瞬时变化率

合集下载

变化率简介

变化率简介

变化率简介变化率是学习导数的前提,它在描述各种变化规律的过程中起着非常重要的作用,速度和加速度就是两个典型例子.新教材人教A 版中,对于变化率主要从以下两个方面介绍:1、平均变化率;2、瞬时变化率.一、平均变化率函数()y f x =在区间00[,]x x x +∆或(00[,]x x x +∆)上的平均变化率是商yx∆∆,其中x ∆是自变量x 在0x 处的改变量,可正可负,但不能为0,y ∆是函数值相应的改变量,即00()()y f x x f x ∆=+∆-(y ∆为正、负、零均可)所以00()()f x x f x y x x+∆-∆=∆∆,下面通过举例来进一步加深对概念的理解。

例1、求332-=x y 在0x 到x x ∆+0之间的平均变化率.解:当自变量从0x 到x x ∆+0之间变化时,函数的平均变化率为:x f∆∆=∆-∆+=x x f x x f )()(00xx x x ∆---∆+=]33[]3)(3[2020 x x xx x x ∆+=∆∆+∆⋅=36)(3602评注:此类题目只需要紧扣定义式,注意运算过程就可以了. 评注:⑴函数平均变化率的求法可分两步:①求y ∆;②求yx∆∆.⑵不论0x 、x ∆中的哪一个变化,都会引起函数平均变化率的变化。

拓展:函数()y f x =的平均变化率的几何意义为其图象上割线的斜率。

即:函数()y f x =的图象为曲线C ,曲线C 上有一点00(,)P x y 及邻近一点00(,)Q x x y y +∆+∆,则割线PQ 的斜率0000y y y yk x x x x+∆-∆==+∆-∆。

利用平均变化率的几何意义,可解决一些实际问题,举例如下:例2、某电视机厂有甲、乙两条生产流水线,产量S (单位:台)与时间t (单位:天)的关系如图所示,问:(1)0t 天内,甲、乙两条生产线的平均日产量哪个大?(2)在接近0t 天时,甲、乙两条生产线谁的日产量大?0,)x y y ∆+∆解析:(1) 0t 天内,甲、乙两条生产线的平均日产量,即函数1()S f t =与2()S f t =在0[0,]t 内的平均变化率,其都为直线OA 的斜率,所以0t 天内,甲、乙两条生产线的平均日产量相同。

3.1.2-3.1.3 瞬时速度与导数 导数的几何意义全面版

3.1.2-3.1.3 瞬时速度与导数 导数的几何意义全面版

3.“Δx→0”的意义. 剖析:Δx与0的距离要多近有多近,即|Δx-0|可以小于给定的任意 小的正数,但始终有Δx≠0.
题型一
题型二
题型三
题型四
导数的定义
【例1】 已知函数y=f(x)在点x0处可导,试求下列各极限的值.
(1) lim
Δ ������ →0
f(x0-���������x���x)-f(x0);
f(x0+������������xx)-f(x0)=l”.
名师点拨(1)运动的瞬时速度就是路程函数y=s(t)的瞬时变化率.
(2)运动的瞬时加速度就是速度函数y=v(t)的瞬时变化率.
【做一做1】 一质点作直线运动,其位移s与时间t的关系是s=3t-
t2,则质点的初速度为
.
解析:质点的初速度即为s=3t-t2在t=0处的瞬时变化率.
答案:4
1.如何求函数y=f(x)在点x0处的导数? 剖析:(1)求函数值的改变量Δy;
(2)求平均变化率ΔΔ������������; (3)取极限得导数 f'(x0)=Δl���i���m→0 ������������yx.
2.“函数在一点处的导数”“导函数”“导数”三者之间有何区别与联
系?
剖析(1)函数在一点处的导数f'(x0)是一个常数,不是变量. (2)函数的导数是针对某一区间内任意点x而言的.函数f(x)在区间
【做一做4】 曲线y=x2在点(2,4)处的切线的斜率为
.
解析:曲线y=x2在点(2,4)处的切线的斜率就是函数y=x2在x=2处
的导数.
因此其斜率
k= lim
Δ ������ →0
(2+������x)2-22 ������x

平均变化率与瞬时变化率详解课件

平均变化率与瞬时变化率详解课件
瞬时变化率
定义与计算
瞬时变化率定义
瞬时变化率是指在某一时刻,函数值随自变量变化的快慢程度。通常用导数来 表示函数的瞬时变化率。
瞬时变化率的计算
对于函数$f(x)$,其瞬时变化率可以通过求导数$f'(x)$来计算。即,如果$f(x)$ 在$x=x_0$处的导数为$f'(x_0)$,则$f'(x_0)$即为在$x=x_0$处的瞬时变化率 。
,可以获得股票价格的预测结果,对于投资决策和风险管理具有重要意义。
机械故障预测
总结词
机械故障预测是基于机械设备运行过程中的数据,通 过分析变化率等信息,来预测设备可能出现的故障时 间和类型。
详细描述
机械故障预测是机械工程领域中的一个重要应用案例 。通过对机械设备运行过程中的数据进行分析,可以 提取出设备的运行特征和故障征兆,从而预测设备可 能出现的故障时间和类型。其中,变化率是一个重要 的指标,它可以反映设备的运行状态和磨损程度。通 过对变化率的计算和分析,可以获得机械故障预测结 果,对于提高设备运行效率和安全性具有重要意义。
感谢观看
THANKS
拐点和极值
函数的拐点可能是导函数的零 点,但并非所有导函数的零点
都是函数的拐点。
导数的计算方法
定义法
根据导数的定义计算导 数。
求导公式
利用常见函数的导数公 式进行计算。
复合函数求导
复合函数的导数可以利 用链式法则和乘法法则
进行计算。
高阶导数
高阶导数的计算需要利 用低阶导数的计算方法
,并逐阶求导。
04
瞬时变化率的性质
瞬时变化率非负性
对于单调递增函数,其瞬时变化率大于等于0;对于单调递减函数,其瞬时变化 率小于等于0。

瞬时变化率——导数

瞬时变化率——导数

以初速度 v0(v0>0)垂直上抛的物体,t 秒时的高度为 s(t)= v0t-12gt2,则物体在 t0 时刻的瞬时速度为________.
[答案] v0-gt0
[解析] 因为Δs=v0(t0+Δt)-12g(t0+Δt)2-(v0t0-12gt20) =(v0-gt0)Δt-21g(Δt)2, 所以ΔΔst=v0-gt0-12gΔt, 所以当Δt无限趋近于0时,ΔΔst无限趋近于v0-gt0, 故物体在时刻t0的瞬时速度为v0-gt0.
第一章
1.1 导 数 第2课时 瞬时变化率与导数
复习 平均变化率
一般的,函数 f (x)在区间上 [x1, x2 ]的平均变化率为
f (x1) f (x2 ) y
x1 x2
x
平均速度
v s t
平均速度反映了在某一段时间内
运动的快慢程度,那么,如何刻画在
某一时刻运动的快慢程度呢?
实例:
小明去蹦极,假设小明下降的运动
重要结论:
x 0
平均变化率
瞬时变化率
二、瞬时变化率与导数
设函数 y=f(x)在 x0 附近有定义,当自变量在 x=x0 附近的 改变量为 Δx 时,函数值相应地改变 Δy=f(x0+Δx)-f(x0).
如果当 Δx 趋近于 0 时,平均变化率ΔΔxy=fx0+ΔΔxx-fx0趋 近于一个常数 l,那么常数 l 称为函数 f(x)在点 x0 处的瞬时变化 率当.Δ记x→作0:时,fx0+ΔΔxx-fx0→l.上述过程通常也记作 Δlixm→0 fx0+ΔΔxx-fx0=l.函数在点 x0 处的瞬时变化率通常称为 f(x)在 x=x0 处的导数,这时,记作 f′(x0),即 f′(x0)=Δlixm→0 fx0+ΔΔxx-fx0,也可记作 y′|x=x0.

导数——平均变化率与瞬时变化率

导数——平均变化率与瞬时变化率

导数——平均变化率与瞬时变化率本讲教育信息】⼀. 教学内容:导数——平均变化率与瞬时变化率⼆. 本周教学⽬标:1、了解导数概念的⼴阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的⼏何意义.三. 本周知识要点:(⼀)平均变化率1、情境:观察某市某天的⽓温变化图2、⼀般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(⼆)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线 c 上⼀点作割线PQ,当点Q 沿着曲线c⽆限地趋近于点P,割线PQ⽆限地趋近于某⼀极限位置PT我们就把极限位置上的直线PT,叫做曲线c在点P 处的切线割线PQ的斜率为,即当时,⽆限趋近于点P的斜率.2、瞬时速度与瞬时加速度1)瞬时速度定义:运动物体经过某⼀时刻(某⼀位置)的速度,叫做瞬时速度.2)确定物体在某⼀点A处的瞬时速度的⽅法:要确定物体在某⼀点A处的瞬时速度,从A点起取⼀⼩段位移AA1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表⽰物体经过A点的瞬时速度.当位移⾜够⼩时,物体在这段时间内的运动可认为是匀速的,所得的平均速度就等于物体经过A点的瞬时速度.我们现在已经了解了⼀些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律⽤函数表⽰为s=s(t),也叫做物体的运动⽅程或位移公式,现在有两个时刻t0,t0+Δt,现在问从t0到t0+Δt这段时间内,物体的位移、平均速度各是:位移为Δs=s(t0+Δt)-s(t0)(Δt称时间增量)平均速度根据对瞬时速度的直观描述,当位移⾜够⼩,现在位移由时间t来表⽰,也就是说时间⾜够短时,平均速度就等于瞬时速度.现在是从t0到t0+Δt,这段时间是Δt. 时间Δt⾜够短,就是Δt⽆限趋近于0.当Δt→0时,位移的平均变化率⽆限趋近于⼀个常数,那么称这个常数为物体在t= t0的瞬时速度同样,计算运动物体速度的平均变化率,当Δt→0时,平均速度⽆限趋近于⼀个常数,那么这个常数为在t= t0时的瞬时加速度.3、导数3、导数设函数在(a,b)上有定义,.若⽆限趋近于0时,⽐值⽆限趋近于⼀个常数A,则称f(x)在x=处可导,并称该常数A为函数在处的导数,记作.⼏何意义是曲线上点()处的切线的斜率.导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每⼀个,都对应着⼀个确定的导数,从⽽构成了⼀个新的函数,称这个函数为函数在开区间内的导函数,简称导数,也可记作.【典型例题】例1、⽔经过虹吸管从容器甲中流向容器⼄,t s后容器甲中⽔的体积(单位:),计算第⼀个10s内V的平均变化率.解:在区间[0,10]上,体积V的平均变化率为即第⼀个10s内容器甲中⽔的体积的平均变化率为.例2、已知函数,,分别计算在区间[-3,-1],[0,5]上函数及的平均变化率.解:函数在[-3,-1]上的平均变化率为在[-3,-1]上的平均变化率为函数在[0,5]上的平均变化率为在[0,5]上的平均变化率为例3、已知函数,分别计算函数在区间[1,3],[1,2],[1,1.1],[1,1.001]上的平均变化率.解:函数在区间[1,3]上的平均变化率为函数在[1,2]上的平均变化率为函数在[1,1.1]上的平均变化率为函数在[1,1.001]上的平均变化率为例4、物体⾃由落体的运动⽅程s=s(t)=gt2,其中位移单位m,时间单位s,g=9.8 m/s2. 求t=3这⼀时段的速度.解:取⼀⼩段时间[3,3+Δt],位置改变量Δs=g(3+Δt)2-g·32=(6+Δt)Δt,平均速度g(6+Δt)当Δt⽆限趋于0时,⽆限趋于3g=29.4 m/s.例5、已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),(1)当t=2,Δt=0.01时,求.(1)当t=2,Δt=0.01时,求.(2)当t=2,Δt=0.001时,求.(3)求质点M在t=2时的瞬时速度.分析:Δs即位移的改变量,Δt即时间的改变量,即平均速度,当Δt越⼩,求出的越接近某时刻的速度.解:∵=4t+2Δt∴(1)当t=2,Δt=0.01时,=4×2+2×0.01=8.02 cm/s.(2)当t=2,Δt=0.001时,=4×2+2×0.001=8.002 cm/s.(3) Δt0,(4t+2Δt)=4t=4×2=8 cm/s例6、曲线的⽅程为y=x2+1,那么求此曲线在点P(1,2)处的切线的斜率,以及切线的⽅程.解:设Q(1+,2+),则割线PQ的斜率为:斜率为2∴切线的斜率为2.切线的⽅程为y-2=2(x-1),即y=2x.【模拟试题】1、若函数f(x)=2x2+1,图象上P(1,3)及邻近点Q(1+Δx,3+Δy),则=()A. 4B. 4ΔxC. 4+2ΔxD. 2Δx2、⼀直线运动的物体,从时间到时,物体的位移为,那么时,为()A. 从时间到时,物体的平均速度;B. 在时刻时该物体的瞬时速度;C. 当时间为时物体的速度;D. 从时间到时物体的平均速度3、已知曲线y=2x2上⼀点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线⽅程.4、求曲线y=x2+1在点P(-2,5)处的切线⽅程.5、求y=2x2+4x在点x=3处的导数.6、⼀球沿⼀斜⾯⾃由滚下,其运动⽅程是s=s(t)=t2(位移单位:m,时间单位:s),求⼩球在t=5时的瞬时速度7、质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),求质点M在t=2时的瞬时速度.【试题答案】1、B2、B3、解:(1)时,k=∴点A处的切线的斜率为4.(2)点A处的切线⽅程是y-2=4(x-1)即y=4x-24、解:时,k=∴切线⽅程是y-5=-4(x+2),即y=-4x-3.5、解:Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)=2(Δx)2+16Δx,=2Δx+16∴时,y′|x=3=166、解:时,瞬时速度v=(10+Δt)=10 m/s.∴瞬时速度v=2t=2×5=10 m/s.7、解:时,瞬时速度v==(8+2Δt)=8cm/s。

瞬时变化率——导数课件

瞬时变化率——导数课件

随着数学与其他学科的交叉融 合,导数的应用将更加深入和 广泛,为解决实际问题提供更 加有效的工具。
THANKS
感谢观看
隐函数导数计算
总结词
掌握隐函数的求导方法
详细描述
隐函数的导数可以通过对等式两边同 时求导来获得,注意处理复合变量和 函数之间的关系。
高阶导数计算
总结词
理解高阶导数的概念和计算方法
详细描述
高阶导数表示导数在研究函数的极值、拐点等问题中有重 要应用。
导数的几何意义
总结词
导数的几何意义是切线的斜率。
详细描述
在二维平面坐标系中,函数图像上某一点的切线斜率即为该点的导数值。导数可 以用来判断函数在该点的增减性以及变化趋势。
导数与瞬时速度的关系
总结词
导数与瞬时速度之间存在密切联系。
详细描述
在物理和工程领域中,瞬时速度的概念常常用到。瞬时速度可以理解为物体在某一时刻的运动速度,这个速度是 通过物体在该点的加速度与时间的变化率来计算的,而加速度的变化率即为该点的导数。因此,导数可以用来描 述瞬时速度的变化趋势。
要点二
详细描述
在实际问题中,经常需要解决一些优化问题,如最大利润 、最小成本等。通过建立数学模型,将实际问题转化为数 学问题,并利用导数研究函数的性质,可以找到最优解, 为实际问题的解决提供有效的途径。
04
导数的物理意义与经济学意义
导数在物理中的应用
速度与加速度
导数可以用来描述物体运动的速度和 加速度,例如自由落体运动中,物体 的速度和加速度可以通过对高度关于 时间的函数求导得到。
导数在其他领域的应用
工程学
在工程学中,导数可以用来描述机械运动的 规律,例如在机械振动中,物体的振动频率 和振幅可以通过对位移关于时间的函数求导 得到。

第二节瞬时变化率

第二节瞬时变化率

班级 姓名 小组 编写:文科数学备课组§1(2) 瞬时变化率【学习目标】1.复习理解函数平均变化率的意义;2.理解函数的瞬时变化率的概念;3.会求函数在某点的瞬时变化率. 【学习重难点】函数的瞬时变化率 【学习难点】求函数的瞬时变化率 【学习内容】 一.自主学习1. 复习引入:什么叫做函数的平均变化率?它的作用是什么?2.问题提出:我们把物体在某一时刻的速度称为瞬时速度,物体的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求物体的瞬时速度呢?对应的,如何精确地刻画函数在某一点处的变化快慢呢?例1.一个小球从高空自由下落,其走过的路程s (单位:m )与时间t(单位:s)的函数关系为221gt s =,./8.92)为重力加速度(s m g g =试完成下表并估计小球在t=5s 这个时刻的瞬时速度.解:3.函数的瞬时变化率:对于一般的函数y=f(x),在自变量x 从x 1变到x 2的过程中,若设Δx=x 2-x 1,Δy=f(x 2)-f(x 1),则函数的平均变化率是 = . 当Δx →0时,平均变化率就趋于函数在x 1点的瞬时变化率,瞬时变化率刻画的是 .t 1/st 2/s时间的改变量 (Δt )/s 路程的改变量 (Δt)/m 平均速度(ts∆∆)/(m/s) 4.9 5 4.99 5 4.999 5 4.9999 5 … … ………二.合作探究1.已知某质点按规律s =2t 2+2t(米)作直线运动.求:①该质点在运动前3秒内的平均速度;(2)质点在2秒到3秒内的平均速度;(3)质点在3秒时的瞬时速度.2.如图,一根质量分布不均匀的和金棒,长为10m ,x (单位:m )表示OX 这段合金棒的长度,y(单位:kg)表示OX 这段棒的质量,它们满足以下函数关系,y=f(x)=2x .估计该合金棒在x=2m 处的线密度。

三. 课堂检测1. 如果某物体运动时的路程s (单位:m )与时间t(单位:s)的函数关系为22(1)s t =-,则在t=2秒时的瞬时速度是多少?2.已知函数y=3x 2+6x,求函数在x=3处的瞬时变化率.3.自由落体运动的位移S (单位m )与时间t (单位s )的关系为221gt S =(g为常数),(1)求0t t =s 时的瞬时速度;(2)分别求出时间t 为0,1,2秒时的瞬时速度。

瞬时变化率

瞬时变化率

x 0
平均变化率
瞬时变化率
作业: 1、课后巩固 2、预习导数的概念
·P
C1
放大
·P
再放大
·P
放大
C2
·P
再放大
·P
放大
C3
·P
再放大
·P
l1
·P
l2
P
· l3
大多数函数曲线就一小范围来看,大 致可看作直线,所以,某点附近的曲线 可以用过此点的直线近似代替,即“以 直代曲” (以简单的对象刻画复杂的 对象)
如图,设Q为曲线C上不同于点P的一点,直线
PQ称为曲线的割线
s=s(t). 以t0为起始时刻,物体在t时 间内的平均速度为
vv ss ff((tt00 t) f (t0 ) 。。
tt
t
当t0时, v 常数
这个常数就是物体在t0时刻的瞬时速度.
例2.一质点的运动方程为 S t3 10
(位移单位:m ,时间单位:s ),
(1)试求该质点在 3s 时的瞬时速度; (2)试求该质点在 ts 时的瞬时速度 ; (3)试求该质点在 3s时的瞬时加速度;
2.求曲线 f (x) x2 在点(1,1)处的切线的斜率. 3.求曲线 f (x) x3 在点(1,1)处的切线的斜率.
在物理学中,我们学过平均速度v s t
平均速度反映了在某一段时间内
运动的快慢程度,那么,如何刻画在
某一时刻运动的快慢程度呢?
物理意义——瞬时速度
设物体作直线运动所经过的路程为
4.圆面积A和直径d的关系为 A d 2 ,
4
求当直径 d 10时面积对于直径的瞬时变
化率.
小结:
(1)求曲线上一点切线的斜率时,先利用平均变化率

瞬时变化率

瞬时变化率

1 瞬时变化率
一.问题提出:
前面我们用平均变化率刻画了函数在某个自变量区间上变化快慢,但现实可能更多的是我们需要知道函数在某个点的变化快慢,为此,我们需要研究:瞬时变化率。

二.案例分析:
一个小球从高空自由下落,其走过的路程s (单位:m )与时间t (单位:s )的函数关系为:
212
s gt = 其中g 为重力加速度(g=9.8m/s 2).试着估计小球在t=5s 这个时刻的瞬时速度。

三.抽象概括:
1.瞬时变化率的定义:一般地,对于函数()y f x =来说,设其自变量的变化量为x ∆,因变量的变化量y ∆,那么函数在区间[]00,x x x +∆平均变化率可以表示为:
那么,当 时,平均变化率就趋于一个 ,其就叫做函数在0x 处的瞬时变化率。

2.瞬时变化率的意义:瞬时变化率是用来描述 的数学量。

四.问题解决:
例:一根质量分布不均匀的合金棒,设其上某点离某端的距离为x (单位:m ),这段质量为y (单位:kg ),且二者满足:
()y f x ==
试估计合金棒在2x =处的线密度。

五.当堂检测
1.通过平均变化率估计函数21y x =-+在下列各点的瞬时变化率:
1)1x =; 2)1x =-; 3)0x =。

2.通过平均变化率估计函数22y x =在下列各点的瞬时变化率:
1)1x =; 2)1x =-; 3)0x =。

3.某个人走过的路程s (单位:m )是时间t (单位:s )的函数:2
1s t =-,通过平均速度估计物体在下列各时刻的瞬时速度:
1)0t =; 2)2t =; 3)4t =。

瞬时变化率

瞬时变化率
例2、如图所示,一根质量分布不均匀的合金棒,
长为10m。x(单位:m)表示OX这段棒长,y
(单位:kg)表示OX这段棒的质量,它们满足以
下函数关系:
y f (x) 2 x
估计该合金棒在x=2m处的线密度 分析:一段合金棒的质量除以这段合金棒的长度, 就是这段合金棒的平均线密度。 解:由,我们可以计算出相应的平均线密度得到 下表
(四)、练习: 课本30页练习2:1、2. (五)、作业:
课本习题2-1:3、4、5
一、教学目标: 1、理解函数瞬时变化率的概念; 2、会求给定函数在某点处的瞬时变化率,并能
根据函数的瞬时变化率判断函数在某点处变化的快 慢。
3、理解瞬时速度、线密度的物理意义,并能解 决一些简单的实际问题。
二、教学重点:知道瞬时变化率刻画的是函数在某 点处变化的快慢。
(Δt)/s
路程的改 变量(Δs ) /m源自 平均速度/(m/s)
5
5.1
0.1
4.95
49.5
5
5.01
0.01
0.49
49.049
5
5.001
0.001
0.049 49.0049
5
5.0001 0.0001 0.0049 49.00049
5




可以看出,当时间t1趋于t0=5s时,平均速度趋 于49m/s,因此,可以认为小球在t0=5s时的瞬 时速度为49m/s。从上面的分析和计算可以看出, 瞬时速度为49m/s的物理意义是,如果小球保持 这一刻的速度进行运动的话,每秒将要运动 49m。
(三)、小结:对于一般的函数y f (x)
,在自变量x从x0变到x1的过程当中,若 设Δx= x1-x0,y f (x1 ) f (x0 ),则函数的

3.1.2 瞬时变化率(2)瞬时速度与瞬时加速度

3.1.2 瞬时变化率(2)瞬时速度与瞬时加速度

v
2
2 (3 t ) 3

1 2
g (6 t ) 3g,
当 t 无限 趋 近于 0 时 , v 无限 趋 近于常数 此即 t 3 秒 时 的 瞬 时时速
结论:
设物体作直线运动所经过的路程 为 s=s(t). 以 t0 为起始时刻,物体在 t 时间内的平均速度为
3.1.2 瞬时变化率 ----瞬时速度与 瞬时加速度
复习
1、平均变化率
一般的,函数
f ( x )在区间上
[ x1 , x 2 ] 的平均变化率为
f ( x1 ) f ( x2 ) x1 x2

2、如何求切线的斜率?
y
y=f(x)
Q
割 线
T
切线
o
P
x
k PQ
f (x x) f (x) x
普通高中课程标准实验教科书《数学》(选修)1-1、2-2导数及其应用江苏教育出版社
新课讲解
二、物理意义——瞬时速度
在物理学中,我们学过平均速度v
s
t 平均速度反映了在某一段时间内 运动的快慢程度,那么,如何刻画在 某一时刻运动的快慢程度呢?
实例:
我们去蹦极,假设我们下降的运动 符合方程 s
1 2 gt
2
,请同学们计算
我们从3秒到5秒间的平均速度,如何 计算出在第3秒时的速度,即t=3时的 瞬时速度呢?
s
1 2
1
g t (s表示位移,t表示时间)
,
2
解 : 先 计 算 t 3 到 t 3 t 时间内的平均速度 s t g (3 t )
2
1
g 3
2
f ( t () f (tt00 t ) ) f (ft 0 t 0 ) v 。 v 。 tt t t ss

02 瞬时变化率与平均变化率

02 瞬时变化率与平均变化率

1 02 瞬时变化率与平均变化率
一.平均变化率——割线的斜率
平均变化率,是y 的增量与x 的增量的比。

例题:函数f (x )=-2x +10在区间[-3,-1]内的平均变化率为________.
【解析】Δy Δx =f (-1)-f (-3)(-1)-(-3)
=-2. 二.瞬时变化率——切线的斜率
可以通过减小自变量的该变量,用平均变化率“逼近”瞬时变化率。

形象地理解为函数图像上某点处切线的斜率。

例题:一个物体的运动方程为s =1-t +t 2,其中s 的单位是m ,t 的单位是s ,那么物体在3 s 末的瞬时速度是________m/s.
【解析】
t t t
t t t t t t t t t t t t S ∆++-=∆∆+∆⋅+∆-=∆+--∆++∆+-=∆∆21)(2)1()()(1222 当t ∆趋于0时,即为:瞬时速度t 21+-.因此物体在3 s 末的瞬时速度是5321=⨯+-m/s
你能区分瞬时变化率与平均变化率了吗?。

2-1 导数——瞬时变化率

2-1 导数——瞬时变化率

【结论1】连续未必可导;可导一定连续.
【定义】
左导数:
f(
x0
)

lim
x 0
f ( x0 x) x
f ( x0 )
右导数:
f(
x0
)

lim
x 0
f ( x0 x) x
f ( x0 )
【结论2】可 导 左 右 导 数 存 在 且 相 等
f ( x0 )存 在 f( x0 ) f( x0 ) 【练习】P63 B3
v s s s0 280 0 140( 公 里/ 小 时 ) t t t0 15 13
在行驶的过程中,速度表显示的速率是瞬时速率.
结论:在某一时刻 t,该车的瞬时速率一定大于120.
引例
【思考】数学上怎样理解平均速率和瞬时速率? 【分析】速率 = 路程关于时间的变化率
x
k

lim f ( x0 x) f ( x0 )
x0
x
瞬时速率、差商的极限、切线斜率本质均为函数f ( x)在x0
点处的瞬时变化率.
引例
本质
物理意义
平均变化率 平均速率
瞬时变化率 瞬时速率
几何意义 数学概念
割线斜率
差商
切线斜率 差商的极限
导数
lim f ( x0 h) f ( x0 )
第二章 一元微分学及其应用
2-1 导数——瞬时变化率 2-2 导数的基本公式及运算法则 2-3 导数的应用 2-4 高阶导数及其应用 2-6 函数的微分及其应用 2-7 微分中值定理 2-8 洛必达法则
简单实际——抽象概念——复杂实际(应用更丰富)
引例

物理瞬时速度计算公式

物理瞬时速度计算公式

物理瞬时速度计算公式全文共四篇示例,供读者参考第一篇示例:物理瞬时速度是描述物体在某一时刻瞬间的速度,是物理学中重要的概念之一。

瞬时速度可以用来描述物体在某一时刻的运动状态,帮助我们更好地研究物体的运动规律。

本文将介绍物理瞬时速度的概念,计算公式以及相关知识。

瞬时速度是一个瞬间的概念,它的值可以随时间变化而改变。

通常情况下,我们能够通过一定的数学方法计算出物体在某一时刻的瞬时速度,从而更好地理解物体的运动规律。

2. 瞬时速度计算公式物理学中,瞬时速度的计算公式可以通过对物体运动过程中速度的变化进行微积分的方法来推导。

在一维直线运动的情况下,瞬时速度的计算公式可以表示为:v = lim(t->0) [s(t+Δt) - s(t)] / Δtv表示瞬时速度,s(t)表示物体在时刻t的位置,Δt表示一个极微小的时间间隔。

这个公式的含义是描述物体在时刻t的瞬时速度等于在这一时刻微小时间间隔Δt内所经过的位移除以时间。

在三维空间运动的情况下,可以将上述公式推广为瞬时速度的向量表示:v表示瞬时速度向量,r(t)表示物体在时刻t的位置向量。

这个公式可以用来描述物体在某一时刻的速度方向和大小。

在工程学中,瞬时速度的概念也被广泛应用。

例如在航天工程中,瞬时速度可以帮助工程师计算卫星的飞行轨道和速度变化,以确保卫星能够准确地进入预定轨道。

在生物学领域,瞬时速度可以用来描述生物体在运动中的速度变化,帮助科学家更好地研究生物体的运动规律和行为。

希望对您有所帮助。

第二篇示例:物理瞬时速度计算公式是物理学中非常重要的一个概念,它用来描述一个物体在某一时刻的瞬时速度。

在物理学中,速度是描述物体运动状态的一个重要参数,可以用来描述物体在单位时间内所覆盖的距离。

瞬时速度是指物体在某一瞬间的速度,可以通过瞬时速度计算公式来求得。

瞬时速度的计算公式是由物理学家根据物体运动的运动学规律推导得出的。

在物理学中,速度是一个矢量量,除了大小外还有方向。

瞬时变化率-导数

瞬时变化率-导数
当 平均速度v的极限为:
Dt 0, Ds 2 g 19.6(m / s) Dt
s
即物体在时刻t0=2(s)的瞬时速度等于19.6(m/s).
当时间间隔Dt 逐渐变小时,平均速度 v就越接近
t0=2(s) 时的瞬时速度v=19.6(m/s)
瞬时速度
要精确地描述非匀速直线运动,就要知道物 体在每一时刻运动的快慢程度.如果物体的运动规 律是 s =s(t ),那么物体在时刻t 的瞬时速度v,就是
3.1 瞬时变化率 与导数
1. 瞬时速度 平均速度的概念
这段时间内汽车的平均速度为
v
经过的路程 所有的时间
s t
150 10
54(km
/
h)
平均速度反映了汽车在前10秒内的快慢程度,为了了
解汽车的性能,还需要知道汽车在某一时刻的速度—
—瞬时速度.
已知物体作变速直线运动,其运动方程为
s=s(t)(s表示位移,t
4.9Dt 13.1 13.1
导数的概念 一般地,函数 y =f(x) 在点x=x0处的瞬时变化 率是
当Dx 0,f (x0 Dx) f (x0 ) A Dx
我们称A它为函数 y = f (x)在点x=x0处的导数,
记为 f (x0 ) 或 y xxo
说明:
(1)函数 f (x) 在点 x0 处可导,是指 Dx 0 时,
Dy 有极限.如果 Dy 不存在极限,就说函数在
Dx
Dx
点 x0 处不可导,或说无导数. (2)Dx是自变量x在 x0 处的改变量,Dx 0,而
Dy 是函数值的改变量,可以是零.
由导数的定义可知,求函数 y f (x) 在 x0 处的
导数的步骤:
(1)求函数的增量: Df f (x0 Dx) f (x0 ) ;

平均变化率和瞬时变化率公式

平均变化率和瞬时变化率公式

平均变化率和瞬时变化率公式
平均变化率和瞬时变化率是描述一个物理量(如速度、加速度、压力等)在一定时间内变化程度的两个指标。

它们之间的关系可以用以下公式表示:
平均变化率 = (1/t) * 总变化量 / 总时间
瞬时变化率 = (1/t) * 变化速度 / 时间
其中,t为时间,总变化量是指在一定时间内变化的数值,变化速度是指单位时间内变化的数值,时间也可以称为变化的时间。

需要注意的是,平均变化率和瞬时变化率的定义仅适用于在一定时间内连续发生的物理量变化。

如果变化不是连续的,或者变化时间段不固定,那么这些指标就无法用上面的定义进行计算。

北师大版高中数学选择性必修2第1章1.均变化率与瞬时变化率课件

北师大版高中数学选择性必修2第1章1.均变化率与瞬时变化率课件
数值的改变量与自变量的改变量之比,即
Δ 2 − 1
=
Δ
2 − 1
用它来刻画函数值在区间[1 ,2 ]上变化的快慢。
对一般的函数y f x来说,怎样表示其平均变化率,有怎样的几何意义
函数的平均变化率的几何意义是函数图象上过
1 , 1 , 2 , 2 两点的直线的斜率(如
求函数 在点 = 0 处的瞬时变化率的步骤:
Δ
Δ
(1)求Δ = 0 + Δ − 0 ;(2)计算 ,并化简,直到当Δ = 0时有意义为止;
(3)将Δ = 0代入化简后的即得瞬时变化率.
函数y=f(t),当自变量t由t改变到t+Δt时,y的变化为(
A.f(t+Δt)
对一般的函数 = 来说,当自变量x从1 变为2 时,函数值从 1 变为 2 ,
它在区间[1 ,2 ]的平均变化率=
2 − 1
2 −1

通常我们把自变量的变化2 − 1 称作自变量x的改变量,记作Δ,函数值的变化
2 − 1 称作函数值y的改变量,记作Δ.这样,函数的平均变化率就可以表示为函
Δ= 1 − 0 ,则该函数的平均变化率为
Δ
Δ
=
1 − 0
1 −0
0 +Δ − 0
Δ
=

如果当Δ趋于0时,平均变化率趋于某个值,那么这个值就是 在点0 的瞬时变化
率.瞬时变化率刻画的是函数在某一点处变化的快慢.
平均变化率与瞬时变化率有什么关系?
( = 2 − 5)/
高度的改变量
平均速度
1
(ℎ = (22 − 52 )/


/ /
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能给出运动物体的
瞬时加速度
vt0 t vt0 的平均变化率 常数a, t 那么这个常数称为物体 在t t0时的 瞬时加速度。也就是速 度对于时间 的瞬时变化率 .
一般地 , 如果当时运动物体速度
ቤተ መጻሕፍቲ ባይዱ
1 2 s gt 其中位移单位 例:物体作自由落体运动,运动方程为: 2 O 是m,时间单位是s,g=10m/s2.求:
(2)将 Δ t=0.01代入上式,得:
__
即 : 物体在时刻t0 2s 的瞬时速度等于 20 m
s (3)当t 0时, 20m / s. t
v 2.005g 20.05m / s.
s
s
精品课件!
精品课件!
1 3 8 P ( 2, ) ,求: 如图,已知曲线 y x 上 一 点 3 3
曲线的割线和切线
y=f(x) y Q 割 线 T 切线
P o
结论:当Q点无限逼近P点时,此时 直线PQ就是P点处的切线.
x
那么当Δ x→0时,割线PQ的斜率,称为曲线在点P处的 切线的斜率.
即:
f ( x0 x) f ( x0 ) 当x 0时, k切线 x
这个概念:①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质——函数平均变化率的极限. 要注意,曲线在某点处的切线: 1)与该点的位置有关; 2)要根据割线是否有极限位置来判断与求解.如有极限, 则在此点有切线,且切线是唯一的;如不存在,则在此点 处无切线; 3)曲线的切线,并不一定与曲线只有一个交点,可以有 多个,甚至可以无穷多个.
s 近似的程度就越好。所以当t0时,比值 t
就是物体在t0时刻的瞬时速度,即
v在t0的瞬时速度 f (t0 t ) f (t0 ) t 当t 0时
例:设一辆轿车在公路上做加速直线运动, 假设t s时的速度为v(t)=t2+3, (1)求t=3s时轿车的加速度;
(2)求t=t0s时轿车的加速度。
(1) 物体在时间区间[2,2.1]上的平均速度; (2) 物体在时间区间[2,2.01]上的平均速度; (3) 物体在t=2(s)时的瞬时速度. s(2+t) __ s 1 解: v 2 g g (t ) t 2 (1)将 Δ t=0.1代入上式,得:
__
s(2)
s
v 2.05g 20.5m / s.
解 : 在t0到t的时间内, 轿车的平均加速度为 v v(t0 t ) v(t ) a t t 2 2 t0 t 3 t0 3 t 2t0 t


当t 0时a 2t0即a 2t0 所以当t t0时轿车的瞬时加速度为2t0
解 : 在t0到t的时间内, 轿车的平均加速度为 v v(t0 t ) v(t ) a t t 2 2 t0 t 3 t0 3 t 2t0 t


当t 0时a 2t0即a 2t0 所以当t t0时轿车的瞬时加速度为2t0
瞬时速度与 瞬时加速度
构建数学: (瞬时速度)
设物体作直线运动所经过的路程为s=f(t)。 以t0为起始时刻,物体在t时间内的平均速度为
tt)) ff ((tt00)) s ff ((tt00 s v 。 v 。 tt tt
v 可作为物体在t0时刻的速度的近似值, t 越小,
(1)点P处的切线的斜率; (2)点P处的切线方程.
4 12x-3y-16=0
-2 -1 4 3 2 1 O -1 -2
y
y
1 3 x 3
P
x 1 2
相关文档
最新文档