最新保险精算第二版习题及答案93020

合集下载

保险精算第二版习题及答案0001

保险精算第二版习题及答案0001

4 •已知某笔投资在3年后的积累值为1000元, 第1年的利率为认10%,第2年的利率为12 8%,

第3年的利率为i3 6%,求该笔投资的原始金额。

A (3) 1000 A(0) (1 ii) (1 i 2) (1 is)

A(0)

794. 1

5 .确定10000元在第3年年末的积累值:

(1) 名义利率为每季度计息一次的年名义利率

6%

保险精算(第二版)

第一章:利息的基本概念

已知a t at 2 b,如果在0时投资100元,能在时刻 5积累到180元,试确定在时刻5投资300元,

在时刻8的积累值。

a(0 )

25a b 1.8

竺b 1

25

300*100 乍、 ------------ a (5)

180 型

叫绝) 180

300

300*迴(64a b) 508

180

2. ⑴假设 A(t)=100+10t,

试确定ii, 13, iso

■ 11

0. 0833,

口5)-理)0. 0714

A(4)

(2)假设 An 100

1. 1

■ 11

1

•已知投资500元,3年后得到

年后的积累值。

500a (3) 500(1 3〃 80嚴) 800(1 5iJ

120元的利息, h 0. 08

1120

500a (3) 500(1) 2)彳 8006如)h 0.0743363 800(1 is)5

1144.97

0. 1, is A(5j 0. 1

A (4)

试分别确定以相同的单利利率、复利利率投资

800元在5

(2)名义贴现率为每4年计息一次的年名义贴现率6%

7 •如果t 0. Olt,求10 000元在第12年年末的积累值。、

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)

第一章:利息的基本概念

练 习 题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1

(5)25 1.8

0.8

,1

25300*100(5)300

180300*100300*100(8)(64)508

180180

a b a a b a b a a a b ===+=⇒===⇒=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.0833,0.0714(0)(2)(4)

A A A A A A i i i A A A ---=

=====

(2)假设()()100 1.1n

A n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.1,0.1(0)(2)(4)

A A A A A A i i i A A A ---=

=====

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5

年后的积累值。

1113

2153500(3)500(13)6200.08800(5)800(15)1120

500(3)500(1)6200.0743363800(5)800(1)1144.97

a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

保险精算习题及答案

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念

练习题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1

(5)25 1.8

0.8

,1

25300*100

(5)300180300*100300*100(8)(64)508

180180

a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.0833,0.0714(0)(2)(4)

A A A A A A i i i A A A ---=

=====

(2)假设()()100 1.1n

A n =?,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.1,0.1(0)(2)(4)

A A A A A A i i i A A A ---=

=====

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5

年后的积累值。

1113

2153500(3)500(13)6200.08800(5)800(15)1120

500(3)500(1)6200.0743363800(5)800(1)1144.97

a i i a i a i i a i =+=?=∴=+==+=?=∴=+=

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

保险精算第二版习题及答案

保险精算第二版习题及答案

第四章:人寿保险的精算现值

练 习 题

1. 设生存函数为()1100

x

s x =- (0≤x ≤100),年利率i =0.10,计算(保险金额为1元): (1)趸缴纯保费130:10

Ā的值。 (2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

10

101

30:10

10

10

211

222230:1030:10

()1()1100()10011

0.0921.17011

()()0.0920.0920.0551.2170

t x x t t

t t x x t t

t t x x t x s x t s x p s x x

A v p dt dt Var Z A A v p dt dt μμμ+++'+=-

⇒=-=-⎛⎫=== ⎪

⎝⎭

⎛⎫=-=-=-= ⎪

⎝⎭⎰⎰⎰⎰

2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。

(2)该保单自35岁~39岁各年龄的自然保费之总额。 (3)(1)与(2)的结果为何不同?为什么? (1)法一:4

1135

36373839234535:5

3511000()1.06 1.06 1.06 1.06 1.06

k k x x k k d d d d d A

v p q l ++===

++++∑ 查生命表353536373839979738,1170,1248,1336,1437,1549l d d d d d ======代入计算:

4

1135

36373839234535:5

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)

第一章:利息的基本概念

练 习 题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.8

0.8

,1

25300*100

(5)300180300*100300*100(8)(64)508

180180a b a a b a b a a a b ===+=⇒=

==⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.0833,0.0714(0)(2)(4)

A A A A A A i i i A A A ---=

=====

(2)假设()()100 1.1n

A n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.1,0.1(0)(2)(4)

A A A A A A i i i A A A ---=

=====

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后

的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120

500(3)500(1)6200.0743363800(5)800(1)1144.97

a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念

练习题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1

(5)25 1.8

0.8,1

25300*100(5)300

180300*100300*100(8)(64)508

180180

a b a a b a b a a a b ===+=⇒===⇒=+=∵2.(1)假设A(t)=100+10t,试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.0833,0.0714

(0)(2)(4)

A A A A A A i i i A A A −−−=

=====(2)假设()()100 1.1n

A n =×,试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.1,0.1

(0)(2)(4)

A A A A A A i i i A A A −−−=

=====3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120

500(3)500(1)6200.0743363800(5)800(1)1144.97

a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为110%i =,第2年的利率为28%i =,第3年的利率为36%i =,求该笔投资的原始金额。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)

第一章:利息的基本概念

练 习 题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1

(5)25 1.8

0.8

,1

25300*100(5)300

180300*100300*100(8)(64)508

180180

a b a a b a b a a a b ===+=⇒===⇒=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.0833,0.0714(0)(2)(4)

A A A A A A i i i A A A ---=

=====

(2)假设()()100 1.1n

A n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.1,0.1(0)(2)(4)

A A A A A A i i i A A A ---=

=====

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5

年后的积累值。

1113

2153500(3)500(13)6200.08800(5)800(15)1120

500(3)500(1)6200.0743363800(5)800(1)1144.97

a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

保险精算第二版习题及答案.pdf

保险精算第二版习题及答案.pdf
1 / 26
2 / 26
3 / 26
4 / 26
5 / 26
6 / 26
7 / 26
8 / Fra Baidu bibliotek6
9 / 26
10 / 26
11 / 26
12 / 26
13 / 26
14 / 26
15 / 26
16 / 26
17 / 26
18 / 26
19 / 26
20 / 26
21 / 26
22 / 26
23 / 26
24 / 26
25 / 26
ÎÒÈ¥
26 / 26

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)

第一章:利息的基本概念

练 习 题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1

(5)25 1.8

0.8

,1

25300*100(5)300

180300*100300*100(8)(64)508

180180

a b a a b a b a a a b ===+=⇒===⇒=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.0833,0.0714(0)(2)(4)

A A A A A A i i i A A A ---=

=====

(2)假设()()100 1.1n

A n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.1,0.1(0)(2)(4)

A A A A A A i i i A A A ---=

=====

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5

年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120

500(3)500(1)6200.0743363800(5)800(1)1144.97

a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念

练 习 题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

(2)假设()()100 1.1n

A n =⨯,试确定 135,,i i i 。

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

5.确定10000元在第3年年末的积累值:

(1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 6.设m >1,按从大到小的次序排列 ()

222x x v b q e p +与δ。 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。

8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。

9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6

t t

δ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。

保险精算第二版习题及答案

保险精算第二版习题及答案

1000A 150.55 100432.54
1.499
1000( p35 p36 p37 p38 p39 ) 6.457
1
A1
(3) 35:5
Ax

wk.baidu.com



A x:20
A1 35:5
3.
0.25 0.55

A1 35:1
设 Ax
A 1 A0.4 x:20
A1 x:20
4. 试证在 UDD 假设条件下:
(1)
(2)
1
A x:n
Ā x:n
i

1
A x:n
1
A x:n
i

A1 x:n

p37
v2
A2
p38
0.40 ,
A
1 x:20

p35
A1 37:1
p39
A x:20

v3
A3
0.55 ,
p35
A1 38:1

(1) A1 。 x:20
(2)
A1 x:20
A1 x:20
A1 x:20
A1 x:20

p35

0.25 ,
1
A x:10
A1 x:20

保险精算第二版习题及答案

保险精算第二版习题及答案

第四章:人寿保险的精算现值

练 习 题

1. 设生存函数为()1100

x

s x =- (0≤x ≤100),年利率i =0.10,计算(保险金额为1元): (1)趸缴纯保费130:10

Ā的值。 (2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

10

101

30:10

10

10

211

222230:1030:10

()1()1100()10011

0.0921.17011

()()0.0920.0920.0551.2170

t x x t t

t t x x t t

t t x x t x s x t s x p s x x

A v p dt dt Var Z A A v p dt dt μμμ+++'+=-

⇒=-=-⎛⎫=== ⎪

⎝⎭

⎛⎫=-=-=-= ⎪

⎝⎭⎰⎰⎰⎰

2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。

(2)该保单自35岁~39岁各年龄的自然保费之总额。 (3)(1)与(2)的结果为何不同?为什么? (1)法一:4

1135

36373839234535:5

3511000()1.06 1.06 1.06 1.06 1.06

k k x x k k d d d d d A

v p q l ++===

++++∑ 查生命表353536373839979738,1170,1248,1336,1437,1549l d d d d d ======代入计算:

4

1135

36373839234535:5

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

保险精算(第二版)

第一章:利息的基本概念

练 习 题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1

(5)25 1.8

0.8

,1

25300*100

(5)300180300*100300*100(8)(64)508

180180

a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.0833,0.0714(0)(2)(4)

A A A A A A i i i A A A ---=

=====

(2)假设()()100 1.1n

A n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.1,0.1(0)(2)(4)

A A A A A A i i i A A A ---=

=====

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5

年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120

500(3)500(1)6200.0743363800(5)800(1)1144.97

a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1

A A i i i A ==+++⇒=

5.确定10000元在第3年年末的积累值:

(1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12

3

4

1()410000(3)10000(1)11956.18

4

10000(3)10000111750.08

14i a i a =+=⎛⎫ ⎪

=+= ⎪ ⎪⎝⎭

6.设m >1,按从大到小的次序排列()

()m m d d

i i δ<<<<。

7.如果0.01t t δ=,求10 000元在第12年年末的积累值。、

12

00.7210000(12)100001000020544.33t dt a e e δ⎰===

8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。

(4)(2)4

1

42

12(1)(1)(1)(1)(1)

42

1.1*1.086956522*1.061363551*1.050625 1.3332658580.74556336

i i i i d i -+=+-++==⇒= 9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6

t t

δ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。

()()

20212112

21212

() 1.01()1.01, 1.432847643

t

t t

t dt

t t

a t a t e e

e t δ=⎰==⇒==

10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。

()()()

2

2

10.010.12

20.01*200.1*2020

4

2

3

()1()11 1.8221

t

t t

t t dt

a t i a t e e

i e

e i δ++=+⎰==⇒+==+=

11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。

A. 7.19

B. 4.04

C. 3.31

D. 5.21

(3)3*5

153(1)3*1.02 4.03763

i +==

12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。

A.7 225

B.7 213

C.7 136

D.6 987

(2)2*24(1) 1.03 1.12552

i +==

第二章:年金

练习题

1.证明()

n m m n v v i a a -=-。

()11()m n

n m m n v v i a a i v v i i

---=-=-

2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付

10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。

120

12011000100079962.96(8.7%/12)

16000079962.9680037.04

v a i i

-===∴-= 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。

7

18711110.08299

a a a i i ⎛⎫

=+ ⎪+⎝⎭

∴=

4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。

10

101015000112968.7123

a x a i x ⎛⎫

= ⎪+⎝⎭

∴=

5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10

1

2

v

=

,计算K 。 10

20

101010

20

1010

1110002000100011111800

A a a a i i

B Ka K a i A B K ⎛⎫⎛⎫

=++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫

=+ ⎪+⎝⎭

=∴=

6. 化简(

)1020

101a v v

++ ,并解释该式意义。

相关文档
最新文档