分对称性
L关于oy轴对称
P(x,
L
y)dx
2
L1
0 P( x,
y)dx
若P( x, y)关于x为奇函数 若P( x, y)关于x为偶函数
(
x,
y,
ቤተ መጻሕፍቲ ባይዱ
z
)关于x为奇函数
S关于zox对称
空间曲线积分与曲面积分的计算方法
空间曲线积分与曲面积分的计算方法空间曲线积分与曲面积分是《数学分析》中的重要内容之一,但由于它计算的复杂性及灵活多变性,使我们在学习时感到很难掌握,缺乏必要而行之有效的方法,因此,本文将给出空间曲线积分与曲面积分的一些典型计算方法,为这部分的学习提供参考.1 空间曲线积分与曲面积分的定义及性质定义1.1[]()1981P 设L 为空间可求长度的曲线段,(),,f x y z 为定义在L 上的函数,对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段i L ()1,2,,i n =,i L 的弧长记为i s ∆,分割T 的细度为1max i i nT s ≤≤=∆,在i L 上任取一点()(),,1,2,,i i i i n ξης=,若有极限()01lim ,,ni i i i T i f s J ξης→=∆=∑ 且J 的值与分割T 与点(),,i i i ξης的取法无关,则称此极限为(),,f x y z 在L 上的第一型曲线积分,记作()⎰Lds z y x f ,,.第一型曲线积分具有和定积分类似的性质,略.定义1.2[]()2031P 设函数()()(),,,,,,,,P x y z Q x y z R x y z 为定义在空间有向可求长度曲线L :弧AB 上.对L 的任一分割T ,它把L 分成n 个小曲线段弧i i M M 1-()1,2,,i n =,其中0,n M A M B ==,记各小曲线段弧i i M M 1-的弧长为i s ∆,分割T 的细度为1max i i nT s ≤≤=∆,又设T的分点i M 的坐标为(),,i i i x y z ,并记111,,i i i i i i i i i x x x y y y z z z ---∆=-∆=-∆=-()1,2,,i n =.在每个小曲线段弧i i M M 1-上任取一点(),,i i i ξης()1,2,,i n =,若极限()()()0111lim ,,lim ,,lim ,,nnni i i i i i i i i i i i T T T i i i P x Q y R z ξηςξηςξης→→→===∆+∆+∆∑∑∑存在且与分割T 与点(),,i i i ξης的取法无关,则称此极限为函数()()(),,,,,,,,P x y z Q x y z R x y z 沿有向曲线L 上的第二型曲线积分,记为()()(),,,,,,LP x y z dx Q x y z dy R x y z dz ++⎰或 ()()(),,,,,,ABP x y z dx Q x y z dy R x y z dz ++⎰.常简写成LPdx Qdy Rdz ++⎰或⎰++ABRdz Qdy Pdx .第二型曲线积分具有线性性质和积分区域的可加性.定义1.3[]()2801P 设S 是空间中可求面积的曲面,(),,f x y z 为定义在S 上的函数,对曲面S 作分割T ,它把S 分成n 个小曲面块i S ()1,2,,i n =,以i S ∆记小曲面块i S 的面积,分割T 的细度为{}的直径i ni S T ≤≤=1max ,在i S 上任取一点(),,i i i ξης()1,2,,i n =,若极限()01lim ,,ni i i i T i f s ξης→=∆∑存在,且与分割T 与(),,i i i ξης()1,2,,i n =的取法无关,则称此极限为(),,f x y z 在S 上的第一型曲面积分,记作(),,Sf x y z ds ⎰⎰.第一型曲面积分具有和定积分类似的性质,略.定义1.4[]()2841P 设,,P Q R 为定义在双侧曲面S 上的函数,在S 所指定的一侧作分割T ,它把S 分成n 个小曲面块12,,,n S S S ,分割T 的细度为{}的直径i ni S T ≤≤=1max ,以,,yz zx xy i i i S S S ∆∆∆分别表示i S 在三个坐标面上的投影区域上的面积,它们的符号由i S 的方向来确定,若i S 的法线正向与z 轴正向成锐角时,i S 在xy 平面的投影区域面积xyi S ∆为正,反之,若i S 的法线正向与z 轴正向成钝角时,它在xy 平面的投影区域面积xy i S ∆为负.在各个小曲面块i S 上任取一点()(),,1,2,,i i i i n ξης=,若()()(),0111lim ,lim ,,lim ,,yz zx xy nnni i i i i i i i i i i i T T T i i i P S Q S R S ξηςξηςξης→→→===∆+∆+∆∑∑∑存在,且与曲面S 的分割T 和(),,i i i ξης在i S 上的取法无关,则称此极限为函数,,P Q R 在曲面S 所指定一侧上的第二型曲面积分,记作()()(),,,,,,SP x y z dydz Q x y z dzdx R x y z dxdy ++⎰⎰.第二型曲面积分具有线性性质和区域可加性.2 三个重要定理定理2.1(Green 公式)[]()2241P 若函数()()y x Q y x P ,,, 在闭区域D 上连续,且有连续的一阶偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫⎝⎛∂∂-∂∂D L Qdy Pdx d y P x Q σ,这里L 为区域D 的边界曲线,并取正方向.定理 2.2(Gauss 公式)[]()2901P 设空间区域V 由分片光滑的双侧封闭曲面S 围成.若函数R Q P ,,在V 上连续,且有一阶连续偏导数,则⎰⎰⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V SRdxdy Qdzdx Pdydz dxdydz z R y Q x P ,其中S 取外侧.定理2.3(Stokes 公式)[]()2921P 设光滑曲面S 的边界L 是按段光滑的连续曲线,若函数P 、Q 、R 在S ()L 连同上连续,且有一阶连续偏导数,则⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S L Rdz Qdy Pdx dxdy y P x Q dzdx x R z P dydz z Q y R , 其中S 的侧与L 的方向按右手法则确定.定理3.2'(Stokes 公式)[]()9922P (1)设S 是3R 中的分片光滑曲面,(2)设S 的边界是有限条封闭光滑曲线L ,(3)设函数P 、Q 、R 是在曲面S 及其附近有定义,在S 直到L 上有连续的偏导数,则⎰⎰⎰++∂∂∂∂∂∂=++LS dS R Q P z y x Rdz Qdy Pdx γβαcos cos cos⎰⎰∂∂∂∂∂∂=sRQPz y x dxdy dzdx dydz, 其中+S 与+L 呈右手关系(即站在+S 的法线上看,+L 为逆时针方向),αcos ,βcos ,γcos 为+S 的法线方向余弦.3 空间曲线积分的计算方法3.1 对称法对称方法是数学中的一种重要方法,在曲线积分的计算(证明)中注意到被积式与积分区域的对称性,运用对称性质计算,能够起到化繁为简的作用.例1 设L 为对称于坐标轴的光滑闭曲线,证明()()⎰=-+++Ly y dy y xe xy dx e y x0233.证明 设L 为正向闭曲线,其包围的区域为D ,由Green 公式得()()⎰-+++Ly y dy y xe xy dx e y x233=()33Dy x dxdy -⎰⎰=33DDy dxdy x dxdy -⎰⎰⎰⎰因为L 是对称于坐标轴的光滑曲线,所以区域D 关于坐标轴对称.因为3y 是变量y 的奇函数,从而30Dy dxdy =⎰⎰,同理30Dx dxdy =⎰⎰,所以33D Dy dxdy x dxdy -⎰⎰⎰⎰0=. 故()()⎰=-+++Ly y dy y xe xy dx e y x0233.除了上述对称性之外,还可利用轮换对称性. 例2 计算积分2Lx ds ⎰,其中02222=++=++z y x a z y x L 与为的交线.解 积分曲线L 关于,,x y z 有轮换对称性,因此2Lx ds ⎰=2Ly ds ⎰=2Lz ds ⎰=()22213Lx y z ds ++⎰ 22133L L a a ds ds ==⎰⎰232233a a a ππ==. 3.2 参数法根据积分路径或被积函数的特点选用适当的参数表示,化第二型曲线积分为定积分,有时多采用极坐标,或广义极坐标. 例3 计算()⎰++L ds z y x222,其中L 是球面29222=++z y x 与平面1=+z x 的交线. 解 将L 的两个方程式联立,得⎪⎩⎪⎨⎧=+=++129222z x z y x ,消去z ,得141212122=+⎪⎭⎫ ⎝⎛-y x .令θρθρsin 2,cos 221==-y x ,代入可知1=ρ, 从而L 的参数方程为().πθθθθ20cos 221,sin 2,cos 221≤≤-==+=z y x ()()()θθθθθd d ds 2sin 2cos 2sin 2222=++-=所以()πθπ1822920222=⋅=++⎰⎰d ds z y xL.例4[]()9252P 计算曲线积分Lydx zdy xdz ++⎰.其中L 是曲线0,0,0,1,1222222≥≥≥=+=++z y x c z a x c z b y a x (1)(0,0,0>>>c b a 为常数)从点)0,0,(a 到),0,0(c .解 方法一 如图1所示(利用坐标面上的投影椭圆)在式(1)中消去z ,得2222212a x y a ⎛⎫- ⎪⎝⎭+=⎛⎫ ⎪⎝⎭ 这是xy 平面上,以,02a ⎛⎫⎪⎝⎭为中心,以2a 为半轴的椭圆,从而可改写成参数方程cos ,22a a x y θθ=+=,代入1x z a c +=,得cos 22c cz θ=-. 因0x y z θπ≥≤≤、、,故0.则Lydx zdy xdz ++⎰θθθθθθθπd ca abc c a b ⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+-=sin 2cos 22cos 2cos 22sin 2sin 2 ⎰⎰⎰+--=20202022sin 2cos 2sin 2πππθθθθθθd ac d bcd ab()c a bac +-=242π.图1方法二 (在截平面上引用极坐标)令,,x ax y by z cz ===, 则L 变成2221,1x y z x z ++=+=, 作旋转变换,令,,22x z x zu y v ω+-===, 这时L 变成2221,u v v ω++==,在v =L 是圆周222112u ω+=-=,引用极坐标,u ωθθ==, 于是可得L 的参数方程()()()1cos 2221cos 22v ax ax aby bybu c cz czv ωθθωθ+===+=====-=-其余同方法一.方法三(因为曲线上,y z 都可写成x 的函数)令x at=,则()1,z c t y =-=点1t =,终点0t =.于是 原积分=1112t t act dt ⎡⎤--⎢⎥⎣⎦⎰⎪⎭⎫ ⎝⎛=2cos 2θt 令=2220cos cos cos sin 2222ac d πθθθθθθθ⎛⎫+ ⎪⎝⎭⎰ ()224ac c a b++-=π.3.3 Stokes 公式法在空间曲线积分的参数方程不易求得时,用Stokes 公式将第二型曲线积分化为曲面积分,常可使计算简单.例5 求曲线积分⎰-+-+-=Ldz y x dy x z dx z y I )()()(222222,其中L 为球面在第一卦限部分的边界线,从球的外侧看去L 的方向为逆时针方向.解 如图2所示 不妨设球面在第一卦限部分为S ,其边界为L , 根据右手法则,S 取外法向,由Stokes 公式得⎰⎰+-+-+-=Sdxdy y x dzdx x z dydz z y I )(2)(2)(2.设S 三个坐标平面上的投影区分别为,,yz zx xy D D D ,则()()()222yzzxxyD D D I y z dydz z x dzdx x y =-+-+-+⎰⎰⎰⎰⎰⎰由坐标的轮换对称性,得41212)(62101-=-=-=+-=⎰⎰⎰⎰⎰⎰-x D D xdy dx xdxdy dxdy y x I xyxy. 图2例6 求⎰++=Lxdz zdy ydx I ,其中L 为圆周2222x y z a x y z ⎧++=⎨++=⎩,且从z 轴正向看去圆周L的方向为逆时针方向.解 不妨设S 为平面0x y z ++=上以L 为边界的部分,其法向量为{}11,1,13n =. 根据Stokes 公式得{}{}dSdxdy dzdx dydz I SS1,1,1311,1,1⎰⎰⎰⎰⋅---=---=233a dS Sπ-=-=⎰⎰.3.4 曲线积分与路径无关法当曲线积分与路径无关时,选择特殊的路径,例如选平行于坐标轴的直线段或折线段来计算曲线积分,会使计算变得容易.例7 求⎰-+-+-=Ldz xy z dy xz y dx yz xI )()()(222,其中L 是沿螺旋线,cos θa x =()πθπθθ202,sin ≤≤==h z a y 从点(),0,0A a 到(),0,B a h 的有向曲线. 解 这里()()()222,,,,,,,,P x y z x yz Q x y z y xz R x y z z xy =-=-=-. 因为,,R Q P R Q P x y z y z z x x y∂∂∂∂∂∂==-==-==-∂∂∂∂∂∂, 所以曲线积分与积分路径无关.分路径为有向线段AB :()h t t z y a x ≤≤===0,0,,则⎰-+-+-=Ldz xy z dy xz y dx yz x I )()()(222⎰-+⋅-+⋅-=ABdt t a )0(0)00(0)0(2230231h dt t h ==⎰. 例8 验证:()()22cos sin y y xe dx x e z dy y z dz --+-++-是全微分,并求它的一个原函数. 解 这里()()()2,,2,,,cos ,,,sin y y P x y z xe Q x y z x e z R x y z y z --==-+=-,则sin ,0,2y R Q P R Q Pz xe y z z x x y-∂∂∂∂∂∂==-====-∂∂∂∂∂∂, 所以()()22cos sin y y xe dx x e z dy y z dz --+-++-是全微分.设所求的原函数为()z y x I ,,,点()()()12,0,0,,,0,,,,M x M x y M x y z 取积分路径为折线段12OM M M 得()z y x I ,,()()()()⎰-++-+=--z y x y y dz z y dy z e x dx xe ..0,0,02sin cos 2()()dz z y dy z e x dx xe y y MM M M OM sin cos 2)(22211-++-+++=--⎰⎰⎰()⎰⎰⎰-++-+=-zyvxwdw y dv ex udu 020sin 12z y e x ycos 2+=-.4 曲面积分的计算方法4.1 对称法 例9 计算()⎰⎰+Sdydz z yx 22,其中S 为2222R z y x =++的外侧.解 设V 为球:2222R z y x ≤++,则由Gauss 公式及对称性,得()⎰⎰+Sdydz z y x 22()⎰⎰⎰+=Vdxdydz z y 22⎰⎰⎰=Vdxdydz z 22()⎰⎰⎰++=Vdxdydz z y x 22232 523983432R R R ππ=⋅⋅=. 例10 设()f z 为奇函数,试求积分()()()22;;SSSI f z dS J f z dS K yf z dS ===⎰⎰⎰⎰⎰⎰,其中S 为锥面22z xy =位于球面2222x y z a ++=内的部分.解 如图3所示 22z xy =是以原点为顶点的双叶锥面,对称轴是xy 平面上1、3象限的分角线. S 关于xy 平面上、下对称,在对称点上()f z 的大小相等,符号相反,因此积分()0sI f z dS ==⎰⎰.又由于S 在1、3卦限内的部分与它在7、5卦限内的部分关于原点对称,在对称点上()2yf z 的大小相等,符号相反,所以积分()20SK yf z dS ==⎰⎰. 除了上、下对称,原点对称之外,S 还关于y x =平面(前后)对称.在对称点上()z f 2大小相等符号相同,因此()128S J f z dS =⎰⎰,其中1S 表示S 位于第一卦限内夹于0y y x ==与之间的部分.图34.2 直接使用公式法可以选择适当的坐标平面,利用直角坐标方程求解曲面积分,也可利用参数方程把曲面积分化为二重积分求解曲面积分.例11 计算曲面积分⎰⎰+++=Sa z y x dS I 222)(,其中S 为以原点为中心,()0a a >为半径的上半球面.解 上半球面ϕθϕθϕcos ,sin sin ,cos cos :a z a y a x S === ,0,022πϕθπ⎛⎫≤≤≤≤ ⎪⎝⎭因此⎰⎰++++=Saaz z y x dSI 2222220202πϕθπ≤≤≤≤=⎰⎰202aππϕ=⎰22ππ=-(22a π=.例12 计算积分()⎰⎰+=Szds y xI 22,S 是上半球面()02222≥=++z R z y x ,含在柱面Rx y x =+22的内部.解 S :222y x R z --=在xy 平面上的投影D :Rx y x ≤+22,222221yx R R y z x z --=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+()⎰⎰--⋅--⋅+=Ddxdy yx R R y x R y x I 22222222()⎰⎰+=Ddxdy y xR22(令θcos r x =,θsin r y =)52244cos 0322323cos 41R d R R dr r d RR πθθθππθππ===⎰⎰⎰--. 4.3 Gauss 公式法利用Gauss 公式将曲面积分化为三重积分,使被积函数简化,从而使计算简单化. 例13 试证:若S 为封闭的光滑曲面,l 为任意固定的已知方向,则()⎰⎰=SdS l n 0,cos ,式中n为曲面的外法线向量.证明 设),,(1c b a l = 为l 方向的单位向量,1n 是外法线的单位向量:()γβαcos ,cos ,cos 1=n, 则()γβαcos cos cos ,cos 11c b a n l l n ++=⋅=.应用Gauss 公式()()⎰⎰⎰⎰++=SsdS c b a dS l n γβαcos cos cos ,cos ⎰⎰++=Scdxdy bdzdx adydz00V Va b c dxdydz dv x y z ⎛⎫∂∂∂=++== ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰. 例14 记()ϕθ,r r =为分片光滑封闭曲面S 的球面坐标方程.试证明S 所围的有界区域V 的体积⎰⎰=SdS r V φcos 31,其中φ为曲面S 在动点的外法线方向与向径所成的夹角.证明 ()z y x r ,,=表示动点的径向量,则模222z y x r ++=,()γβαcos ,cos ,cos =n表示S 的外法线单位向量,则γβαφcos cos cos cos rzr y r x n r r ++=⋅=因此()⎰⎰⎰⎰++=S S dS z y x dS r γβαφcos cos cos 31cos 31⎰⎰++=Szdxdy ydzdx xdydz 31 V dxdydz V==⎰⎰⎰所以原题得证.5 空间曲线积分与曲面积分之间的关系Stokes 公式建立了沿空间双侧曲面S 的积分与沿S 的边界曲线L 的积分之间的联系.例15 试计算积分()⎰+-+-+-=L dz x y dy z x dx y z I )()(,其中L +是从(),0,0A a 经 ()0,,0B a 到()0,0,C a 回到(),0,0A a 的三角形.解 方法一 如图4所示+S 表示ABC ∆所围平面块之上侧,则⎰⎰+---∂∂∂∂∂∂=S xy zx yz z y x dxdydzdx dydz I ⎰⎰+++=S dxdy dzdx dydz 2 轮换对称⎰⎰∆=⋅ABCa dxdy 3332.图4方法二 ()().1,1,1,,,0:='''=-++≡z y x F F F a z y x F S , 因此法线方向余弦()⎪⎪⎭⎫⎝⎛=31,31,31cos ,cos ,cos γβα, 23323323cos cos cos a S dS dS xy zx yz z y x I ABC S S=⋅=⋅=---∂∂∂∂∂∂=∆⎰⎰⎰⎰γβα. 例16 计算积分⎰+++=L xdz zdy ydx I ,其中+L为圆周0,0,2222=++>=++z y x a a z y x从z 轴正方向看为逆时针方向.解 方法一 如图5所示(用Stokes 公式化为第一型曲面积分)+S 表示L 所围成的平面圆块(上侧),())1,1,1(,,,0:='''=++≡+z y x F F F z y x F S ,()⎪⎪⎭⎫⎝⎛=31,31,31cos ,cos ,cos γβα, 故dS xzyz y x I S ⎰⎰+∂∂∂∂∂∂=313131()⎰⎰+⋅-⋅=S dS 3113 233a dS S π-=-=⎰⎰+.图5方法二 (用Stokes 公式化为第二型曲面积分) +S 表示L 所围成的平面圆块(上侧),⎰⎰+∂∂∂∂∂∂=S xzy z y x dxdy dzdx dydz I ⎰⎰+---=S dxdy dzdx dydz轮换对称性⎰⎰⎰⎰∆-=-+dxdy dxdy S 33,其中∆是+S 在xy 平面的投影区域:2222a xy y x ≤++.令2,2ηξηξ+=-=y x ,则121212121=-=J ,(){}2223:,a ≤+=∆'ηξηξ , 故 ππ2233133a a S I -=⋅-=⋅-=∆'.通过上面讨论,总结归纳了一些空间曲线积分与曲面积分的典型计算方法,希望本文对学习《数学分析》的同学提供参考和帮助.。
坐标的轮换对称性
关于坐标的轮换对称性的解释坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;同样可以进行多种其它的变换。
(2) 对于第二类曲面积分只是将dxdy也同时变换即可。
比如:如果将函数u(x,y,z)=0中的x,y,z 换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积分∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称。
第二类和(2)总结相同。
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分区间没有发生变化,则被积函数作相应变换后,积分值不变。
注意两点,一是被积函数关于某一变量的奇偶性,二是看一下积分区域,是否关于该变量坐标轴两边对称。
比如说2维空间,如果被积函数是X的积函数,那么考察积分区域,是否关于Y对称。
如果想要考察X,Y坐标是否可对换,那么就需要考察积分区域是否关于y=x对称。
三维空间类似,如果被积函数是X的奇函数,那么考察积分区域,看一下是否关于YZ平面对称。
10考研数学大纲知识点解析(第十章曲线曲面积分(数学一)
.
(3)第一类曲线积分表示的物理意义是曲线的质量,故与方向无关.
【第一类曲线积分的性质】
(1) (2) (3) (4) (5)设在 上
.
.
其中
没有公共部分.
. 其中 表示 的反方向的路径.
,则
.
特别的,
.
【第一类曲线积分的计算】设 为光滑曲线, (1)若 由参数方程
在 上连续. 给出 ,则
其中
在
上有一阶连续导数,且
(3)若积分曲线 关于
轴对称,则
【例题】(89 年,数学一/数学二)
设平面曲线 为下半圆
,则曲线积分
. .
【答案】 . 【解析 1】参数法:设 的参数方程为
【解析 2】将积分曲线 的方程
,即
于是 .
代入被积函数,得 .
【例题】(98 年,数学一)
设 为椭圆
,其周长记为 , 则
.
【答案】 .
【解析】将 的方程
函数
在空间曲线 上的第一类曲线积分可类似定义为
. 【空间中第一类曲线积分的计算】
若空间曲线 的参数方程为
则
.
【例题】计算曲线积分 上相应于 从 到 的一段弧. 【解析】原式
,其中 为螺旋线
.
【第二类曲线积分的概念(对坐标的曲线积分)】设 为 面内一条有向光滑曲线段,
函数
在 有界,则它们在 上的第二类曲线积分定义为
由 解得
得到的微分方程 ,带入
,得
,
所以
,于是
.
【综合题】(06 年,数学一)设在上半平面 偏导数,且对任意的 都有 向简单闭曲线 ,都有
内,函数
具有连续
.证明:对 内的任意分段光滑的有
曲线积分曲面积分的对称性
一、曲线积分的对称性① 关于弧长的曲线积分。
有奇偶对称性和轮换对称性。
奇偎对称性:设积分曲线弧关于y 轴对称,则rhf /(对刀山,当2、小关于工为偶函数 J=]几1Lb, 当心、心关于为为奇函数. 英中在’轴右侧的部分.若L 关于R 轴对称,则有类似结论•轮换对称性:设积分曲线孤L 关于直线y -工对称,则了)d$ = J/(>,兀〉山.② 关于地标的乎面曲线积分•有奇偶对称性•奇偶对称性;若L 关于y 轴对称,则 f 2〔 P (x, j )dx, F (s 》>血=]仏J J L h,其中轴右侧的部分.若L 夬于文轴对称,则f [2( P (H,,)d4 j P (=,,)dz = y L 2L b,其中乙2为L 在文轴上侧的部分・关于\Q (x,y )dy 亦有类似结论.③ 关二坐标的空间曲线积分•有奇偶对称性. 奇偶对称性:若F 关于心 面对称,则2 z )dx, Jr i0,其中巧为I*在垃y 面上方的部分.若厂关于.:Qz 面对称,则2|z )dLr ・ 符别有^/( X )ds 二 5 )ds.当PG Q 〉关于工为偶函数当关于力为奇函数 当关于夕为奇函数当PR”)关于y 为偶画数 £(巾 j, z)dx = 当P (孙八幻关于乂为奇函效 当Pg*关于2为偶函数当PQ,"")关于工为偶西数当FQ”, z )关于,为奇函数Jr20,其中&为尸在妙面前方的部分•若厂关于25面射称,则fM P(z,g)dg 当P(z,y,2〉关于』为奇函数 J f P(x,y ^)d.r "3r b 当P(^.y^)关于•为偶函数其中C 为F 在以直面右方的部分.关于仁(2(巧屏,z)dy 及|^jR[x,y, z)dz 有类似结论•二、曲面积分的对称性®关于面积的曲面积分奇偶对称性:按工关于戈Qy 面对称,则|‘2『/(x,y^)d5,当/(…“)为农的偶函数, J /(JE ,y,z)dS = y 莒S 0»当V, X)为Z 的奇函数.②关于坐标的曲面积分奇偶对称性:设工关于乂氏面对称.则Q(rr, y Q)dzdLr 与『R(r, y. x)d^dy 有类似结论• 轮换对称性:若》关于工,%2对称,则 ^P(x,y y z)dydz =『P(z,朮,y)(h?dy - 特别有JJ'P C X )dydz 二 j[p(3i )d«dac = T P ( «)dxdj.2 15 0,x f y,z)dydz =当P(x, “黑)为 当 z)为 乂的奇函数, Z 的偶函数. THJS于 对,z, x)d^djr.。
对称性在积分计算中的应用精编
对称性在积分计算中的应用引言积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.那么,如果我们在解题中发掘或注意到问题的对称性,并巧妙地把它们应用到积分的计算过程中去,往往可以简化计算过程,达到事倍功半的效果,我们甚至可以不用计算就可以直接判断出其结果.在积分计算中利用对称性来解题这种方法,是一种探索性的发现方法,它与其他方法的不同之处主要体现在其创造性功能. 因此,掌握和充分利用对称性求积分这一方法,对于活跃和开拓我们学生的创造性思维,提高判断解题能力,探讨解题方法是十分有益的.下面从定积分、积分、线面积分三方面来介绍一下对称性在积分计算中的应用.一、相关的定义设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)。
二、对称性在定积分中的应用(一) 定积分的概念 1. 概念设函数)(x f 在],[b a 上有界,(1) 在],[b a 内插入若干个分点,......210b x x x x a n =<<<<=把区间[,]a b 分成n 个小区间01121[,],[,],......[,],n n x x x x x x -各个小区间长度依次为110221,,x x x x x x ∆=-∆=-1.......n n n x x x -∆=-(2) 在每个小区间上任取一点1(),()i i i i i x x f ξξξ-≤≤作函数与小区间长度i x ∆的乘积()(1,2,......,),i i f x i n ξ∆=,并作出和 1().ni i i S f x ξ==∆∑(3) 记12max{,,......,},n x x x λ=∆∆∆如果不论对[,]a b 怎样划分,也不论在小区间1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么这个极限称为函数的()f x 在区间],[b a 上的定积分,记为⎰ba dx x f )(即记为1()()nbi i ai f x dx I f x ξ===∆∑⎰其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],[b a 叫做积分区间. 2. 几何意义几何上,⎰<ba b a dx x f )()(表示曲线()y f x x =与轴,,x a x b ==所围曲边梯形面积的代数和.(二) 对称性在定积分中的性质性质 1 若()x f [,]a b k 在上可积,为常数,则()x kf 在],[b a 上也可积,则⎰b adx x kf )(⎰=badx x f k )(性质 2 ()()上也可积,且在则上可积都在若],[)()(,],[,b a x g x f b a x g x f ±.)()()]()([dx x g dx x f dx x g x f bab aba⎰⎰⎰±=±性质 3 ()()()()上也可积在上可积,则在都在若],[],[,b a x g x f b a x g x f ⋅ 性质 4 ()()上与在任给上可积的充要条件是:在],[],[),,(],[b c c a x f b a c b a x f ∈.都可积.)()()(⎰⎰⎰+=bcc ab adx x f dx x f dx x f 此时又有等式规定 1 0)(⎰==badx x f b a 时,令当.规定 2 .)()(⎰⎰-=>abb adx x f dx x f b a 时,令当 .性质 5 ()⎰≥∈≥badx x f b a x x f b a x f .0)(],,[,0)(.],[则若上的可积函数为设推论(积分不等式性)()()],,[),()(],[b a x x g x f b a x g x f ∈≤上的两个可积函数,且为与若性质 6()().)()(],[],[dx x f dx x f b a x f b a x f baba⎰⎰≤上也可积,且在上可积,则在若(三) 对称性在定积分中的定理定理1 若)(x f 在a][-a,(a>0)上连续且为偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(.证明 因为 ⎰⎰⎰+=--aaaadx x f dx x f dx x f 0)()()(对积分作代换-t x =,则得⎰⎰⎰⎰-=-=--=-aaaa dx x f dt t f dt t f dx x f 0)()()()(所以 ⎰⎰⎰⎰-+=+=--aa aaadx x f x f dx x f dx x f dx x f 00)]()([)()()((1) 若)(x f 为偶函数,则)(2)()(),()(x f x f x f x f x f =+-=-即 所以⎰⎰=-aaadx x f dx x f 0)(2)((2) 若)(x f 为奇函数,则0)()(),()(=+--=-x f x f x f x f 即 所以0)(=⎰-aa dx x f .注 定理1可简化计算偶函数,奇函数在对称于原点的区间上的定积分为0.(四) 对称性在定积分中的应用举例 例 1 dx x x 23111)1(-+⎰-解 =⎰⎰---+-112311211dxx x dx x因为积分区间关于原点对称,而2-1x 是偶函数,231x x -是奇函数,故,011123=-⎰-dx x x设 x =y sin 2cos 1222112πππ⎰⎰--==-dy y dx x原式=2π 例 2 计算()2x 2ln 1e x dx -+⎰因为积分区间关于原点对称,但()x e 1ln +既不是奇函数也不是偶函数,我们可()().b ba af x dxg x dx ≤⎰⎰则有利用()()()()()22x f x f x f x f x f --+-+=.其中()()2x f x f -+为偶函数,()()2x f x f --为奇函数,把它分解为一个偶函数和一个奇函数之和.解 令()()x x f e 1ln +=,则()()()x x x f x f -++=-+e e 2ln 212,()()x x f x f 212=--,()()2222x x -x 222220118ln 1+e ln 2e e d 223x dx x x dx x x x dx ---⎡⎤=+++===⎣⎦⎰⎰⎰⎰所以有例3 计算 ⎰-+22223sin )cos (ππxdx x x分析 由于x x 23sin 是一个奇函数, x x 22sin cos 是一个偶函数,并且积分区域]2,2[ππ-关于原点对称,因此可用定理1来计算. 解 由定理1得 原式⎰⎰--+=22222223sin cos sin ππππxdx x xdx x⎰-+=2222sin cos 0ππxdx x=)sin sin (2204202⎰⎰-ππxdx xdx 其中220sin xdx π⎰=22222220sin cos (sin cos cos )sin xd x x xx dx dx x dx πππππ-=--=-⎰⎰⎰⎰2220sin xdx π⎰=2π ,220sin xdx π⎰=221π⋅ 同理得:22143)sin 204ππ⋅⋅=⎰xdx原式 )22143221(2ππ⋅⋅-⋅=8π=.利用函数关于直线对称以及区间关于直线对称,应用定理得出积分为0,使上述复杂积分简单化,易得出结论.三、对称性在二重积分中的应用(一)二重积分的概念 1 概念设(,)f x y 是有界闭区域D 上的有界函数,(1) 将闭区域D 任意分成n 个小闭域12,,......,,n σσσ∆∆∆其中i σ∆表示第i 个小闭区域,也表示它的面积.(2) 在每个i σ∆上任取一点(,),i i εη 作乘积(,)i i i f εησ∆ (1,2,......,),i n =并作和1(,),niiii f εησ=∆∑(3) 如果当个小闭区域的直S 径的最大值0λ→时,这和的极限总存在,则称此极限为函数(,)f x y 在闭区域D 上的二重积分,记作 01(,)lim (,)ni i i i Df x y d f λσεησ→==∆∑⎰⎰其中(,)f x y 叫做被积函数,(,)f x y d σ叫做被积表达式,d σ叫做面积元素,x y 与叫做积分变量,D 叫做积分区域,1(,)ni i i i f εησ=∆∑叫做积分和.2 几何意义当(,)f x y 为闭区域D 上的连续函数,且(,)0,f x y ≥则二重积分(,)Df x y d σ⎰⎰表示以曲面(,)z f x y =为顶,侧面以D 的边界曲面为准线,母线平行于z 轴的曲顶柱体的体积.一般地,(,)Df x y d σ⎰⎰表示曲顶柱体体积的代数和.(三) 二重积分的性质性质 7 上也可积,且在为常数,则上可积,在区域若D y x kf k y x f ),(D ),(⎰⎰⎰⎰=DDd y x f k d y x kf .),(),(σσ性质 8 上也可积,且在上都可积,则在若D y)g(x,y)f(x,D ),(),,(±y x g y x f⎰⎰⎰⎰⎰⎰±=±DDDd y x g d y x f d y x g y x f .),(),(]),(),([σσσ性质 9 若 ),(y x f 在1D 和2D 上都可积,且1D 与2D 无公共内点,则),(y x f 在1D ⋃2D 上可积,且.),(),(),(2121σσσd y x f d y x f d y x f D D D D ⎰⎰⎰⎰⎰⎰+=⋃性质 10 则上可积,且在与若,),(),,(),(),(),(D y x y x g y x f D y x g y x f ∈≤⎰⎰⎰⎰≤DDd y x g d y x f .),(),(σσ性质 11 ⎰⎰Dd y x f D y x f D y x f σ),(),(),(上也可积,且在上可积,则在若σd y x f D⎰⎰≤),(性质 12 σd y x f mS D y x M y x f m D y x f DD ),(,),(,),(),(⎰⎰≤∈≤≤则上可积,在若.,的面积是积分区域这里D S MS D D ≤(三) 对称性在二重积分中的定理定理2 设有界闭区域12D D D = ,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则⎰⎰Dd y x f σ),(0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)iD f x y d σ⎰⎰(1,2)i =注 设函数),(y x f 在有界闭区域D 上连续(i)若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y y x f d y x f 2),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中2D 是D 的上半部分 2D =}0|),{(≥∈y D y xy)(x y ϕ=1Da 0b x2D)(-x y ϕ= 图1 证明12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰ (1)若区域D 对称于x 轴(图1),对任意(,)P x y ∈1D ,其对称点(,)P x y '-∈2D1D ={}0(),y x a x b ϕ≤≤≤≤,2D ={}()0,x y a x b ϕ-≤≤≤≤,令x xy t=⎧⎨=-⎩, 则2D 变换为xot 坐标面上的{}10()D t x a x b ϕ=≤≤≤≤,,且雅可比行列式(,)(,)x y x t ∂∂10101==--. 故2(,)D f x y dxdy ⎰⎰=1(,)1D f x t dxdt -∙-⎰⎰=1(,)D f x y dxdy -⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdy f x y f x y f x y dxdy f x y f x y ⎧-=⎪⎪⎨--=-⎪⎪⎩⎰⎰⎰⎰,于是,代入(1)式得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y =--⎧⎪=⎨=-⎪⎩⎰⎰⎰⎰ 0 , ,(ii) 若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f x y x f d y x f 1),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y xy)(y x ϕ-= d )(y x ϕ=2D 1D 0 xc图2证明 若区域D 对称于y 轴(图2),对任意(,)P x y ∈1D ,对称点(,)P x y '-∈2D ,类似 (i) 的证明可得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y -=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰ 0 , ,定理 3 设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续 (1)若),(y x f 关x 和y 均为偶函数,则1(,)4(,),DD f x y d f x y d σσ=⎰⎰⎰⎰其中1D 是D的第一象限的部分1{(,)|0,0}D x y D x y =∈≥≥(,)f x y (2)若关x 和y 均为奇函数,则(,)0Df x y d σ=⎰⎰定理 4 设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y xy2D 1D )(x y ϕ= 0 x a b)(x y ψ=图3证明 若区域D 对称于原点(图3),对任意(,)P x y ∈1D ,对称点P '(,)x y --∈2D ,{}1()()D x y x a x b ψϕ=≤≤≤≤,, {}2()()D x y x b x a ϕψ=--≤≤---≤≤-,,令x uy v =-⎧⎨=-⎩, 则区域2D 变换为uov 坐标平面内区域{}1()()D x y x a x b ψϕ=≤≤≤≤,,雅可比行列式(,)(,)x y u v ∂∂10101-==-,所以2(,)D f x y dxdy ⎰⎰=1(,)D f u v dudv --⎰⎰=1(,)D f x y dxdy --⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdyf x y f x y f x y dxdy f x y f x y ⎧---=-⎪⎪⎨--=⎪⎪⎩⎰⎰⎰⎰,代入12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰,得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰ 0 ,若 ,若定理 5 设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰(四) 对称性在二重积分中的应用举例例 4 计算二重积分25sin Sx ydxdy ⎰⎰,其中S 是由1x y +=,0x =,1x y -=所围成的区域.解 积分区域S 关于x 轴对称(见图),且ydxdy x S52sin ⎰⎰为关于y 的奇函数,故由定理225sin 0Sx ydxdy =⎰⎰例 5 设 :sin ,,12D y x x y π==±= 围成求 (1)Dxy dxdy-⎰⎰x 2π-= y x 2π=y=1x图5x11-10 图4y解 12DDD D DI xydxdy dxdy xydxdy xydxdy dxdy =-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰因为12D D 和关于y 轴对称,所以由定理2知120D D xydxdy xydxdy +=⎰⎰⎰⎰所以 原式 =Ddxdy π=⎰⎰例 6 计算二重积分 222(373),: 1.DI x x y d D x y σ=++++≤⎰⎰其中解 见下图 D 关于x y 轴轴都对称,而37x y 和分别关于变量x 和变量y 为奇数 所以由定理330,Dxd σ=⎰⎰70Dyd σ=⎰⎰设 θσθr d r d d r x ==,c o s ,=⎰⎰σd x D2rdr r d ⎰⎰πθθ2012)cos ( 所以 原式πθθπ3)cos (2012+=⎰⎰rdr r d π411=yDx图6例 7 计算 (),DI x y d x d y =+⎰⎰ 其中: 1.D x y +≤解 D x y 关于轴,轴对称,且被积函数关于x 和y 是偶函数,即有(,)f x y -=(,)(,)f x y f x y -=由定理3,有1()()DD I x y dxdy x y dxdy =+=+⎰⎰⎰⎰,其中1D D 是的第一象限部分,由对称性知11D D x dxdy y dxdy =⎰⎰⎰⎰22(3)3DDDI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰故 11144()4()8.3D D D I x y d x d y xx d x d y x d x d y =+=+==⎰⎰⎰⎰⎰⎰例 8 计算2()Dxy x y dxdy +⎰⎰其中D 是由,1,1y x y y ===-0x =以及所围城的闭区域图7解 如图, 12D D D =+,1D 、2D 关于原点对称,但被积函数不满足(,)(.)f x y f x y =--,也不满足(,)(.)f x y f x y =---,故不能直接用定理来计算, 所以令1(,)f x y xy = , 22(,)f x y x y =对1(,)f x y 和2(,)f x y 分别应用定理4,则11(,)2DD f x y dxdy xydxdy =⎰⎰⎰⎰,2(,)0Df x y dxdy =⎰⎰,故 2()DI xy x y dxdy =+⎰⎰41221001==⎰⎰⎰⎰xD xydydx xydxdy 例 9 设()f x 为恒正的连续函数,计算积分222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 解 由于积分区域222x y r +≤关于y x =对称,所以由定理5 ,可得222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=222()()()()x y r af y bf x dxdy f y f x +≤++⎰⎰, 于是222()()2()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 222222()()()()()()()()x y r x y r af x bf y af y bf x dxdy dxdy f x f y f y f x +≤+≤++=+++⎰⎰⎰⎰ 222()x y r a b dxdy +≤=+⎰⎰=2()a b r π+.故222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=2()2a b r π+.四、对称性在三重积分中的应用根据被积函数的奇偶性及积分区域的对称性可以简化三重积分的计算,三重积分的计算中也有相应的对称性定理. (一) 对称性在三重积分中的定理定理6 设Ω由0),,(≤z y x ϕ表示,若将x 和y 的位置交换后,0),,(≤z x y ϕ仍然表示Ω,则⎰⎰⎰Ωdv z y x f ),,(=⎰⎰⎰Ωdv z x y f ),,(,这种位置的对称,也称变量可轮换性.定理7 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于xoy 面对称,函数),,(z y x f 在Ω上可积,则⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上是关于在当的偶函数上是关于在当z f z f dxdydvz y x f dv z y x f ,0,),,,(2),,,(1定理8 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于z 轴对称,函数),,(z y x f 在Ω上可积,则:⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上为关于在当的偶函数上为关于在当y x f y x f dxdydzz y x f dxdydz z y x f ,,0,,),,,(2),,,(1(二) 对称性在三重积分中的应用举例例10 计算⎰⎰⎰++ωdu z y x )(,其中Ω:≤++222z y x R 2,(0,00,≥≥≥z y x ).解 本题具有变量位置的对称,因此有⎰⎰⎰ωxdu =⎰⎰⎰ωydu =⎰⎰⎰ωzdu 设D z :)0,0(2222≥≥=++y x R z y x ,则原式为 3⎰⎰⎰ωzdu =3⎰⎰⎰RD zdxdy zdz 0=43⎰Rdz z R z 022)-(π=1634R π 可见,类似的题目都只需计算其中任意一元数值,及对应系数,即可求得结果.例11 计算⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222,其中ω:≤++222z y x 1. 分析 很显然,ω关于xoy 面对称,可以直接运用定理7.解 因为ω关于xoy 面对称,且被积函数1)1ln(),,(222222++++++=z y x z y x z z y x f 在ω上连续并为关于z 的奇函数,故 ⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222 =0. 例12 计算⎰⎰⎰Ω+dV yx xyz 22,其中Ω为xy a 22222)z y (x =++与0=z 两曲面所围区域.解 显然,积分区域Ω关于z 轴对称,且22),,(y x xyzz y x f +=为关于x 、y 的偶函数,又因为≥++2222)(z y x 0,所以xy 同号.因而Ω分布在一、四象限内,从而由定理8得到⎰⎰⎰Ω+dV y x xyz 22=⎰⎰⎰Ω+1222y x xyzdxdydz =⎰⎰⎰θθϕππθθϕϕϕθcos sin sin 03202cos sin cos sin 2a dr r d d= ⎰⎰=202045334144cos sin cos sin 2ππϕϕϕθθθad d a .小结 用对称性定理来简化二重积分和三重积分的计算,有时候可以起到事半功倍的效果.对于一般的对称性定理,若加以适当拓广,还可以用来巧妙地求解一些重积分的计算和证明问题.五、对称性在曲线积分中的应用(一) 对称性在曲线积分中的定理 设函数),(y x f 定义在二维光滑曲线上1.若),(y x f 满足关系式),(y x f -=),(y x f 或),(y x f -=),(y x f ,则称),(y x f 为偶函数.2.若),(y x f 满足关系式),(y x f -=),(y x f -或),(y x f -=),(y x f -,则称),(y x f 为奇函数.定理9 设分段光滑的平面曲线L 关于x 轴对称,记L 在上半平面的部分为1L ,下半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L Ly y x f ds y x f y y x f ds y x f 的偶函数为关于的奇函数为关于 定理10 设分段光滑的平面曲线L 关于y 轴对称,记L 在右半平面的部分为1L ,左半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L L x y x f ds y x f x y x f ds y x f 的偶函数为关于的奇函数为关于 推论1 设分段光滑的平面曲线L 关于原点对称,则⎪⎩⎪⎨⎧I =⎰⎰11),(,),(4),(, 0),(L L L L x y y x f ds y x f x y y x f ds y x f 象限中的部分)位于第是的偶函数(其中或为关于的奇函数或为关于定理11 设分段光滑的平面曲线L 关于x 轴对称,则(1)⎰L dx y x P ),(=⎰--L dx y x P ),(=21⎰--Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰-L dy y x P ),(=21⎰-+L dy y x P y x P )],(),([定理12 设分段光滑的平面曲线L 关于y 轴对称,则 (1)⎰Ldx y x P ),(=⎰-Ldx y x P ),(=21⎰-+Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰--L dy y x P ),(=21⎰--L dy y x P y x P )],(),([ 推论2 设分段光滑的有向平面曲线L 关于x 轴对称,(L 在上半平面部分记为1L ,在下半平面部分记为2L ),1L 与2L 方向相反,则(1) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于y y x P dy y x P y y x P dy y x P(2) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于y y x Q dy y x Q y y x Q dy y x Q推论3 设分段光滑的有向平面曲线L 关于y 轴对称,(L 在右半平面部分记为1L ,在左半平面部分记为2L ),1L 与2L 方向相反,则(1)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于x y x P dy y x P x y x P dy y x P(2)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于x y x Q dy y x Q x y x Q dy y x Q(二) 对称性在曲线积分中的应用举例 例13 计算⎰=++1||||||||y x ds y x x解 因为积分曲线关于原点对称,被积函数||||),(y x xy x f +=为关于x 的奇函数,由推论1,得⎰=++1||||||||y x ds y x x=0 例14 计算⎰+Lxydy e x1,其中L 关于x 轴对称,取逆时针方向, L 所围成的闭区域D 的面积为σ.分析 显然,题目已知L 关于x 轴对称,又是分段曲线积分,可直接运用定理求得结果解 由定理11,有⎰+Lxydy e x 1=21dy e xe x Lxy xy ⎰-+++)11(=21⎰++Lxy xy dy e xe x 1=21⎰Lxdy =21⎰⎰Dd σ=21σ. 例15 计算⎰++L xy dydx 1||,其中1:=+y x L ,取逆时针方向.解 因为⎰++L xy dy dx 1||=⎰+L xy dx 1||+⎰+L xy dy 1||而L 关于x 轴、y 轴对称且对称两部分方向相反,函数),(y x f =1||1+xy 既为关于x 的偶函数,又为关于y 的偶函数,由推论2、推论3,原式=0.六、对称性在曲面积分的对称性(一) 对称性在曲面积分中的定理 设函数),,(z y x f 定义在三维光滑曲面上1.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f )或=-),,(z y x f ),,(z y x f ,则称),,(z y x f 为偶函数.2.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f -或=-),,(z y x f ),,(z y x f -,则称),,(z y x f 为奇函数.定理13 设分段光滑的空间曲线Γ关于xoy (或yoz 或zox )坐标面对称,记1Γ为位于对称坐标面一侧的部分, 则⎪⎩⎪⎨⎧=⎰⎰1)(y)f(x,,),,(2)(),(,0),,(τ的偶函数或或为关于的奇函数或或为关于y x z ds z y x f y x z y x f ds z y x f z定理14 设曲面S 是由关于P (或平面α)对称的1S 和2S 组成,设1M ∈1S 的对称点为22S M ∈,则:⎰⎰⎰⎰⎪⎩⎪⎨⎧-===S12S 12)(M )(M ,0)(M )(M ,(M)2(M)1f f f f ds f ds f 若若 证明 以曲面S 关于平面α对称为例,不妨设曲面S 是关于xoy 对称的曲面1S 和2S 组成,设1M ∈1S 的坐标为),,(z y x ,则其对称点22S M ∈的坐标为),,(z y x -,设1S 、2S 在xoy 平面上的射影区域为xy σ,则⎰⎰⎰⎰⎰⎰+=21),,(),,(),,(S S Sds z y x f ds z y x f ds z y x f =⎰⎰++-+dxdy z zy x z y x f y x z y x f y x 221)]},(,,[)],(,,[{(1)当=-),(z y x f ),,(z y x f 时,⎰⎰Sds z y x f ),,(=⎰⎰1),,(2S ds z y x f(2)当=-),(z y x f -),,(z y x f 时,⎰⎰Sds z y x f ),,(=0.(二) 对称性在曲面积分中的应用举例例16 计算⎰⎰++εds zx yz xy )(,其中∑为锥面z =22y x +被曲面ax y x 222=+所截下的部分.分析 由于曲面∑关于zox 面对称,而被积函数中xy 与yz 都是y 的奇函数 解 根据定理,知⎰⎰++εds zx yz xy )(=⎰⎰εzxds =⎰⎰+++xyD y x dxdy z z y x x22221=⎰⎰+xyD dxdy y x x 222=2⎰⎰-22cos 203cos ππθθθa dr r d =42⎰-225cos ππθθd =156424a .例17 计算曲面积分⎰⎰=Sds xyz I ||,其中S 为曲面22y x z +=介于平面0=z 和1=z 之间的部分.解 因曲面S 关于平面xoz 和yoz 对称,而||),,(xyz z y x f =,由定理知⎰⎰=14S xyzds I ,其中1S 是S 在第一象限的部分22y x z +=,'x z x 2=,y z y 2'=,dxdy y x ds 22441++=.故I=dxdy y x y x xy xyD 2222441)(4+++⎰⎰=⎰⎰122cos sin 4θθθπr d ·2r ·241r +·rdr=4201-5125.由此可见,上述关于积分(定积分,重积分,线面积分)对称性的定理性质对于在特殊情况下简化积分的计算是非常有效的,它可以避免很多干扰,所以在解题中注意积分区间是否具有某种对称性是简化题目的关键,若对称性不明显则可以通过一定的方法,根据题目的特点构造对称性,可以减少一些繁琐的计算,提高解题效率.参考文献1 华东师范大学数学系, 数学分析(上册,下册),高等教育出版社2 同济大学,高等数学(上册,下册),高等教育出版社3 王莉,海天2013年考研数学基础班高数辅导讲义4 薛春荣,王芳,对称性在定积分及二重积分计算中的应用[J],科学技术与工程,2010,(1)5 赵达夫.高等数学的辅导讲义[M].新华出版社.6 孙钦福.二重积分的对称性定理及其应用.曲阜师范大学学报,2008.7 张仁华.二重积分计算中的若干技巧.湖南冶金职业技术学院学报,2008.8 温田丁.考研数学中二重积分的计算技巧.高等数学研究, 2008.后记本论文在选题及研究过程中得到指导老师的悉心指导。
对称性在积分计算中的应用
对称摘 要 对称性是解决数学问题的重要方法之一.在积分学中充分利用积分区域的对称性和被积函数的奇偶性,使得数学积分的计算过程得到简化.本文通过总结定理和性质并借助实例说明对称性在定积分、重积分、曲线积分、曲面积分计算中的应用.关键词 对称性 定积分 重积分 曲线积分 曲面积分1. 前言在许多人眼里,数学是抽象和复杂的,但在此背后,也有着它和谐的旋律.如果我们能够更多的理解和掌握数学中的很多规律,就会对数学有更深的认识和感受.目前人们普遍认识到的数学美的基本内容有:统一美、对称美、简洁美、奇异美.它们各有内涵,各有吸引人之处,而对称美是指数学内容中的部分与部分、部分与整体之间和谐一致,以及各种数学概念和理论之间所存在的“对等美”.关于对称性在积分计算中的应用,首先明确以下问题:(1)关于对称性的了解,以简单点为例:点),(y x 关于x 轴的对称点为),(y x -;点),(y x 关于y 轴的对称点为),(y x -;点),(y x 关于原点对称的对称点为),(y x --;点),(y x 关于x y =对称的对称点为),(x y .(2)函数的奇偶性判断,以及两个函数和差积运算后的奇偶性.(3)本文所涉及内容都是R —可积函数.(],[b a 上的连续函数在],[b a 上必可积;只有有限个第一类不连续点的函数是可积的,即分段函数是可积的;单调有界函数必定可积.)(4)清楚的区分各种积分的表达式.(5)用极坐标将二、三重积分化为累次积分时应该注意的地方.(6)数学分析就是用极限的思想来研究函数的一门学科,需对研究内容的产生和如何解决的方式有一定的了解.(7)基本积分公式、倍角公式的熟悉应用.2. 对称性在定积分计算中的应用定理1[4] 设函数)(x f 在],[a a -上连续,那么⎪⎩⎪⎨⎧=--=-=⎰⎰-aaax f x f x x f x f x f x x f 0)()(,d )(2)()(,0d )( 2.1 计算.d 11lnI 442⎰-+-=ππx xxx分析:定积分在研究区间]4,4[ππ-是关于原点对称的, 又因为2x 为偶函数,xx+-11ln是奇函数,故由定理1可知,0=I . 2.2 计算.d cos21)arctan 1(I 22⎰-++=ππx x x分析:定积分在研究区间是关于原点对称的,又因为⎰-++=22d cos21)arctan 1(I ππx x x⎰-+++=22d )2cos 1arctan 2cos 1(ππx x x x因为x 2cos 1+为偶函数,x x2cos 1arctan +为奇函数,故由定理1知 ,0d 2cos 1220++=⎰πx x⎰=202d cos 22πx x⎰=20d cos 22πx x22 =2.3[8] 计算.d 4cos I 224⎰-=ππx x 分析:定积分研究区间]4,4[ππ-是关于原点对称的, 因为x 4cos 4为偶函数,故由定理1知,23d cos 8d cos 42I 204204πππ===⎰⎰x x x x (进行积分计算时,有x x x x n nn d cos d sin 2020⎰⎰==I ππ,且有递推公式21-I -=I n n nn 成立.) 2.4 计算.d 1)(arcsin I 232322x xx ⎰--=分析:先用凑分法,再做代换,最后利用对称性,则有 x xx d 1)(arcsin I 232322⎰--=x x darcsin )(arcsin 23232⎰-=⎰=33-2d ππt t27d 330-2ππ==⎰t t2.5 计算.d )1ln(I 22⎰-+=x e x x分析:显然积分区间关于原点对称,但)1ln(x e +既不是奇函数也不是偶函数,我们可以利用2)()(2)()()(x f x f x f x f x f --+-+=,其中2)()(x f x f -+为偶函数, 2)()(x f x f --为奇函数,把它分解成为一个奇函数和一个偶函数的和. 令)1ln()(xe xf +=,则)2ln(212)()(x x e e x f x f -++=-+,22)()(x x f x f =--所以有, ⎰-+=22d )1ln(I xe x x⎰--+++=22d )]2ln([21xe e x x x x 然而)2ln(xxe e x -++是关于x 的奇函数,2x 是关于x 的偶函数,由定理1知,⎰⎰-==202222d d 21x x x x 38= 2.6 计算.d 1I 112⎰-=x x分析:定积分在研究区间]1,1[-是关于原点对称的,又因为21x 是偶函数,由定理1知, ⎰-=112d 1I x x⎰=102d 12x x2-=然而这个答案是不正确的,事实上,由于被积函数012>x ,所以当积分存在时,其值必大于零,原因在于在区间]1,1[-上有第二类间断点0=x ,因而不能用对称性或者莱布尼茨公式计算. 小结 在定积分对称性的应用中,我们看到,这里所指的对称性是区间是否关于原点对称,而与被积函数的图像是否关于对称轴或者原点对称无关,但是与被积函数的奇偶性密切相关;另外经过奇偶函数的和差积得到的新函数的奇偶性,倍角公式,特殊公式的熟练掌握和应用也是非常重要的;最重要的是无论用公式还是用对称性来解题都要首先确定被积函数是R —可积函数.3. 对称性在二重积分计算中的应用定理2 [5][7][9] 设函数),(y x f 在D 上连续,且⎰⎰=I Dy x y x f d d ),(存在,记}0,),(|),{(1≥∈=x D y x y x D }0,),(|),{(2≥∈=y D y x y x D}0,0,),(|),{(3≥≥∈=y x D y x y x D }0,),(|),{(4≥∈=y D y x y x D(1)设D 关于轴x 对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰2),(),(,d d ),(2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(2)设D 关于y 轴对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰1),(),(,d d ),(2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(3)设D 关于原点对称,D y x ∈∀),(,()⎪⎩⎪⎨⎧=---=--=⎰⎰⎰⎰3),(),(,d d ,2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(4)设D 关于直线x y =对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=-==⎰⎰⎰⎰4),(),(,d d ),(2),(),(,0d d ),(D Dy x f x y f y x y x f y x f x y f y x y x f(5)设D 关于x 轴和y 轴均对称,D y x ∈∀),(⎪⎩⎪⎨⎧=-=--=--=-=⎰⎰⎰⎰3),(),(),(),(,d d ),(4),(),(),(),(,0d d ),(D Dy x f y x f y x f y x f y x y x f y x f y x f y x f y x f y x y x f 或者或者(6)(变量可轮换性)若积分区域关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰++===DDDDy x x z f z y f y x f yx x z f y x z y f y x y x f d d ),(),(),(31d d ),(d d ),(d d ),(3.1 计算⎰⎰=I Dy x y x d d sin 其中D 由双纽线)()(222222y x a y x -=+围成. 分析:已知D 关于y 轴对称,且是关于x 的奇函数,所以0=I . 3.2[8] 计算⎰⎰++-=I Dy x zy x x y d d 22222,其中}1|),{(≤+=y x y x D分析:由于D 关于直线y x =对称,且被积函数具有性质),(),(y x f z y f -=,所以0=I . 3.3[5] 计算()⎰⎰+=I Dy x y x d d 22,其中D :122≤+y x 分析:()⎰⎰+=I Dy x y x d d 22⎰⎰++=Dy x xy y x d d 4422积分区域D 关于x 轴对称,且被积函数xy 4为y 的奇函数,所以,0d d 4=⎰⎰Dy x xy又因为在积分区域D 中y x ,的地位相同,则有⎰⎰⎰⎰=DDy x y y x x d d d d 22,所以, ⎰⎰=I Dy x y d d 52⎰⎰+=Dy x y x d )d (2522 ⎰⎰=10320d d 25r r πθ45π=3.4 计算⎰⎰+=I Dy x y x d )d (,其中D :1y x22≤+.分析:积分区域D :1y x 22≤+关于x 轴,y 轴均对称,而且被积函数关于y 和x 是偶函数, 固有 ⎰⎰+=I 3d )d (4D y x y x⎰⎰+=120d )d sin cos (4r r r r πθθθ⎰⎰+=12220)d sin cos (d 4r r r θθθπ38=3.5[5] 设D 是()()()1-1-1,1-1,1,、、为顶点的三角形区域,1D 为D 在第一象限的部分,则) (d d )sin (22=+⎰⎰--Dy x y x ye xy分析:如图4321D D D D D =,由对称性可知0d d 21=⎰⎰D D y x xy ,0d d 43=⎰⎰D D y x xy 所以0d d =⎰⎰Dy x xy .在43D D 上,22--sinye y x 是关于y 的奇函数,故有,0d d esin 4322-=⎰⎰D D -y xy x y在21D D 上 是关于x 的偶函数,所以,⎰⎰⎰⎰=+12222d d sinye 2d )d sinye (--D -y xD-y xy x y x xy3.6 计算⎰⎰++=I Dy x y x yf x d d ])(1[22,其中D 由1,1,3-===x y x y 围成. 分析:如图所示,做辅助线3x y -=的左半部分,则积分区域被分为21D D 和,其中21D 表示1D 位于x 轴上方的部分,1D 关于x 对称,2D 关于y 轴对称,由于被积函数是关于x 的奇函数,故有,0d d ])(1[222=++=I ⎰⎰D y x y x yf x 又由于)(22y x xyf +是关于y 的奇函数,故有,⎰⎰++=I 1d d ])(1[22D y x y xyf x0d d 21+=⎰⎰D y x x⎰⎰-=2001d d 2x y x x⎰--=014d 2x x52-= 小结 )(x,y f 关于x,y 的奇偶性,只能分别对一个变量来考虑,而不能将两个变量混在一起来考虑,即若区域关于x 轴对称,就要考虑)(x,y f 关于y 的奇偶性,若区域关于y 轴对称,就要考虑)(x,y f 关于x 的奇偶性,且容易看出对称性应用过程中被积函数一般比较复杂和抽象.4.对称性在三重积计算分中的应用定理3 设函数)(x,y,z f 在空间区域Ω上连续,且⎰⎰⎰Ω=I z y x x,y,z f d d d )(存在,记}0,)(|){(1≥Ω∈=Ωz x,y,z x,y,z }0,)(|){(2≥Ω∈=Ωx x,y,z x,y,z{}0)(|)(3≥Ω∈=Ωy x,y,z x,y,z ,(1)设Ω关于xoy 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ1)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f(2)设Ω关于yoz 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ2)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f (3)设Ω关于xoz 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ3)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f (4)(变量可轮换性)若积分区域Ω关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ++===z y x z,x,y f y,z,x f x,y,z f zy x z,x,y f z y x y,z,x f z y x x,y,z f d d d )()()(31d d d )(d d d )(d d d )(4.1 计算z y x z y x z y x z d d d 1)1ln(222222⎰⎰⎰Ω++++++=I ,其中Ω是球体1222≤++z y x . 分析:被积函数是z 的奇函数,而积分区域Ω关于平面xoy 对称,故有,0d d d 1)1ln(222222=++++++=I ⎰⎰⎰Ωz y x z y x z y x z 4.2 计算z y x e xd d d ⎰⎰⎰Ω=I ,其中Ω是球体1222≤++z y x . 分析:被积函数是x 的偶函数,而积分区域Ω关于平面yoz 对称, 故z y x e z y x e xxd d d 2d d d 1⎰⎰⎰⎰⎰⎰ΩΩ==I ,其中1Ω是半球体:0,1222≥≤++x z y x . 从而 , z y x e z y x e xx d d d 2d d d 1⎰⎰⎰⎰⎰⎰ΩΩ==I⎰⎰⎰=xD 1d de d 2z y x x⎰=102d )z -1(e2x xππ2=4.3 计算z y x z y x d d d )(⎰⎰⎰Ω++=I ,其中Ω是球体)0,0,0(2222≥≥≥≤++z y x R z y x . 分析:由变量的轮换性可知,z y x z z y x y z y x x d d d d d d d d d ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==,设)0,0(:2222≥≥-≤+y x z R y x D Z .则有,z y x z d d d 3⎰⎰⎰Ω=I⎰⎰⎰=RD Zy x z z 0d d d 3 ( 4.3.1 )z z R Rd )(3022⎰-=π443R π= 此题容易在(4.3.1)式中将z 判断为奇函数,则积分为零,但是在条件0,0,0≥≥≥z y x 下,区域不是关于平面0=z 对称的,故有以上做法,这也充分说明了,区域的对称性和被积函数的奇偶性必须同时满足才能进行积分计算.4.4 计算z y x z y x d d d )532(222⎰⎰⎰Ω++=I ,其中Ω是球体)0(2222≥≤++R R z y x . 分析:由变量的轮换性可得,z y x z z y x y z y x x d d d d d d d d d 222⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==,设)0,0(:2222≥≥-≤+y x z R y x D Z .则有,z y x z z y x y z y x x d d d 5d d d 3d d d 2222⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ++=Iz y x z d d d 102⎰⎰⎰Ω= ⎰⎰⎰=RD Zy x z z 02d d d 20⎰-=Rz z z 0222d )R (20π385R π=4.5 计算z y x z x d d d )(2⎰⎰⎰Ω+=I ,其中Ω是球体)0(,1222≥≤++z z y x . 分析:z y x xz z x d d d )2(22⎰⎰⎰Ω++=I (xz 2关于yoz 平面对称,又是关于x 的奇函数) z y x z x d d d )(22⎰⎰⎰Ω+=(根据Ω具有轮换性,z y x z z y x x d d d d d d 22⎰⎰⎰⎰⎰⎰ΩΩ=) z y x z d d d 22⎰⎰⎰Ω=(由于条件0≥z ,2z 关于xoy 面不对称,所以不能用其偶函数的性质) =⎰⎰⎰102d d d 2ZD y x zz⎰-=1022)d (12z z zπ154π=小结 4.3和4.5充分说明当且仅当积分区域的对称性与被积函数),,(z y x f 奇偶性同时具备才能使用定理3.5.对称性在第一类曲线积分计算中的应用第一型曲线积分的奇偶性与二重积分类似. 定理4 函数),(y x f 在曲线L 上连续,s y x f Ld ),(⎰=I 存在,记}{0,),(|),(1≥∈=y L y x y x L }{0,),(|),(2≥∈=x L y x y x L}{0,0,),(|),(3≥≥∈=y x L y x y x L }{y x L y x y x L ≥∈=,),(|),(4(1)设积分曲线L 关于x 轴对称,则⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f s y x f y x f y x f s y x f L L(2)设积分曲线L 关于y 轴对称,则⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(2y x f y x f s y x f y x f y x f s y x f L L(3)设积分曲线L 关于原点对称,则⎪⎩⎪⎨⎧=---=--=⎰⎰),(),(,d ),(2),(),(,0d ),(3y x f y x f s y x f y x f y x f s y x f L L(4)设积分曲线L 关于x y =对称,则⎪⎩⎪⎨⎧=-==⎰⎰),(),(,d ),(2),(),(,0d ),(4y x f x y f s y x f y x f x y f s y x f L L(5)设积分曲线L 关于x 轴, y 轴均对称,则⎪⎩⎪⎨⎧=-=--=--=-=⎰⎰),(),(),().(,d ),(4),(),(),(),(,0d ),(3y x f y x f y x f y x f s y x f y x f y x f y x f y x f s y x f L L或者或者5.1[4] 计算s x Ld ⎰=I ,其中L 是双纽线:)()(22222y x y x -=+.分析: 被积函数x 为偶函数,双纽线关于x 轴、y 轴均对称, 故s x s x L Ld 4d 1⎰⎰==I ,其中1L 是L 在第一象限的部分,将双纽线化为极坐标表示:θ2cos 2=r ,则1L :40,2cos πθθ≤≤=r ,θθθd 2cos 1d 'd 22=+=r r s则 22d 2cos 1cos 2cos 4d 4401===I ⎰⎰πθθθθs x L5.2 计算⎰++=I s y x xy )d 23(22,设L 为椭圆13222=+y x ,其周长为a . 分析:由于L 关于x 轴(或y 轴)对称, 且xy 是关于y (或x )的奇函数, 故有, 0xyd =⎰s ,那么 , ⎰+=I s y x )d 23(22a s 66d ==⎰5.3 计算s z y x Ld )573(⎰++=I ,已知积分曲线L :⎩⎨⎧=+=++1122y x z y x ,其周长为a . 分析:已知积分曲线L 中y x ,的位置对称,可得⎰⎰=LLs s x yd d ,所以, s z y x Ld )573(⎰++=Is z y x Ld )(5⎰++=a s L5d 5==⎰5.4 计算s x Ld 2⎰=I ,其中L 为圆周2222a z y x =++,0=++z y x .分析:由对称性知,s z s y s x LLLd d d 222⎰⎰⎰==.于是,s z y x s x LLd )(31d 2222⎰⎰++= ⎰=Ls a d 32 332a π= 5.5 计算s xy Ld ⎰=I ,其中L :2y x =上从)1,1(A -到)1,1(B 的一段弧.分析:由于L 关于x 轴对称,被积函数xy 是关于y 的奇函数,所以, 0d ==I ⎰s xy L6.[10]对称性在第二类曲线积分计算中的应用定理15[10] 设L 为xoy 平面上关于x 轴对称的一条光滑曲线弧,其方程是一双值函数,设为)(),(b x a x y y ≤≤±=.记21,L L 分别为L 位于x 轴的上半部分和下半部分,21,L L 分别在x 轴上的投影方向相反,函数()y x f ,在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f x y x f y x f y x f x y x f L L同理:设L 为xoy 平面上关于y 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于y 轴的左半部分和右半部分,21,L L 分别在y 轴上的投影方向相反,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f y y x f y x f y x f y y x f L L应用口诀:“反对偶零,反对奇倍”,其中“反”指21,L L 在x (或y )轴上的投影方向相反;“对”指L 关于x (或y )轴对称;“偶”指被积函数在L 上关于y (或x )为偶函数;“零”指曲线积分的结果等于零.反对奇倍的含义类似解释.定理25[10] 设L 为xoy 平面上关于x 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于x 轴的上半部分和下半部分,21,L L 分别在y 轴上的投影方向相同,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f x y x f y x f y x f x y x f L L同理:设L 为xoy 平面上关于y 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于y 轴的右半部分和左半部分,21,L L 分别在x 轴上的投影方向相同,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f y y x f y x f y x f y y x f L L应用口诀:“同对奇零 ,同对偶倍”,其中“同”指21,L L 在x 轴上的投影方向相同;“对”指L 关于y 轴对称;“奇”指被积函数在L 上关于x 为奇函数;“零”指曲线积分的结果等于零.同对偶倍的含义类似解释.6.1 计算x xy Ld ⎰=I ,其中L :2y x =上从A(1,-1)到B(1,1)的一段弧.分析:满足“反对奇倍”,故有 , x xy Ld ⎰=Idx 21⎰=L xy⎰=1d 2x x x54=其中,x 从点0变化到点1.小结 6.1和 5.5很相似,它们唯一的区别在于积分式子x xy Ld ⎰=I ,s xy Ld ⎰=I 的不同,其根本原因是第二类曲线积分具有方向性.6.2 计算x y x Ld ⎰=I 其中L :2y x =上从A(1,-1)到B(1,1)的一段弧.分析:满足“反对偶零”.故有0d ==I ⎰x xy L6.3 计算y y y x x y x Ld )sin (d )(222+-+=I ⎰,其中L :)0(222>=+a a y x 按逆时针方向从)0,A(a ,)0,(B a -的上半圆周.分析:y y y x x xy x y x LL Ld )sin (d 2d )(222⎰⎰⎰+-++=I(三个积分分别适合“同对偶倍”、“同对奇零”、“反对偶零”) ⎰+=I 1d )(22L x y x⎰+=02d )(2a x y x32a -= 其中, x 从点a 变化到点0.6.4[4] 计算⎰++=I ABCDAy x yx d d ,其中ABCDA 是以A(1,0)、B(0,1)、C(-1,0)、D(0,-1)为顶点的正方形正向边界线.分析:⎰++=I ABCDA y x y x d d ⎰⎰+++=ABCDAABCDA y x yy x x d d 对于第一个积分,因为曲线关于x 轴对称,且在x 轴上的投影方向相反,被积函数yx +1是y 的偶函数,所以积分为零.对于第二个积分,因为曲线关于y 轴对称,且方y 轴上的投影方向相反,被积函数yx +1是x 的偶函数,所以积分为零.7.对称性在第一类曲面积分计算中的应用第一类曲面积分的奇偶性与三重积分相似. 定理6 设函数),,(z y x f 在曲面S 中连续,⎰⎰=I Ss z y x f d ),,(存在,记{}0,),,(|),,(1≥∈=z S z y x z y x S{}0,),,(|),,(2≥∈=x S z y x z y x S{}0,),,(|),,(3≥∈=y S z y x z y x S(1)设积分曲面关于xoy 面对称,S z y x ∈∀),,(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(1z y x f z y x f s z y x f z y x f z y x f s z y x f S S(2)设积分曲面关于yoz 面对称,S z y x ∈∀),,(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(2z y x f z y x f s z y x f z y x f z y x f s z y x f S S(3)设积分曲面关于xoz 面对称, S z y x ∈∀),,( ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(3z y x f z y x f s z y x f z y x f z y x f s z y x f S S(4)(变量可轮换性)若积分曲面关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰++-===-SSSSs y x z f x z y f z y fx sy x fz s x z y f s z y fx d ),,(),,(,,31d ,,d ),,(d ,,7.1 计算⎰⎰=I Ss z d 2,其中S :2222R z y x=++.分析:由S 的轮换对称性知,⎰⎰⎰⎰⎰⎰==SSSs z s y s x d d d 222,故有,⎰⎰=I Ss z d 2⎰⎰++=Ss z y x )d (31222 ⎰⎰=Ss R d 312 434R π=7.2 计算⎰⎰++=I Ss z y x )d (,其中S 为球面2222a z y x =++上满足)0(a h h z <<≥的部分.分析:由S 的对称性知,0d d ==⎰⎰⎰⎰SSs y s x ,那么,⎰⎰++=I Ss z y x )d (⎰⎰=Ss z d⎰⎰++--=xyD y x s z z y x a d ''1222⎰⎰=xyD s a d)(22h a a -=π7.3 计算⎰⎰+=I Ss z y x )d 2(224,其中S 是闭曲面:2222=++z y x . 分析:由S 的轮换对称性知, ⎰⎰+=I Ss z y x )d 2(224 ⎰⎰+++++=Ss y x z z x y z y x]d )2()2()2([224224224⎰⎰++=Ss z y x d )(312222 ⎰⎰=Ss 4d 31ο332=7.4 计算⎰⎰=I Ss x d 2,其中S 为圆柱面:222a y x =+,介于平面0=z 和h z =之间的部分.分析:由于在S 中,x 与y 的地位是等价的,所以, ⎰⎰⎰⎰==I SSs y s x d d 22,于是, ⎰⎰⎰⎰+==I SSs y x s x )d (21d 222 ⎰⎰=Ss a d 212h a a ⋅⋅=π2212h a 3π=8. 对称性在第二类曲面积分计算中的应用定理7[10] 设∑为关于xoy 面对称的有向光滑曲面,其方程是一双值函数,设为xy D y x y x z z ∈±=),(),,((其中xy D 为∑在xoy 平面上的投影),记21,∑∑分别为位于xoy 平面的上半部分和下半部分,21,∑∑的侧关于xoy 平面相反,函数),,(z y x f 在∑上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f y x z y x f z y x f z y x f ds z y x f同理有:(1)设积分曲面关于xoz 面对称,∑∈∀),,(z y x ,⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f z x z y x f z y x f z y x f ds z y x f(2)设积分曲面关于yoz 面对称,∑∈∀),,(z y x ,⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f z y z y x f z y x f z y x f ds z y x f8.1 计算()⎰⎰∑++++=I 23222d d d d d d z y xyx z z x y z y x ,其中∑是球面:2222a z y x =++的外侧.分析:由∑的轮换对称性知,⎰⎰∑++=I y x z z x y z y x a d d d d d d 13⎰⎰∑=z y x a d d 33]d )d y -x -a (d d y -x -a [32222223⎰⎰⎰⎰--=xy xyD D y x y x a ⎰⎰=xyD y x a d d y -x -a 6222333326a a π⋅=π4=8.2 计算⎰⎰∑=I y x xyz d d ,其中∑是球面:1222=++z y x的外侧,位于0,0≥≥y x 的部分.分析:∑关于xoy 面对称,而xyz 是关于z 的奇函数,满足“反对奇倍”, 故有, ⎰⎰∑=I 1d d 2y x xyz⎰⎰=xyD y x xy d d y -x -1222 ⎰⎰=13320d r -1d sin r r πθθ152=其中1∑: 22y -x -1=z , }0,0,1|),{(),(22≥≥=+=∈y x y x y x D y x xy8.3[10] 计算y x z z x z y yz x d d 2d d )xz -y (d )d (22++-=I ⎰⎰∑,其中∑是锥面:221y x z +-=被平面0=z 所截得的部分,取上侧.分析:y x z z x z y yz xd d 2d d )xz -y (d )d (22++-=I ⎰⎰∑⎰⎰⎰⎰⎰⎰∑∑∑++-=y x z z x z y yz x d d 2d xz)d -(y d )d (22 ⎰⎰∑++=y x z d d 200⎰⎰+-=xyD y x y x d d )1(222 ⎰⎰-=120d )1(d 2r r r πθπ32=其中}1|),{(22≤+=y x y x D xy8.4[10] 计算⎰⎰∑++=I y x r z z x r y z y r x d d d d d d 333,其中222z y x r ++=, ∑是球面:)0(2222>=++a a z y x 的外侧.分析:根据∑的轮换对称性,可知, ⎰⎰∑=I z y zd d r33⎰⎰∑=1d d r63z y z(反对奇倍) ⎰⎰--=xyD y x a y x a d d 63222π4=8.5 设∑是球面:2222R z y x =++,在下面四组积分中,同一组的两个积分均为0的是:(C )A . ⎰⎰∑=I s x d 2, ⎰⎰∑=I z y x d d 2B . ⎰⎰∑=I s x d , ⎰⎰∑=I z y x d dC . ⎰⎰∑=I s x d , ⎰⎰∑=I z y x d d 2D . ⎰⎰∑=I s xy d , ⎰⎰∑=I z y y d d分析:由于曲面∑关于yoz 平面对称,被积函数 xy x ,关于x 为奇函数,被积函数2x 关于x 为偶函数.故有, 第一型曲面积分 0d ==I ⎰⎰∑s x , 0d ==I ⎰⎰∑s xy ,⎰⎰⎰⎰∑∑++==I s z y x s x )d (31d 22224234d 31R s R π==⎰⎰∑第二型曲面积分 0d d 2==I ⎰⎰∑z y x0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R z y z y z y R z y x0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R x y z x z x R z y y8.6 [6] 设∑是球面:1222=++z y x 的上半部分,则下列错误的是:(B )A . 0d d 2==I ⎰⎰∑z y x B . 0d d ==I ⎰⎰∑z y xC . 0d d 2==I ⎰⎰∑z y y D . 0d d ==I ⎰⎰∑z y y分析:由于曲面∑关于yoz 面对称,被积函数x 关于x 为奇函数,被积函数22,,y y x 关于x 为偶函数.0d d 2==I ⎰⎰∑z y x ,0d d ==I ⎰⎰∑z y y ,0d d 2==I ⎰⎰∑z y y0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R z y z y z y R z y x9.总结(1)对称的对象:积分区间对称,积分区域对称.(2)关于对称性,除关于原点和x y =对称外,都遵循关于谁对称谁不变的原则. (3)变量的轮换性是指对称的对象∑由0),,(≤z y x f 表示,若将z y x ,,的位置变换后,0),,(≤z y x f 仍然表示∑.在其他书籍和相关资料中提及的y x ,具有相同的地位,y x ,具有循环性都是这里所指的轮换性.(4)当且仅当积分区域对称性与被积函数),(y x f 奇偶性同时具备才能使用本文中提及的定理.(5)),(y x f 关于y x ,的奇偶性,只能分别对一个变量来考虑,而不能将两个变量混在一起来考虑.若关于x 轴对称,就要考虑关于y 的奇偶性,若关于y 轴对称,就要考虑关于x 的奇偶性. 若关于xoy 面对称,就要考虑被积函数关于z 的奇偶性依次类推.(6)第二类曲线积分和第二类曲面积分如果关于对称对象方向相反,那么它们的积分结论刚好与第一类曲线积分和第一类曲面积分结论相反.根据以上总结,对称性的问题便能很好的被应用,使数学积分的计算过程得到简化.参考文献:[1] 明清河著.数学分析的思想与方法[M].济南:山东大学出版社,2004.7(2006.9重印) [2] 殷锡鸣等编著.高等数学(下册)[M].上海:华东理工大学出版社,2005.2(2007.6重印)[3] 吴良森等编著.数学分析学习指导书(下册)[M].北京:高等教育出版社,2004.8[4] 费定辉,周学圣编演.吉米多维奇数学分析习题集题解(第三版)[M].济南:山东科学技术出版社,2005.1(2005.3重印)[5] 顾庆凤.关于重积分、曲线积分、曲面积分的对称性定理的应用[J].中国教育研究论丛,2006[6] 苏海军.对称性在定积分中的应用[J].四川文理学院学报(自然科学),2007.9,17(5)[7] 赵云梅,李薇. 对称性在积分中的妙用[J].红河学院学报,2005.6,3(3)[8] 常浩.对称性在积分学中的应用[J].高等数学研究,2011.3,14(2)[9] 于宁丽,王静.利用对称性计算两类区面积分时的差异问题[J].专题研究,2009.7[10] 刘福贵,鲁凯生.利用对称性计算第二类曲线积分与曲面积分的方法[J].武汉理工大学学报,2006,30(6):1069-1072[11] 西北工业大学高等数学教研室编.高等数学学习辅导:问题、解法、常见错误剖析[M].北京:科学出版社,2007[12] 魏平等编著.高等数学复习指导[M].西安:西安交通大学出版社,1999.11[13] 华罗庚著.高等数学引论[M].沈阳:科学出版社.2003[14] 朱学炎等编著.数学分析[M].北京:高等教育出版社,2007.4[15] 裴礼文.数学分析中的典型问题与方法[M].高等教育出版社,2006.4[16]邹本腾等编著.高等数学辅导[M].北京:科学技术文献出版社,1999.6数学系数学与应用数学2009级本科毕业论文Application of symmetry in the integral calculation Abstract The s ymmetry is one of the important methods to solve mathematical problems. In integral calculus, it can make the integral calculation process simplified to make full use of symmetry of integral region and the parity of integrand. This paper illustrates the application of symmetry in definite integral, multiple integrals, curve integrals, and surface integrals in the calculation through summary theorem and its nature and with the aid of examples.Key words definite integral multiple integrals curve integrals surface integrals第21页共22页。
积分对称性定理
曲面 1取前侧,在 yoz后半空间的部分曲面 2 取后侧,则
P x, y, z dxdy
0,
P x, y, z 关于x是偶函数,
2 P x, y, z dydz, P x, y, z 关于x是奇函数.
1
(3)设分片光滑的曲面 关于 xoz 坐标面对称,且 在 xoz 右半空间的部分 曲面 1取右侧,在 xoz 左半空间的部分曲面 2 取左侧,则
f x, y ds
L
0,
f x, y 为x的奇函数,
2 f x, y ds, f x, y 为x的偶函数. L1
(2)若分段光滑平面曲线 L 关于 x 轴对称,且 f x, y 在 L 上为连续函
数, L1 为 L 位于 x 轴上侧的弧段,则
欢迎下载
3
—
f x, y ds
L
0,
f x, y 为y的奇函数,
4
—
位于 xoy上侧 z 0的部分曲面,则
f x, y, z dS
0,
f x, y, z 为z的奇函数,
2 f x, y, z dS, f x, y, z 为z的偶函数.
1
曲面关于 yoz, xoz坐标平面对称也有类似的性质。
7、第二类曲面积分的对称性
设函数 P( x, y, z) , Q (x, y, z) , R( x, y, z) 在分片光滑的曲面 上连续,
—
f x, y dxdy
D
0,
f x, y 为x的奇函数 ,
2 f x, y dxdy, f x, y 为x的偶函数 .
D2
其中: D2 为 D 满足 x 0 的右半平面区域。 (3) 如果积分区域 D 关于原点对称, f ( x, y) 为 x, y 的奇(或偶)函
积分的对称性
L
( 2) 当 f ( x , y ) f ( x , y ) 时
L f ( x, y)ds 2L
f ( x , y )ds
3
其中 L3 是 L 的对称的部分弧段
L3 ( x , y ) | ( x , y ) L , x 0 y 0
D3
①、②、③简单地说就是 奇函数关于对称域的积分等于0,偶函数关于 对称域的积分等于对称的部分区域上积分的两倍, 完全类似于对称区间上奇偶函数的定积分的性质
三重积分的对称性
使用对称性时应注意: 1、积分区域关于坐标面的对称性;
2、被积函数在积分区域上的关于三个坐标轴的 奇偶性.
一般地,当积分区域 关于 xoy 平面对称,且 被积函数 f ( x , y , z ) 是关于 z 的奇函数,则三重积分 为零,若被积函数 f ( x , y , z ) 是关于 z 的偶函数,则 三重积分为 在 xoy 平面上方的半个闭区域的三重 积分的两倍.
D1 ( x, y ) ( x, y ) D, x 0 D
1
③若D关于原点对称
(1) 当f( x, y) f( x, y) 时I 0 (2)当f ( x, y ) f ( x , y )时 I 2 f ( x , y )dxdy
D3 ( x, y ) D, x 0, y 0
(2)当f ( x, y ) f ( x, y )时 I 2 f ( x , y )dxdy
D2 ( x , y ) D, y 0
D2
②若D关于 y 轴对称
(1)当f ( x, y ) f ( x, y )时 I 0