动态规划算法实验报告

合集下载

动态基础设计实验报告(3篇)

动态基础设计实验报告(3篇)

第1篇一、实验目的1. 理解动态规划的基本思想和方法。

2. 掌握动态规划在解决实际问题中的应用。

3. 提高编程能力和算法设计能力。

二、实验内容本次实验主要涉及以下四个问题:1. 斐波那契数列2. 最长公共子序列3. 最长递增子序列4. 零钱找零问题三、实验原理动态规划是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划的基本思想是将一个复杂问题分解成若干个相互重叠的子问题,然后按照子问题的顺序逐个求解,最后将这些子问题的解合并成原问题的解。

四、实验步骤及代码实现1. 斐波那契数列斐波那契数列是指这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, ...,其中每个数都是前两个数的和。

```cppinclude <iostream>using namespace std;int Fibonacci(int n) {if (n <= 1) {return 1;}int fib[n+1];fib[0] = 1;fib[1] = 1;for (int i = 2; i <= n; i++) {fib[i] = fib[i-1] + fib[i-2];}return fib[n];}int main() {int n;cout << "请输入斐波那契数列的项数:" << endl;cin >> n;cout << "斐波那契数列的第 " << n << " 项为:" << Fibonacci(n) << endl;return 0;}```2. 最长公共子序列给定两个序列A和B,找出它们的公共子序列中长度最长的序列。

```cppinclude <iostream>using namespace std;int LCSLength(string X, string Y) {int m = X.length();int n = Y.length();int L[m+1][n+1];for (int i = 0; i <= m; i++) {for (int j = 0; j <= n; j++) {if (i == 0 || j == 0)L[i][j] = 0;else if (X[i-1] == Y[j-1])L[i][j] = L[i-1][j-1] + 1;elseL[i][j] = max(L[i-1][j], L[i][j-1]);}}return L[m][n];}int main() {string X = "AGGTAB";string Y = "GXTXAYB";cout << "最长公共子序列长度为:" << LCSLength(X, Y) << endl; return 0;}```3. 最长递增子序列给定一个序列,找出它的最长递增子序列。

动态规划实验报告

动态规划实验报告

动态规划实验报告动态规划实验报告一、引言动态规划是一种常用的算法设计方法,广泛应用于计算机科学和运筹学等领域。

本实验旨在通过实际案例,探究动态规划算法的原理和应用。

二、实验背景动态规划算法是一种通过将问题分解为子问题,并存储子问题的解来解决复杂问题的方法。

它通常适用于具有重叠子问题和最优子结构性质的问题。

三、实验目的1. 理解动态规划算法的基本原理;2. 掌握动态规划算法的实现方法;3. 分析动态规划算法在实际问题中的应用。

四、实验过程本实验选择了经典的背包问题作为案例进行分析。

背包问题是一个组合优化问题,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包,使得背包中物品的总价值最大化。

1. 确定状态在动态规划算法中,状态是问题的关键。

对于背包问题,我们可以将状态定义为背包的容量和可选择的物品。

2. 确定状态转移方程状态转移方程是动态规划算法的核心。

对于背包问题,我们可以定义一个二维数组dp[i][j],表示在背包容量为j的情况下,前i个物品的最大总价值。

则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

3. 初始化边界条件在动态规划算法中,边界条件是必不可少的。

对于背包问题,边界条件可以定义为当背包容量为0时,无论物品如何选择,总价值都为0。

4. 递推求解根据状态转移方程和边界条件,我们可以通过递推的方式求解问题。

具体步骤如下:- 初始化dp数组;- 逐行逐列计算dp数组的值,直到得到最终结果。

五、实验结果与分析通过实验,我们得到了背包问题的最优解。

同时,我们还可以通过分析dp数组的取值,了解到每个状态下的最优选择。

这为我们提供了在实际问题中应用动态规划算法的思路。

六、实验总结本实验通过对动态规划算法的实际案例进行分析,深入理解了动态规划算法的原理和应用。

动态规划建模实验报告

动态规划建模实验报告

一、实验背景动态规划是一种重要的算法设计方法,它通过将复杂问题分解为若干个相互重叠的子问题,并存储子问题的解,从而避免重复计算,有效地解决一系列优化问题。

本实验旨在通过具体案例,加深对动态规划算法的理解和应用。

二、实验目的1. 掌握动态规划的基本概念和原理。

2. 熟悉动态规划建模的过程和步骤。

3. 提高运用动态规划解决实际问题的能力。

三、实验内容本次实验选取了“背包问题”作为案例,旨在通过解决背包问题,加深对动态规划算法的理解。

四、实验步骤1. 问题分析背包问题是一个经典的组合优化问题,描述为:给定一个容量为C的背包和N件物品,每件物品有价值和重量两个属性,求如何将物品装入背包,使得背包中的物品总价值最大,且不超过背包的容量。

2. 模型建立(1)定义状态:设dp[i][j]表示在前i件物品中选择若干件装入容量为j的背包所能获得的最大价值。

(2)状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]] + values[i]),其中weights[i]表示第i件物品的重量,values[i]表示第i件物品的价值。

(3)边界条件:dp[0][j] = 0,表示没有物品时,背包价值为0。

3. 编程实现使用C语言编写动态规划程序,实现背包问题的求解。

4. 结果分析(1)运行程序,输入背包容量和物品信息。

(2)观察输出结果,包括物品选择的列表和最大价值。

(3)验证结果是否正确,与理论分析进行对比。

五、实验结果与分析1. 实验结果:通过编程实现,成功求解了背包问题,并得到了最大价值。

2. 结果分析:(1)动态规划算法在解决背包问题时,有效地避免了重复计算,提高了求解效率。

(2)实验结果表明,动态规划算法能够有效地解决背包问题,为实际应用提供了有力支持。

六、实验总结1. 动态规划是一种重要的算法设计方法,具有广泛的应用前景。

2. 动态规划建模过程中,关键在于正确地定义状态和状态转移方程。

动态规划实验报告心得

动态规划实验报告心得

一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。

本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。

二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。

动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。

2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。

通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。

3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。

在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。

4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。

在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。

三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。

动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。

这种思维方式有助于我们更好地理解和解决实际问题。

2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。

它描述了子问题之间的关系,是求解问题的关键。

通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。

(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。

有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。

实验二 动态规划算法

实验二 动态规划算法

实验二动态规划算法一、实验目的与要求1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。

给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z 是序列X和Y的公共子序列。

给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。

三.(1)实验源代码://最长公共子序问题://问题描述: 若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},//是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

//例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。

//给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z 是序列X和Y的公共子序列。

//给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。

#include<bits/stdc++.h>using namespace std;#define max 1000//注意:这里使用的char数组,可以按字符输出,若改为string类型,//执行printf("%c",A[m-1])就会报错;char A[100],B[100]; //输入的两个串a和b//这里定义全局变量可以不赋值0,因为全局变量自动赋值0;int c[max][max]; //记录最长公共子序的长度;int b[max][max]; //记录状态号;void LCS(int m,int n){if(m==0||n==0){return;else if(b[m][n]==1){LCS(m-1,n-1);printf("%c",A[m-1]);}else if(b[m][n]==2){m=m-1;LCS(m,n);}else if(b[m][n]==3){n=n-1;LCS(m,n);}}void LCS_length(int m,int n){for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(A[i-1]==B[j-1]){c[i][j]=c[i-1][j-1]+1;b[i][j]=1;}else if(c[i-1][j]>=c[i][j-1]){c[i][j]=c[i-1][j];b[i][j]=2;}else{c[i][j]=c[i][j-1];b[i][j]=3;}}}}{printf("请输入两个待测的字符串:\n");scanf("%s",&A);scanf("%s",&B);int m=strlen(A); //m为A串长度;int n=strlen(B); //n为B串长度;LCS_length(m,n);printf("其最长公共子序的长度为:%d\n",c[m][n]);printf("其最长公共子序为:");LCS(m,n);return 0;}(2)运行结果为:(3)算法思路:最长公共子序列的结构有如下表示:设序列X=<x1, x2, …, x m>和Y=<y1, y2, …, y n>的一个最长公共子序列Z=<z1, z2, …, z k>,则:1.若x m=y n,则z k=x m=y n且Z k-1是X m-1和Y n-1的最长公共子序列;2.若x m≠y n且z k≠x m ,则Z是X m-1和Y的最长公共子序列;3.若x m≠y n且z k≠y n,则Z是X和Y n-1的最长公共子序列。

实验项目五动态规划

实验项目五动态规划

实验项目五动态规划实验学时:2实验目的:动态规划(dynamic programming,DP)是解决多阶段决策问题的一种有效的数量化方法,难度比较大,技巧性也很强。

Lindo/lingo 是求解动态规划比较常用的软件之一,通过本实验,掌握动态规划模型在Lindo/lingo 中的求解。

实验要求:1.掌握动态规划的建模步骤及方法;2.掌握动态规划模型在Lindo/lingo 转化及求解;3.学会动态规划的执行结果分析实验内容及步骤:例:如图5-1 所示,某地要从A向F地铺设一条输油管道,各点间连线上的数字表示距离。

问应选择什么路线,可是总距离最短?图5-1下面简单说明动态规划的求解建模过程,有助于下一步在Lindo/lingo中模型的表示,这是一个很重要的过程,建议读者不要跳过。

动态规划方法求解时注意事项:(1)动态规划的三个基本要素:阶段、状态、决策。

其中最关键的是状态的描述,最难的也是状态的设计,它关系到算法的时间、空间复杂度,也跟实现的复杂度息息相关。

(2)动态规划的两个条件:最优子结构、无后效性,其中后效性往往容易被忽视。

(3)动态规划本质是用空间换时间,在有大量重叠子问题的时候其优势才能充分体现出来。

上例的求解过程如下:(1)阶段与阶段变量:先把问题从中间站B,C,D,E 用空间位置分成 5 个阶段,阶段用阶段变量k 来描述,k=1,表示第一阶段,k=2 表示第二阶段,…(2)状态与状态变量:每一阶段的左端点(初始条件)集合称为本阶段的状态(即开始的客观条件,或称阶段初态)。

如第三阶段有四个状态S3 ={C1 ,C2,C3,C4}, 第四阶段有三个状态S4={D1, D2 , D3}, …描述过程状态的变量称为状态变量:用小写s1 ,s2 ,s3 …表示第一,第二,第三…阶段的状态变量。

当处在状态C2 时,我们可记s3= C2(3)决策与决策变量:如当处于C2 状态时,下一步怎么走?如何选择路线?即如何决策。

实验三动态规划算法实验

实验三动态规划算法实验

实验三动态规划算法的应用一、实验目的1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。

2.熟练掌握分阶段的和递推的最优子结构分析方法。

3.学会利用动态规划算法解决实际问题。

二、实验内容1.问题描述:题目一:数塔问题给定一个数塔,其存储形式为如下所示的下三角矩阵。

在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。

请找出一条路径,使路径上的数值和最大。

输入样例(数塔):912 1510 6 82 18 9 519 7 10 4 16输出样例(最大路径和):59题目二:最长单调递增子序列问题设计一个O(n2)复杂度的算法,找出由n个数组成的序列的最长单调递增子序列。

题目三:Common SubsequenceA subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.输入样例abcfbc abfcabprogramming contestabcd mnp输出样例42题目四 0-1背包问题给定n种物品和一个背包。

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。

这可是算法领域里的经典难题,也是体现动态规划思想的好例子。

我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。

假设你是一个盗贼,要盗取一个博物馆里的宝贝。

博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。

你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。

这个问题,就是我们要解决的背包问题。

一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。

2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。

3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。

4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。

5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。

6.dp[i][j]取两种情况的最大值。

二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。

动态规划实验报告

动态规划实验报告

动态规划实验报告《动态规划实验报告》动态规划是一种重要的算法设计技术,它在解决许多实际问题中具有广泛的应用。

本实验报告将介绍动态规划算法的基本原理,并通过一个实际问题的求解过程来展示其应用效果。

首先,我们来了解一下动态规划的基本原理。

动态规划是一种将原问题分解为子问题来求解的方法,它通常用于求解最优化问题。

动态规划算法的核心思想是将原问题分解为若干个子问题,然后通过求解子问题的最优解来得到原问题的最优解。

为了避免重复计算子问题,动态规划算法通常采用记忆化搜索或者自底向上的方式来进行计算。

接下来,我们将通过一个实际问题来展示动态规划算法的应用效果。

假设我们有一组数字,我们希望找到其中的一个子序列,使得这个子序列的和最大。

这个问题可以通过动态规划算法来求解,具体的求解过程如下:1. 定义状态:我们定义一个状态数组dp,其中dp[i]表示以第i个数字结尾的子序列的最大和。

2. 状态转移方程:我们可以通过以下状态转移方程来求解dp数组:dp[i] = max(dp[i-1] + nums[i], nums[i]),其中nums[i]表示第i个数字。

3. 初始状态:我们将dp数组的初始状态设为dp[0] = nums[0]。

4. 求解最优解:最终的最优解即为dp数组中的最大值。

通过以上求解过程,我们可以得到原问题的最优解,即最大子序列的和。

这个实例展示了动态规划算法在实际问题中的应用效果,通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的最优化问题。

综上所述,动态规划算法是一种重要的算法设计技术,它在解决最优化问题中具有广泛的应用。

通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的实际问题。

希望本实验报告能够帮助读者更好地理解动态规划算法的基本原理和应用方法。

动物动态算法实验报告

动物动态算法实验报告

一、实验目的1. 理解并掌握动物动态算法的基本概念和原理。

2. 学习如何应用动态规划算法解决动物动态问题。

3. 通过实验,提高算法分析和设计能力。

二、实验背景动物动态算法是研究动物行为规律及其影响因素的一种算法。

通过模拟动物在不同环境下的行为,可以更好地理解动物的生活习性、迁徙规律等。

本实验旨在通过动态规划算法,解决动物动态问题,为相关研究提供技术支持。

三、实验内容与步骤1. 问题定义本实验以一群动物在不同环境下的迁徙问题为例,研究如何通过动态规划算法预测动物的未来迁徙路径。

2. 算法设计根据问题定义,采用以下步骤设计动态规划算法:(1)状态定义:设第i个动物在第t个时间点的状态为Si(t),表示动物在第t个时间点的位置。

(2)状态转移方程:根据动物行为规律,建立状态转移方程如下:Si(t) = Si-1(t-1) + vi(t),其中vi(t)为第i个动物在第t个时间点的移动距离。

(3)边界条件:初始时刻,所有动物的位置为0,即S0(0) = 0。

(4)动态规划方程:根据状态转移方程和边界条件,建立动态规划方程如下:Si(t) = max{Si-1(t-1) + vi(t), 0},其中i = 1, 2, ..., n。

(5)求解最优解:从初始状态开始,逐步计算每个状态的最优解,直至计算到最终状态。

3. 实验步骤(1)初始化参数:设定动物数量、时间步长、初始位置等参数。

(2)生成随机迁徙路径:根据动物行为规律,生成每个动物的迁徙路径。

(3)计算状态转移:根据状态转移方程,计算每个时间点的状态。

(4)动态规划求解:根据动态规划方程,计算每个状态的最优解。

(5)结果分析:分析实验结果,评估算法的准确性和效率。

四、实验结果与分析1. 实验结果通过实验,得到以下结果:(1)动物在不同时间点的位置。

(2)动物迁徙路径的预测结果。

(3)算法运行时间。

2. 结果分析(1)动物在不同时间点的位置与实际迁徙路径基本吻合,说明算法具有较高的准确性。

实验三动态规划

实验三动态规划

算法分析与设计实验报告学号姓名班级上课地点教师上课时间实验三动态规划1. 实验目的1.1理解动态规划算法的主要设计思想和基本步骤;1.2掌握用动态规划策略解决实际问题。

2. 实验环境2.1 Eclipse2.2 Window XP3. 实验内容3.1 矩阵连乘问题3.2 最长公共子序列问题3.3 0-1背包问题4. 教师批改意见成绩签字:日期:实验报告细表1.矩阵连乘问题1.1 算法设计思想(1) 分析最优解:计算A[i:j]的最优次序所包含的计算矩阵子链 A[i:k]和A[k+1:j]的次序也是最优的(2)建立递归关系:设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n] 当i=j 时,A[i:j]=Ai ,因此,m[i,i]=0,i=1,2,…,n 当i<j 时,j k i p p p j k m k i m j i m 1],1[],[],[-+++= 可以递归地定义m[i,j]为:⎪⎩⎪⎨⎧<+++==-<≤j i p p p j k m k i m j i j i m j k i }],1[],[{min 0],[1jk ik 的位置有j-i 种可能(3)计算最优值:用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。

在计算过程中,保存已解决的子问题答案。

每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法public static void MatrixChain(int []p,int [][]m,int [][]s) {int n=p.length-1;for(int i=1;i<=n;i++)m[i][i]=0; for(int r=2;r<=n;r++) for(int i=1;i<=n-r+1;i++) { int j=i+r-1; m[i][j]=m[i+1][j]+p[i+1][i][j]; s[i][j]=i; for(int k=i+1;k<j;k++) { int t=m[i][k]+m[k+1][j]+p[i-1][k][j]; if(t<m[i][j]){ m[i][j]=t; s[i][j]=k; } }}}(4)构造最优解:算法matrixChain 记录了构造最优解所需的全部信息。

《动态规划算法实验》实验报告

《动态规划算法实验》实验报告

实验3、《动态规划算法实验》一、实验目的1. 掌握动态规划方法贪心算法思想2. 掌握最优子结构原理3. 了解动态规划一般问题二、实验内容1. 编写一个简单的程序,解决0-1背包问题。

设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}2. 合唱队形安排问题【问题描述】N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K 位同学排成合唱队形。

合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK,则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。

已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

三、算法思想分析1.0-1背包采用动规算法主要是动规方程的思考,之后就是确定边界条件即可。

2.合唱队形问题应用了分治与动态规划的算法,先将所有队员依次做中间最高的同学,将问题分为左右来做,接下来只需要求得左边的最长上升子序列数、右边的最长下降子序列数即可。

四、实验过程分析1.0-1背包问题是背包问题的进一步条件限制,考虑清楚动规方程就不难,编程中对于m(i,j)的含义要清楚,搞混了就容易出错。

2.合唱队形问题的思想并不复杂,特别是如果已经掌握了最长上升子序列数的算法,在分别处理左右最长子序列时需要特别注意数组下标,一开始我用是i,j直接从0到左右的数据长度,但是一直出错,后来发现队员身高数组并不能完全用这些下标,特别是右边的函数,数组起始下标不是0,需要利用函数传递起始下标才能调用对应的数据段。

五、算法源代码及用户屏幕1.(1)算法源码/********************************0-1背包问题。

codeblocks C++2018.11.2********************************/#include <iostream>#include <iomanip>using namespace std;void knapSnack(int v[], int w[], int c, int n, int m[][11]);int main(){int v[] = {6, 3, 5, 4, 6};int w[] = {2, 2 ,6, 5, 4};int c = 10;int n = 5;int m[5][11];//初始化数组for(int i=0; i<5; i++){for(int j=0; j<11; j++){m[i][j] = 0;}}knapSnack(v, w, c, n, m);//输出结果cout<<setw(3)<<" ";for(int i=0; i<11; i++){cout<<setw(3)<<i;}cout<<endl;for(int i=0; i<5; i++){//输出行号cout<<setw(3)<<i+1;for(int j=0; j<11; j++){cout<<setw(3)<<m[i][j];}cout<<endl;}return 0;}void knapSnack(int v[], int w[], int c, int n, int m[][11]){ for(int i=0; i<n; i++){for(int j=0; j<11; j++){//边界条件if(i == 0){if(w[i] > j)m[i][j] = 0;elsem[i][j] = v[i];}/*动规方程j>w[i]m(i,j) = max{m(i-1,j), m(i-1,j-w[i])+v[i]}0<=j<w[i]m(i,j) = m(i-1,j)*/else{if(w[i] > j)m[i][j] = m[i-1][j];else{if(m[i-1][j] > (m[i-1][j-w[i]]+v[i]))m[i][j] = m[i-1][j];elsem[i][j] = m[i-1][j-w[i]]+v[i];}}}//控制列数的for循环}//控制行数的for循环}(2)用户屏幕2.(1)算法源码/***************************************************合唱队形问题codeblocks C++2018.11.2***************************************************/#include <iostream>#include <string.h>using namespace std;//计算左端合唱队人数int leftQueue(int a[], int _start, int _end);//计算右端合唱队人数int rightQueue(int a[], int _start2, int _end2);int main(){cout<<"Please enter total number:";int number;cin>>number;cout<<"Please input the height of each person (cm):"<<endl;int a[number]; //记录每个人身高//b数组分别记录当第n个人为合唱队中间人时,合唱队的总人数int b[number];int rightNumber[number]; //记录左端合唱队人数int leftNumber[number]; //记录右端合唱队人数for(int i=0; i<number; i++)b[i] = 0;for(int i=0; i<number; i++)cin>>a[i];int mostQueueNumber = b[0];for(int i=0; i<number; i++){//设置a[i]为最高的同学leftNumber[i] = leftQueue(a,0,i);rightNumber[i] = rightQueue(a,i,number-1);//计算合唱队总人数b[i] = leftNumber[i] + rightNumber[i] - 1;//计算合唱队最多的总人数if(mostQueueNumber < b[i])mostQueueNumber = b[i];}//计算最少出队人数int leastDequeueNumber = number - mostQueueNumber;cout<<"Minimum number of people out: "<<leastDequeueNumber<<endl;return 0;}int leftQueue(int a[], int _start, int _end){int leftMostNumber = 0;int n = _end-_start+1;//c数组记录i时的最长上升子序列数int c[n];int maxN;//初始化最长上升子序列数为1for(int i=0; i<n; i++){c[i] = 1;}for(int i=_start; i<_end+1; i++){maxN = 0;for(int j=i-1; j>=_start; j--){if(a[j]<a[i] && c[j]>maxN)maxN = c[j];c[i] = maxN + 1;}}leftMostNumber = c[n-1];return leftMostNumber;}int rightQueue(int a[], int _start2, int _end2){ int rightMostNumber = 0;int n2 = _end2-_start2+1;//c2数组记录i时的最长下降子序列数int c2[n2];int maxN2;//初始化最长下降子序列数为1for(int i=0; i<n2; i++){c2[i] = 1;}for(int i=_end2; i>=_start2; i--){maxN2 = 0;for(int j=i+1; j<=_end2; j++){if(a[j]<a[i] && c2[j-_start2]>maxN2)maxN2 = c2[j-_start2];c2[i-_start2] = maxN2 + 1;}}rightMostNumber = c2[0];return rightMostNumber; }(2)用户屏幕。

动态规划分析检验实习报告

动态规划分析检验实习报告

一、实习背景与目的随着科技的飞速发展,算法在各个领域中的应用越来越广泛,动态规划作为一种重要的算法设计策略,在解决最优化问题中起着关键作用。

为了更好地将所学理论知识与实践相结合,提高实际工作能力和分析解决问题的能力,我参加了为期一个月的动态规划分析检验实习。

本次实习的主要目的是掌握动态规划算法的基本原理和思想,分析动态规划算法在不同情况下的时间复杂度,以及运用动态规划解决实际问题。

二、实习内容与过程1. 学习动态规划算法的基本思想在实习的第一周,我系统地学习了动态规划算法的基本思想。

动态规划是一种每个决策都依赖于当前状态并导致状态转移的过程。

它通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。

与分治法相似,动态规划也将大问题拆分成小问题,依次解决子阶段。

在求解子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解。

2. 分析动态规划算法的时间复杂度在实习的第二周,我分析了动态规划算法在不同的情况下的时间复杂度。

通过学习经典的动态规划算法,如斐波那契数列、最长公共子序列等,我了解了动态规划算法在不同问题中的运用,并掌握了计算时间复杂度的方法。

3. 运用动态规划解决实际问题在实习的第三周和第四周,我运用动态规划算法解决了一些实际问题。

我参与了团队项目,与团队成员一起探讨并解决了城市规划、资源分配等问题。

通过实际操作,我更加深入地理解了动态规划算法的应用,并提高了运用动态规划解决实际问题的能力。

三、实习收获与反思通过本次实习,我对动态规划算法有了更加深入的了解,掌握了动态规划算法的基本原理和思想,分析了动态规划算法在不同情况下的时间复杂度。

同时,我也学会了如何运用动态规划解决实际问题。

然而,实习过程中我也发现了自己在算法理解和应用方面的不足,需要在今后的学习和实践中不断努力提高。

总之,本次动态规划分析检验实习使我受益匪浅。

通过实习,我将所学理论知识与实践相结合,提高了实际工作能力和分析解决问题的能力。

实验报告——动态规划

实验报告——动态规划

计算机、 WinQSБайду номын сангаас 软件、实验案例资料
点击工具栏上的“Solve and Analyze Solve the Problem”进行求解,得到下图所示的选择 起始和终结节点的对话框;

(2)点击对话框中的“Solve”选项,得到下图 1.52 所示的计算结果,从节点 1 到节点 6 的最
验 结 论
(3)点击对话框中的“Solve and Display Steps” ,系统仍然显示上图所示的求解画面,点击 Solve and Display Steps 按钮,即可得到下图所示的计算结果。
实 验 收 获
通过实验让我明白了动态规划是解决多阶段决策过程最优化问题的一种方法, 解决了多阶段决策 问题,也让我更加熟练掌握了“管理运筹学”软件。
教 师 评 语
签名: 年 月 日
求下图中 V1 到 V6 的最短路。
实 验
3 2 5 2 1 V4 3 5 7 1 V6
内 容
V1
V3
5
V5
实 验 步 骤
1.点击最短路问题按钮 2.按照图示依次填入节点数,弧数,点击“确定” 3.依次填入始点、终点和权数,用户在结果输出栏填入始点和终点,选择是有向图还是无向图。
点击“解决” 。
实 验 所 需 设 备
实验报告
开课单位: 经济与管理学院实训中心 实验时间: 2012.06.06 所 实验 在 经济与管理 人力 1002 班 姓名 张立娟 学号 10A60100236 班级 学 院 实 验 实验项目名 动态规划---最 指导 课 管理运筹学 李永平 成绩 称 短路问题 教师 程 名 称 实 验 系统学习和掌握数学模型法下的动态规划这一问题分析方法。 要求学会动态规划基本常见的 目 掌握动态规划方法解决困难的多阶段决策问题变成一系列互相联系较容易的单阶段问 的 判断方法; 及 题,从而解决这个困难的多阶段问题;熟悉 WinQSB2.0 软件的相关操作。 要 求

动态规划模型实验报告

动态规划模型实验报告

一、实验目的本次实验旨在通过动态规划模型的应用,深入理解动态规划的基本概念、解题步骤以及在实际问题中的应用。

通过实验,掌握动态规划模型的设计、求解和优化方法,提高解决复杂问题的能力。

二、实验内容1. 实验背景动态规划(Dynamic Programming,DP)是一种求解多阶段决策过程最优化的数学方法。

它适用于具有多阶段特性问题的求解,如背包问题、最长公共子序列问题、最短路径问题等。

动态规划的核心思想是将复杂问题分解为相互重叠的子问题,通过子问题的最优解构造原问题的最优解。

2. 实验步骤(1)选择实验题目本次实验选择背包问题作为实验题目。

背包问题是一个经典的动态规划问题,其目标是求在给定的物品重量和总重量限制下,如何选择物品使得背包内物品的总价值最大。

(2)建立动态规划模型根据背包问题的特点,我们可以将问题分解为以下子问题:- 子问题1:对于每个物品,选择放入背包或不放入背包。

- 子问题2:在物品已确定的情况下,计算当前背包的总价值。

状态表示:令dp[i][j]表示前i个物品放入容量为j的背包所能获得的最大价值。

状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

初始化:dp[0][j] = 0,表示不放入任何物品时的最大价值为0。

填表顺序:按照物品的顺序填表,从左到右,从上到下。

返回值:dp[n][m],其中n表示物品数量,m表示背包容量。

(3)编程实现使用Python编程语言实现背包问题的动态规划模型。

(4)实验结果与分析通过实验,我们可以得到以下结果:- 在给定的物品重量和总重量限制下,背包内物品的总价值最大为V。

- 在物品已确定的情况下,可以得到每个物品是否放入背包的决策。

(5)优化与改进- 使用滚动数组优化空间复杂度,减少存储空间。

- 优化状态转移方程,提高计算效率。

动态规划算法实验报告

动态规划算法实验报告

南京信息工程大学滨江学院实验(实习)报告1.实验目的动态规划通常用来求解最优化问题。

通过本次实验掌握动态规划算法。

通过矩阵连乘问题和0-1背包问题实现动态规划算法。

学会刻画问题的最优结构特征,并利用最优化问题具有的重叠子问题性质,对每个子问题求解一次,将解存入表中,当再次需要这个子问题时直接查表,每次查表的代价为常量时间。

2.实验内容及分析设计过程1.矩阵链乘法问题矩阵链乘法问题可描述如下:给定个矩阵的链,矩阵的规模为,求完全括号方案,使得计算乘积所需的标量乘法次数最少。

令m[i,j]表示计算矩阵所需标量乘法次数的最小值,那么,原问题的最优解计是m[1,n]。

最小代价括号化方案的递归求解公式为采用自底向上表格法代替上述递归算法来计算最优代价。

为了实现自底向上方法,我们必须确定计算m[i,j]时需要访问哪些其他表项。

上述公式显示,j-i+l 个矩阵链相乘的最优计算代价m[i,j] 只依赖于那些少于j-i+l 个矩阵链相乘的最优计算代价。

因此,算法应该按长度递增的顺序求解矩阵链括号化问题,并按对应的顺序填写表m。

对如下输入A1 A2 A3 A4 A5 A630⨯35 35⨯15 15⨯5 5⨯10 10⨯20 20⨯25程序运行结果为2.背包问题给定n 个重量为价值为的物品和一个承重为W 的背包。

求这些物品中最有价值的一个子集,并且要能装到背包中。

设V[i,j]是能够放进承重量为j 的背包的前i 个物品中最有价值子集的总价值。

则递推关系为初始条件V[0,j]=0(j>=0),V[i,0]=0(i>=0) 我们的目标是求V[n ,W]。

递归式给出了V[i,j]的计算顺序,V[i,j]只依赖与前一行的那些项。

故可以逐行计算V[i,j].对于物品数量n=5,w[n]={2,2,6,5,4},v[n]={6,3,5,4,6},背包总重量c=10 程序运行结果为3. 实验小结通过本次实验加深了我对动态规划算法的理解。

实验五 动态规划问题算法设计

实验五 动态规划问题算法设计
3、设计求解0-1背包问题的程序,并将装入背包的物品的最大价值及最优装入序列在屏幕上显示。背包的最大容量,物品的重量、价值从键盘输入。
四、实验结果与数据处理
五、分析与讨论
1、比较备忘录方法和动态规划方法求矩阵连乘问题的特点。
2.分析求最长公共子序列长度和构造最长公共子序列两种算法的时间复杂度。
六、教师评语
三实验内容与步骤1设计求解n个矩阵连乘的最优计算次序问题的程序并将在最优计算次序下所需的乘法次数及最优计算次序在屏幕上显示
宁夏师范学院数学与计算机科学学院
《算法分析与设计》实验报告
实验序号:5实验项目名称:动态规划问题算法设计
学 号
姓 名
专业、班
实验地点
指导教师
惠云
时间
一、实验目的及要求
(1)掌握使用动态规划方法设计最优值问题的方法;
签名:
日期:年月日
成绩
(2)能够使用动态规划算法设计策略设计矩阵连乘和最长公共子序列问题的算法;
(3)掌握0-1背包问题的算法设计方法。
二、实验设备(环境)及要求
1、环境要求:
硬件:PC(P 以上,128M以上内存)、因特网接入;
软件:Windows XP操作系统、VC++6.0编程环境。
2、实验要求:
(1)独立完成实验,源代码书写规范;
(2)程序运;
(3)实验完成后必须有实验结果的分析及本次实验的总结。
三、实验内容与步骤
1、设计求解n个矩阵连乘的最优计算次序问题的程序,并将在最优计算次序下所需的乘法次数及最优计算次序在屏幕上显示。n个矩阵的维数从键盘输入。
2、设计求解x和y两个序列的最长公共子序列问题的程序,并将最长公共子序列的长度及最长公共子序列在屏幕上显示。x和y序列从键盘输入。

算法设计与分析实验2

算法设计与分析实验2

算法设计与分析实验21. 实验背景算法设计与分析是计算机科学中重要的研究方向,涉及到算法的设计、分析和实现。

本次实验旨在帮助学生进一步理解和掌握常见的算法设计与分析方法,通过实践操作加深对算法原理的理解。

2. 实验目的本次实验的主要目的如下:- 理解动态规划算法设计思想;- 学习并掌握动态规划算法的实现方法; - 熟悉动态规划算法的时间复杂度分析方法。

3. 实验内容本次实验的主要内容是实现一个动态规划算法,并分析它的时间复杂度。

3.1 动态规划算法介绍动态规划算法是一种将问题分解成子问题并逐个求解的方法。

它通过存储子问题的解来避免重复计算,从而提高算法的效率。

动态规划算法通常采用自底向上的方式来求解问题,即先求解小规模的子问题,再逐步扩大规模,直到解决原始问题。

3.2 实现一个动态规划算法在本次实验中,我们将实现一个动态规划算法来解决一个具体的问题。

具体步骤如下: 1. 确定子问题:将原问题分解为子问题; 2. 确定状态转移方程:定义一个状态转移方程,用于表示子问题与原问题之间的关系; 3. 确定边界条件:确定子问题的边界条件,即最简单的情况下的解; 4. 自底向上求解:根据状态转移方程和边界条件,逐步求解子问题,最终得到原问题的解。

3.3 时间复杂度分析完成动态规划算法的实现后,我们需要对算法的时间复杂度进行分析。

时间复杂度是衡量算法性能的重要指标,它反映了算法在处理输入规模增大时所需的时间。

在分析时间复杂度时,我们需要考虑算法的基本操作次数,并且基于不同输入规模的情况,推导出算法的大O表示法。

4. 实验结果完成实验后,我们得到了动态规划算法的实现代码,并对其进行了时间复杂度分析。

下面是实验结果的总结: - 实现了动态规划算法,并成功解决了一个具体的问题; - 分析了实现代码的时间复杂度,并得出了算法的大O表示法。

5. 总结与展望本次实验通过实现动态规划算法,深入了解了动态规划的设计与分析方法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验标题1、矩阵连乘2、最长公共子序列3、最大子段和4、凸多边形最优三角剖分5、流水作业调度6、0-1背包问题7、最优二叉搜索树实验目的掌握动态规划法的基本思想和算法设计的基本步骤。

实验内容与源码1、矩阵连乘#include<iostream>#include<cstdlib>using namespace std;const int size=4;//ra,ca和rb,cb分别表示矩阵A和B的行数和列数void matriMultiply(int a[][4],int b[][4],int c[][4],int ra ,int ca,int rb ,int cb ){if(ca!=rb) cerr<<"矩阵不可乘";for(int i=0;i<ra;i++)for(int j=0;j<cb;j++){int sum=a[i][0]*b[0][j];for(int k=1;k<ca;k++)sum+=a[i][k]*b[k][j];c[i][j]=sum;}}void MatrixChain(int *p,int n,int m[][4],int s[][4]){for(int i=1;i<=n;i++) m[i][i]=0;//对角线for(int r=2;r<=n;r++)//外维for(int i=1;i<=n-r+1;i++)//上三角{int j=i+r-1;m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];if(t<m[i][j]){m[i][j]=t;s[i][j]=k;}}}}void Traceback(int i,int j,int s[][4]){if(i == j){cout<<"A"<<i;}else if(i+1 == j){cout<<"(A"<<i<<"A"<<j<<")";}else{cout<<"(";Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<")";}}int main(){int w;cout<<"矩阵个数:";cin>>w;int p[w],s[w][w];cout<<"输入矩阵A1维数:";cin>>p[0]>>p[1];for(int i=2 ; i<=w ; i++){int m = p[i-1];cout<<"输入矩阵A"<<i<<"维数:";cin>>p[i-1]>>p[i];if(p[i-1] != m){cout<<endl<<"维数不对,矩阵不可乘!"<<endl;exit(1);}}Traceback(1,w,s);return 0;}运行结果2、最长公共子序列#include<cstring>#include<iostream>#define N 100using namespace std;//str1存储字符串x,str2存储字符串ychar str1[N],str2[N];//lcs存储最长公共子序列char lcs[N];//c[i][j]存储str1[1...i]与str2[1...j]的最长公共子序列的长度int c[N][N];//flag[i][j]==0为str1[i]==str2[j]//flag[i][j]==1为c[i-1][j]>=s[i][j-1]//flag[i][j]==-1为c[i-1][j]<s[i][j-1]int flag[N][N];//求长度int LCSLength(char *x, char *y){int i,j;//分别取得x,y的长度int m = strlen(x);int n = strlen(y);for(i=1;i<=m;i++)c[i][0] = 0;for(i=0;i<=n;i++)c[0][i] = 0;for(i=1;i<=m;i++)for(j=1;j<=n;j++){if(x[i-1]==y[j-1]){c[i][j] = c[i-1][j-1] +1;flag[i][j] = 0;}else if(c[i-1][j]>=c[i][j-1]){c[i][j] = c[i-1][j];flag[i][j] = 1;}else{c[i][j] = c[i][j-1];flag[i][j] = -1;}}return c[m][n];}//求出最长公共子序列char* getLCS(char *x, char *y,int len,char *lcs) {int i = strlen(x);int j = strlen(y);while(i&&j){if(flag[i][j]==0){lcs[--len] = x[i-1];i--;j--;}else if(flag[i][j]==1)i--;elsej--;}return lcs;}int main(){int i;cout<<"请输入字符串x:"<<endl;cin>>str1;cout<<"请输入字符串y:"<<endl;cin>>str2;int lcsLen = LCSLength(str1,str2);cout<<"最长公共子序列长度:"<<lcsLen<<endl;char *p = getLCS(str1,str2,lcsLen,lcs);cout<<"最长公共子序列为:";for(i=0;i<lcsLen;i++)cout<<lcs[i]<<" ";return 0;}运行结果3、最大子段和//分治法求最大子段和#include<iostream>using namespace std;int MaxSubSum(int *a,int left,int right){int sum=0;if(left==right) sum=a[left]>0?a[left]:0;else{int center = (left+right)/2;//最大子段和在左边int leftsum=MaxSubSum(a,left,center);//最大子段和在右边int rightsum=MaxSubSum(a,center+1,right);//最大子段和在中间int s1=0;int lefts=0;for(int i=center;i>=left;i--){lefts+=a[i];if(lefts>s1) s1=lefts;}int s2=0;int rights=0;for(int i=center+1;i<=right;i++){rights+=a[i];if(rights>s2) s2=rights;}sum=s1+s2;//前后子段和相加//判断最大子段和if(sum>leftsum)sum=leftsum;if(sum>rightsum) sum=rightsum;}return sum;}int MaxSum(int *a,int n){return MaxSubSum(a,1,n-1);}int main(){int a[8]={2,-3,-5,4,1,7,1,-5};cout<<"最大子段和为:"<<MaxSum(a,8);return 0;}//动态规划法#include<iostream>using namespace std;int MaxSum(int *a,int n){int sum=0,b=0;for(int i=1;i<n;i++)//此处不能=n,{if(b>0) b+=a[i];else b=a[i];if(b>sum) sum=b;}return sum;}int main(){int a[8]={2,-3,-5,4,1,7,1,-5};cout<<"最大子段和为:"<<MaxSum(a,8);return 0;}运行结果4、凸多边形最优三角剖分#include<iostream>#include<cmath>#include<cstdlib>#define N 50using namespace std;struct point{int x;int y;};int distance(point X, point Y)//两点距离{int dis = (Y.x-X.x)*(Y.x-X.x) + (Y.y-X.y)*(Y.y-X.y);return (int)sqrt(dis);}int w(point a, point b, point c)//权值{return distance(a,b) + distance(b,c) + distance(a,c);}bool JudgeInput()//判断是否能构成凸多边形{point *v; //记录凸多边形各顶点坐标int *total; //记录坐标在直线方程中的值int m,a,b,c;cout<<"请输入凸多边形顶点个数:";cin>>m;int M = m-1;for(int i=0 ; i<m ; i++){cout<<"输入顶点v"<<i<<"的坐标:";cin>>v[i].x>>v[i].y;}//根据顶点坐标判断是否能构成一个凸多边形for(int j=0 ; j<m ; j++){int p = 0;int q = 0;if(m-1 == j){a = v[m-1].y - v[0].y;b = v[m-1].x - v[0].y;c = b * v[m-1].y - a * v[m-1].x;}else{a = v[j].y - v[j+1].y;b = v[j].x - v[j+1].x;c = b * v[j].y - a * v[j].x;}for(int k=0 ; k<m ; k++){total[k] = a * v[k].x - b * v[k].y + c;if(total[k] > 0){p = p+1;}else if(total[k] < 0){q = q+1;}}if((p>0 && q>0) || (p==0 && q==0)){cout<<"无法构成凸多边形!"<<endl;exit(1);}}}bool minWeightTriangulation()//计算最优值算法{int M;int **t, **s;point *v;for(int i=1 ; i<=M ; i++)t[i][i] = 0;for(int r=2 ; r<=M ; r++)for(int i=1 ; i<=M-r+1 ; i++){int j = i+r-1;t[i][j] = t[i+1][j] + w(v[i-1],v[i],v[j]);s[i][j] = i;for(int k=i+1 ; k<i+r-1 ; k++){int u = t[i][k] + t[k+1][j] + w(v[i-1],v[k],v[j]);if(u < t[i][j]){t[i][j] = u;s[i][j] = k;}}}return true;}void Traceback(int i, int j, int **s){if(i == j)return;Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<"三角形:v"<<i-1<<"v"<<s[i][j]<<"v"<<j<<endl;}int main(){int **s; //记录最优三角剖分中所有三角形信息int **t; //记录最优三角剖分所对应的权函数值point *v; //记录凸多边形各顶点坐标int *total; //记录坐标在直线方程中的值int M=0;t = new int *[N];s = new int *[N];for(int i=0 ; i<N ; i++){t[i] = new int[N];s[i] = new int[N];}v = new point[N];total = new int[N];if(JudgeInput()){if(minWeightTriangulation()){Traceback(1,M,s);cout<<endl;cout<<"最优权值之和为:"<<t[1][M]<<endl;}}return 0;}运行结果:5、流水作业调度#include<iostream>#define N 100using namespace std;class Jobtype{public:/* int operator<=(Jobtype a)const{return(key<=a.key);}*/int key;int index;bool job;};void sort(Jobtype *d,int n){int i,j;Jobtype temp;bool exchange; //交换标志for(i = 0;i < n;i ++){ //最多做n-1趟排序exchange = false; //本趟排序开始前,交换标志应为假for(j = n - 1;j >= i;j --)if(d[j+1].key < d[j].key){temp = d[j+1];d[j+1] = d[j];d[j] = temp;exchange=true; //发生了交换,故将交换标志置为真}if(!exchange) //本趟排序未发生交换,提前终止算法return;}}int FlowShop(int n,int *a,int *b,int *c){Jobtype *d = new Jobtype[n];for(int i=0;i<n;i++)//初始化{d[i].key=a[i]>b[i]?b[i]:a[i];// 执行时间d[i].job=a[i]<=b[i];// 作业组d[i].index=i;//作业序号}sort(d,n);;int j=0;int k=n-1;for(int i=0;i<n;i++)//最优调度{if(d[i].job){c[j++]=d[i].index;}else{c[k--]=d[i].index;}}j=a[c[0]];k=j+b[c[0]];for(int i=1;i<n;i++){j+=a[c[i]];k=j<k?k+b[c[i]]:j+b[c[i]];}delete d;//回收空间return k;//返回调度时间}int main(){int n,*a,*b,*c;cout<<"作业数:";cin>>n;Jobtype *d = new Jobtype[N];a=new int[N];b=new int[N];c=new int[N];cout<<"请输入作业号和时间:";for(int i=0;i<n;i++){cin>>d[i].index>>d[i].key;}cout << endl;int k=FlowShop(n,a,b,c);cout<<"\n调度时间:"<<k<<endl;cout<<"最优调度序列:";for (int i = 0; i < n; i++) // 输出最优调度序列{cout << c[i] << " ";}return 0;}运行结果:6、0-1背包问题#include <iostream>#include <iomanip>using namespace std;const int C=10;//容量const int N=5;//个数int max(const int a,const int b){return a>b?a:b;}int min(const int a,const int b){return a<b?a:b;}/*m为记录数组m[i][j]代表在剩有j容量的条件下,从i开始往后的物品中可以取得的最大价值w为重量数组,v为价值数组n为物品个数,c为开始容量则m[1][c]即此背包能剩下的最大价值*/void knapsack(int **m,int n, int c,int *w, int *v) {int jMax = min(w[n]-1,c);//前n-1个物品for(int j=0;j<=jMax;j++)m[n][j]=0;for(int j=w[n];j<=c;j++)m[n][j]=v[n];for(int i=n-1;i>1;i--){jMax=min(w[i]-1,c);for(int j=0;j<=jMax;j++)m[i][j] = m[i+1][j];for(int j=w[i];j<=c;j++)m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c]=m[2][c];if(c>=w[1])m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);}//找出最优解,0表示不能装,1表示能装void traceback(int **m,int n,int c,int *x,int *w) {for(int i=1;i<n;i++){if(m[i][c]==m[i+1][c]) x[i]=0;else{x[i]=1;c-=w[i];}}x[n]=(m[n][c]==0)?0:1;}int main(){int *v=new int[N+1];int *w=new int[N+1];int **m=new int* [N+1];int *x=new int [N+1];for(int i=0;i<N+1;i++){m[i]=new int[C+1];}cout<<"输入重量序列,"<<N<<"个"<<endl; for(int i=1;i<=N;i++)cin>>w[i];cout<<"输入价值序列,"<<N<<"个"<<endl; for(int i=1;i<=N;i++)cin>>v[i];knapsack(m,N,C,w,v);traceback(m,N,C,x,w);cout<<"最优值:"<<m[1][C]<<endl; cout<<"是否装入背包的情况:";for(int i=1;i<=N;i++){cout<<x[i];}for(int i=0;i<N+1;i++){delete m[i];}delete []m;return 0;}运行结果7、最优二叉搜索树#include<iostream>#include<cmath>#include<limits>#define N 100using namespace std;const double MAX = numeric_limits<double>::max(); //double的最大值//a[i]为结点i被访问的概率//b[i]为“虚结点”i被访问的概率//m[i][j]用来存放子树(i,j)的期望代价//w[i][j]用来存放子树(i,j)的所有结点(包括虚结点)的a,b概率之和//s[i][j]用来跟踪root的void OptimalBinarySearchTree(double *a,double *b,int n){int s[N][N];double m[N][N];double w[N][N];int i,j,l,r;for(i=1; i<=n+1; i++){m[i][i-1] = b[i-1];w[i][i-1] = b[i-1];}for(l=1; l<=n; l++){for(i=1; i<=n-l+1; i++){j = l+i-1;m[i][j] = MAX;w[i][j] = w[i][j-1] + a[j] +b[j];for(r=i; r<=j; r++){double k = m[i][r-1] + w[i][j] + m[r+1][j];if(k<m[i][j]){m[i][j] = k;s[i][j] = k;}}}}cout<<m[1][n];}int main(){double a[N],b[N];int n;double sum = 0;int i,j,l;cout<<"请输入关键字的个数:"<<endl;cin>>n;cout<<"请输入每个关键字的概率:"<<endl;for(i=1; i<=n; i++){cin>>a[i];sum += a[i];}cout<<"请输入每个虚拟键的概率:"<<endl;for(i=0; i<=n; i++){cin>>b[i];sum += b[i];}if(abs(sum-1)>0.01){cout<<"输入的概率和不为1,请重新输入"<<endl;}cout<<"最优二叉查找树的期望搜索代价为:";OptimalBinarySearchTree(a,b,n);return 0;}运行结果:实验总结通过实现动态规划的这个题目,对动态规划算法有了进一步的了解。

相关文档
最新文档